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Characterization and understanding of gut microbiota has recently increased representing a wide research field, especially in
autoimmune diseases. Gut microbiota is the major source of microbes which might exert beneficial as well as pathogenic effects
on human health. Intestinal microbiome’s role as mediator of inflammation has only recently emerged. Microbiota has been
observed to differ in subjects with early rheumatoid arthritis compared to controls, and this finding has commanded this study
as a possible autoimmune process. Studies with intestinal microbiota have shown that rheumatoid arthritis is characterized by
an expansion and/or decrease of bacterial groups as compared to controls. In this review, we present evidence linking intestinal
dysbiosis with the autoimmune mechanisms involved in the development of rheumatoid arthritis.

1. Introduction

Rheumatoid arthritis (RA) is a systemic, inflammatory, and
chronic disease characterized by a persistent immune
response that leads to inflammation and destruction of joints.
The etiopathogenic mechanisms involved are complex and
include an interaction between the innate and acquired
immune response, involving antigen-presenting cells
(APCs), autoreactive T cell formation, and production of
autoantibodies directed against their own cellular structures,
like rheumatoid factor (RF) and anticitrullinated protein
antibodies (ACPAs). These antibodies are often present in
the blood, long before any sign of joints’ inflammation,

suggesting that the triggering of autoimmunity might occur
at different sites to the joints, for example, the gastrointestinal
tract or airway [1]. Epidemiological studies suggest rheuma-
toid arthritis as the result of complex interactions between
genes, environmental and hormonal factors, and the immune
system [2, 3].

There is a genetic susceptibility to rheumatoid arthritis by
a tendency to familial aggregation, a concordance between
monozygotic twins and an association with some histo-
compatibility antigens [4, 5]. Heritability estimates have
suggested a 60–70% genetic risk factors, responsible for
developing rheumatoid arthritis [6]. Candidate gene or
genome-wide association studies have identified different

Hindawi
Journal of Immunology Research
Volume 2017, Article ID 4835189, 13 pages
https://doi.org/10.1155/2017/4835189

https://doi.org/10.1155/2017/4835189


risk loci associated with rheumatoid arthritis etiology. Cur-
rently, in this disease, about 100 described genes are associ-
ated with susceptibility, protection, severity, activity, and
treatment response [6]. Human leukocyte antigen (HLA)
polymorphisms are the most important genetic risk factors.
HLA are an important part of the immune system triggering
T cells of the immune system to produce antibodies. Associ-
ations of RA with HLA-DRB1 alleles have been observed in
all racial and ethnic populations [7, 8]. The shared epitope
(SE), a 5-amino acid sequence motif in positions 70–74 of
the HLA–DRβ chain, is the most significant genetic risk
factor for rheumatoid arthritis [9]. Some SE alleles, such
as HLA-DRB1∗0401, appear to confer a higher risk than
others; moreover, the presence of two SE alleles and in
particular HLA-DRB1∗0401/∗0404 confers a high risk to
develop the disease and has also an influence on disease
severity [10]. SE alleles are associated with ACPA-positive
rheumatoid arthritis, but only relatively weakly with
ACPA-negative rheumatoid arthritis [8]. SE alleles might
contribute to the genetic predisposition to rheumatoid
arthritis causing an immune dysregulation (controlling
both specificity and amount of ACPA production) or a
premature immunosenescence [10].

In genetically disease-susceptible individuals, subsequent
environmental triggers might induce rheumatoid arthritis
development. The bacterial and viral components are an
attractive source of antigens capable of inducing rheumatoid
arthritis and, therefore, have been the most investigated as
potential causal agents [3]. However, there is no conclusive
evidence to date of a causal relationship of a microorganism
with rheumatoid arthritis.

In recent years, characterization and understanding of
this gut microbiota has increased and constitutes a wide
research field, especially in autoimmune diseases. The gut
microbiota is the major source of microbes that may exert
beneficial as well as pathogenic effects on human health
[11]. Encouraged by studies that show alterations in intes-
tinal microbiota composition in autoimmune diseases, such
as rheumatoid arthritis, the interest of studying microorgan-
isms as potential candidates in the development of autoim-
munity has been renewed [11–14].

Findings supporting the idea that the onset of autoimmu-
nity may be related to gastrointestinal tract are as follows: (1)
microbial composition in subjects with early rheumatoid
arthritis differs to controls, with a reduction of certain bacte-
ria belonging to the family Bifidobacterium and Bacteroides
[15, 16], and a marked increase of species belonging to the
genus Prevotella [17]. (2) In murine models, the parenteral
injection of cell wall fragments from various intestinal bacte-
ria is arthritogenic [17] and in this model, arthritis is not
developed when bred in germ-free conditions; otherwise, it
is presented when intestinal bacterial species are introduced
[18]. (3) Diet has been shown to influence inflammatory
activity levels [19]. (4) Some drugs used to treat rheumatoid
arthritis have antimicrobial effects (chloroquine, sulfasala-
zine, minocycline, and roxithromycin) [20–23]. (5) Altered
microbiome was partially restored to normality in patients
showing clinical improvement after prescribing disease-
modifying antirheumatic drugs [5, 18]. So, differences in

composition of intestinal microbiota and in the immune
system function could determine which patients develop
the disease.

A great effort is currently being made to study subjects
with rheumatoid arthritis in preclinical phase. Awareness of
the mechanisms that initiate the autoimmune process, as well
as the ones involved in the transition from pre- to clinical
phase, might guide to intervention strategies which allow its
prevention or treatment in very early stages of the disease.
Some publications suggest that rheumatoid arthritis early
treatment leads to better long-term outcomes and perhaps
to increased rates of drug-free remission [24]. Prevention
concept is an emerging research field in rheumatology area,
in which modifications of the microbiota could be a new
way of modulating the disease.

2. Immunopathogenesis of
Rheumatoid Arthritis

Understanding the complex molecular processes that play
a role in the pathogenesis of rheumatoid arthritis is still
a challenge. Susceptible individuals under genetic and
environmental factors with loss of immunological toler-
ance to self-antigens trigger the autoimmune phenomena
and the autoantibody formation [25]. This lack of immuno-
logical tolerance represents the first step towards autoimmu-
nity. Immune system dysregulation is characterized by the
presence of autoantibodies and autoreactive T cells. The
inappropriate generation of autoreactive B cells is the most
obvious alteration of the immune system in these patients;
they are detected long before the disease appears. The most
important are RF and ACPAs that recognize different pro-
teins in the citrullinated form [26]. Together with increased
autoantibody production, proinflammatory cytokines’ level
is elevated in the joint synovium of patients with rheumatoid
arthritis. The joints of patients with RA are complicated
tissues where innate and adaptive immune cells along with
joint resident cells, like synoviocytes and chondrocytes, are
involved [27].

Multiple cell types have been identified to contribute to
the pathogenic context in rheumatoid arthritis. In rheuma-
toid synovium, dendritic cells are found mainly in lympho-
cytic aggregates and peripheral vessels, suggesting that they
come from peripheral blood. MHC alleles are expressed by
APCs that processed extracellular peptides to CD4+ T cells,
driving the secretion of proinflammatory cytokines that
stimulate B cells to produce antibodies [25]. Patients with
the disease present a defective function of circulating regu-
latory T cells (Treg) and an increase in T helper 17 (Th17)
cells in plasma and synovial fluid [28]. Macrophage-derived
and dendritic cell-derived transforming growth factor β
and interleukin-1β, 6, 21, and 23 provide a milieu that sup-
ports Th17 differentiation and suppresses differentiation of
regulatory T cells, thus shifting T cell homeostasis towards
inflammation [29].

Posttranslational modifications (PTMs) are critical for
the function and antigenicity of proteins. The three PTMs
primarily involved in rheumatoid arthritis are glycosylation,
carbamylation, and citrullination [25]. Citrullination results
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from the conversion of arginine onto citrulline by the enzyme
peptidyl arginine deiminases (PAD), and this is the major
crucial posttranscriptional modification associated to self-
antigen recognition in rheumatoid arthritis [25]. Citrulline
may alter protein structure and generate new epitopes asso-
ciated with the production of ACPAs. ACPAs present in
rheumatoid arthritis patients show differing fine specific-
ities and cross-reactivity degrees with various citrullinated
and/orposttranslationallymodifiedpeptides/proteins, includ-
ingfibrinogen, fibronectin, α-enolase, collagen type II, and
histones [30].

Table 1 summarizes the relevant aspects in the evolution
of this disease. Preclinical rheumatoid arthritis comprises the
period in which the autoimmunity is detectable until the
beginning of the inflammation and/or injury of clinically
apparent tissue, genetic and environmental risk factors
interact, probably sequentially, to initiate and propagate the
development of autoimmunity, finally resulting in detectable
tissue inflammation and lesion [24, 31]. If any other risk
factor is involved in the onset and/or spread of the disease,
it is still unknown.

