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Total parenteral nutrition (TPN), a commonly used treatment for patients who cannot

receive enteral nutrition, is associated with significant septic complications due in part

to a loss of epithelial barrier function (EBF). While the underlying mechanisms of

TPN-related epithelial changes are poorly understood, a mouse model of TPN-dependence

has helped identify several contributing factors. Enteral deprivation leads to a shift in

intestinal microbiota to predominantly Gram-negative Proteobacteria. This is associated

with an increase in expression of proinflammatory cytokines within the mucosa, including

interferon-γ and tumor necrosis factor-α. A concomitant loss of epithelial growth factors

leads to a decrease in epithelial cell proliferation and increased apoptosis. The resulting

loss of epithelial tight junction proteins contributes to EBF dysfunction. These mechanisms

identify potential strategies of protecting against TPN-related complications, such as

modification of luminal bacteria, blockade of proinflammatory cytokines, or growth factor

replacement.
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PARENTERAL NUTRITION: A NECESSARY RISK
Maintaining appropriate nutrition in patients is a clinical neces-

sity that is at times difficult to accomplish. Particularly devas-

tating complications are seen in the perioperative period where

malnourishment increases complications, delays wound healing,

decreases immune function, prolongs hospitalizations, and low-

ers patient quality of life (Peter et al., 2005; Martindale et al.,

2013). The ideal and most physiologic form of nutrition is

via the gastrointestinal tract (Moore et al., 1992; Braunschweig

et al., 2001; Mirtallo et al., 2004; Peter et al., 2005; Zaloga,

2006). Unfortunately, due to mechanical, functional, or postop-

erative deficits, some patients are unable to use their intestinal

tract for nutritious gain. For these patients who are enter-

ally deprived, total parenteral nutrition (TPN) is an alternative

method of nutrition which provides nutrients and calories intra-

venously (Abunnaja et al., 2013). According to the United States

Healthcare Cost and Utilization Project, greater than 352,000

patients received TPN in the United States in 2010 (Pfuntner

et al., 2006). It thus serves as a life sustaining treatment for many

patients.

A recent adjunct to the nutritional armamentarium, TPN has

been used regularly for patients since the mid-twentieth century.

Through groundbreaking work by Rhoads and colleagues in the

1960s, challenges regarding access and formulation were over-

come and TPN was able to be prescribed to those who would have

previously had no means of nutritional access (Dudrick et al.,

1968). Efforts to optimize the composition, administration, and

patient selection criteria for TPN have since continued, as codified

in recent guidelines issued by the American Society for Parenteral

and Enteral Nutrition (Mirtallo et al., 2004).

TPN itself is a solution composed of amino acids, sugars,

fat emulsions, electrolytes, vitamins, and trace elements (Zaloga,

2006). Due to its hypertonicity, it is recommended that cen-

tral venous catheters are used for TPN delivery (Mirtallo et al.,

2004). Assessment of the need for continued TPN utilization

should be performed regularly as TPN, though life preserving,

is not without significant risk. In fact, complications of TPN

have been extensively described in the literature (The Veterans

Affairs Total Parenteral Nutrition Cooperative Study Group,

1991; Moore et al., 1992; Buzby, 1993; Braunschweig et al., 2001;

Peter et al., 2005; Heneghan et al., 2013). Blood stream infection,

hepatic dysfunction, metabolic derangements, bacterial translo-

cation, immunologic compromise, and enterocyte atrophy are

well known sequelae of TPN administration. In a historic multi-

hospital Veterans Affairs study, Buzby et al. (Dudrick et al.,

1968) found patients with mild malnutrition received no ben-

efit from TPN and suffered from infectious complications “not

explained by the presence of a catheter”—including pneumonia,

urinary tract infection, and surgical site infection. In a recent

study, Casaer et al. expanded upon these findings, demonstrat-

ing not only a lack of benefit with early administration of TPN

in critically-ill patients, but in fact poorer outcomes compared

to later and more judicious initiation of TPN (Casaer et al.,

2011). Such complications have led to cautious administration

of TPN and utilization of enteral feeding whenever possible

(Braunschweig et al., 2001).
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PHYSIOLOGIC AND IMMUNOLOGIC CHANGES WITH TPN IN
A MOUSE MODEL

