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REVIEW

Intestinal dysfunction in liver cirrhosis: Its role in spontaneous
bacterial peritonitis
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Abstract Spontaneous bacterial peritonitis is a common illness in patients with cirrhosis and ascites
that occurs without any apparent focus of infection. Bacterial translocation plays an important role in
spontaneous bacterial peritonitis and it is evident from a variety of studies that the gut is a major source
of this bacteria. Gut motility alterations, along with bacterial overgrowth and changes in intestinal per-
meability, probably play a role in this bacterial translocation. The present review looks at the role of the
intestine in spontaneous bacterial peritonitis induced by liver cirrhosis and the factors influencing bac-

terial translocation in this disease.
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INTRODUCTION

Liver cirrhosis is a pathologically defined entity that
reflects irreversible chronic injury of the hepatic
parenchyma in association with extensive fibrosis. Bac-
terial infection is responsible for up to one-quarter of
the deaths of patients with liver disease,' the most sus-
ceptible being those with alcoholic cirrhosis.? One of the
major complications of liver cirrhosis is spontaneous
bacterial peritonitis (SBP), which is defined as an
abrupt onset of acute bacterial peritonitis without any
apparent external or intra-abdominal focus of infection
in patients with ascites caused by liver disease.’ Spon-
taneous bacterial peritonitis is thought to appear as a
consequence of impaired defense mechanisms against
infection seen in cirrhotic patients, such as depressed
reticuloendothelial system phagocytic activity, reduced
serum complement levels and low antibacterial activity
of ascitic fluid.* Spontaneous bacterial peritonitis is a
common illness in patients with cirrhosis and ascites’
and, although key steps in the pathogenesis of SBP are
yet to be elucidated, it is evident from recent research
that the gut is a major source of bacteria in SBP. Gut
motility alterations, along with bacterial overgrowth and
changes in intestinal permeability, probably play a role

in this bacterial translocation. The present review con-
centrates on the mechanistic etiology of SBP and
attempts to collate various studies on this aspect. The
diagnosis, treatment and prophylaxis of the disease have
been extensively studied and reviewed elsewhere.®

INTESTINE IN LIVER CIRRHOSIS

It has been shown that the gastrointestinal tract is
affected during cirrhosis and mucosal abnormalities
secondary to portal hypertension exist. Manevska has
shown a correlative connection between liver damage
and the functional activity of the intestine, manifested
by the inhibition of the activity of the membrane
enzymes alkaline phosphatase and aminopeptidase, as
well as the activity of acid phosphatase and succinic
dehydrogenase, in experimental cirrhosis.” Triglyceride
levels in the small intestine of cirrhotic rats are signifi-
cantly decreased, probably because of low intestinal
apolipoprotein A-IV.® Transport of nutrients across the
intestine is also affected and intestinal sugar transport
is disturbed in experimental cirrhosis, an alteration cor-
rected by insulin-like growth factor-I.° D-Galactose
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absorption is also reduced in cirrhotic rats and this is
accompanied by a significant elongation of enterocyte
microvilli.'® Biliary cirrhosis induces changes in brush
border membrane composition in rats, which include
decreased structural proteins, microvillus enzymes
and triglyceride content. This is accompanied by a
threefold decrease in calcium transport in the
duodeno—jejunum, probably because of a lower content
in brush border membrane calmodulin."

ALTERED GUT MOTILITY AND
BACTERIAL OVERGROWTH IN
CIRRHOSIS

Altered small bowel motility has been shown in patients
with liver cirrhosis and this depends on the severity of
liver disease.'> The mouth to cecum transit time is
prolonged, the pylorus—cecum component playing the
main role in delaying oro—cecal transit time."* Chang ez
al. have shown that small intestine motility dysfunction
was also more severe in cirrhotic patients with a history
of SBP."* Motor abnormalities of the small intestine are
present in these patients, along with a decrease in the
amplitude of small bowel contractions, suggesting a
myogenic involvement.'”> Altered proximal small bowel
motility has been observed in patients with cirrhosis
with an increase in the mean duration of the migrating
motor complex and marked changes in the contraction
pattern.'® It has also been shown that this abnormal
migrating motor complex activity and prominent clus-
tered contractions present preoperatively in cirrhotic
patients normalized within 6 months after orthotopic
liver transplantation.'”

