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The intestinal tract, with high expression of angiotensin-converting enzyme 2 (ACE2), is 
a major site of extrapulmonary infection in COVID-19. During pulmonary infection, the 
virus enters the bloodstream forming viremia, which infects and damages extrapulmonary 
organs. Uncontrolled viral infection induces cytokine storm and promotes a hypercoagulable 
state, leading to systemic microthrombi. Both viral infection and microthrombi can damage 
the gut–blood barrier, resulting in malabsorption, malnutrition, and intestinal flora entering 
the blood, ultimately increasing disease severity and mortality. Early prophylactic 
antithrombotic therapy can prevent these damages, thereby reducing mortality. In this 
review, we discuss the effects of SARS-CoV-2 infection and intestinal thrombosis on 
intestinal injury and disease severity, as well as corresponding treatment strategies.
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INTRODUCTION

COVID-19 has become a worldwide pandemic causing widespread illness and mortality. SARS-
CoV-2 mainly infects the respiratory tract through attachment to angiotensin-converting enzyme 
2 (ACE2) receptors (Lan et  al., 2020). ACE2 is also highly expressed on intestinal epithelial 
cells, allowing SARS-CoV-2 to infect the intestinal tract (Xiao et  al., 2020a). Recent meta-
analyses show that 48%–54% of fecal samples from COVID-19 patients have tested positive 
for viral RNA, and 15%–17% of patients have gastrointestinal (GI) symptoms (Cheung et  al., 
2020; Mao et  al., 2020; Sultan et  al., 2020). Additionally, live virus can be  isolated from fecal 
samples of COVID-19 patients (Wang et  al., 2020). Some studies have proposed fecal–oral 
transmission as the cause of intestinal infection (Guo et  al., 2021). However, direct evidence 
for fecal–oral transmission is still lacking. Meanwhile, the virus has been detected in the blood 
of both symptomatic and asymptomatic patients (Chang et  al., 2020), and disseminated virus 
could infect extrapulmonary organs (Jacobs and Mellors, 2020). Thus, the potential that intestinal 
infection occurs via blood transmission should be  carefully considered.

Pulmonary infection triggers cytokine storm and induces a prothrombotic state (McFadyen 
et  al., 2020; Moore and June, 2020). Venous and arterial thrombosis are common in COVID-19 
(Moore and June, 2020). Systematic reviews estimate that 14%–31% of in-hospital patients develop 
a clinically apparent thrombotic event (Suh et  al., 2021; Tan et  al., 2021), while autopsy reports 
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show a high prevalence of microthrombi in multiple organs, 
including lung, heart, liver, kidney, and gastrointestinal tract 
(Bradley et al., 2020; Polak et al., 2020). A cohort study showed 
that COVID-19 patients with intestinal ischemia had markedly 
elevated D-dimer levels and poor outcomes (Norsa et al., 2020). 
Additionally, recent studies have shown that mesenteric thrombosis 
often results in intestinal resection and significantly increases 
mortality (Bhayana et al., 2020; El Moheb et al., 2020). Therefore, 
it is essential to outline the mechanisms of intestinal thrombosis 
and its contribution to intestinal damage and disease progression.

In this review, we  discuss blood transmission as a potential 
route for intestinal infection. We  then summarize the 
characteristics and mechanism of intestinal thrombosis formation 
in COVID-19. Next, we focus on the effects of intestinal infection 
and thrombosis on intestinal damage and disease severity. Finally, 
we  discuss therapeutic strategies to prevent intestinal damage.

GASTROINTESTINAL SYMPTOMS AND 
SARS-CoV-2 INFECTION

Multiple studies have reported GI symptoms in COVID-19 
patients, including diarrhea, nausea, vomiting, anorexia, and 
abdominal pain (Cheung et  al., 2020; Mao et  al., 2020; Sultan 
et  al., 2020). According to a meta-analysis comprising 10,890 
COVID-19 patients, the pooled prevalence estimates of GI 
symptoms were: diarrhea (7.7%), nausea or vomiting (7.8%), 
and abdominal pain (2.7%; Sultan et  al., 2020) with 10% of 
these patients reporting GI symptoms as being their initial 
symptoms (Cheung et  al., 2020). These data indicate potential 
gastrointestinal infection by SARS-CoV-2, which is reported to 
infect and replicate in epithelial cells of human small intestinal 
organoids (Zang et  al., 2020). Both viral nucleocapsid proteins 
and viral particles have been detected in infected patient intestinal 
biopsies (Livanos et  al., 2021). Additionally, SARS-CoV-2 RNA 
and live virus can be  found in the stool of patients (Wang 
et al., 2020). More importantly, SARS-CoV-2 subgenomic mRNA 
is transcribed in actively replicating cells and has been detected 
in fecal samples (Wölfel et al., 2020). Further, rectal viral shedding 
persists for longer than that of the respiratory system (Zhao 
et  al., 2020). All these data demonstrate that SARS-CoV-2 
directly infects and replicates in intestinal epithelial cells of patients.