While the etiology of the increased rate of infectious complica-

tions with TPN is not fully established, it is known that many

of the organisms responsible for these infections predominantly

originate from enteric microbiota, suggesting a TPN-associated

loss of intestinal epithelial barrier function (EBF) (Feng et al.,

2012). TPN-induced changes allow translocation of endotox-

ins and enteric microbiota across the epithelial barrier, leading

to endotoxemia, bacteremia and sepsis (Alverdy et al., 1988)

(Figure 1). A mouse model of TPN has allowed the identification

of regulatory pathways which are involved in these TPN-induced

physiologic changes. In this model, mice receive TPN via an inter-

nal jugular catheter and no enteral nutrition. These are compared

to control mice which also have an intravenous catheter place, but

receive only saline (electrolyte solution) and are allowed enteral

food. Using such a model, our laboratory and others have iden-

tified several contributing factors which drive this diminished

EBF with TPN, such as loss of local growth factors, increased

levels of pro-inflammatory mucosal cytokines, and alterations in

intraluminal microbiota. These TPN-induced changes result in a

pro-inflammatory state within the intestinal mucosa, leading to

villous atrophy, an increase in epithelial cell (EC) apoptosis, and

a decrease in EC proliferation (Wildhaber et al., 2002)—as also

demonstrated by the reduction in overall length of the small and

large bowel (Figure 2).

INFLAMMATORY CYTOKINE DYSREGULATION: IFN-γ AND TNF-α

Inflammatory cytokines linked to loss of EBF include interferon

gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α), both

FIGURE 1 | Loss of epithelial barrier function with TPN leads to

bacterial translocation and sepsis. Lymph node (LN) and spleen isolates

from TPN-dependent mice were incubated on Columbia-CNA agar (A) to

isolate Gram-positive bacteria. Similarly, culture on MacConkey agar

demonstrates Gram-negative bacteria from TPN-dependent LN isolates (B).

Rates of bacteremia are significantly greater in TPN-dependent vs. fed mice

(C) (Sun et al., 2006).

of which are increased in animal models of TPN-dependence.

IFN-γ is a cytokine which, when administered in vitro to a T84

epithelial monolayer, results in the loss of tight junction integrity

(Madara and Stafford, 1989). This effect is prevented by pretreat-

ment with transforming growth factor-β1 (Planchon et al., 1994).

TPN-dependent mice have been shown to have a greater than

three-fold increase in IFN-γ mRNA expression, with subsequent

EBF breakdown. This loss of EBF is mitigated via blockade of

IFN-γ signaling using IFN-γ-knockout mice (Yang et al., 2002,

2003a).

Similarly, our work has also shown that TNF-α expression is

increased in response to enteral nutrient deprivation and TPN

administration (Feng and Teitelbaum, 2012). This increase is

associated with mucosal atrophy and loss of EBF. Using a com-

bination of TNF-receptor-1 (TNF-R1) and TNF-R2 knockout

mice, blockade of TNF signaling prevents mucosal atrophy with

TPN, but blockade of both receptors are needed to prevent the

loss of EBF associated with TPN (Feng and Teitelbaum, 2012).

TNF-receptor-dependent downstream mediators include nuclear

factor-κB (NF-κB) and myosin light chain kinase (MLCK). TNF-

receptor activation leads to up-regulation of MLCK with the

activation of myosin light chain (MLC) to phospho-MLC (Feng

and Teitelbaum, 2013). Intestinal epithelial cell (IEC) MLCK is

known to mediate TNF-α-induced modulation of the intestinal

epithelial tight junction barrier (Ye et al., 2006). The EBF is main-

tained by the integrity of a series of paracellular tight junctional

proteins, including zonula occludens 1 (ZO-1), ZO-2, junctional

adhesions, occludin as well as a large family of claudins. With the

phosphorylation of MLC, an activation of actin and myosin con-

traction occurs on the IEC apical surface, with the dissociation of

ZO-1 from the tight junction, an internalization of occludin, and

a resultant deterioration of barrier function (Chen et al., 2012).

This process can be progressive, as TNF-α will drive the down-

stream activation of NF-κB, which is responsible for initiating

an inflammatory amplification cascade (Barnes and Karin, 1997).