ACPAs’ response might be important to transition from
preclinical phase to clinical expression of rheumatoid arthri-
tis. ACPAs’ repertoire analysis prior to diagnosis in patients
with rheumatoid arthritis revealed that this immune
response starts in a very restricted manner and expands to
several months or even years (epitope spreading, from
one initially recognized epitope towards reactivity to many
different epitopes) before the diagnosis of rheumatoid arthri-
tis [10, 24, 32, 33]. Epitope spreading towards more citrulli-
nated ones is compatible with the possibility that a single
antigen (but not always the same) is responsible for starting
up the immune response [16, 32]. Sokolove et al. [33]

reported that earlier identified autoantibodies were targeted
against various ligands of the innate immune response
including citrullinated histones, fibrinogen, and biglycan.
Over time, the ACPAs’ titers and epitope diversity of ACPAs
increase, especially before arthritis onset. ACPAs could be
isotypes IgG, IgA, or IgM with an altered glycosylation status
that confers enhanced Fc-receptor and citrullinated antigen
binding [34]. ACPAs themselves can be pathogenic by acti-
vating either macrophages or osteoclasts via immune com-
plex formation and Fc-receptor engagement or probably by
binding membrane citrullinated vimentin, thus promoting
bone loss [34].

Since the original description of antibodies as citrulli-
nated antigens in a subpopulation of rheumatoid arthritis
patients, it has become clear that citrullinated epitopes of a
large number of autoantigens as well as antigens derived
from microorganisms can be recognized by highly specific
antibodies for rheumatoid arthritis [30]. Alterations at
specific mucosal sites suggest that microbial factors might
affect mucosal immune response, also playing an impor-
tant role in early pathogenesis of rheumatoid arthritis
[35]. Alterations in compositional diversity and abundance
levels of microbiota, that is, dysbiosis, can trigger several
types of autoimmune and inflammatory diseases through
the imbalance of T cell subpopulations, such as Th1, Th2,
Th17, and Treg cells [27].

Dysbiosis in one or more mucosal sites leads to immune
alterations and breaks in self-tolerance to citrullinated auto-
antigens [35]. Mucosal body surfaces such as respiratory
and gastrointestinal tract carry out complex tasks as they
must (1) remain tolerant against innocuous environmental,
nutritional, and microbial antigens to ensure organ function
and (2) set efficient immune responses against invading

Table 1: Natural history of rheumatoid arthritis.

Phase of initiation of the disease
(interaction between genetic-hormonal-environmental factors)

Preclinical RA Clinical RA

Genetic and epigenetic
factors

Hormonal factors
Environmental
factors

Immunological changes Immunological changes

Shared epitope, PTPN22,
STAT4, CTLA4, TRAF1,
PADI4, FCRL3, TNFIP3
DNA methylation
Dysregulated histone
marks

Relationship man :
woman 4 : 1
Arthritis is improved
in the pregnancy but
relapse in the postpartum

Microbiota oral,
pulmonary and
intestinal
Smoking
Silica dust
Obesity
Diet

Inadequate response to peptides
Expansion of autoreactive

T cells and B cells
Expansion of antibody isotype
usage and class switching

Changes in soluble cytokine
and chemokine networks

Altered Th17 cells and Th17/
regulatory T cell ratios

Upregulation of signalling
molecules

Immune-mediated
tissue inflammation

Alterations of autoantibodies,
such as glycosylation
Cellular expansion

Clinical manifestations Clinical manifestations

Presence of autoantibodies
(RF, ACPAs)

Nonspecific symptoms

Arthritis
Bone erosions

Systemic symptoms

Forms of intervention

Suspension of smoking
Avoid exposure to silica
Healthy diet
Maintaining an adequate weight
Modifications of the microbiota?

In research, the early use
of rituximab or abatacept

Modifications of the microbiota?

Anti-inflammatory
Biological and nonbiological
disease-modifying drugs

Glucocorticoids
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pathogens [36]. Lung and gut tissues contain immunological
cells able to initiate an immune response; an attractive possi-
bility is that the triggering of T cell-mediated immunity to
citrullinated autoantigens can occur in the mucosae after
presentation of neoantigens by APCs [1, 31]. In mucosal
site, possible roles for citrullinated microbial antigens and
molecular mimicry, Toll-like receptor (TLR) signals, and
other innate immune activators and danger signals might
exist [35]. Mucosa-associated bacterial flora and smoking
or environmental particles (silica dust) act on immune
cells (neutrophils, dendritic cells, and macrophages) as
pathogen-associated molecular patterns and damage them,
leading to inflammation onset, circulating cytokines, and
chemokine increase along with autoantigen production.
The citrullinated antigens are processed and presented by
the APCs to the T cells, which are activated and in turn
activate the B cell, leading to the production of autoanti-
bodies [31]. Autoantigens in rheumatoid arthritis are not
tissue- and organ-specific but comprise a large collection of
posttranslational modified proteins [31]. Smoking and other
stimuli might initiate citrullination by PAD activation, for-
mation of lymphoid structures that could enhance antigen
presentation, and T and B cell production [31]. Potential
mechanisms by which cigarette smoke (CS) promotes
rheumatoid arthritis include release of intracellular proteins
from reactive oxidative substances activated or injured cells,
augmentation of autoreactive B cell function, and alteration
of (a) many cell signaling pathways involved in cellular
activation, (b) cigarette smoke-impaired antigen-presenting
cells, (c) regulatory T cell functions, and (d) T cell activation
by antigens found in cigarette smoke [37].

3. Microbiota and the Immune System

Microbial exposures in gastrointestinal and respiratory tracts
are key determinants of the overall immune tone at these
mucosal barriers and represent a leading target for future
intervention strategies [36]. Gut is an entryway for various
environmental antigens in the form of food or infectious
agents. Intestinal microbiota is a factor influencing metabolic
homeostasis and the immune system [5]; it is a site of
remarkable interaction between microorganisms and human
body. Microorganisms establish a symbiotic relationship
with epithelial and lymphoid tissue [12, 25]. Intestinal bacte-
ria synthesize and change a variety of compounds that affect
physiology and immunity. However, not all host-microbiota
interactions promote health, particularly species of resident
bacteria seem to activate the immune system resulting in
inflammatory diseases [38, 39]. A diverse and balanced
microbiota is necessary to develop an appropriate immune
response [40].

Benefits provided by gut microbiota to the host rely on
intricate interactions with host cells [41]. Studies using
germ-free and gnotobiotic animals, colonized with defined
bacteria, provided direct evidence about microbiota’s crucial
role in development and maintenance of the host immune
system [41] and preservation of its functions such as matura-
tion of intestinal lymphoid tissue, secretion of immunoglob-
ulin A, and the production of important antimicrobial

peptides [42]. In axenic mice, scarce growth of lymphoid
tissue and alterations in T cells and subpopulations of B
lymphocyte development were observed; in some cases, these
mice did not develop diseases presented in ordinary subjects,
probably due to defects in the adaptive immune system in the
absence of the microbiota, rather than to the absence of
microorganisms per se. Conserved molecular patterns, either
expressed on the surface of symbiotic bacteria or secreted in
the intestine, may interact with pattern recognition receptors
(PRRs), which are expressed on or within epithelial and
lymphoid cells to initiate transduction and transcription of
signals from a set of molecules that mediate host defense or
metabolic activities within the gut [40].

Intestinal commensal microbiota have been shown to
modulate T cell and Treg responses that are required for
effective host defense against pathogens while circumvent-
ing autoimmune responses and other immunopathologic
consequences [43]. As the first line defense of host against
pathogens, innate immune responses rely on a family of
receptors known as PRRs including TLRs and nucleotide-
binding oligomerization domain-like receptors (NLRs).
TLRs are key innate immune receptors to perceive
pathogen-associated molecular patterns (PAMPs), which
are specific pathogenic “molecular signature.” Subsequent
to sensing microbial PAMPs, TLRs enable the initiation of
inflammatory responses and eventually eliminate the patho-
genic invaders [43]. Components of gram-positive and
gram-negative bacteria interact with TLRs to mediate both
innate and adaptive immunity, as well as other cellular func-
tions of the mucosal barrier [40]. Epithelial cells have TLRs
on their cell membrane, which allow the recognition of
PAMPs and the activation of MyD88 coupling protein-
mediated signaling that ends with the induction of an inflam-
matory response and the production of proinflammatory
cytokines such as tumor necrosis factor-alpha (TNF-α),
interleukin-6, or interleukin-1β. The innate immune
response cells of the lamina propria constantly examine the
contents of the intestinal lumen for foreign antigens and con-
stitute another defense mechanism [28]. Because commensal
bacteria differ in their ability to stimulate receptors for innate
immunity (TLRs and NLRs), the pattern of released chemical
mediators varies significantly by determining proinflamma-
tory or anti-inflammatory responses. Lipopolysaccharide of
gram-negative bacteria binds to TLR-4, whereas peptidogly-
can and other components of the cell wall of gram-positive
bacteria signal via the TLR-2 pathway generating an immune
response [11]. Gram-positive anaerobic bacteria contain a
greater amount of polysaccharides and peptidoglycans that
may act as antigenic stimuli.