Intestinal bacterial overgrowth (IBO) is very frequent
in patients with chronic hepatopathies. It occurs in
approximately one-third of patients with cirrhosis sec-
ondary to alcohol, particularly in patients with ascites
and advanced liver dysfunction. Moreover, bacterial
overgrowth may be a condition favoring infection of the
ascitic fluid.'® Carbon tetrachloride-induced cirrhosis
leads to an increased total intestinal aerobic bacteria
count, which may play a role in the bacterial transloca-
tion seen in this experimental model of cirrhosis in
rats.’” The main causes of IBO are probably achylia and
hypochlorhydria, a decrease in the secretion of IgA
and malnutrition caused by liver dysfunction and alco-
holism. The IBO could increase the severity of the
hepatopathy and also produce bacterial peritonitis.?
Thus, impaired motility of the small intestine, facilitat-
ing bacterial overgrowth of the small intestine, may be
one of the explanations for recurrent SBP in cirrhotic
patients.

INTESTINAL PERMEABILITY IN
LIVER CIRRHOSIS

Increased intestinal permeability has been implicated as
a possible contributory factor in the development of
encephalopathy and SBP seen in patients with cirrho-
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sis.?! Intestinal permeability to phenolsulfthalein is

increased in patients with liver cirrhosis,* especially in
patients with severe infectious complications. The
impairment of the intestinal function barrier may also
contribute to severe septic complications in these
patients.?> When portal hypertension is present, perme-
ability of the gut wall may be affected by edema of the
splanchnic tissues because of venous and lymphatic
congestion.?* Chronic elevation in portal pressure also
increases intestinal transcapillary water flux in the
canine intestine.”” Keshavarzian et al. have shown that
alcoholics with chronic liver disease have increased
intestinal permeability and this may be a necessary
cofactor for the development of chronic liver injury in
heavy drinkers.?® Increased permeability of intestinal
tight junctions, retention of endotoxin and increased
apoptosis have also been implicated in the pathogene-
sis of primary biliary cirrhosis (PBC).*’

BACTERIAL TRANSLOCATION
IN SBP

Translocation of gut bacteria is facilitated by a number
of factors, one being the fact that humoral and cellular
host defenses against infection are most frequently
impaired in patients with alcoholic cirrhosis and fulmi-
nant hepatic failure.! Shunting of portal blood predis-
poses to bacteremia from enteric organisms and intra-
as well as extrahepatic shunting may be important
determinants predisposing to SBP.?® Abnormal colo-
nization of the small bowel by colonic bacteria occurs
in patients with cirrhosis®® and intestinal bacterial
translocation is common in cirrhotic rats with SBP.*
Gram-negative aerobic bacteria from the family Enter-
obacteriaceae and non-enterococcal Streprococcus sp. are
the most common causative organisms;® Escherichia coli,
Kilebsiella pneumoniae and o-hemolyzing Streprococcus
also having been isolated from ascitic fluid in patients
with spontaneous bacterial peritonitis.>’~*> Organisms
such as Listeria monocytogenes have also been implicated
in SBP in patients with liver cirrhosis®® and infection
with Vibrio vulnificus has been reported to cause sep-
ticemia, resulting in death in a cirrhotic patient.* The
cirrhotic liver is also predisposed to bacterial infections
and different species of bacteria including E. coli, Enter-
obacter and Bacteroides fragilis have been found to colo-
nize thioacetamide-induced cirrhotic rat liver.”> The
same bacterial species has been isolated in both mesen-
teric lymph node and ascitic fluid®*® and Llovet ez al.
have used molecular epidemiology techniques to prove
the origin of bacteria simultaneously isolated from
ascites and the mesenteric lymph nodes and/or ileum in
rats with ascitic cirrhosis.’” Bacterial translocation also
promoted vascular nitric oxide (NO) release in cirrhotic
rats® and NO has been implicated in the regulation of
gastrointestinal motility.* Histopathologic studies on
the route of bacterial translocation show that translo-
cation of bacteria such as Candida albicans occurs by
direct penetration of enterocytes, associated with dis-
ruption of basal membrane. Translocation of E. coli and
endotoxin also occurred directly through enterocytes
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rather than between them.?® Thus, translocation of
intestinal bacteria to mesenteric lymph nodes probably
plays a major role in development of SBP in cirrhosis.

