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Abstract The mucus layer coating the gastrointestinal tract
is the front line of innate host defense, largely because of
the secretory products of intestinal goblet cells. Goblet cells
synthesize secretory mucin glycoproteins (MUC2) and
bioactive molecules such as epithelial membrane-bound
mucins (MUCI, MUC3, MUC17), trefoil factor peptides
(TFF), resistin-like molecule 3 (RELMf), and Fec-y
binding protein (Fcgbp). The MUC2 mucin protein forms
trimers by disulfide bonding in cysteine-rich amino
terminal von Willebrand factor (vWF) domains, coupled
with crosslinking provided by TFF and Fcgbp proteins with
MUC2 vWF domains, resulting in a highly viscous
extracellular layer. Colonization by commensal intestinal
microbiota is limited to an outer “loose” mucus layer, and
interacts with the diverse oligosaccharides of mucin
glycoproteins, whereas an “inner” adherent mucus layer is
largely devoid of bacteria. Defective mucus layers resulting
from lack of MUC2 mucin, mutated Muc2 mucin vVWF
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domains, or from deletion of core mucin glycosyltransfer-
ase enzymes in mice result in increased bacterial adhesion
to the surface epithelium, increased intestinal permeability,
and enhanced susceptibility to colitis caused by dextran
sodium sulfate. Changes in mucin gene expression and
mucin glycan structures occur in cancers of the intestine,
contributing to diverse biologic properties involved in the
development and progression of cancer. Further research is
needed on identification and functional significance of
various components of mucus layers and the complex
interactions among mucus layers, microbiota, epithelial
cells, and the underlying innate and adaptive immunity.
Further elucidation of the regulatory mechanisms involved
in mucin changes in cancer and inflammation may lead to
the development of novel therapeutic approaches.
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Introduction

The intestine plays an important role in the digestion and
absorption of ingested food and the elimination of
undigested food, microbes, and microbial products. The
functional integrity of the intestinal mucosal epithelial cells
depends on the coordinated regulation of the mucus layer,
the intercellular tight junction, epithelial cells, and host
innate and adaptive immune response [1, 2¢]. The mucus
layer overlying the epithelium secreted by the goblet cells
promotes the elimination of gut contents and provides the
first line of defense against physical and chemical injury
caused by ingested food, microbes and the microbial
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products. The major component of the mucus is secreted
mucins, large glycoproteins with highly polymeric protein
backbone structure, linked to numerous hygroscopic and
hydrophilic oligosaccharide side-chains that contribute to the
formation of gel-like structure [3, 4]. Intestine is the major
site of bacterial colonization, with more than 1000
prevalent bacterial species identified. These commensal
bacteria are trapped in the mucus layer, failing to reach the
epithelial cell surface, and are eliminated by peristaltic
movement [1, 2¢]. The microbes and microbial products are
recognized by the sensor system of the intestinal epithelial
cells and the immune cells, activating the host innate defense
system. Balanced and dynamic interactions among mucus
layers, intestinal epithelial cells, microbiota, and host immune
defense is essential for the maintenance of the intestinal
mucosal homeostasis. The disruption in the intestinal
homeostasis results in the defective mucus barrier with
increased permeability that results in inflammation and injury
of the intestinal mucosal cells [1, 5¢]. This review briefly
summarizes the recent progress made in understanding of the
regulation of goblet cell differentiation and biology, the
delineation of mucus layers in the intestine, structure, gene
family, regulation and biology of mucins, interaction of
mucins and microbiota in intestinal ecosystem, and the role
of goblet cells and mucins in intestinal disorders such as
intestinal infections, inflammatory bowel disease (IBD), and
cystic fibrosis (CF), and mucinous adenocarcinoma.