After interaction with an antigen, dendritic cells play an
important role in the differentiation of immature CD4+ lym-
phocytes into Th1, Th17, or Th2 cells. The differentiation of
the T helper cells seems to be deeply influenced by the intes-
tinal microbiota [11, 16, 42]. Dendritic cells act as APCs by
displaying charged peptides in their MHC class II molecules.
Presentation of these molecules to B cells or to T cell recep-
tors sensitizes these cells to initiate an adaptive immune
response [28]. In rheumatoid arthritis, dendritic cells could
participate in maintenance of inflammatory process by
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regulating antigenic presentation, and the presentation of the
antigen or the arthritogenic antigens would then be abnor-
mally prolonged, which might favor the perpetuation of
inflammation. Macrophages and dendritic cells continuously
detect intestinal lumen antigens and evaluate the presence of
deleterious antigens. Antigens are presented by MHC II mol-
ecules and interact with B cells or T cell receptors to induce
adaptive immune responses. Depending on the microbial
antigen, a specific cytosine medium is then generated to
influence a specific type of T helper cell differentiation. While
type 1 T helper (Th1) cells develop in response to intracellu-
lar pathogens and produce interferon, both type 2 T helper
(Th2) cells and Th17 cells are stimulated by extracellular
microorganisms. Th17 cells contribute to the defense against
extracellular pathogens by the production of IL-17 and IL-22,
which induce the change of immunoglobulin class in B lym-
phocytes and the production of Reg3g by epithelial cells,
respectively [14]. The immune response generated by effector
T cells is regulated by the subpopulation known as regulatory
Treg cells. Intestinal Treg cells play an important role in
maintaining immune tolerance to dietary antigens and gut
microbiota [44]. Treg cells retain tolerance to self-antigens
and eliminate autoimmunity. CD4+CD25+ Treg cells are
suppressive cells, which express the transcription factor
Foxp3, and are indispensable for maintenance of immune
self-tolerance and homeostasis by suppressing aberrant or
excessive immune response. Lactobacillus and Bifidobacter-
ium infantis exert an anti-inflammatory effect through the
induction of CD4+CD25+FoxP3+ Treg cells [11]. Bacteroides
fragilis polysaccharide A acts as an immunomodulator
and stimulates CD4+ Treg cells through an interleukin-
2-dependent mechanism to produce IL-10 [11].

Taking into account the fact that dendritic cells are
fundamental in generating immune response, it has been
hypothesized that commensal bacteria influence the function
and differentiation of dendritic cells, thus modulating
immune response [11, 23]. Thus, intestinal dysbiosis can
induce arthritis by influencing the differentiation of T cell
subgroups. It also influences the expression degree of Toll-
like receptors of antigen-presenting cells and may contribute
to an unbalance in the Th17/Treg cell ratio. With the devel-
opment of Th17 cells, activating local inflammatory cascades
with tissue damage and in predisposed individuals, this local
immune response can lead to systemic autoimmunity with
self-reactive Th17 cells.

The microbiota are the most prominent influence from
the environment on the differentiation of Th17 cells.
Recently, much attention has been paid to segmented fila-
mentous bacteria (SFB) because of its ability to induce the
production and activation of Th17 cells in the intestine, with
the secretion of interleukin-17 [23, 27]. SFB comprise a
group of Clostridia-related gram-positive bacteria that
adhere closely to Peyer’s plaques in the small intestine and
can stimulate the immune response by inducing IgA secre-
tion and activating B cells. These bacteria are necessary for
the development of autoimmunity in the murine K/BxN
arthritis model [45], and the use of antibiotics prevents
the advance of arthritis [13, 30, 31]. Studies in murine
models revealed that induction of TFH and Th17 cells

precedes the onset of arthritis, indicating a role for both
types of cells. Monocolonization with SFB enhances the
production of autoantibodies and accelerates the progression
of disease through the generation of Th17 cells although a
microbiota-induced TFH cell-dependent process can also
precipitate disease [44]. Teng et al. [46] demonstrated that
SFB trigger autoimmune arthritis by inducing differentiation
and migration of gut T follicular helper cells (TFH) to sys-
temic lymphoid sites, leading to increased autoantibody pro-
duction and arthritis exacerbation. In contrast, Block et al.
[45, 47] confirmed a role for gut microbiota in the differenti-
ation of TFH cells and germinal center formation. Depletion
of gut microbiota in mice by antibiotics reduced the number
of TFH cells and antibody production levels. They concluded
that intestinal microbiota regulates the development of
arthritis through TFH independently of Th17 cells.

4. Dysbiosis in Rheumatoid Arthritis

Importance of gut microbiome in autoimmunity related to
rheumatoid arthritis has been implicated in both mouse
models and human disease. Alterations of microbiota are
related to risk and severity of the disease. Three sites have
been associated particularly with it, mainly the lungs, oral
mucosa, and gastrointestinal tract. However, the site(s) of
initial immune response triggering remains to be verified.
Whereas precise mechanisms that enhance risk are not fully
understood for each, it is likely that local tissue stress leads
to posttranslational modification of peptides with subsequent
antibody formation serving as a common mechanism [48].

Airway abnormalities and lung tissue citrullination are
found in both rheumatoid arthritis patients and individuals
at risk. This suggests the lung as a possible site of autoimmu-
nity generation [49]. Evidence of an early role of the adaptive
immunity and immune activation in the lungs of these
patients comes from a proteomic study where two shared
citrullinated vimentin peptides have been described in bron-
chial tissue form early rheumatoid arthritis patients and
synovial tissue from patients with established disease, offer-
ing some clues on an immune process initiated in the lungs
[25]. The pulmonary mucosa as an autoimmune process
origin is based on the following observations: ACPAs are
presented in the sputum of ACPA-positive patients without
arthritis; there are microscopic and macroscopic changes in
the lungs with early rheumatoid arthritis and untreated
ACPA-positive patients; pulmonary alterations have been
demonstrated in high-resolution computed tomography in
subjects without the disease but with ACPA-positive; pulmo-
nary biopsy samples from patients with ACPA positive with
established AR suggest that ACPAs are produced locally.
However, the precise molecular mechanisms that could
be responsible for the triggering of immunity in the lung
mucosa are relatively unexplored. It is known that lung
exposure to harmful agents, including smoke, may induce
increased expression and activation of PAD [1]. It has
been hypothesized that the citrullinated proteins may
become an autoantigen and thereby trigger an immune
system response in people with genetic predisposition for
rheumatoid arthritis.
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Smoking and periodontitis promote protein citrullina-
tion and ACPA production [50]. Attention in the gums is
based on periodontal disease, more frequent in subjects with
rheumatoid arthritis or correlated with its activity. It has been
speculated that periodontal pathogens drive systemic inflam-
mation or disseminate to affected tissue. Indeed, increased
specific IgG to periodontal pathogens, including Prevotella
intermedia and Porphyromonas gingivalis, has been reported
in RA [51]. The presence of P. intermedia and P. gingivalis in
the subgingival dental plaque, as well as synovial fluid, sup-
ports a role of microbiota in initiating or maintaining chronic
inflammation [52]. Cross-sectional studies have revealed cor-
relations between RA and higher titers of serum antibodies
against proposed periodontal pathogens such as P. gingivalis,
Prevotella melaninogenica, and Tannerella forsythia [53].
Oral inoculation with P. gingivalis and Prevotella nigrescens
aggravated the severity of arthritis in an experimental mouse
model by directing the immune pathway towards production
of IL-17 and generation of a Th17 response [54]. The effects
of the two bacteria diverged in that P. nigrescens, in contrast
to P. gingivalis, suppressed the joint-protective type 2 cyto-
kines, including IL-4. P. gingivalis expresses an enzyme with
amino deiminase activity that converts C-terminal arginine
to citrulline, similar to the one involved in the etiology of
rheumatoid arthritis. Citrullination of bacterial and human
proteins by PAD can expose hidden epitopes leading to
tolerance loss in genetically susceptible individuals. It is
believed that the resulting immune response together with
endogenous citrullination produces ACPAs [4]. The fact that
smoking is strongly linked to the presence of periodontitis
and P. gingivalis infection provides circumstantial evidence
in favor of this hypothesis. However, recent epidemiological
data have not demonstrated a clear relationship between
periodontitis and rheumatoid arthritis [1].

Recently, gut microbiota has been proposed as an indis-
pensable environmental factor in the progression of rheuma-
toid arthritis [5, 18, 27, 55–57]. Bennike et al. [43] identified
21 citrullinated peptides in the colonic tissue from both rheu-
matoid arthritis patients and controls, which have been pre-
viously found in lung tissue and synovial fluid from RA
patients. Three citrullinated proteins (citrullinated vimentin,
fibrinogen-alpha, and actin) are known targets for ACPAs,
supporting that colon mucosa could be a potential break
site for immune tolerance towards citrullinated epitopes.
Citrullinated vimentin was found with increased abun-
dance in the colonic tissue of these patients compared to
the controls, which could indicate that initial rheumatoid
arthritis triggering is not limited just to a specific location
in the body but can take place in many other locations [43].
Therefore, this study supports the hypothesis that colon
mucosa could serve as a break site for immune tolerance
to citrullinated proteins, triggering ACPA production in
patients with impaired immune system.