SPLANCHNIC CIRCULATION AND
IMMUNE FUNCTION IN CIRRHOSIS

Considerable alterations in fluid and solute exchange in
the hepatic and intestinal microcirculations are seen
during cirrhosis, and lymph flow from the intestine and
liver in cirrhotic animals is increased.*! Splanchnic
blood flow in liver cirrhosis is affected in patients with
varicose veins of the esophagus and stomach.*? Both
mesenteric flow and portal flow are affected, the con-
tribution of splanchnic blood flow to the portal flow
being reduced.®’ Arterial vasodilation, particularly that
occurring in the splanchnic circulation, is a major
causative factor in the pathogenesis of the hyperdy-
namic circulatory syndrome that is known to occur in
cirrhosis and portal hypertension.** Cirrhotic rats with
ascites have a decreased systemic vascular resistance
and high splanchnic endotoxin levels, suggesting that
splanchnic endotoxemia may be involved in the devel-
opment and/or maintenance of hyperdynamic circula-
tion.”” Splanchnic blood flow was found to be
significantly increased in cirrhosis, accompanied by an
increase in circulating levels of glucagon and vasoactive
intestinal polypeptide. This increase in splanchnic blood
flow may be partly responsible for elevated portal
pressure, because there was also a strong correlation
between portal pressure and glucagon levels.*® There is
greater impairment in vascular reactivity in cirrhotic
rats with bacterial translocation and this is largely medi-
ated by endothelial overproduction of NO. This was
associated with a decrease in the pressure response to
methoxamine in the superior mesenteric arterial bed.?®
Endothelin-1 is also implicated in the pathogenesis of
portal hypertension and its plasma levels are increased;
levels in both superior mesenteric and splenic venous
blood being higher than in systemic blood in cirrhotic
patients.”” Moreover, in patients with chronic liver
disease and in animal models of portal hypertension,
elevated blood concentrations of tumor necrosis factor
(TNF)-0 have been reported compared with normal
controls.”® Increased levels of TNF-oo are seen in
mesenteric lymph nodes of cirrhotic rats with bacterial
translocation and this probably contributes to the asso-
ciated systemic levels.?®

A variety of immunologic disturbances are seen in
liver cirrhosis, including autoantibody production,
decreased cellular immunity and decreased natural
killer cell activity.* A high percentage of cellular
immune reactions is seen in patients with cirrhosis of
the liver, probably due to impairment of the physiologic
elimination of antigens by the liver.”® Gut-liver interac-
tions have been implicated in lymphocyte migration as
well as the modulation of IgA levels and, in cirrhotic
patients, IgA concentrations are significantly higher
than in control subjects.’! It has been demonstrated that
increased IgA synthesis in the intestinal mucosa may
contribute to elevation of serum IgA levels in liver cir-
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rhosis.”® This is accompanied by changes in cellular
immunity, with decreases in the number of T cells in
the intestinal mucosa of cirrhotic rats.’> The largest lym-
phoid organ in the body, the gut-associated lymphoid
tissue (GALT), plays a role in diseases such as PBC>
and the GALT has been shown to produce and release
TNF-o in response to bacterial translocation, even in
the absence of the portal or systemic spread of bacte-
ria.>® The changes in bile acid composition and bacte-
rial flora probably induce a condition of chronic
stimulation of the GALT.”® In addition, the local
immunologic changes in intestinal mucosa closely cor-
relate to the lymphatic disturbances in liver cirrhosis.’®
There appears to be localized mucosal immunity in the
secretory system of PBC®” and antibodies to the endo-
plasmic reticulum protein calreticulin occur in PBC
and yersiniosis as well as in alcoholic liver disease.
This again probably reflects the reactivity of the gut-
associated immune system.”® y-Interferon induced NO
synthase more rapidly in macrophage cultures from cir-
rhotic livers and these macrophages also synthesized
more NO when stimulated by lipopolysaccharide com-
pared with controls.>