Another important regulatory role of TNF-α is the mediation of

FIGURE 2 | Epithelial and whole-bowel changes with TPN. Unfed bowel

demonstrates decreased epithelial cell proliferation (green = PCNA,

proliferating cells; red = DAPI, all nucleated cells) compared to fed intestine

(A). Representative images of harvested mouse intestine demonstrate

decreased length with TPN-dependence (B).
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IEC apoptosis. Signaling of TNF-α via the TNF-R1 and TNR-

R1 receptors are principal pathways for IEC apoptosis (Feng and

Teitelbaum, 2012). Interestingly, both MLCK and NF-κB are up-

regulated with TPN, and these changes are prevented with TNF-α

blockade (Feng and Teitelbaum, 2013).

DIMINISHED GROWTH FACTOR AND IMMUNE REGULATOR SIGNALING

In addition to mediating inflammation and apoptosis, TNF-α

has recently been shown to play a critical role in enterocyte sur-

vival and regulation of IEC proliferation (Edelblum et al., 2008).

A potent mediator of EC proliferation, epidermal growth fac-

tor (EGF) signaling is dependent on both ErbB-1 receptor and

TNF-α signaling pathways (McElroy et al., 2008; Yamaoka et al.,

2008). With TPN administration, EGF signaling is diminished

secondary to both TNF-α dysregulation along with decreased

ErbB-1 expression. Correction of this TPN-induced imbalance

via exogenous EGF or through a blockade of TNF-R1 was shown

to partially reverse the pro-apoptotic effects of excessive TNF-

α signaling (Feng and Teitelbaum, 2012). Two other mucosal

growth factors, keratinocyte growth factor and glucagon-like pep-

tide 2, have also been shown to be diminished with TPN. These

two growth factors, like EGF, play a role in maintenance of

EBF and their diminished expression contributes to EBF loss

(Feng et al., 2012).

The regulation of IEC integrity is also linked to the intraep-

ithelial lymphocyte (IEL)-derived anti-inflammatory interleukin

10 (IL-10), which is a master regulator of the mucosal immune

system (Duell et al., 2012). Knockout mice who fail to produce IL-

10 demonstrate increased epithelial permeability (Madsen et al.,

1999), resulting in a colitis model (Berg et al., 2002). In TPN-

dependent mice, a significant decline in IEL-derived IL-10 is seen

along with an associated decrease in EBF (Sun et al., 2008). By

administering exogenous IL-10, the TPN-associated decline in

intestinal barrier function is attenuated; suggesting that loss of

IL-10 contributes to TPN-induced epithelial barrier dysfunction.

EBF BREAKDOWN IS MODULATED BY DECREASED p-Akt SIGNALING

The decrease in growth factor signaling with TPN leads to a

downstream decrease in phosphatidylinositol 3-kinase (PI3K)/p-

Akt signaling. PI3K/p-Akt signaling is known to play a key role

in cell cycle progression and preventing apoptosis (Chang et al.,

2003). With TPN, p-Akt activity diminishes in ECs, with an asso-

ciated loss of EC proliferation and increased apoptosis (Feng

et al., 2009). Using an Akt-activating peptide T-cell lymphoma-

1 (TCL1) conjugated to a transactivator of transcription peptide

sequence (TAT), a significant increase in p-Akt abundance was

achieved in TPN-dependent mice, along with prevention of the

loss of EC proliferation and increased apoptosis seen with TPN

(Feng et al., 2010). This demonstrates the central importance of

p-Akt signaling in maintaining EBF integrity.

Thus, TPN causes increased levels of inflammatory cytokines

TNF-α and IFN-γ, along with decreased production of inflam-

matory regulator IL-10 and growth factor EGF, which together

lead to altered IEC survival and proliferation. In addition, TPN-

dependence appears to significantly diminish EBF. The com-

ponents that make up EBF include the synthesis and release

of mucus from goblet cells, transcytosis of dimeric secretory

IgA [which is also lost with TPN (Fukatsu and Kudsk, 2011)],

intraluminal movement of water, and the physical integrity of

the epithelium itself (Clayburgh et al., 2004). Breakdown of

this barrier can lead to the translocation of intestinal micro-

biota and/or endotoxin, which are thought to contribute to

TPN-related sepsis (Kristof et al., 2011).

TPN-dependence appears to decrease the integrity of the

epithelial junctional protein apparatus, which is a critical compo-

nent of EBF. Junctional proteins include ZO-1, which cross-links

the E-Cadherin/catenin complex and the actin cytoskeleton (Itoh

et al., 1997), as well as occludin and the family of claudins, the

latter of which has been found to be altered in Crohn’s dis-

ease (Zeissig et al., 2007). In TPN-dependent mice, all of these

junctional proteins have been found to have a significant reduc-

tion in abundance compared to enterally-fed mice (Sun et al.,

2008). Expression of these proteins is linked to EBF, which can be

reflected via measurement of the transepithelial potential differ-

ence and resistance using an Ussing chamber (Yang et al., 2003b).