INTESTINAL INFECTION AND 
TRANSMISSION ROUTES

With the deepening understanding of COVID-19, GI symptoms 
have been recognized as early signs of the disease. The high 
expression of ACE2  in the GI tract, isolation of live virus 

from fecal samples, and a subset of patients presenting with 
only GI symptoms seem to suggest fecal–oral transmission. 
However, problems with the feasibility of this mode of 
transmission remain. First, studies have shown that SARS-CoV-2 
loses infectivity in simulated gastric acid within 10 min (Chan 
et  al., 2020; Zang et  al., 2020; Zhong et  al., 2020). Secondly, 
SARS-CoV-2, as an enveloped virus, is largely unable to withstand 
the detergent effect of bile salts and the activity of digestive 
enzymes in the duodenum (Figure  1). Although some studies 
have suggested that highly viscous mucus in the gastrointestinal 
tract protects SARS-CoV-2, allowing the virus to retain its 
infectivity (Guo et  al., 2021; Zhang H. et  al., 2021), there is 
still a lack of direct evidence. Bushman et  al. (2019) had 
previously investigated the links between the structures of 
viruses and routes of transmission and found a strong association 
between fecal–oral transmission and the absence of a lipid 
envelope. Lastly, although some studies have isolated intact 
viruses from feces (Wang et  al., 2020; Zhang Y. et al., 2020; 
Zhou et  al., 2020; Xiao et  al., 2020b), most of them have not 
further confirmed the infectivity of these viruses (Wang et  al., 
2020; Zhang Y. et al., 2020; Xiao et  al., 2020b). Zhou et  al. 
(2020) confirmed viral propagation by RT-PCR, but only in 
a single fecal sample. Previous research has shown that SARS-
CoV-2 is completely inactivated in simulated human colonic 
fluid over the course of 24 h, which may explain the sporadic 
detection of infection-active SARS-CoV-2 from feces samples.

Several lines of evidence suggest that SARS-CoV-2 may infect 
the intestinal tract via the bloodstream. Deng et  al. (2020) 
detected SARS-CoV-2 RNA in anal swabs from intratracheally 
but not intragastrically infected rhesus macaques, suggesting 
blood transmission. Indeed, SARS-CoV-2 RNA has been detected 
in blood and urine samples of patients (Wang et  al., 2020). 
The virus can also be  detected in multiple organs (including 
heart, brain, and kidney) and is associated with organ injury, 
indicating that the virus can reach and infect extrapulmonary 
organs (Puelles et  al., 2020). Another study showed that SARS-
CoV-2 viremia was associated with intestinal damage, independent 
of disease severity (Li Y. et al., 2021). Thus, blood transmission 
could be  the cause of intestinal infection. Specifically, SARS-
CoV-2 replicating in alveolar epithelial cells and capillary ECs 
is released into the bloodstream and infects new vascular ECs. 
The capillary network is then the main route by which the 
virus enters and infects extrapulmonary organs. The extensive 
surface area of intestinal capillaries makes intestinal epithelial 
cells more susceptible to infection than other extrapulmonary 
organs. Following infection of intestinal capillaries, SARS-CoV-2 
is released into the gut and infects surrounding intestinal 
epithelial cells along the intestinal tract (Figure  1). Once 
established in the gut, SARS-CoV-2 can also reenter the capillaries, 
potentially leading to recurrence of disease. Consistent with 
this, in patients who experienced recurrence, the phylogenetic 
analysis of infection samples has shown that recurrent virus 
evolves from the original parent virus (Hu et  al., 2020).

Additionally, SARS-CoV-2 RNA can also be  detected in the 
blood and urine of asymptomatic patients, suggesting a second 
pathway to viremia through the nasal cavity (Chang et  al., 
2020; Hasanoglu et  al., 2021). The abundant blood vessels, 

Abbreviations: COVID-19, Coronavirus disease 2019; SARS-CoV-2, Severe acute 
respiratory syndrome; ACE2, Angiotensin-converting enzyme 2; GI, Gastrointestinal; 
ECs, Endothelial cells; vWF, von Willebrand factor; PS, Phosphatidylserine; MPs, 
Microparticles; TF, Tissue factor; NETs, Neutrophil extracellular traps; RCT, 
Randomized controlled trial; LMWH, Low molecular weight heparin; RT-PCR, 
Reverse transcription-polymerase chain reaction.
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thin mucous membrane, and higher levels of ACE2 (Huang 
et  al., 2021) make it possible for the virus to initiate viremia 
from the nasal cavity. Specifically, SARS-CoV-2 is released from 
infected ciliary cells of the nasal cavity and breaks through 
the basement membrane, infecting the vascular ECs and eventually 
entering circulation (Figure  1). Blood transmission after nasal 
infection is therefore another potential route of intestinal infection.

