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The intestinal epithelium has a strategic position as a protective physical barrier to luminal
microbiota and actively contributes to the mucosal immune system. This barrier is mainly
formed by a monolayer of specialized intestinal epithelial cells (IECs) that are crucial in
maintaining intestinal homeostasis.Therefore, dysregulation within the epithelial layer can
increase intestinal permeability, lead to abnormalities in interactions between IECs and
immune cells in underlying lamina propria, and disturb the intestinal immune homeostasis,
all of which are linked to the clinical disease course of inflammatory bowel disease (IBD).
Understanding the role of the intestinal epithelium in IBD pathogenesis might contribute to
an improved knowledge of the inflammatory processes and the identification of potential
therapeutic targets.
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INTRODUCTION
Inflammatory bowel disease (IBD) is characterized by a chronic
idiopathic inflammation of the intestine and consists of two main
forms, i.e., ulcerative colitis (UC) (1) and Crohn’s disease (CD)
(2). The inflammation in CD can be transmural affecting any
parts of the entire gastrointestinal tract, whereas UC is restricted
to the mucosa of the colon. Although the etiology of IBD is largely
unknown, it involves a complex interaction between genetic,
luminal, and environmental factors that trigger an inappropri-
ate mucosal immune response (Figure 1) (3–7). The importance
of genetic susceptibility has over the past decades been established
through genome-wide association studies, which have identified a
total of 163 IBD-associated gene loci, most of which are associated
with both CD and UC (110/163) – suggesting shared pathways in
IBD pathogenesis despite differences in clinical phenotype – and
30 gene loci classified specifically for CD and 23 as UC specific (8).
However, not all patients with genetic changes develop IBD. There-
fore, other factors like environmental risk factors including diet,
smoking, drugs, infections, geography, and stress have an impor-
tant role in the pathogenesis of IBD (9). In particular, changes in
the composition of the intestinal microbiota are likely the most
important environmental factor in IBD by inducing an overac-
tive immune response that harms the mucosal barrier (10–14).
It is therefore not surprising that intestinal barrier dysfunction
plays a key pathogenic role in IBD (15). Thus, IBD is a multi-
factorial disease driven by an exaggerated immune response to
gut microbiota in a genetically susceptible host causing defects in
epithelial barrier function and epithelial response to pathogens
(Figure 1).

EPITHELIAL HOMEOSTASIS AND MUCOSAL INFLAMMATION
The intestinal epithelium forms the protective barrier and host
defense against the harmful luminal microenvironment with selec-
tive permeability and absorption of nutrients. The epithelium is
covered by a single-cell layer composed of different subtypes of

specialized intestinal epithelial cells (IECs) including absorptive
cells, goblet cells, enteroendocrine cells, Paneth cells, M cells, cup
cells, and Tuft cells, all of which differentiate from epithelial stem
cells (16–18). These subsets of IECs are functionally different
and essential to maintain intestinal homeostasis by separating the
intestinal lumen from the underlying lamina propria and by con-
trolling the crosstalk between microbiota and subjacent immune
cells. Thus, a dysregulation of the differentiation system for cor-
rect IEC formation has a crucial role in the pathogenesis of IBD
(19). Indeed, several crucial genes for the differentiation of IECs
have been demonstrated to become aberrantly expressed during
IBD (20–22).

The epithelial monolayer is the main component of the epithe-
lial barrier and its ability to act as a protective physical barrier is
mediated by the formation of a web of tight junctions (TJs) that
regulate the paracellular permeability and barrier integrity, pro-
duction of mucus layer covering the luminal surface of the epithe-
lium, and recognition of pathogens and production of antimicro-
bial peptides (AMPs) to ensure effective immunity (23). Hence,
TJs seal the paracellular space between epithelial cells and separate
the cell membrane into apical and basolateral domains, thus form-
ing a physical barrier against foreign antigens. In fact, an altered
expression and structural changes of the intestinal TJ proteins are
closely associated with the development of IBD (24–26). Moreover,
several pro-inflammatory cytokines, such as tumor necrosis factor
(TNF)-α and interferon-γ, have been shown to increase TJ per-
meability and to induce apoptosis of IECs (27–29). This leads to
the loss of epithelial barrier function and induces epithelial dam-
age and ulcers that are present in mucosal inflammation. Indeed,
a strong linkage has been established between abnormal intesti-
nal permeability and mucosal inflammation in both CD and UC
patients (30), which has been supported by several studies demon-
strating a restored intestinal permeability in patients respond-
ing to anti-TNF therapy (31, 32). Moreover, among the various
experimental mouse models of intestinal inflammation (33), two
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FIGURE 1 | Genetics, gut microbiota, and an uncontrolled immune response cause defects in epithelial barrier function by affecting the barrier
integrity, increasing tissue destruction and mucosal inflammation.