BACTERIAL TRANSLOCATION AND
OXYGEN FREE RADICALS

Bacterial translocation occurs in a variety of other clin-
ical conditions, including sepsis, hemorrhagic shock,
surgical stress and multiorgan failure. Similar to SBP,
in these conditions Gram-negative bacteria® and their
endotoxins® are mainly translocated. Hemorrhagic
shock-induced bacterial translocation is prevented by
the inhibition of the superoxide generating enzyme
xanthine oxidase, implicating oxygen free radicals in
this process.®® It has also been shown that intestinal
ischemia leads to bacterial translocation accompanied
by oxygen free radical production.®® The intestine has
been shown to be susceptible to oxidative stress and we
have earlier shown that enterocyte function is affected
in this process.”® Work from our laboratory has also
shown that surgical stress induces oxidative stress in
enterocytes, accompanied by widening of intercellular
spaces, which may facilitate bacterial translocation.®
Oxidative stress plays an important role in the patho-
genesis of toxic liver diseases and of other hepatic alter-
ations.®® A significant decrease in the plasma ascorbate
level is evident after the onset of hepatitis, the subse-
quent cirrhosis and liver cancer.®” A significant increase
in plasma lipid peroxide and ascorbic acid and a signifi-
cant decrease in reduced glutathione and superoxide
dismutase activity in hemolysate were also observed in
cirrhotic patients.®® Oxidative stress has also been impli-
cated in the process of fibrogenesis and many etiologic
agents of fibrogenesis stimulate free radical reactions
either directly or through inflammatory stimuli.®* Pro-
tein oxidation may play a role in the pathogenesis of
carbon tetrachloride-induced liver injury” and admin-
istration of anti-oxidants, such as selenium and vitamin
E, also decreases the amount of hepatic fibrosis in
carbon tetrachloride-induced cirrhosis.”" Lipid peroxi-
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dation increased in both liver homogenates and hepatic
mitochondria of bile duct-ligated rats. This was accom-
panied by decreased glutathione peroxidase activity and
glutathione levels. Glutathione peroxidase, as well as
glutathione transferase, activity was also decreased.”
Thus, it is possible that free radical generation in the
liver could spill over to other organ systems.

Free radicals have been identified in the bile of rats
treated chronically with alcohol” and it has been shown
that the major part of the Electron Spin Resonance free
radical signal arises from protein-bound bilirubin.”
Deoxycholate has also been shown to stimulate super-
oxide production in colonic mucosal scrapings or crypt
epithelium.” Endotoxin, along with ethanol treatment,
induces a three-fold increase in radical adducts in the
bile.”® Intraperitoneal bile has been shown to increase
bacterial growth and mortality in E. coli peritonitis in
the rat, cholic and deoxycholic acid enhancing the
release of endotoxin in this situation.”” Bile salts can
also activate stress response genes in E. coli, which may
promote interaction of E. coli with cells of the colonic
epithelium.” Preliminary work from our laboratory has
shown evidence of oxidative stress in the intestine from
cirrhotic rats, with increases in superoxide generation
accompanied by conjugated diene and malondialde-
hyde production (A Ramachandran and KA Balasub-
ramanian, unpubl. data, 2000). Tan ez al. have shown
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Figure 1 Probable effect of liver cirrhosis on the intestine,
facilitating development of spontaneous bacterial peritonitis
(SBP). Decreased gut motility in cirrhosis would facilitate bac-
terial overgrowth and this, in turn, could lead to bacterial
translocation and peritonitis. Oxidative stress induced in the
liver by cirrhosis could spill over to the intestine through the
bile, splanchnic hypoperfusion or by dysregulated immune
function and these oxygen free radicals could mediate intesti-
nal damage, thus facilitating increased intestinal permeability
and bacterial translocation.
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that the superoxide-generating enzyme xanthine
oxidase can gain access to the circulation following
ischemia, where it binds to vascular endothelial cells to
produce site-specific oxidant injury to organs remote
from the site of xanthine oxidase release.” Hence, the
consequences of damaged liver function in cirrhosis
could spill over to the gut due to a variety of changes,
because free radicals could be transferred through the
bile or altered gut perfusion could facilitate oxidative
stress in the small intestine.

In conclusion, it seems that the translocation of
intestinal-derived bacteria into the systemic circulation
in cirrhosis is an important etiologic factor for the
development of complications such as SBP. The
decrease in intestinal motility associated with cirrhosis
facilitates the overgrowth of bacteria in the gut lumen.
An increase in bacteria coupled with an increased
intestinal permeability caused by a loss of gut barrier
function could then result in bacterial translocation.
Oxidative stress in the intestine also probably plays a
role (Fig. 1), although studies on this aspect of SBP are
scarce. However, this is an important area that requires
further study, because it is evident that the intestine
plays a major role in the etiology of complications such
as SBP. Identifying the molecular mechanisms that
render the enterocyte susceptible to damage and lead
to bacterial translocation would help in formulating
therapeutic strategies to prevent such complications.
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