INTESTINAL DAMAGE, MALNUTRITION, 
AND POOR OUTCOMES

A recent study has shown that a fecal sample positive for 
SARS-CoV-2 RNA at any time during hospitalization was 
associated with higher mortality [HR: 3.4 (1.2–9.9); Das Adhikari 
et  al., 2021]. Similarly, another study showed that small-bowel 

FIGURE 1 | Intestinal infection and transmission routes. ① Direct evidence for fecal–oral transmission is still lacking. SARS-CoV-2 may be unable to enter the small 
intestine from the stomach due to gastric acid, bile and digestive enzymes. ② SARS-CoV-2 released from type II alveolar cells infects alveolar capillary endothelial 
cells (ECs). The virus replicates in ECs and is released into the blood to form viremia. ③ SARS-CoV-2 is released from infected ciliary cells of the nasal cavity and 
breaks through the basement membrane, infecting the vascular ECs and eventually entering circulation. ④ Blood transmission after alveolar or nasal infection is a 
potential route of intestinal infection. Eventually, SARS-CoV-2 is released into the gut and infects surrounding intestinal epithelial cells along the intestinal tract. ⑤ 
SARS-CoV-2 in the gut can also enter the capillaries and cause viremia, leading to recurrence of disease.
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thickening on CT was strongly associated with ICU admission 
(Wölfel et  al., 2020). This relationship did not hold for colon 
or rectal thickening. These data indicates that small-bowel 
damage contributes to poor outcomes. As the main organ for 
nutrient absorption, damage to the small intestine will result 
in malabsorption and malnutrition, both of which commonly 
occur in COVID-19 patients (Di Filippo et  al., 2021; Lv et  al., 
2021) and are associated with disease severity (Luo et al., 2020; 
Zhang P. et  al., 2021). A fecal metabolome study showed that 
feces of COVID-19 patients were enriched with important 
nutrients that should be  metabolized or absorbed, consistent 
with malabsorption (Lv et al., 2021). A prospective study showed 
that 29% of COVID-19 patients (31% of hospitalization patients 
and 21% of patients quarantined at home) had lost >5% of 
body weight [median weight loss, 6.5 (5.0–9.0) kg or 8.1 
(6.1–10.9) %; Di Filippo et  al., 2021]. Those patients with 
weight loss had greater systemic inflammation, impaired renal 
function and longer disease duration. A large, multicenter study 
(including 3,229 patients with GI symptoms) showed that 23% 
of patients had malnutrition, of whom 56.4% were unable to 
gain weight after 6 months follow-up (Rizvi et al., 2021). Studies 
also showed that malnutrition was associated with higher 
incidences of acute respiratory distress syndrome, acute 
myocardial injury, secondary infection, shock, and 28-day ICU 
mortality (Luo et  al., 2020; Zhang P. et al., 2021). Overall, 
malabsorption and malnutrition due to damaged small intestine 
increased disease severity and mortality.

Nutrient absorption in the small intestine is mainly through 
ATP-dependent active transport. Intestinal infection, hypoxemia, 
and intestinal ischemia contribute to malabsorption. SARS-
CoV-2 adhesion depletes ACE2 levels on intestinal epithelial 
cells, which alters the expression of the neutral amino acid 
transporter B0AT1, reducing the intake of tryptophan and the 
production of nicotinamide (D'Amico et al., 2020). Meanwhile, 
uncontrolled viral replication consumes large amounts of ATP 
and nutrients, resulting in decreased nutrients entering the 
bloodstream. More importantly, anaerobic glycolysis caused by 
hypoxemia and intestinal ischemia significantly decreases ATP 
and active transport, leading to malabsorption. Additionally, 
hypoxemia and intestinal ischemia can also cause anorexia, 
nausea, vomiting, and enteral nutrition intolerance, reducing 
food intake. A prospective multicenter study showed that 
reduced food intake was associated with higher ICU admission 
and mortality (Caccialanza et  al., 2021).