The previously described cytokine changes with TPN are also

linked to junctional protein expression. For instance, exogenous

IL-10 administration ameliorated TPN-induced loss of ZO-1,

ZO-2, claudin-2, and occludin (Sun et al., 2008). Production of

these proteins is also related to p-Akt signaling, as our work has

shown that down-regulation of E-Cadherin expression in TPN-

dependent mice is tightly related to a decrease in p-Akt activity

(Feng et al., 2009). In addition, we demonstrated prevention of

the TPN-induced loss of ZO-1 and E-cadherin expression when

p-Akt activity is upregulated with TCL-1 administration. The

loss in EBF is clearly multifactorial, however, as TCL-1 failed to

prevent the loss of occludin expression or the decrease in transep-

ithelial resistance with TPN (Feng et al., 2012). Interestingly,

supplementation of TPN-dependent mice with intravenous glu-

tamine, a critical amino acid, has been shown to preserve EBF and

restore EC proliferation via prevention of loss of p-Akt abundance

(Nose et al., 2010).

A key distinction in the mechanism of these TPN-induced

changes is whether they are due to administration of the TPN

solution itself or the lack of enteral feeding. To address this, we

compared mice receiving TPN without feeding vs. TPN with par-

tial (25%) oral feeding. This small amount of enteral nutrition

prevented intestinal epithelial atrophy and the associated increase

in proinflammatory cytokines while restoring normal tight junc-

tion function and EBF (Wildhaber et al., 2005). Thus, the lack

of intraluminal nutrients appears to drive the pathophysiology of

TPN-dependence.

CHANGES IN THE GUT MICROBIOME WITH TPN

While the alterations in inflammatory cytokines and growth

factors thus far described have a clear role in the physiologic

changes seen with TPN, the mechanisms behind these alterations

are unknown. An increasing body of evidence suggests that a

driving force behind these changes is a drastically altered intesti-

nal microbiome with associated immunologic changes. Normally

composed of a diverse population of bacteria numbering up

to 1014 colony-forming units, the intestinal microbiota play an

essential role in host physiology via immune stimulation and

regulation, digestion of carbohydrates otherwise unavailable to

enterocytes, and production of key nutrients such as short-chain

fatty acids (Salzman, 2010; Sekirov et al., 2010).
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The interaction between host and microbiota is a complex

relationship that is not completely understood. One of the criti-

cal functions played by intestinal microbiota is modulation of the

host’s immune system through interaction with lamina propria

(LP) cells. A principal function of LP cells is the detection and

monitoring of changes in the intraluminal environment (Novak

and Bieber, 2008). Microbiota interact with LP cells via the toll-

like receptor (TLR) pathway (Chichlowski and Hale, 2008; Ng

et al., 2010). Several bacterial components act as ligands for

TLRs, such as lipopolysaccharide (LPS), which is derived from

Gram-negative bacteria and binds TLR4. TLR binding leads to

downstream activation of NF-κB signaling via a myeloid differ-

entiation primary response gene 88 (MyD88) dependent pathway

(Karrasch and Jobin, 2008; Abreu, 2010). Activation of NF-κB,

as described above, then mediates the expression of a number of

proinflammatory cytokines.

While TPN supplies adequate nutritional needs systemically

to the recipient, enteral deprivation puts the intestinal micro-

biota in an abrupt state of nutrient withdrawal. This has been

shown to dramatically alter the makeup of small intestinal micro-

biota from a normally benign composition of predominantly

Gram-positive Firmicutes to a Gram-negative Proteobacteria-

dominated population. Additional phylum-level changes include

increases in Bacteroidetes and Verrucomicrobia (predominantly

Akkermansia) (Figure 3). This shift is associated with increased

TLR signaling—specifically, up-regulation of TLR-2, 4, 7, and 9.

The subsequent proinflammatory state within the LP is character-

ized by increased TNFα, IFN-γ, downstream NF-κB activation,

and a marked loss in the LP T-regulatory (Treg) cell population

(Miyasaka et al., 2013).