Goblet Cells: Differentiation and Biology

The intestinal mucosal epithelium consists of four main cell
types—absorptive enterocytes, goblet cells, Paneth cells,
and enteroendocrine cells—which undergo continuous
cycles of renewal. The small intestinal epithelium is divided
into two distinct compartments. The lower crypt compart-
ment consists of pluripotent stem cells residing at the bottom
of the crypt, recently identified by the stem cell marker Lgr5,
and proliferating transit amplifying cells that differentiate into
mature cell lineages (absorptive, goblet, and enteroendocrine
cells) during migration toward the villus compartment. Paneth
cells settle and undergo differentiation at the crypt bottoms
[6°]. Goblet cells appear early in development (in the human
fetal small intestine, at 9—10 weeks’ gestation) and relatively
undifferentiated oligomucous and mature goblet cells are
present in both the stratified and simple columnar epitheli-
um; however, once the villi have formed, most goblet cells
are indistinguishable from those found in the adult intestine.
The goblet cell morphology is shaped by the distended theca
containing the mucin granules located below the apical
membrane. In mice deficient in the major goblet cell mucin,
Muc2 (Muc2™”), no morphologically identifiable goblet cells
can be identified as the theca collapse, despite the continued
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presence of other goblet cell products, such as intestinal
trefoil factor (TFF3) [7]. By contrast, in mice deficient in
TFFE3 (TFF™), goblet cells can be identified despite smaller
theca, indicating the predominant role of mucin in goblet cell
morphology [8]. The proportion of goblet cells among
epithelial cell types increases caudally from duodenum
(4%) to distal colon (16%), similar to the increasing number
of microbial organisms present in the proximal intestine to
colon [9]. There are fewer and smaller goblet cells in the
intestine of the germ-free mice compared to those of
conventionally raised mice, indicating the microbial modu-
lation of goblet cells [10].

The maintenance of stem cells and differentiation into
specific cell lineages in the intestine involves complex
interplay of multiple developmental pathways including
Wnt/[3-catenin, bone morphogenic protein (BMP), and PI3-
kinase/Akt signaling [6¢]. Notch signaling pathway plays a
central role in cell fate specification and differentiation in
the intestine [6, 11]. Notch signaling results in the activation
of Hes1 transcription factor, which has a repressive effect on
bHLH transcription factor Mathl (the human homologue is
Hathl). Inhibition of Notch pathway in the intestinal
epithelium results in a rapid and complete conversion of all
epithelial cells to secretory cell lineage cells such as goblet,
Paneth, and enteroendocrine cells concomitant with activation
of Mathl; whereas activation of Notch signaling pathway
leads to depletion of all secretory cells with the villi lined
mainly with absorptive enterocytes concomitant with activa-
tion of Hesl [6, 11]. Hathl was previously shown to be
essential for differentiation of intestinal secretory lineage
cells. Activation of Hathl caused induction of MUC2, a
major goblet cell mucin, by binding to its binding sites, E-
boxes on MUC?2 promoter [12, 13]. In addition, activation of
transcription factors, Klf4 and EIf3, is involved in the
terminal differentiation of goblet cells [6¢].

Goblet cells synthesize and secrete bioactive molecules
such as secretory and membrane-bound mucins, trefoil
peptides, resistin-like molecule 3 (RELMf), and Fc-y
binding protein (Fcgbp), which are components of mucus
[2¢]. These molecules are secreted by two pathways,
constitutive or basal secretion, which is low-level continuous
secretion dependent on cytoskeletal movement of secretory
granules, or stimulated or regulated secretion, which involves
exocytosis of granules in response to external stimuli [14].