INTESTINAL ISCHEMIA AND 
THROMBOSIS

Intestinal ischemia is a common manifestation in COVID-19 
patients. Autopsy results have shown that 31.6% of deceased 
patients had focal ischemic intestinal changes (Chiu et  al., 
2020). In a separate imaging study, bowel wall thickening and 
pneumatosis intestinalis, which indicate intestinal ischemia, 
were found on 38.1% (16 of 42) of abdominal CT images 
(Bhayana et  al., 2020). Of these, 4 (9.5%) patients with 
pneumatosis intestinalis developed severe intestinal necrosis 

and needed resection. In another cohort study, 55.8% (58/104) 
of ICU patients developed an ileus (Kaafarani et  al., 2020). 
Although mechanical factors cannot be  ruled out, insufficient 
intestinal motility due to intestinal ischemia was more likely 
to be the cause of ileus in COVID-19 patients. In these patients 
with ileus, 4 (3.8%) developed severe intestinal ischemia and 
require emergency surgery. Both studies found microthrombi 
in these resected intestinal samples, which were the main cause 
of intestinal ischemia and increased mortality.

Additional intestinal ischemia and necrosis follows the 
formation of mesenteric thrombosis. However, there is currently 
relatively little data of mesenteric thrombus in COVID-19. 
Therefore, we  have summarized the characteristics of 40  
patients in 39 case reports published on PubMed 
(Supplementary Table  1). The median age of these patients 
was 50 (20–82) years, 26 (65%) were male, 38 (95%) developed 
bowel ischemia or necrosis, 30 (75%) needed bowel resection, 
7 (17.5%) required no surgery, at least 3 (7.5%) developed 
sepsis, and 13 (32.5%) died. Other abdominal thrombotic events 
(such as celiac aortic thrombosis) leading to mesenteric ischemia 
can also result in severe intestinal necrosis and require intestinal 
resection (Zamboni et  al., 2021).

Mild intestinal ischemia can lead to reduced diet and 
malabsorption. Severe intestinal ischemia or necrosis leads to 
the dissemination of gut bacteria, endotoxins, and microbial 
metabolites into the blood (Figure  2 bottom), aggravating 
hyperinflammation and the hypercoagulability state. Such patients 
need emergency excision of the necrotic bowel, which significantly 
increases mortality.

LONG-TERM GASTROINTESTINAL 
SEQUELAE

Long-term GI complications are common in recovering 
COVID-19 patients. In one systematic review of post-acute 
COVID-19 manifestations, diarrhea was among the top  10 
most common complaints, with a prevalence of 6%. Other 
long-term GI symptoms include nausea, vomiting, abdominal 
pain, loss of appetite, and weight loss (Aiyegbusi et  al., 2021; 
Huang et  al., 2021). The exact mechanisms of the GI sequelae 
remain unclear. Recently, persistent endotheliopathy, higher 
levels of thrombin (Fogarty et  al., 2021), and residual SARS-
CoV-2 viral antigens in the GI tract (Cheung et  al., 2022) 
were described in convalescent COVID-19 patients. These data 
suggest that prolonged intestinal infection, persistent endothelial 
injury (abnormal intestinal–blood barrier), and microthrombi 
could be  causes of the persistent GI symptoms.

THE MECHANISMS OF INTESTINAL 
THROMBOSIS

Damaged Endothelial Cells
Resected bowel samples from COVID-19 patients routinely 
exhibit thrombi and endotheliitis, indicating the important role 
of EC injury in mesenteric thrombosis (Bhayana et  al., 2020; 
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Chiu et al., 2020; Kaafarani et al., 2020). SARS-CoV-2 infection 
(Varga et  al., 2020) and elevated inflammatory cytokines (He 
et  al., 2016) damage mesenteric vascular ECs. In response, EC 
cell margins retract, extending phosphatidylserine (PS) positive 
filopods and releasing endothelial microparticles (MPs; 
Figure  3B; He et  al., 2016). The PS+ filopods and MPs can 
be  co-stained by Xa and Va and support fibrin formation 
(Figures  3B–D). The exposed PS then activates tissue factor 
on ECs, triggering the extrinsic coagulation pathway (Versteeg 
et  al., 2013). Next, higher levels of FVIII and vWF released 
from damaged EC contribute to the hypercoagulable state and 
platelet aggregation, respectively (Goshua et  al., 2020). 
Thrombomodulin is then released from ECs in its soluble form, 
which has an attenuated capacity to activate Protein C due 
to a lack of other cofactors on ECs, such as endothelial protein 
C receptor (Versteeg et  al., 2013). Finally, upregulation of 
endothelial cell adhesion molecules recruits neutrophils and 
platelets and further contributes to thrombosis (Tong et  al., 
2020; Li L. et  al., 2021).