5. Gut Microbiota in Rheumatoid Arthritis

Potential role of intestinal microbiota in etiopathogenesis of
rheumatoid arthritis is supported by studies in animal
models, by research on intestinal microbioma, and indirectly,

by the effect of diet and probiotics in the degree of inflamma-
tory activity. Pathophysiologic mechanisms by which gut
microbiota is associated with arthritis is probably multifacto-
rial; proposed mechanisms include activation of antigen-
presenting cells through an effect on TLRs or NLRs, ability
to produce citrullinization of peptides by enzymatic action,
antigenic mimicry, alterations in permeability of intestinal
mucosal, control of host immune system (triggering T cell
differentiation), and increase of T helper type 17-mediated
mucosal inflammation.

Despite the existence of animal models, it is well known
that there is no animal model that represents rheumatoid
arthritis entirety [58]. However, murine arthritis models have
shown to induce erosive polyarthritis by intraperitoneal
injection of cell wall fragments of Streptococcus pyogenes,
Lactobacillus casei, and Eubacterium aerofaciens [59–61].
The arthritogenicity of bacterial structures depends on bacte-
rial species, and remarkably, even bacteria from the normal
intestinal microbiota cause experimental arthritis in animals
[17]. Gnotobiotic mice do not develop arthritis, and intro-
duction of SFB is enough to reintegrate Th17 cells from the
lamina propria, a greater production of autoantibodies and
a rapid development of destructive arthritis [62]. Antibiotic
treatment prevents and suppresses a phenotype similar to
rheumatoid arthritis in several murine models [4, 18, 28],
and in genetically susceptible mice, dysbiosis increases
sensitivity to arthritis through activation of autoreactive
T cells in the gut [63].

Intestinal microbiota’s role in pathogenesis of arthritis
was demonstrated by the induction/exacerbation of arthritis
in experimental murine models [55, 64–66]. Studies with
gnotobiotic mice have shown that disruptions in the intesti-
nal microbiota could induce production of proinflammatory
cytokines, interleukin-17, and increased levels of Th17 cells,
even in extraintestinal tissues [11]. Th17 cells then migrate
into the peripheral lymphoid tissue and secrete IL-17, which
in turn, acts directly on B cells and induces systemic B cell
differentiation and antibody production [67]. This ultimately
can lead to development of autoimmune disease via molecu-
lar pattern recognition from gut microbiota [67]. The IL-1
receptor antagonist (IL-1Ra) knockout mice, which sponta-
neously develop autoimmune T cell-mediated arthritis, do
not develop disease when raised in a germ-free environment.
However, colonization with commuter Lactobacillus bifidus
produces a rapid onset of the disease, severity, and incidence
comparable to the arthritis observed in mice. L. bifidus trig-
gers arthritis in this model by promoting an imbalance in
Treg–Th17 cell homeostasis and mediated through Toll-like
receptor signaling (TLR2-TLR4) [28, 65]. Liu et al. [64]
found that the genus Lactobacillus was significantly more
abundant in collagen-induced arthritis- (CIA-) susceptible
mice prior to arthritis onset than in CIA-resistant mice.
Notably, germ-free mice conventionalized with the microbi-
ota from CIA-susceptible mice showed a higher frequency of
arthritis induction than those conventionalized with the
microbiota from CIA-resistant mice. Monocolonization of
germ-free K/BxN mice with SFB was sufficient to drive pro-
duction of autoantibodies and pathogenic Th17 cells as well
as to trigger arthritis [66]. Systemic deficiencies of germ-
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free animals reflect a loss of Th17 cells from the intestinal
lamina propria. Introduction of a single species of resident
intestinal filamentous bacteria restored the Th17 cell com-
partment into the lamina propria; autoantibodies production
and arthritis occurred rapidly. Thus, a single commensal
microbe, through its ability to promote a specific subpopula-
tion of T helper cells, can lead to an autoimmune disease
[66]. These results provide the evidence that commensal
bacteria can drive autoimmune arthritis by inducing a Th17
response in the intestine. Therefore, composition of gut
microbiota plays a pivotal role in the balance between inflam-
matory Th cells and suppressive Treg cells to maintain
immune tolerance under healthy conditions [27].

Interaction between host genetic factors such as MHC
and intestinal microbiota and its impact on development of
rheumatoid arthritis is difficult to study in humans because
of the high variability of genetic factors and diet [11].
Research conducted by Gomez et al. [68] provided the first
demonstration that HLA genes and intestinal environment
interact to affect the susceptibility of arthritis. This study
showed differences in fecal microbiome of rheumatoid
arthritis-susceptible HLA-DRB1∗0401 transgenic mice
compared to DRB1∗0402 mice resistant to development of
rheumatoid arthritis. Specifically, DRB1∗0401 female mice
had significantly different microbial to DRB1∗0402 females,
and this resulted in an increase in intestinal permeability
and transcripts of Th17 type cytokines in DRB1∗0401 mice.
The analysis showed that the intestinal flora of arthritis-
susceptible mice had a greater amount of Clostridium sp.
bacteria, while those of DRB1∗0402 resistant to arthritis were
enriched by the families Porphyromonadaceae and Bifidobac-
teriaceae [68]. The latter organism has been associated with
the anti-inflammatory response in the intestinal mucosal
immune systems through the suppression of T cell prolif-
eration and the production of proinflammatory cytokines
and by inhibition of nuclear factor kB. The results show
a difference in intestinal microbial composition between
the two strains, suggesting that MHC genes may be directly
or indirectly involved in determining the intestinal micro-
bial composition and that interactions between bowel
commensals [13, 18]. In addition, they demonstrated that
dysbiosis is not enough since it requires a genetic suscepti-
bility of the host, due to an induction inability in inflamma-
tory response in wild animals, even with proarthritogenic
intestinal flora [13, 28].

Several studies attempting to link gut mucosal and joint
inflammation have been followed during the past decades.
Eerola et al. [69] reported that fecal profile of bacterial cell
fatty acids was significantly different in subjects with rheu-
matoid arthritis, mainly by anaerobic bacteria compared to
controls. They support the idea that rheumatoid arthritis
represents a state of chronic inflammation that could be
motivated or aggravated by pathogenic bacteria overgrowth
or by a lack of common immunomodulating bacteria
[5, 16, 18, 57, 70]. Vaahtovuo et al. [16] also described dif-
ferences in fecal diversity in individuals with rheumatoid
arthritis compared to those with fibromyalgia, character-
ized by lower bundi-bacteria, Bacteroides-Porphyromonas-
Prevotella, subgroup Bacteroides fragilis, and the group

Eubacterium rectale-Clostridium coccoides in subjects with
rheumatoid arthritis [6]. On the other hand, Newkirk et al.
[71] identified differences in the types of E. coli pathogen
colonization among subjects with rheumatoid arthritis,
RF-positive patients were more commonly colonized with
E. coli, phylogenetic group D, whereas RF-negative patients
were more commonly colonized with E. coli, phylogenetic
group B2, and these individuals also had lower joint scores
and inflammatory markers yet higher IgA anti-E. coli
antibody responses.

The observation that gut microbiota differs in subjects
with early rheumatoid arthritis compared to controls has
renewed the interest in studying intestinal microbiota as a
possible site of origin of the autoimmune proces; studies that
evaluate the intestinal microbiota show that rheumatoid
arthritis is characterized by an expansion and/or decrease
of bacterial groups as compared to controls [5, 18, 55–57].
High-throughput sequencing of stool samples in 5 studies
of RA patients showed gut dysbiosis [5, 18, 55, 57, 63], and
2 study reported overexpansion of Prevotella sp. in patients
with early RA, particularly P. copri (Table 2). Differences
between the bacteria reported in the studies may be influ-
enced by the time course of the disease (i.e., early versus
established), subjects included in the control groups
(healthy or first degree relatives), the treatment received,
and the geographical location, since the studies do not
show the same pattern.

Toivanen et al. [57] compared fecal microbiota from 25
patients with early RA to the microbiota of patients with
noninflammatory pain using oligonucleotide probe against
16S RNA. Patients with early RA had significantly fewer bac-
teria belonging to the gender Bacteroides sp., Prevotella sp.,
and Porphyromonas sp. In other study, Scher et al. [18]
reported that individuals with early RA were more likely to
harbor Prevotella copri compared to controls. In addition,
they demonstrated that oral administration of P. copri
increased local inflammatory response in a colitis murine
model. Therefore, P. copriwould alter intestinal permeability.
Such increase might lead to bacteria penetration and/or its
components throughout the body; this is one of the proposed
mechanisms that link dysbiosis with the pathogenesis of
arthritis. Interestingly, the relative abundance of P. copri
showed a negative correlation with the presence of shared
epitope, suggesting that the composition of the human
intestinal microbiome could also be partially dependent
on the host genome and suggesting a dysbiosis before
the appearance of the clinical phenotype.