FIGURE 3 | Phylum-level changes in intestinal microbiota with TPN.

Enteric bacteria from TPN-dependent mice (A) demonstrate a relative

increase in Proteobacteria and Bacteroidetes vs. fed mice (B), where

Firmicutes dominates. MyD88−/− mice, with defective TLR signaling,

demonstrate an additional expansion of Verrucomicrobia with

TPN-dependence (C) vs. fed controls (D). Akkermansia species

predominate among the Verrucomicrobia. Adapted from Miyasaka et al.

(2013).

The deprivation of enteral nutrients available to intraluminal

bacteria alters the selection pressure determining the dominant

species of microbiota. In an environment of relative starva-

tion, Proteobacteria have been shown to demonstrate resilience

(Sinclair and Alexander, 1984), while Firmicutes establish them-

selves in the enterally-fed state (Costello et al., 2010). While

these changes are characterized by a relative increase in Gram-

negatives, there remains an undefined role for Gram-positive

bacteria in TPN-dependence, given these organisms activate mul-

tiple TLRs (Patten and Collett, 2013) as well as apoptosis signaling

(Ulett and Adderson, 2006). Besides the lack of luminal nutrients,

host factors play a role in changing the microbial environment.

For instance, TPN administration has been shown to lead to

an increase in goblet cell numbers (Conour et al., 2002) and a

decrease in Paneth cell function. Paneth cells, located adjacent

to intestinal stem cells in crypts, interact with intestinal bac-

teria by secreting bactericidal proteins. TPN leads to decreased

expression of Paneth cell-related antimicrobial proteins REGIII-g,

lysozyme, and cryptdin-4. This leads to increased susceptibility to

enteroinvasion by E. coli (Heneghan et al., 2013). These findings

demonstrate a significant change in the host-microbiome rela-

tionship with TPN. An altered bacterial population develops in

an environment with diminished mucosal defenses, contributing

to continued EBF breakdown and septic complications.

BLOCKADE OF MyD88 PREVENTS THE HOST RESPONSE TO
AN ALTERED MICROBIOME

To investigate the mechanism by which the altered microbiome

contributes to TPN-related IEC changes, we have used TPN-

dependent and chow-fed MyD88 knockout mice. Microbiota

interact with host LP myeloid cells via TLR-signaling, much

of which is mediated via the sub-cytoplasmic membrane pro-

tein, MyD88 (Abreu, 2010). Similar changes in gut microbiota

have been observed in MyD88 knockout mice given TPN, with

a shift from a Firmicutes-predominant community in fed mice

to a Proteobacteria-dominant bacterial community in TPN-

dependent mice. In this model, it indicates that the change in

bacterial composition occurs independently of MyD88, support-

ing the theory that the lack of enteral nutrition itself drives

the microbial changes. This is in contrast to a recent study in

which the targeted deletion of MyD88 within the epithelium

led to distinct changes within the mucosally-associated microbial

population (Frantz et al., 2012).

The TLR signaling changes normally induced by this bac-

terial shift, however, are abrogated in the MyD88 knockout

strain. Blockade of TLR signaling in these mice prevents sens-

ing of the altered microbiota by the host LP cells. This leaves

the mucosal immune response unchanged from that of fed

mice. Pro-inflammatory cytokines TNF-α and IFN-γ are not

upregulated, and activation of NF-κB is prevented. In addition,

MyD88 blockade led to preservation of the small intestinal Treg

cell population, which is almost completely lost in wild-type

TPN-dependent mice. Together, prevention of these inflamma-

tory mucosal responses allows maintenance of EC proliferation,

decreased apoptosis, and preservation of EBF (Miyasaka et al.,

2013).
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Interestingly, MyD88 knockout mice on TPN demonstrate an

increase in Akkermansia species compared to wild-type TPN-

dependent mice and fed mice (Figure 3). This may reflect the

role of mucosal responses in modulating the intraluminal envi-

ronment. By preventing the dominant Proteobacteria from sig-

naling via TLRs, the inflammatory changes in the epithelium

are avoided, and this may create an altered environment that is

more favorable for this strain of bacteria (Miyasaka et al., 2013).

A mechanism for this change may be due to an increase in acido-

mucins within the small bowel mucosa during the administration

of TPN, the primary substrate for Akkermansia mucinophilia

(Derrien et al., 2011). The complex interaction between the

various microbial species, their luminal environment, and the

intestinal epithelium continues to be explored.