Hyperactivated Platelets and 
Phosphatidylserine Storm
Although COVID-19 patients exhibit mild thrombocytopenia, 
the remaining platelets are hyperactivated (Manne et  al., 
2020; Taus et al., 2020; Zaid et al., 2020). Studies have shown 
that platelets from COVID-19 patients have increased P-selectin 
and αIIbβ3 expression. P-selectin on activated platelets interacts 
with integrin αIIb/β3 on monocytes to form platelet-monocyte 
complexes, which induce monocyte tissue factor expression 
(Hottz et  al., 2020). The activated platelets can also induce 
neutrophils to release neutrophil extracellular traps (NETs; 
Middleton et al., 2020). Furthermore, platelets from COVID-19 
patients aggregate and adhere more efficiently to collagen-
coated surfaces under flow conditions (Manne et  al., 2020; 
Zaid et  al., 2020). Meanwhile, activated platelets release α- 
and dense-granule contents including FV, FXI, fibrinogen 
and vWF (Zaid et  al., 2020). In addition, activated platelets 
also produce inflammatory cytokines, fueling cytokine storm 
(Taus et  al., 2020; Zaid et  al., 2020). Most importantly, 

FIGURE 2 | Intestinal thrombosis leads to intestinal mucosal necrosis and dissemination of gut bacteria, endotoxins, and microbial metabolites in blood. (Top) 
Mesenteric vascular endotheliitis (initiated by viremia and accelerated by cytokines), hyperactivated platelets and high levels of phosphatidylserine (PS) promote a 
high rate of mesenteric thrombus in COVID-19 patients (mesenteric vein is shown in Supplementary Figure 1). (Bottom) Intestinal microthrombi and hypoxemia 
rapidly lead to intestinal mucosal ischemia and necrosis. The damaged gut–blood barrier leads to dissemination of gut bacteria, endotoxins, and microbial 
metabolites in blood.
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activated platelets expose higher levels of PS and release 
higher numbers of PS+ MPs (Figures 3E–G; Zaid et al., 2020; 
Althaus et  al., 2021).

Phosphatidylserine is the most abundant negatively charged 
phospholipid in mammalian cells and is usually confined to 
the inner leaflet of the cell membrane (Versteeg et  al., 2013). 

FIGURE 3 | Phosphatidylserine exposure on activated/apoptotic cells and microparticles (MPs) promotes fibrin formation. (A) Phosphatidylserine is usually confined 
to the inner leaflet of the cell membrane. This asymmetry is maintained through ATP-dependent inward transport of PS by flippases and outward transport of non-
PS by floppases (left). Upon stimulation, calcium transients will inhibit ATP-dependent transport and stimulate the nonselective lipid transporter scramblase (ATP-
independent), resulting in PS exposure (right). (B–D) Human umbilical vein ECs were treated with healthy human plasma and TNF-ɑ (our previous study; He et al., 
2016). (B) ECs retracts the cell margins, extends PS positive filopods and releases endothelial-MPs. (C) The PS+ filopods and MPs can be co-stained by Xa and Va. 
(D) ECs (green) were incubated with MPs-depleted plasma (MDP) in the presence of calcium for 30 min and stained with Alexa Fluro 647-anti-fibrin for 30 min. 
Considerable fibrin stands among cultured ECs along with filopodia. (E) Confocal images showed PS expression on platelets of patients stained with Alexa 488 
lactadherin (our previous study; Ma et al., 2017). MPs from the activated platelet (*) had formed at the margin area located between the distinct outlines. (F) MPs 
from plasma were co-stained by Xa and Va (or lactadherin and annexin V; our previous study; Gao et al., 2015). (G) MPs that were incubated with recalcified MDP 
for 30 min and stained with Alexa Fluro 647-anti-fibrin for 30 min. Converted fibrin networks were detected around MPs. The inset bars represent 5 μm in (B–D,G) 
and 2 μm in (E,F).
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This asymmetry is maintained through ATP-dependent inward 
transport of PS by flippases and outward transport of other 
phospholipids by floppases (Figure 3A left). Upon stimulation, 
transiently increased calcium inhibits ATP-dependent transport 
and stimulates the nonselective lipid transporter scramblase 
(ATP-independent), resulting in PS exposure on the outer 
membrane (Figure 3A right). During this process, microvesicles 
derived from the budding of cellular membranes will be released. 
These MPs are typically <1 μm and express PS (Burnier et  al., 
2009). The exposure of PS on the surface of cells and MPs 
provides a catalytic surface for factor Xa and thrombin formation 
in vivo (Versteeg et al., 2013). We have previously demonstrated 
that PS mediates 90% of Xa and thrombin formation and 
significantly increases thrombosis in vivo (Shi and Gilbert, 2003).