Mucins: Main Goblet Cell Product
Structure and Classification of Mucins
Mucins are highly glycosylated large glycoproteins with

protein backbone structures rich in serine and threonine,
which are linked to a wide variety of O-linked oligosaccharide
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side chains that make up more than 70% of the weight of the
molecule [3, 4]. Up to 20 different mucin genes have been
identified, MUCI to MUC20 according to order of their
discovery. Mucin genes are expressed in tissue and cell type—
specific manner and are broadly classified into two types,
secretory and membrane-associated. Gel-forming secretory
mucins such as MUC2, MUC5AC, MUCS5B, and MUC6 are
localized on chromosome 11.5.5 as a cluster. In small and
large intestine, MUC2 is the major secretory mucin
synthesized and secreted by goblet cells, whereas goblet
and absorptive cells express membrane-bound mucins,
MUCI, MUC3, MUC4, MUCI13, and/or MUCI7, in the
apical membrane [3, 4, 15]. Secretory and membrane mucins
have distinct structural features and biosynthetic pathways.

MUC?2 is the first human secretory mucin to be identified
and characterized [15, 16]. MUC2 mucin has structural and
physicochemical properties similar to those of other gel-
forming secretory mucin such as MUC54AC, MUC5B, and
MUCS6, expressed in gastric and respiratory glandular
epithelium. MUC2 mucin monomer has more than 5000
amino acids and consists of central tandem repeat domains
rich in proline, serine, and threonine, the latter of which are
linked O-glycosidically to many oligosaccharide side
chains of varying lengths and compositions (also called
“PTS” domains). The highly glycosylated central tandem
repeat domains of MUC2 mucin monomers are flanked on
either side by the cysteine-rich domains, including C-
terminal cysteine knot domain and four D domains of von
Willebrand factor (vWF), which are involved in dimeriza-
tion and oligomerization, respectively, resulting in highly
viscous gel-forming mucin network (Fig. 1) [16—18]. The
rodent homologue of MUC? is designated as Muc2, and has
a similar structure motif and cell and tissue type—specific
expression.

Intestinal mucosal epithelia cells also express epithelial
membrane-bound mucins, MUCI, MUC3, MUC4, MUC1 2,
MUCI13, and MUCI7, which have structural similarity.
MUC3 mucin, the most abundantly expressed membrane
mucin in the small intestine, consists of two subunits, an
extracellular subunit containing heavily O-glycosylated
tandem repeat domains and two epidermal growth factor
(EGF)—like domains separated by sperm protein, entero-
kinase, and agrin (SEA) module, a proteolytic cleavage site
during biosynthesis of MUC3 in the endoplasmic reticulum,
and a membrane-associated subunit with trans-membrane
domain and cytoplasmic tail with potential phosphorylation
sites involved in signaling (Fig. 1) [19-21]. MUC3
expression in the apical membrane of absorptive and goblet
cells shows a maturational gradient with increasing expres-
sion from crypt to villus. These membrane mucins extend
rod-like 200—1500 nm above the cell surface and form the
glycocalyx (Fig. 1). The membrane mucins may be shed
from the cell surface by the activation of membrane-

associated metalloproteinases, by the separation of two
subunits in the SEA domain, or by the alternative splicing
contributing to mucus layer formation [3]. The cysteine-rich
EGF-like domains of the mouse Muc3 and human MUC17
mucins have been shown to inhibit apoptosis and stimulate
cell migration, implying a bioactive role in maintaining the
integrity of the surface epithelial layer [22, 23].