available models, namely, SAMP1/YitFc and C3H/HeJBir, develop
spontaneous chronic inflammation due to defects in innate
and adaptive immune responses. Thus, SAMP1/YitFc mice have
epithelial dysfunction and increased permeability (34), whereas
C3H/HeJBir mice are more likely to have dysregulated innate
immune responses and bacterial clearance (35).

To support the epithelial barrier, a mucus layer covers the sin-
gle layer of IECs (Figure 1), and the critical role of the mucus
layer in microbiota sequestration has been demonstrated by ani-
mal studies with Muc2-deficient mice (36) – the producer of the
main mucus protein secreted by goblet cells – and by reduced
goblet cell numbers and depleted mucus secretion in IBD patients
(37). In mice, Muc2 deficiency results in a diminished mucus layer,
elevated levels of pro-inflammatory cytokines, and development
of spontaneous colitis. Moreover, the intestinal epithelial barrier
is supported by the production of AMPs – mainly secreted by
Paneth cells. These AMPs contribute to the mucus layer by pre-
venting bacteria from reaching the epithelial surface or interact
with the underlying immune system (Figure 1). Thus, the role
of AMPs has been implicated in mucosal homeostasis and in the

pathogenesis of several conditions including IBD (38–40). Indeed,
a defective expression of AMPs has been revealed in patients with
CD (41–43).

Apart from forming a tight protective barrier, IECs are actively
involved in the innate immune response as many epithelial cells
have pattern recognition receptors such as Toll-like receptors on
the cell surface and nucleotide-binding oligomerization domain
(NOD)-like receptors in the cytoplasm that are essential in sensing
bacterial products and initiating the immune response through the
pro-inflammatory transcription factor nuclear factor-κB to main-
tain homeostasis (18). Therefore, any defects in these IECs-related
processes might trigger mucosal inflammation.

GENETIC CHANGES AFFECTING THE INTESTINAL EPITHELIAL
FUNCTION
Genes within IBD-associated genetic loci highlight the impor-
tance of epithelial barrier defects (44). While the functional role
of many loci or single-nucleotide polymorphisms is incompletely
understood (8), several of the IBD-susceptibility genes (few exam-
ples are discussed below) are associated with different aspects
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of epithelial functions. Moreover, experimental mouse models
of intestinal inflammation have been extensively used to investi-
gate the importance of components of a healthy intestinal barrier
function [reviewed in detail in Ref. (33)].

The nuclear transcription factor, hepatocyte nuclear factor 4α

(HNF4α), encoded by HNF4α, regulates the expression of several
components involved in epithelial TJs and intestinal permeabil-
ity. HNF4α is down-regulated in patients with IBD and, more-
over, mice with IEC-specific conditional knockout of Hnf4α are
more susceptible to chemically induced colitis (20), indicating that
HNF4α is crucial for the barrier function of the intestinal mucosa.
Another example is the CDH1 gene that encodes for E-cadherin, a
cell adhesion molecule expressed in the epithelium, that is impor-
tant for key morphogenetic processes such as cell growth, epithelial
differentiation, and proliferation (45). Hence, loss or mislocal-
ization of E-cadherin is involved in the pathogensis of IBD by
increasing epithelial permeability (46).

Moreover, several polymorphisms in the meprin 1A (MEP1A)
gene have been associated with UC (47). This gene encodes the α

subunit of meprins found as a secreted form or as a membrane-
bound form at the brush-border membrane in association with
the transmembrane β subunit in IECs where their main func-
tion is to cleave diverse substrates such as laminins, TJ proteins,
and cytokines (48–51). The expression of MEP1A is decreased
in patients with active UC and experimental mice models with
Mep1A-deficiency are more susceptible to chemically induced
colitis (22, 52).