Cytokines and virus infection can activate blood cells and 
ECs, resulting in higher levels of PS+ cells and MPs. As 
COVID-19 progresses, the developing cytokine storm activates 
more blood cells, leading to PS storm. Platelets are highly 
sensitive to circulating cytokines, releasing large amounts of 
cytokines and PS exposed MPs into the plasma (Taus et  al., 
2020; Althaus et  al., 2021) and thus are a major contributor 
to PS storm. Previous studies found an unusual elevation of 
FVa in severe COVID-19 patients (248 IU/dl, higher than any 
previous disease; Stefely et  al., 2020; von Meijenfeldt et  al., 
2021). The degree of FVa elevation in these patients may be the 
result of PS storm.

Collectively, SARS-CoV-2 infection is the initiating factor 
for injury of the intestinal vascular ECs, which is then aggravated 
by systemic cytokines, leading to endotheliitis. Subsequently, 
the hyperactivated platelets in circulation rapidly accumulate 
around the damaged ECs, inducing tissue factor expression, 
NET release, and activating the intrinsic/extrinsic coagulation 
pathways. Simultaneously, the high levels of PS expression in 
circulating cells and MPs further promote thrombin and fibrin 
formation (Figure  2 top).

EARLY ANTITHROMBOTIC TREATMENT

Vaccines and antithrombotic therapy are effective measures to 
reduce intestinal damage and fight against the COVID-19 
pandemic (Baden et  al., 2021; Chalmers et  al., 2021). Vaccines 
induce adaptive immunity to clear the virus, reducing intestinal 
infection and intestinal damage. However, the usefulness of 
vaccines is limited by incomplete vaccine acceptance and viral 
mutations (Hacisuleyman et  al., 2021; Wang et  al., 2021). 
Vaccines are also ineffective for already infected patients. 
Therefore, more attention should be  paid to antithrombotic 
therapy. Studies had shown that thrombotic events mainly 
occurred within 7 days of COVID-19 diagnosis (both inpatients 
and outpatients; Mouhat et al., 2020; Ho et al., 2021). Meanwhile, 
two large randomized controlled trials (RCTs) from the same 
platform showed that therapeutic anticoagulation reduced 
mortality in moderate cases but not in severe ones, suggesting 
that delayed anticoagulant therapy may lead to treatment failure 
(REMAP-CAP Investigators et  al., 2021a,b). More importantly, 
a recent study reported three asymptomatic COVID-19 patients 

who developed abdominal (or intestinal) thrombosis leading 
to intestinal necrosis (Zamboni et  al., 2021). All these data 
suggest that antithrombotic therapy should be  initiated once 
COVID-19 is diagnosed (excluding patients with 
contraindications). Early prophylactic antithrombotic therapy 
can reduce the activation of vascular ECs and blood cells, 
preventing intestinal thrombosis, ensuring sufficient intestinal 
perfusion, maintaining the normal gut–blood barrier, avoiding 
malabsorption, malnutrition, and intestinal flora entering the 
bloodstream. Further, attenuated injury and decreased 
microthrombi in convalescent patients may lower the risk of 
long-term GI sequelae. Meanwhile, unobstructed systemic 
circulation can also accelerate the removal of SARS-CoV-2, 
inflammatory cytokines and damaged blood cells by the 
mononuclear phagocyte system.

Anticoagulation
Table  1 summarizes the RCTs of anticoagulant therapy in 
COVID-19 patients. For outpatients, early anticoagulant therapy 
reduced hospitalization and supplemental oxygen (Gonzalez-
Ochoa). While, delayed treatment had no similar effect 
(ACTIV-4B and Ananworanich). Thus, oral anticoagulant therapy 
should be initiated in outpatients once COVID-19 is diagnosed. 
For non-critically ill patients, therapeutic doses of low molecular 
weight heparin (LMWH) reduced thrombotic events and 
mortality, and increased organ support-free days (REMAP-CAP, 
ACTIV-4a, ATTACC; RAPID; HEP-COVID). However, 
therapeutic doses of rivaroxaban did not improve clinical 
outcomes and increased bleeding (ACTION). This is potentially 
because novel oral anticoagulants do not share the anti-
inflammatory and antiviral functions of heparin. Intestinal 
damage might also result in abnormal absorption of oral 
anticoagulants. Therefore, therapeutic LMWH should be  the 
first choice for non-critically ill patients. For critically ill patients, 
RCTs showed that moderate and therapeutic doses were not 
superior to prophylactic ones. Results from several other studies 
suggest that the overwhelming thrombosis leads to failure of 
anticoagulant therapy at therapeutic doses (Leentjens et  al., 
2021; Poor, 2021). Faced with this dilemma, an editorial in 
N Engl J Med argued that profibrinolytic strategies should 
be  considered (Ten Cate, 2021). More studies are needed to 
explore optimal antithrombotic therapy in critically ill patients.