Biosynthesis and Secretion of Mucins

Like other gel-forming secretory mucins, MUC2 mucin
monomers form dimers in the endoplasmic reticulum via
intermolecular disulfide bonding between the c-terminal
cysteine knot domains. During transit through Golgi appa-
ratus, MUC?2 mucin proteins become heavily O-glycosylated
and undergo trimerization via disulfide bonding in the amino
terminal region, resulting in the formation of very large
polymers [17, 18]. Proteolytic processing may also occur in
the late secretory compartments. It is possible that other
mucin proteins, such as MUCS5B, may polymerize with a
different pattern, forming linear chains rather than trimers at
the amino terminal region as with MUC2 [24]. Numerous
and diverse oligosaccharide side chains linked O-
glycosidically to apomucin are synthesized by the sequential
addition of five different sugars by the action of a series of
Golgi resident glycosyltransferases. These oligosaccharides
can generate diverse signals by binding to many different
ligands such as bacteria, viruses, lectins, adhesion molecules,
growth factors, and cytokines [25, 26¢]. The glycosylated
MUC2 monomer has a mass of about 2.5 MDa and the
polymer may be more than 100 MDa. The fully glycosylated
and processed MUC2 mucin is densely packed and stored in
secretory granules/vesicles and released by two pathways,
constitutive/basal and Ca2"-dependent stimulated/regulated
pathways described in the previous section. Massive secre-
tion of MUC?2 mucin by exocytosis in stimulated secretion is
triggered by a wide array of bioactive factors, including
cholinergic agonist, hormones (neuropeptides), microbes and
microbial products and toxins, inflammatory cytokines, and
reactive oxygen and nitrogen species. These mucin secreta-
gogues signal through secondary messengers such as
intracellular Ca**, cyclic adenosine monophosphate (cAMP),
and diacylglycerol that activates protein kinase [14].

Regulation of Mucin Synthesis

Mucin secretion is frequently coupled with increased synthe-
sis of mucins, but chronic secretion may result in goblet cell
depletion and decreased synthesis of mucins. The syntheses of
mucins are regulated by many bioactive factors that function
as mucin secretagogues. Increasing evidence indicate that
mucin expression is controlled either by transcriptional or
epigenetic regulation [4, 27, 28]. Transcriptional regulation of
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Fig. 1 A schematic representation of two mucus layers overlying the
epithelial cell surface shown (leff) and the domain structures of
secretory (MUC2) and membrane-bound (MUC3) mucins shown
(right). Intestinal epithelial cell surface is covered by two mucus
layers (inner, firmly adherent layer and outer, loosely adherent layer)
consisting largely of MUC2 mucin network produced by the goblet
cells and other host defense molecules produced by goblet cells,
Paneth cells, and absorptive enterocytes. Microbes are associated with
the outer, loosely adherent mucus layer, but are absent in the inner,
firmly adherent mucus layer. Epithelial cell surface is covered by
glycocalyx, which consists of membrane-bound mucins (MUC3 and
MUC17 in the small intestine) and other membrane glycoproteins. The
measurements shown are for the rat ileum. The domain structure of

MUC?2 is mediated by activation of signaling pathways
targeting the transcription factors that bind to specific sites
on MUC2 promoter. Bioactive factors including microbes,
microbial products, toxins, cytokines, hormones/neuropep-
tides, and growth factors have been reported to be involved
in positive or negative regulation of MUC?2 transcription [4,
28]. Activation of a transcription factor, nuclear factor (NF)-
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MUC?2 monomer shows central tandem repeat (TR) regions rich in
proline, threonine, and serine (PTS domain), to which many
oligosaccharide side chains (O-linked glycan) are linked, and four
von Willebrand factor D domains flanking the tandem repeat (PTS)
domains and C-terminal cysteine knot (CK) domain, which is
involved in initial MUC2 dimerization. The domain structure of
MUC3 mucin shows that it consists of two subunits, one extracellular
and one membrane-bound. The extracellular subunit consists of a
glycosylated tandem repeat (PTS) domain and two epidermal growth
factor (EGF)—Ilike domains separated by sperm protein, enterokinase,
and agrin (SEA) motif (a proteolytic cleavage site during biosynthesis)
and a membrane-bound subunit that consist of membrane-spanning
domain and a cytoplasmic tail with potential phosphorylation (P) sites