NOD2, encoded by CARD15, as the first genetic susceptibility
locus for CD is an intracellular receptor that recognizes bac-
terial muramyl dipeptide and induces autophagy and bacterial
clearance. NOD2 has, therefore, a central role in innate immune
activation of epithelial cells attributed in part to Paneth cells.
Autophagy is an important participant in the defense against intra-
cellular invading pathogens and the NOD2-directed autophagy
is dependent on, among others, the autophagy-related 16-like 1
(ATG16L1) protein, which is encoded by ATG16L1 (53). Thus, car-
rying the CD-associated loss-of-function NOD2 and/or ATG16L1
risk variants displays an augmented inflammatory status (54) with
a defective autophagy induction, bacterial clearance, and antigen
presentation. As a consequence, the immune response is dimin-
ished, and luminal bacteria may invade the intestinal mucosa and
trigger inflammation (55). However, neither partial nor complete
loss of function of Atg16l1 or Nod2 leads to spontaneous intestinal
inflammation (56, 57). Interestingly, specific deletion of the gene
encoding X-box-binding protein 1 (Xbp1) – a transcription factor
central to the unfolded protein response in the setting of endo-
plasmic reticulum (ER) stress – in IECs results in ER stress and
Paneth cell impairment (58). Moreover, a recent study demon-
strated that ER stress induced by IECs-specific Xbp1 deletion was
compensated by autophagy responses in Paneth cells. However,
deletion of the autophagy-related gene, Atg16l1 or Atg7, in addi-
tion to Xbp1 developed severe spontaneous CD-like transmural
ileitis (59). Thus, both ER stress and autophagy seem to be crucial
regulatory mechanisms in intestinal homeostasis further under-
lying the importance of Paneth cells in intestinal inflammation,
and this has indeed been supported by a recent study by Deuring

et al. (60). In this study, the authors have shown that patients with
CD, homozygous, or heterozygous for the ATG16L1 risk allele, are
associated with ER stress in Paneth cells (60).

A large number of mammalian cytokines modulate intracel-
lular signaling by inducing the mitogen-activated protein kinase
pathway (61), as well as the Janus kinase/signal transducer and
activator of transcription (STAT) pathway (62). STATs are tran-
scription factors that orchestrate an appropriate cellular response
through target gene expression, and STAT1, STAT3, and STAT4
have been reported as IBD-related susceptibility genes (8). In par-
ticular, animal studies have revealed the crucial role of an intact
Stat3 in intestinal homeostasis and its protective role as IEC-
specific Stat3-deficient mice are highly susceptible to chemically
induced colitis (63).

Altogether, given the importance of many transcription factors,
adhesion molecules, and immunological factors in the mainte-
nance of the integrity of the epithelial barrier and regulating
the homeostasis of epithelial cells, it is likely that subtle defects
in epithelial gene function or expression may contribute to IBD
pathogenesis.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES
The medical management of IBD includes glucocorticoids,
immunomodulators (64), and anti-TNF-α biological agents (65,
66) as well as inhibitors of other molecular pathways (67). These
drugs block key molecules that are involved in the induction and
maintenance of inflammation in several signaling pathways, all of
which have different contributions. However, no treatment strat-
egy is curative or free of side effects. Hence, despite increased
knowledge on its pathophysiology and improvements in medical
therapy, about one-third of IBD patients need surgery due to an
inadequate response or treatment failure to conventional therapy.
Thus, achieving mucosal healing, preventing disease relapse, and
avoiding complications are among the major goals in the man-
agement of patients with IBD (68–71). It is therefore likely that
the mechanisms that drive mucosal inflammation differ between
patients and that the inflammatory cascades are much more
complex than initially thought.

Considering the culminating evidence that IECs are central to
the maintenance of intestinal homeostasis and intestinal epithe-
lium dysfunction is associated with IBD pathogenesis, potential
IEC-based therapeutics will remain a crucial field of interest for
IBD therapy. In fact, there are several indications that IECs are cen-
tral in the response to TNF-α (72), and more importantly, IECs
are a target of TNF-α inhibitors (73, 74).

Due to the complexity of signaling within the intestinal epithe-
lium, monocultures of intestinal cells have until now limited
their applicability as disease modeling. However, given the proper
culture conditions, primary IEC cultures (organoids) can be main-
tained long-term in vitro and are therefore an invaluable new tool
for research of more physiological relevance (75). Within the next
several years, further studies and improved knowledge of the role
of IECs in IBD will undoubtedly contribute to a better understand-
ing of the pathogenesis of IBD, and will provide more insights into
the potential and efficacy of IECs-based therapeutic opportunities
and their application.
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