EVIDENCE OF BARRIER FUNCTION LOSS AND MICROBIOTA
CHANGES IN HUMANS

While the outcomes of decreased EBF and subsequent septic com-

plications associated with TPN are well-documented in humans,

the mechanisms described thus far have not been thoroughly

explored in human intestine. In a study of 8 healthy volunteers

who received TPN as an exclusive means of nutrition for 14 days,

many of the intestinal morphologic and functional changes seen

in animal models were reproduced, though to a lesser extent

(Buchman et al., 1995). These changes included a decrease in

mucosal thickness, increased villus cell count, and an increase

in the urinary lactulose-mannitol ratio (indicating an increase

in intestinal permeability). Mitotic index was not significantly

diminished, however. While other studies in humans have failed

to replicate increased sensitivity to intravenous LPS (Santos et al.,

1994) or decreased EBF (Reynolds et al., 1997), these studies

are based on a limited number of patients and lack a robust

evaluation of changes in mucosal physiology.

A recent study has begun to elucidate whether a similarly sig-

nificant change in gut microbial diversity occurs with enteral

deprivation in humans (Ralls et al., 2013). Small bowel samples

from 12 patients undergoing intestinal resection were collected

and mucosa-associated bacteria were analyzed. As noted in other

studies of human intestinal microbiota (Costello et al., 2012),

a wide variability in microbial diversity was found within all

groups. While an accurate characterization of the typical makeup

of intestinal microbiota with TPN in humans was not possible,

an interesting finding was that the level of microbial diversity

appeared to be closely related to clinical outcome. Patients with

low enteric bacterial diversity were significantly more likely to

develop postoperative infection or intestinal anastomotic disrup-

tion (Ralls et al., 2013).

CONCLUSION AND FUTURE DIRECTIONS

While TPN serves a life-sustaining purpose in patients who must

remain deprived of enteral nutrition for a prolonged period,

it is not without risk. Enteral deprivation leads to a drasti-

cally altered intestinal luminal environment, which allows for

the dominance of aggressive microbiota such as Gram-negative

Proteobacteria. Signaling factors such as LPS derived from these

bacteria act through intestinal TLRs to stimulate an increase in

pro-inflammatory mediators and a decrease in growth factors.

These changes lead to a decrease in EC proliferation and increase

in EC apoptosis. The final outcome is diminished EBF, character-

ized by a loss of epithelial tight junction proteins and increased

mucosal permeability, with the subsequent septic morbidity asso-

ciated with TPN (Figure 4).

A deeper understanding of the interaction between host and

intestinal microbiota in the setting of enteric deprivation may

provide novel strategies for preventing TPN-related complica-

tions. While evidence suggests that microbiota signal mucosal

inflammation via TLRs using a MyD88 pathway, studies with

more specific inhibition of certain TLRs may reveal that a sub-

set of TLRs (i.e., TLR4, which binds LPS) may be primarily

responsible for this process. In addition to understanding how

epithelial physiology changes in this setting, it will be critical

elucidate how luminal environment changes are tied to bacte-

rial selection. Modifying this environment to select for more

benign bacterial species may alleviate some of the deleterious

changes seen with TPN. Finally, the altered cytokine profile pro-

duced by these changes may be alleviated pharmacologically. For

example, growth factor replacement with exogenous EGF or anti-

body blockade of epithelial TNF-α may diminish TPN-related

inflammation and loss of EBF.

Using a mouse model, significant gains have been made in

the understanding of intestinal physiologic changes with fasting

and TPN. Further human studies are needed to translate these

FIGURE 4 | Summary of TPN-induced epithelial signaling changes.

Lack of enteral nutrition leads to a change in luminal microbiota where

Gram-negative Proteobacteria dominate. Lipopolysaccharide (LPS) derived

from these bacteria signal lamina propria (LP) cells via Toll-like receptors

(TLR), leading to increased NF-κB transcription. This creates a

pro-inflammatory state with increased TNF-α and IFN-γ, loss of Treg cells,

and decreased intraepithelial lymphocyte (IEL)-derived IL-10 and EGF. These

changes lead to break down of tight junctions, loss of epithelial barrier

function, bacterial translocation, and sepsis.
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findings to the patient. With a clear understanding of these

changes, novel strategies to mitigate them may make TPN a safer

option for the many patients who require it.
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