In line with these results, Maeda et al. [63] observed that
P. copri was in abundance within gut microbiota in Japanese
patients with early RA who had not received drug treatment.
They identified that P. copri per se had a high capacity to
induce Th17 cell-related cytokines, such as IL-6 and IL-23.
Increased Prevotella sp. abundance is associated with aug-
mented T helper type 17-mediated mucosal inflammation,
which is in accordance with the marked capacity of Prevotella
sp. in driving Th17 immune responses in vitro [51]. In other
study, Pianta et al. [72] identified that subgroups of rheuma-
toid arthritis patients have differential IgG or IgA immune
reactivity with P. copri. In both new onset rheumatoid
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arthritis patients and chronic ones, a subgroup had IgA anti-
body responses to either Pc-p27 or the whole organism,
which correlated with Th17 cytokine responses and frequent
ACPAs. The second subgroup had IgG P. copri antibodies,
which were associated with Prevotella DNA in synovial fluid,
P. copri-specific Th1 responses, and less frequent ACPAs.
Patients with RA had IgA, IgG, or no specific antibodies,

indicating that different immune responses to P. copri can
develop within the individual patient, which in turn may
have implications for disease risk and outcomes.

Molecular mimicry, due to its sequence similarities
between foreign and self-peptide, is one such mechanism
known to result in cross-activation of pathogen-derived
autoreactive T or B cells. These T and B cells can cross-

Table 2: Summary of studies that have evaluated the influence of gut flora on the etiopathogenesis of RA.

Author (year
of publication)

Design Subjects included Method employed Results in the RA group versus the controls

Shinebaum
et al. [70]

Case-
control

25 patients with RA
compared with controls

Estimation of bacterial
counts in fecal culture

Significantly higher carriage rate of
Clostridium perfringens in the RA population
than controls (88% versus 48%, p < 0 01).
Coliform counts also tended to be higher

Eerola
et al. [69]

Case-
control

74 treatment-naive
early RA and 91 non-RA

controls

Gas-liquid chromatography
of bacterial CFAs

Variation in CFA profile of RA as
compared to controls likely caused by

anaerobic bacteria

Vaahtovuo
et al. [16]

Case-
control

50 individuals with RA
and 50 individuals with

fibromyalgia

Flow cytometry, 16S
rRNA hybridization,
and DNA-staining

The RA patients had significantly less bifidobacteria
and bacteria of the Bacteroides-Porphyromonas-

Prevotella group, Bacteroides fragilis subgroup, and
Eubacterium rectale-Clostridium coccoides group

Toivanen
et al. [57]

Case-
control

25 treatment-naive
individuals with early

RA patients and
23 control patients
suffering from

noninflammatory pain

16S ribosomal DNA

Patients with early RA had significantly less
bacteria belonging to the Bacteroides, Prevotella,
and Porphyromonas genera than the controls
(4.7% versus 9.5%, p < 0 01). The number of

bacteria belonging to the Bacteroides-Prevotella-
Porphyromonas group was, on average, in RA

patients only half that of the controls

Scher
et al. [18]

Cross-
sectional

44 treatment-naive
individuals with RA,

26 treated RA,
16 patients with psoriatic
arthritis, and 28 healthy

controls

16S ribosomal DNA
Increases in Prevotella copri (75% versus 21.4%)

abundance and decrease in Bacteroides

Liu
et al. [56]

Case-
control

15 individuals with
early RA and 15 healthy

controls

Quantitative
real-time PCR

Fecal microbiota of RA patients contained
significantly more Lactobacillus

(10.62± 1.72 copies/g) than the control group
(8.93± 1.60 copies/g)

Zhang
et al. [5]

Cohort

77 treatment-naive
individuals with RA and
80 unrelated healthy

controls; 17 treatment-naive
individuals with RA paired
with 17 healthy relatives;
and 21 samples from
DMARD-treated

individuals with RA

Metagenomic shotgun
sequencing and a
metagenome-wide
association study

The RA gut was enriched in gram-positive
bacteria and depleted of gram-negative

bacteria, including some Proteobacteria and
gram-negative Firmicutes of the Veillonellaceae
family. The RA-enriched MLGs formed a large
cluster including Clostridium asparagiforme,

Gordonibacter pamelaeae, Eggerthella lenta, and
Lachnospiraceae bacterium. There was a trend
towards increased abundance of P. copri as a
function of RA duration in the first year

Maeda
et al. [63]

Cross-
sectional

25 treatment-naive
individuals with early

RA patients and
23 healthy controls

16S rRNA-based
deep sequencing

A subpopulation of early RA patients harbored
intestinal microbiota dominated by Prevotella copri

Chen
et al. [55]

Case-
control

40 Subjects with RA
with treatment

16S ribosomal DNA

Increased number of reads from the phylum
Actinobacteria in the RA group (0.45 versus 0.04%)

32 controls (15 relatives
of 1 degree with AR and
17 healthy subjects)

Decrease in Faecalibacterium and expansion of
Collinsella aerofaciens and Eggerthella lenta

MLGs: metagenomic linkage groups.
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react with host epitopes, thus leading to autoimmunity [67].
In a recently work, Pianta et al. [73] described two proteins
derived from common types of gut bacteria that could evoke
the immune responses in RA patients. N-Acetyl-glucos-
amine-6-sulfatase (GNS) and filamin A (FLNA) were identi-
fied as autoantigens that produce responses from both T and
B cells, in over 50% of RA patients, but not in healthy con-
trols or patients with other rheumatic diseases. The HLA-
DR-presented GNS peptide has marked sequence homology
with epitopes from sulfatase proteins of the Prevotella sp.
and Parabacteroides sp., whereas the HLA-DR-presented
FLNA peptide has homology with epitopes from proteins of
the Prevotella sp. and Butyricimonas sp., another gut com-
mensal. T cell responses to the corresponding microbial
and self-peptides were strongly correlated. These study pro-
vides evidence that T cell epitopes of a related order of gut
microbes, particularly Prevotella sp., may cross-react with
self-epitopes of highly expressed proteins in joints, especially
in patients with SE alleles.

Moreover, Prevotella sp. may not be the only genus par-
ticipating in inflammatory disease. Zhang et al. [5] used
metagenomic shotgun sequencing technology to analyze
fecal, dental, and salivary samples from a large cohort of
RA patients as well as from healthy controls. Analysis of dif-
ferentially represented metagenomic linkage groups revealed
significant microbiome differences between RA patients and
healthy controls, not only in fecal but also in salivary and
dental samples. They demonstrated that gram-positive bacte-
ria enriched microbiota versus few gram-negative bacteria
and, furthermore, that dysbiosis was associated with inflam-
mation markers and clinical rheumatoid arthritis activity.
Besides, they also detected alterations in redox environment
and transport and metabolism of iron, sulfur, and zinc in
the microbiota of RA patients, indicating that the altered
microbiome could play an important role in the pathogenesis
of RA. Noteworthy, altered microbiome was partially
restored to normal (microbiome of healthy controls) in
patients who showed clinical improvement after prescribing
disease-modifying antirheumatic drugs. Remarkably, P. copri
in RA-affected individuals showed a trend of increasing
relative abundance in the first year, consistent with its
reported expansion in early RA. Many Prevotella species
were enriched in the saliva of RA subjects compared with
controls. One notable exception was Prevotella intermedia,
which was enriched in the control group. However, in
dental plaque samples, there was a very different picture
and most Prevotella sp. were present at higher proportions
in healthy subjects.

Chen et al. [55] reported that bacteria belonging to the
phylum Actinobacteria play a significant role in the patho-
genesis of rheumatoid arthritis, Collinsella sp. and Eggerthella
sp. predicted its presence, and dysbiosis in the intestinal
microbiome is partially restored after treatment with
disease-modifying antirheumatic drugs, similar to results
reported in the previous study. The potential association of
P. copri as previously reported with new onset untreated
RA and DR4 was not observed in this cohort of RA patients
(in contrast to previous studies, all the patients in the present
study were currently on a treatment regimen). They showed

that the decreased gut microbial diversity of RA patients is
associated with disease duration after adjusting for various
drugs used for treatment. Collinsella sp. may contribute to
the development of rheumatoid arthritis through molecular
mimicry as it presents sequences shared with DRB1∗0401.
The role of the RA-associated bacteria Collinsella sp. was
confirmed using a human epithelial cell line and a humanized
mouse model of arthritis. Collinsella sp. enhanced disease
severity in a humanized mouse model. One mechanism by
which Collinsella contributes to disease pathogenesis is by
increasing gut permeability as observed by the lower expres-
sion of tight junction proteins. Additionally, Collinsella
influences the epithelial production of IL-17A [55].