Inhibition of Platelet Activation
As COVID-19 progresses, cytokine storm activates platelets, 
which not only participate in primary hemostasis, but also 
are the major components of PS storm. Autopsy results show 
a high prevalence of platelet-fibrin-rich microthrombi in lung 
and extrapulmonary organs, including the gastrointestinal tract 
(Bradley et  al., 2020; Polak et  al., 2020). Early inhibition of 
platelet activation can reduce platelet activity and prevent PS 
storm, thus decreasing thrombosis and mortality. Several 
observational studies have shown that aspirin decreases 
mechanical ventilation, ICU admission, and mortality (Chow 
et  al., 2020; Santoro et  al., 2022). The RCTs testing antiplatelet 
agents were still preliminary. A recent RCT suggested that 
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aspirin was associated with an increase in survival and reduction 
in thrombotic events (RECOVERY Collaborative Group, 2022). 
In addition, anti-inflammatory therapy (e.g., dexamethasone, 
6 mg once daily; RECOVERY Collaborative Group et al., 2020) 
inhibits cytokine storm, as well as platelet activation, reducing 
mortality. Overall, inhibition of platelet activation is also 
important to reduce mortality through the prevention of 
thrombosis and organs damage.

FACTORS INFLUENCING 
ANTITHROMBOTIC TREATMENT

Thrombotic Risk Factors or Co-morbidities
Studies have shown that obesity, hyperglycemia and diabetes 
are associated with increased thrombotic events (including 
intestinal thrombosis), COVID-19 severity, and mortality 
(Drucker, 2021; Stefan et  al., 2021). Other thrombotic risk 

factors include previous venous thromboembolism, active cancer, 
known thrombophilic condition, recent trauma or surgery, age 
≥70 years, respiratory/cardiac/renal failure, and inflammatory 
bowel disease (Susen et al., 2020). These factors or co-morbidities 
heighten basal inflammatory levels and endothelial damage, 
leading to premature cytokine and PS storms, ultimately 
increasing thrombosis and mortality. Thus, more active 
antithrombotic therapy strategies should be  adopted in these 
patients. For patients with mild COVID-19 with these factors, 
the French Working Group on Perioperative Hemostasis and 
the French Study Group on Thrombosis and Hemostasis 
recommend higher (intermediate) doses of anticoagulant therapy 
(Susen et  al., 2020). For moderately ill patients, therapeutic 
doses of anticoagulant therapy should be  initiated as soon as 
possible to prevent excessive microthrombus formation. The 
need for extended thromboprophylaxis in discharged patients 
remains controversial. However, a recent RCT showed that 
rivaroxaban (10 mg/day, 35 days) improved clinical outcomes 

TABLE 1 | Randomized clinical trials of anticoagulant therapy in COVID-19 patients.

Drugs Dose/Patients Interval§ (days) Primary outcomes Major bleeding&

Outpatients

Connors et al., 2021 (ACTIV-4B) Apixaban Control: 164

Prophylactic: 165

Therapeutic: 164

10 AT did not reduce major 
thromboembolism or death

0 vs. 0 vs. 0

Ananworanich et al., 2021 Rivaroxaban Control: 222

Prophylactic: 222

<10 AT did not reduce disease progression, 
but increase asymptomatic participants*

0 vs. 0

Gonzalez-Ochoa et al., 2021 Sulodexide Control: 119

Therapeutic: 124

<3 Fewer patients with AT required 
hospitalization and supplemental oxygen*

0 vs. 1

Non-critically ill patients

REMAP-CAP Investigators et al., 2021a LMWH Prophylactic: 1050

Therapeutic: 1181

<3 Therapeutic AT increased the probability 
of survival or organ support-free days*

0.9% vs. 1.9%

Sholzberg et al., 2021 (RAPID) LMWH Prophylactic: 237

Therapeutic: 228

1.5 Mortality (vs. Prophylactic):

OR: 0.22 (0.07–0.65)*

1.7% vs. 0.9%

Spyropoulos et al., 2021 (HEP-COVID) Enoxaparin Prophylactic: 124

Therapeutic: 129

<3 Therapeutic anticoagulation significantly 
reduced major thromboembolism and 
death*

1.6% vs. 4.7%

Marcos-Jubilar et al., 2022 Bemiparin Prophylactic: 33

Therapeutic: 32

6 vs. 5& Mortality (vs. Prophylactic):

OR: 2.13 (0.18–24.76)

0 vs. 0

Lopes et al., 2021 (ACTION) Rivaroxaban

Enoxaparin¦

Prophylactic: 304

Therapeutic: 311

<3 Mortality (vs. Prophylactic):

RR: 1.49 (0.90–2.46)

2% vs. 8%*

Severe patients

INSPIRATION Investigators et al., 2021 Enoxaparin Prophylactic: 276

Intermediate: 286

4 Mortality (vs. Prophylactic):

HR: 1.06 (0.83–1.36)