Although studies in subjects with rheumatoid arthritis
show a correlation of Prevotella sp. in its pathogenesis, other
studies suggest that it may be considered a beneficial bacterial
species rather than pathogenic [74, 75]. Culture collections
now include approximately 40 different Prevotella species,
most of them oral isolates, and three of which are found in
the gut (P. copri is generally the more abundant). The vastly
different genome gene repertoires of strains within and
between Prevotella sp. and across hosts probably underlie
some of the differences observed in responses at the genus
level to diet and health conditions across individuals [75].
A recent comprehensive study comparing several bacterial
species suggests that membership of a specific phylum does
not predict immunological properties, underlining the
importance of characterizing properties at species level.
Marietta et al. [76] evaluated the ability of 2 species of Prevo-
tella sp. for arthritis prevention and treatment in HLA-DQ8
mice. It was shown that the ability to modulate the immune
response differed between the Prevotella strains. Treatment
with P. histicola suppressed arthritis development by mod-
ulating the immune response (regulation of dendritic cells
and generation of Treg cells), resulting in suppression of
Th17 responses and reduction of inflammatory cytokines
(IL-2, IL-17, and tumor necrosis factor). In contrast,
administration of P. melaninogenica showed no significant
change in cytokine levels, either preventing arthritis
development. The ability of P. histicola to modulate was
validated using a DBA/1 mouse model, demonstrating that
mice treated with P. histicola developed milder arthritis
compared to controls. It is clear that a single strain of Prevo-
tella sp. can act in what has been interpreted as a beneficial
or detrimental manner, depending on the context. This
may explain why Prevotella sp. is abundant in healthy
microbiota and suggests that only certain strains may
exhibit pathogenic properties.

In new onset RA patients, Prevotella abundance in the gut
was at the expense of Bacteroides fragilis, an organism that is
important for Treg function [18, 72]. In fact, high levels of
P. copri and similar species are related to low levels of bene-
ficial microbes, which are believed to suppress the immune
system and metabolize vitamins in forms absorbed into the
bloodstream [17]. When discussing possible mechanisms by
which diet could influence rheumatoid arthritis, effects of
intestinal flora should be considered [77–79]. A diet rich
in protein and animal fat is associated with the presence
of Bacteroides sp. while a diet rich in carbohydrates is
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associated with the presence of Prevotella sp. [80]. Studies
have shown that Mediterranean or vegan diet reduces
inflammatory activity, increases physical function, and
improves vitality [19]. However, some other studies find
benefits without achieving a significant improvement in
composite indices to measure disease activity [81, 82].
Nevertheless, in these studies, it has not been determined
whether a rheumatoid arthritis improvement was actually
due to a change in intestinal flora composition.

Probiotics are living organisms that can confer a health
benefit to the host. Probiotics mainly exert their beneficial
effects through the following three methods: antimicrobial
effects, enhancement of mucosal barrier integrity, and
immune modulation [83]. Studies [84–86] assessing the rela-
tionship between probiotic supplementation with the level of
RA activity have not shown conclusive results (Table 3).
Improvements in probiotic interventions have not been evi-
dent enough to demonstrate the effectiveness of treating RA
patients, due to the limited studies. Better-designed research
needs to be conducted in order to identify the best species
that relieve RA and optimize the intake method and doses
of the probiotics [83].

Finally, evidence that intestinal microbiota motivates
arthritis development comes from murine experimental
models. In humans, this association is based in differences
between microbiome within comparison groups, which do
not necessarily represent its causality. Results in humans
suggest dysbiosis as a significative etiologic agent promoting
rheumatoid arthritis progression or, even more, that inflam-
mation caused by some microorganisms like P. copri, may
probably contribute to arthritis maintenance. In order to
predict intestinal microbiota’s role in pathogenesis of rheu-
matoid arthritis, an accurate comprehension related to this
species potential, its ecology and interaction with other
microbes and/or hosts would still be necessary. Furthermore,
although gut mucosal got probably the highest potential for
host-microbe interaction, all mucosae have resident microbi-
ota and react dynamically to its presence with an immune
modulation. Gram-negative bacteria could cause infections
at any part of the body; among the most common types are
oral, dental, pleuropulmonar, intra-abdominal, genital
mucosal, skin, and soft tissues. In other words, it does not

mean that all subjects with rheumatoid arthritis must have
dysbiosis in a single site.

6. Microbiota as a Possible Mechanism for
Rheumatoid Arthritis Prevention

Current research projects are focused on prevention with
biological drugs that inhibit antibody formation or activate
T cells [87]. Recent findings showed intestinal dysbiosis as a
major advance in our understanding of rheumatoid arthritis.
Nevertheless, there is no study demonstrating the antigen
or antigens that trigger the autoimmune process. Logical
indications point mucosal dysbiosis as an attractive site
for elucidating autoimmunity pathways, particularly the
mechanisms that induce loss of immune tolerance and
specific mechanisms by which a person evolves from a
preclinical to a clinical disease.

Gut microbiota has been shown to play role in rheuma-
toid arthritis although the mechanism of this association
remains obscure. Understanding these mechanisms is crucial
for a better treatment efficacy and personalized patient man-
agement [67]. Plasticity of microbiome may allow a specific
or systematic manipulation of a certain intestinal microbiota
associated with host diseases [88], speculating that, in the
future, this manipulation could change therapeutic strategies
in subjects with rheumatoid arthritis.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

The authors thank Gloria Mercado for her helpful comments
during the preparation of this manuscript.

References

[1] V. Malmstrom, A. I. Catrina, and L. Klareskog, “The immu-
nopathogenesis of seropositive rheumatoid arthritis: from
triggering to targeting,” Nature Reviews Immunology, vol. 17,
no. 1, pp. 60–75, 2017.

Table 3: Summary of studies evaluating the effect of probiotics on the level of rheumatoid arthritis activity.

Author (year of publication) Design Population and intervention Outcomes

Hatakka et al. [89]
Clinical
trial

Lactobacillus group (n = 8). Placebo group
(n = 13)

There were no statistically significant differences
in: CRP, ESR, IL-6, IL-10, IL-12, and HAQ

Pineda et al. [86]
Clinical
trial

15 subjects Lactobacillus rhamnosus GR-1
and Lactobacillus reuteri RC-14 administered

for 3 months versus 14 subjects in the
control group

Probiotics did not statistically improve the
percentage of ACR 20 response

(20% versus 7%, p = 0 33)

Alipour et al. [84]
Clinical
trial

22 subjects with Lactobacillus casei versus
24 subjects with placebo

Statistically significant decrease in CRP level, count
of inflamed and painful joints and in DAS-28

Vaghef-Mehrabany et al. [85]
Clinical
trial

22 subjects with Lactobacillus casei versus
24 subjects with placebo (maltodextrin)

Statistically significant decrease in level of
TNF-α, IL-6, and IL-12 count of inflamed and

painful joints and in DAS-28

CRP: C-reactive protein; DAS28: disease activity score-28; IL: interleukin; ESR: erythrocyte sedimentation rate; ACR: American College of Rheumatology.

10 Journal of Immunology Research



[2] V. Taneja, “Cytokines pre-determined by genetic factors are
involved in pathogenesis of rheumatoid arthritis,” Cytokine,
vol. 75, no. 2, pp. 216–221, 2014.

[3] L. R. Espinoza and I. Garcia-Valladares, “Of bugs and joints:
the relationship between infection and joints,” Reumatología
Clínica, vol. 9, no. 4, pp. 229–238, 2013.

[4] I. Fung, J. P. Garrett, A. Shahane, and M. Kwan, “Do bugs
control our fate? The influence of the microbiome on auto-
immunity,” Current Allergy and Asthma Reports, vol. 12,
no. 6, pp. 511–519, 2012.

[5] X. Zhang, D. Zhang, H. Jia et al., “The oral and gut
microbiomes are perturbed in rheumatoid arthritis and partly
normalized after treatment,” Nature Medicine, vol. 21, no. 8,
pp. 895–905, 2015.

[6] A. K. Rodríguez-Elías, K. Maldonado-Murrillo, L. F. López-
Mendoza, and J. Ramírez-Bello, “Genética y genómica en
artritis reumatoide (AR): una actualización,” Gaceta Médica
de México, vol. 152, no. 2, pp. 218–227, 2016.

[7] W. X. Liu, Y. Jiang, Q. X. Hu, and X. B. You, “HLA-DRB1
shared epitope allele polymorphisms and rheumatoid arthritis:
a systemic review and meta-analysis,” Clinical and Investiga-
tive Medicine, vol. 39, no. 6, pp. E182–E203, 2016.

[8] H. Furukawa, S. Oka, K. Shimada, A. Hashimoto, and
S. Tohma, “Human leukocyte antigen polymorphisms and
personalized medicine for rheumatoid arthritis,” Journal of
Human Genetics, vol. 60, no. 11, pp. 691–696, 2015.

[9] S. Ling, E. N. Cline, T. S. Haug, D. A. Fox, and J. Holoshitz,
“Citrullinated calreticulin potentiates rheumatoid arthritis
shared epitope signaling,” Arthritis and Rheumatism, vol. 65,
no. 3, pp. 618–626, 2013.

[10] F. Pratesi, E. Petit Teixeira, J. Sidney et al., “HLA shared
epitope and ACPA: just a marker or an active player?,” Auto-
immunity Reviews, vol. 12, no. 12, pp. 1182–1187, 2013.

[11] D. Luckey, A. Gomez, J. Murray, B. White, and V. Taneja,
“Bugs & us: the role of the gut in autoimmunity,” The
Indian Journal of Medical Research, vol. 138, no. 5, pp. 732–
743, 2013.