2.5% vs. 1.4%

Perepu et al., 2021 Enoxaparin Prophylactic: 86

Intermediate: 87

5 Mortality (vs. Prophylactic):

OR: 0.66 (0.30–1.45)

2.3% vs. 2.3%

REMAP-CAP Investigators et al., 2021b LMWH Prophylactic: 567

Therapeutic: 536

<3 Therapeutic AT did not increase 
probability of survival or organ support-
free days

2.3% vs. 3.8%

Lemos et al., 2020 (HESACOVID) Enoxaparin Prophylactic: 10

Therapeutic: 10

<4 Therapeutic AT significantly increased 
PaO2/FiO2 ratio

0 vs. 0

*p < 0.05.
§The median time from diagnosis to initiation of study treatment.
&vs. Prophylactic/control.
¦Clinically stable patients received therapeutic rivaroxaban and clinically unstable ones received therapeutic enoxaparin or unfractionated heparin.  AT, anticoagulation; LMWH, low 
molecular weight heparin; OR/HR, odds/hazard ratio; and RR, relative risk.
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in discharged COVID-19 patients with higher thrombotic risk 
factors (Ramacciotti et  al., 2022), supporting extended 
thromboprophylaxis in patients with these risk factors or 
co-morbidities.

Vaccination
Although more than half the world population has received 
at least one dose of the vaccines, there are relatively little data 
of antithrombotic therapy in vaccinated patients. Studies of 
viral dynamics show that the viral loads of vaccinated patients 
are as high as that of unvaccinated patients, but drop significantly 
faster (Brown et  al., 2021; Klompas, 2021). Thus, vaccinated 
patients have shorter hospital stays, and are less likely to 
progress to critical illness and death (Tenforde et  al., 2021; 
Thompson et  al., 2021). Nevertheless, antithrombotic therapy 
is still beneficial for the vaccinated patients. Firstly, heparin 
has anti-inflammatory and antiviral functions and can interfere 
with the binding of SARS-CoV-2 to ACE2 and shorten the 
duration of virus infection (Kwon et  al., 2020; Pereyra et  al., 
2021). Secondly, antithrombotic therapy protects cells from 
damage, PS exposure, and microthrombi formation, maintains 
unobstructed blood circulation, and facilitates virus clearance 
(by vaccine-induced adaptive immunity). Thirdly, thrombosis 
remains an important factor in disease progression. 
Antithrombotic therapy further reduces thrombosis and mortality, 
especially in vaccinated patients with high risk factors or 
co-morbidities. Lastly, although vaccines reduce the incidence, 
a subset of vaccinated patients will still develop long-term 
sequelae or Long Covid (Ledford, 2021; Antonelli et  al., 2022). 
Persistent viral infection and microthrombi are the primary 
causes (Ledford, 2021; Xie et al., 2022), and early antithrombotic 
therapy is still needed to prevent them.

CONCLUSION AND FUTURE RESEARCH

During COVID-19 disease progression, SARS-CoV-2 infiltrates 
the blood stream from the initial respiratory tract infection, 
causing viremia, hyperactivated platelets and PS storm. The 
virus settles into the vascular beds of extrapulmonary organs, 
ultimately causing infection of intestinal epithelial cell. Damaged 
ECs, combined with hyperactivated platelets and PS storm, 
promote intestinal thrombosis, resulting in intestinal ischemia 
or necrosis. The damaged gut–blood barrier leads to 
malabsorption, malnutrition and intestinal flora entering the 

bloodstream, which significantly increase disease severity and 
mortality. Prolonged intestinal infection, persistent endothelial 
injury and microthrombi contribute to the long-term GI sequelae 
after discharge. Early prophylactic antithrombotic therapy can 
prevent microthrombi, ensuring sufficient intestinal perfusion, 
maintaining the normal intestinal function, and reducing the 
risk of long-term GI sequelae. More active antithrombotic 
therapy should be  adopted in patients with other thrombotic 
risk factors or co-morbidities. Even in vaccinated COVID-19 
patients, antithrombotic therapy is also important to decrease 
(intestinal) thrombosis, mortality and the risk of long-term 
GI sequelae.

With the Omicron pandemic, patients requiring hospitalization 
and ICU treatment decline rapidly. However, people are 
increasingly concerned about Long Covid. In terms of long-
term GI sequelae, the detailed mechanisms of prolonged intestinal 
infection and persistent microthrombi remain unclear. And 
whether anticoagulant therapy can decrease GI symptoms in 
patients with long-term GI sequelae deserves further study. 
Finally, the impact of vaccines on long-term GI sequelae remains 
unclear in previously infected and breakthrough infected patients.
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