[12] A. A. Lopez-Cepero and C. Palacios, “Association of the intes-
tinal microbiota and obesity,” Puerto Rico Health Sciences
Journal, vol. 34, no. 2, pp. 60–64, 2015.

[13] V. Taneja, “Arthritis susceptibility and the gut microbiome,”
FEBS Letters, vol. 588, no. 22, pp. 4244–4249, 2014.

[14] C. Ubeda and E. G. Pamer, “Antibiotics, microbiota, and
immune defense,” Trends in Immunology, vol. 33, no. 9,
pp. 459–466, 2012.

[15] M. C. Cenit-Laguna, “Rápidos avances en conocimiento sobre
el papel del microbioma intestinal en salud y enfermedad,”
Cuadernos de Autoinmunidad, vol. 1, pp. 3–7, 2015.

[16] J. Vaahtovuo, E. Munukka, M. Korkeamaki, R. Luukkainen,
and P. Toivanen, “Fecal microbiota in early rheumatoid
arthritis,” The Journal of Rheumatology, vol. 35, pp. 1500–
1505, 2008.

[17] N. J. Bernard, “Rheumatoid arthritis: Prevotella copri associ-
ated with new-onset untreated RA,” Nature Reviews Rheuma-
tology, vol. 10, p. 2, 2014.

[18] J. U. Scher, A. Sczesnak, R. S. Longman et al., “Expansion of
intestinal Prevotella copri correlates with enhanced suscepti-
bility to arthritis,” eLife, vol. 2, article e01202, 2013.

[19] L. Skoldstam, L. Hagfors, and G. Johansson, “An experimental
study of a Mediterranean diet intervention for patients with

rheumatoid arthritis,” Annals of the Rheumatic Diseases,
vol. 62, pp. 208–214, 2003.

[20] C. J. Edwards, “Commensal gut bacteria and the etiopathogen-
esis of rheumatoid arthritis,” The Journal of Rheumatology,
vol. 35, pp. 1477–14797, 2008.

[21] M. Ogrendik, “Efficacy of roxithromycin in adult patients
with rheumatoid arthritis who had not received disease-
modifying antirheumatic drugs: a 3-month, randomized,
double-blind, placebo-controlled trial,” Clinical Therapeutics,
vol. 31, pp. 1754–1764, 2009.

[22] M. Ogrendik and N. Karagoz, “Treatment of rheumatoid
arthritis with roxithromycin: a randomized trial,” Postgradu-
ate Medicine, vol. 123, pp. 220–227, 2011.

[23] M. Stone, P. R. Fortin, C. Pacheco-Tena, and R. D. Inman,
“Should tetracycline treatment be used more extensively
for rheumatoid arthritis? Metaanalysis demonstrates clinical
benefit with reduction in disease activity,” The Journal of
Rheumatology, vol. 30, pp. 2112–2122, 2003.

[24] K. D. Deane and H. El-Gabalawy, “Pathogenesis and preven-
tion of rheumatic disease: focus on preclinical RA and SLE,”
Nature Reviews Rheumatology, vol. 10, pp. 212–228, 2014.

[25] L. Lourido, F. J. Blanco, and C. Ruiz-Romero, “Defining
the proteomic landscape of rheumatoid arthritis: progress
and prospective clinical applications,” Expert Review of Prote-
omics, vol. 14, pp. 431–444, 2017.

[26] R. Sanmartí and J. A. Gómez-Puerta, “Biomarcadores en la
artritis reumatoide,” Reumatología Clínica, vol. 6, 3, pp. S25–
S28, 2011.

[27] N. Lee and W. U. Kim, “Microbiota in T-cell homeostasis and
inflammatory diseases,” Experimental & Molecular Medicine,
vol. 49, article e340, 2017.

[28] J. U. Scher and S. B. Abramson, “The microbiome and
rheumatoid arthritis,” Nature Reviews Rheumatology, vol. 7,
pp. 569–578, 2011.

[29] I. B. McInnes and G. Schett, “The pathogenesis of rheumatoid
arthritis,” The New England Journal of Medicine, vol. 365,
pp. 2205–2219, 2011.

[30] L. Klareskog, K. Amara, and V. Malmstrom, “Adaptive immu-
nity in rheumatoid arthritis: anticitrulline and other antibodies
in the pathogenesis of rheumatoid arthritis,” Current Opinion
in Rheumatology, vol. 26, pp. 72–79, 2014.

[31] A. I. Catrina, V. Joshua, L. Klareskog, and V. Malmstrom,
“Mechanisms involved in triggering rheumatoid arthritis,”
Immunological Reviews, vol. 269, pp. 162–174, 2016.

[32] L. A. van de Stadt, M. H. de Koning, R. J. van de Stadt et al.,
“Development of the anti-citrullinated protein antibody
repertoire prior to the onset of rheumatoid arthritis,”
Arthritis and Rheumatism, vol. 63, pp. 3226–3233, 2011.

[33] J. Sokolove, R. Bromberg, K. D. Deane et al., “Autoanti-
body epitope spreading in the pre-clinical phase predicts
progression to rheumatoid arthritis,” PLoS One, vol. 7,
article e35296, 2012.

[34] J. S. Smolen, D. Aletaha, and I. B. McInnes, “Rheumatoid
arthritis,” Lancet, vol. 388, pp. 2023–2038, 2016.

[35] V. M. Holers, “Autoimmunity to citrullinated proteins and the
initiation of rheumatoid arthritis,” Current Opinion in Immu-
nology, vol. 25, pp. 728–735, 2013.

[36] N. Torow, B. J. Marsland, M. W. Hornef, and E. S. Gollwitzer,
“Neonatal mucosal immunology,” Mucosal Immunology,
vol. 10, pp. 5–17, 2017.

11Journal of Immunology Research



[37] J. Lee, V. Taneja, and R. Vassallo, “Cigarette smoking and
inflammation: cellular and molecular mechanisms,” Journal
of Dental Research, vol. 91, pp. 142–149, 2012.

[38] J. Versalovic, “The human microbiome and probiotics: impli-
cations for pediatrics,” Annals of Nutrition & Metabolism,
vol. 63, Supplement 2, pp. 42–52, 2013.

[39] J. Chow, H. Tang, and S. K. Mazmanian, “Pathobionts of
the gastrointestinal microbiota and inflammatory disease,”
Current Opinion in Immunology, vol. 23, pp. 473–480, 2011.

[40] W. A. Walker, “Initial intestinal colonization in the human
infant and immune homeostasis,” Annals of Nutrition &
Metabolism, vol. 63, Supplement 2, pp. 8–15, 2013.

[41] D. Kim, M. Y. Zeng, and G. Nunez, “The interplay between
host immune cells and gut microbiota in chronic inflamma-
tory diseases,” Experimental & Molecular Medicine, vol. 49,
article e339, 2017.

[42] C. A. Hitchon and H. S. El-Gabalawy, “Infection and rheuma-
toid arthritis: still an open question,” Current Opinion in
Rheumatology, vol. 23, pp. 352–357, 2011.

[43] T. B. Bennike, T. Ellingsen, H. Glerup et al., “Proteome analy-
sis of rheumatoid arthritis gut mucosa,” Journal of Proteome
Research, vol. 16, pp. 346–354, 2017.

[44] K. Honda and D. R. Littman, “The microbiota in adaptive
immune homeostasis and disease,” Nature, vol. 535, pp. 75–
84, 2016.

[45] K. E. Block, Z. Zheng, A. L. Dent, B. L. Kee, and H. Huang,
“Gut microbiota regulates K/BxN autoimmune arthritis
through follicular helper T but not Th17 cells,” Journal of
Immunology, vol. 196, pp. 1550–1557, 2016.

[46] F. Teng, C. N. Klinger, K. M. Felix et al., “Gut microbiota drive
autoimmune arthritis by promoting differentiation and migra-
tion of Peyer’s patch T follicular helper cells,” Immunity,
vol. 44, pp. 875–888, 2016.

[47] S. Onuora, “TFH cells link gut microbiota and arthritis,”
Nature Reviews Rheumatology, vol. 12, p. 133, 2016.

[48] G. S. Firestein and I. B. McInnes, “Immunopathogenesis of
rheumatoid arthritis,” Immunity, vol. 46, pp. 183–196, 2017.

[49] J. U. Scher, V. Joshua, A. Artacho et al., “The lung microbiota
in early rheumatoid arthritis and autoimmunity,”Microbiome,
vol. 4, p. 60, 2016.

[50] L. I. Sakkas, D. P. Bogdanos, C. Katsiari, and C. D. Platsoucas,
“Anti-citrullinated peptides as autoantigens in rheumatoid
arthritis-relevance to treatment,” Autoimmunity Reviews,
vol. 13, pp. 1114–1120, 2014.

[51] J. M. Larsen, “The immune response to Prevotella bacteria in
chronic inflammatory disease,” Immunology, vol. 151, 2017.

[52] M. K. Bedaiwi and R. D. Inman, “Microbiome and probiotics:
link to arthritis,” Current Opinion in Rheumatology, vol. 26,
pp. 410–415, 2014.

[53] N. S. Jakubovics, “A new association for the oral metagenome,”
Oral Diseases, vol. 22, pp. 77–80, 2016.

[54] S. G. de Aquino, S. Abdollahi-Roodsaz, M. I. Koenders
et al., “Periodontal pathogens directly promote autoimmune
experimental arthritis by inducing a TLR2- and IL-1-driven
Th17 response,” Journal of Immunology, vol. 192, pp. 4103–
4111, 2014.

[55] J. Chen, K. Wright, J. M. Davis et al., “An expansion of rare
lineage intestinal microbes characterizes rheumatoid arthri-
tis,” Genome Medicine, vol. 8, p. 43, 2016.

[56] X. Liu, Q. Zou, B. Zeng, Y. Fang, and H. Wei, “Analysis of fecal
Lactobacillus community structure in patients with early

rheumatoid arthritis,” Current Microbiology, vol. 67, pp. 170–
176, 2013.

[57] P. Toivanen, S. Vartiainen, J. Jalava et al., “Intestinal anaerobic
bacteria in early rheumatoid arthritis (RA),” Arthritis
Research, vol. 4, p. 5, 2002.

[58] U. M. Gumá, “Modelos Animales en la artritis reumatoide,”
Reumatología Clínica, vol. 4, pp. 129–131, 2008.

[59] M. F. van den Broek, “Streptococcal cell wall-induced polyar-
thritis in the rat. Mechanisms for chronicity and regulation
of susceptibility,” Acta Pathologica, Microbiologica et Immu-
nologica Scandinavica, vol. 97, pp. 861–878, 1989.

[60] T. J. Lehman, J. B. Allen, P. H. Plotz, and R. L. Wilder,
“Polyarthritis in rats following the systemic injection of
Lactobacillus casei cell walls in aqueous suspension,”
Arthritis and Rheumatism, vol. 26, pp. 1259–1265, 1983.

[61] W. J. Cromartie, J. G. Craddock, J. H. Schwab, S. K. Anderle,
and C. H. Yang, “Arthritis in rats after systemic injection of
streptococcal cells or cell walls,” The Journal of Experimental
Medicine, vol. 146, pp. 1585–1602, 1977.

[62] A. Doube and A. J. Collins, “Is the gut intrinsically abnormal in
rheumatoid arthritis?,” Annals of the Rheumatic Diseases,
vol. 47, pp. 617–619, 1988.

[63] Y. Maeda, T. Kurakawa, E. Umemoto et al., “Dysbiosis con-
tributes to arthritis development via activation of autoreactive
T cells in the intestine,” Arthritis & Rhematology, vol. 68,
pp. 2646–2661, 2016.

[64] X. Liu, B. Zeng, J. Zhang et al., “Role of the gut microbiome in
modulating arthritis progression in mice,” Scientific Reports,
vol. 6, article 30594, 2016.

[65] S. Abdollahi-Roodsaz, L. A. Joosten, M. I. Koenders et al.,
“Stimulation of TLR2 and TLR4 differentially skews the
balance of T cells in a mouse model of arthritis,” The
Journal of Clinical Investigation, vol. 118, pp. 205–216,
2008.

[66] H. J. Wu, I. I. Ivanov, J. Darce et al., “Gut-residing segmented
filamentous bacteria drive autoimmune arthritis via T helper
17 cells,” Immunity, vol. 32, pp. 815–827, 2010.

[67] S. Negi, H. Singh, and A. Mukhopadhyay, “Gut bacterial
peptides with autoimmunity potential as environmental
trigger for late onset complex diseases: in-silico study,” PLoS
One, vol. 12, article e0180518, 2017.

[68] A. Gomez, D. Luckey, C. J. Yeoman et al., “Loss of sex and age
driven differences in the gut microbiome characterize
arthritis-susceptible 0401 mice but not arthritis-resistant
0402 mice,” PLoS One, vol. 7, article e36095, 2012.

[69] E. Eerola, T. Mottonen, P. Hannonen et al., “Intestinal flora in
early rheumatoid arthritis,” British Journal of Rheumatology,
vol. 33, pp. 1030–1038, 1994.

[70] R. Shinebaum, V. C. Neumann, E. M. Cooke, and V. Wright,
“Comparison of faecal florae in patients with rheumatoid
arthritis and controls,” British Journal of Rheumatology,
vol. 26, pp. 329–333, 1987.

[71] M. M. Newkirk, A. Zbar, M. Baron, and A. R. Manges,
“Distinct bacterial colonization patterns of Escherichia coli
subtypes associate with rheumatoid factor status in early
inflammatory arthritis,” Rheumatology (Oxford, England),
vol. 49, pp. 1311–1316, 2010.

[72] A. Pianta, S. Arvikar, K. Strle et al., “Evidence of the immune
relevance of Prevotella copri, a gut microbe, in patients with
rheumatoid arthritis,” Arthritis & Rhematology, vol. 69,
pp. 964–975, 2017.

12 Journal of Immunology Research



[73] A. Pianta, S. L. Arvikar, K. Strle et al., “Two rheumatoid
arthritis-specific autoantigens correlate microbial immunity
with autoimmune responses in joints,” The Journal of Clinical
Investigation, vol. 127, 2017.

[74] D. Kim and W. U. Kim, “Editorial: can Prevotella copri be a
causative pathobiont in rheumatoid arthritis?,” Arthritis &
Rhematology, vol. 68, pp. 2565–2567, 2016.

[75] R. E. Ley, “Gut microbiota in 2015: Prevotella in the gut:
choose carefully,”Nature Reviews Gastroenterology &Hepatol-
ogy, vol. 13, pp. 69-70, 2016.

[76] E. V. Marietta, J. A. Murray, D. H. Luckey et al., “Suppression
of inflammatory arthritis by human gut-derived Prevotella his-
ticola in humanized mice,” Arthritis & Rhematology, vol. 68,
pp. 2878–2888, 2016.

[77] J. Zimmer, B. Lange, J. S. Frick et al., “Avegan or vegetarian diet
substantially alters the human colonic faecal microbiota,”
European Journal of Clinical Nutrition, vol. 66, pp. 53–60, 2012.

[78] P. Toivanen and E. Eerola, “A vegan diet changes the intestinal
flora,” Rheumatology (Oxford, England), vol. 41, pp. 950-951,
2002.

[79] M. Haugen, D. Fraser, and O. Forre, “Diet therapy for the
patient with rheumatoid arthritis?,” Rheumatology (Oxford,
England), vol. 38, pp. 1039–1044, 1999.

[80] S. Bengmark, “Gut microbiota, immune development and
function,” Pharmacological Research, vol. 69, pp. 87–113, 2013.

[81] P. Sarzi-Puttini, D. Comi, L. Boccassini et al., “Diet therapy for
rheumatoid arthritis. A controlled double-blind study of two
different dietary regimens,” Scandinavian Journal of Rheuma-
tology, vol. 29, pp. 302–307, 2000.

[82] K. M. Maslowski and C. R. Mackay, “Diet, gut microbiota
and immune responses,” Nature Immunology, vol. 12,
pp. 5–9, 2011.

[83] H. Pan, R. Li, T. Li, J. Wang, and L. Liu, “Whether probiotic
supplementation benefits rheumatoid arthritis patients: a
systematyc review and meta-analysis,” Engineering, vol. 3,
pp. 115–121, 2017.

[84] B. Alipour, A. Homayouni-Rad, E. Vaghef-Mehrabany et al.,
“Effects of Lactobacillus casei supplementation on disease
activity and inflammatory cytokines in rheumatoid arthritis
patients: a randomized double-blind clinical trial,” Interna-
tional Journal of Rheumatic Diseases, vol. 17, pp. 519–527,
2014.

[85] E. Vaghef-Mehrabany, B. Alipour, A. Homayouni-Rad, S. K.
Sharif, M. Asghari-Jafarabadi, and S. Zavvari, “Probiotic sup-
plementation improves inflammatory status in patients with
rheumatoid arthritis,” Nutrition, vol. 30, pp. 430–435, 2014.

[86] L. Pineda Mde, S. F. Thompson, K. Summers, F. de Leon, J.
Pope, and G. Reid, “A randomized, double-blinded, placebo-
controlled pilot study of probiotics in active rheumatoid
arthritis,” Medical Science Monitor, vol. 17, pp. CR347–
CR354, 2011.

[87] K. D. Deane, “Rheumatoid arthritis: autoantibodies, citrulli-
nated histones and initiation of synovitis,” Nature Reviews
Rheumatology, vol. 11, pp. 688-689, 2015.

[88] W. Jia, H. Li, L. Zhao, and J. K. Nicholson, “Gut microbiota: a
potential new territory for drug targeting,” Nature Reviews
Drug Discovery, vol. 7, pp. 123–129, 2008.

[89] K. Hatakka, J. Martio, M. Korpela et al., “Effects of probiotic
therapy on the activity and activation of mild rheumatoid
arthritis—a pilot study,” Scandinavian Journal of Rheumatol-
ogy, vol. 32, pp. 211–215, 2003.

13Journal of Immunology Research



Submit your manuscripts at

https://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