kB, is a common event during inflammation in the
gastrointestinal tract and MUC2 mucin has been shown to
have NF-«kB binding sites in the promoter. Lipopolysaccha-
ride (LPS) from gram-negative Pseudomonas aeruginosa
upregulates MUC?2 transcription through activation of NF-
kB mediated by the Ras—mitogen-activated protein kinase
(MAPK) pathway in colon epithelial cells. P aeruginosa
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also binds to a glycolipid receptor, asialo GM1, at the cell
surface through flagellin, causing the release of adenosine
triphosphate (ATP), which in turn increases the intracellular
Ca®" concentration, leading to the activation of NF-kB
mediated by downstream signaling pathways [29]. An
inflammatory cytokine, tumor necrosis factor (TNF)-a
(Thl type cytokine), upregulates MUCZ2 transcription
through activation of NF-kB mediated by PI3K/Akt path-
ways. TNF-o also has an inhibitory effect on MUC2
transcription through activation of JNK pathway, but overall
effect of TNF-o treatment of colon cancer cells is a net
increase in MUC?2 transcription [30]. Th2 type cytokines,
interleukin (IL)-4 and IL-13, also upregulate MUC?2 tran-
scription through NF-«kB activation mediated by MAPK
[31]. By contrast, a neuropeptide hormone, vasoactive
intestinal peptide (VIP), upregulates MUC?2 transcription
through activation of transcription factors CREB/ATF1
mediated by MAPK and p38 pathways [32]. A prostaglan-
din, PGE2, also induced MUC?2 transcription through
activation of CREB/ATF1. To summarize, both Thl and
Th2 cytokines and microbial products, LPS, lipoteichoic acid
(LTA), lipopeptide (LP), and flagellin induce MUC2
transcription through activation of NF-kB, whereas activa-
tion of CREB/ATF]1 is involved in neuropeptide/hormone-
induced MUC?2 transcription. Recently, the SPDEF (SAM
pointed domain-containing Ets) transcription factor has been
shown to work downstream of Mathl to promote differen-
tiation of secretory progenitor cells into goblet and Paneth
cells, and is a major regulator of secretory gene products
such as MUC2 [33].

Epigenetics describes heritable changes in gene expres-
sion that are not associated with changes in genomic DNA
sequences. Epigenetic regulation that leads to the turning
on or off of genes involves close interaction of DNA
methylation, histone modifications, and microRNA silenc-
ing. Studies of MUC?2 in mucinous and nonmucinous colon
cancers showed that methylation of CpG islands in the
specific regions of MUC2 promoter downregulates MUC?2
expression [34]. A recent study also showed that MUC?2
gene expression is regulated by a tightly associated
epigenetic mechanisms of DNA methylation and histone
modifications in the 5’ flanking region of MUC2 promoter
[35].

Intestinal Mucus Layer and Commensal Microbes
Intestinal Mucus Layer

Intestinal mucus layers secreted by goblet cells consist mainly
of compact mesh-like network of viscous, permeable, gel-

forming MUC2 mucin, which provides the frontline host
defense against endogenous and exogenous irritants and

microbial attachment and invasion but allows the transport
of nutrients. Mucus layers also contain other goblet cell
products, TFF3, RELMf3, and Fcgbp; antimicrobials peptides
such as 3 defensin and lysozymes secreted by Paneth cells;
and secretory IgA secreted by enterocytes [1, 2, 5, 10]. There
are two mucus gel layers in the gastrointestinal mucosa, an
inner firmly adherent layer and an outer more loosely
adherent layer, both consisting largely of MUC2 mucin in
the intestine (Fig. 1) [36, 37]. Gastric mucus in the human
stomach consists of MUC54C and MUC6 mucins [38, 39].
A study of the thickness of two mucus layers in the rat
gastrointestinal mucosa showed that the inner firmly adherent
layer was much thicker and continuous in stomach, ileum, and
colon compared to jejunum, which had a much thinner, patchy
inner mucus layer (Table 1) [36]. Microfold (M) cells in the
intestinal mucosal epithelium are devoid of overlying mucus
layers and have the ability for transepithelial transport of
foreign antigens and microbes to be captured by the
underlying dendritic cells [40]. The outer loosely adherent
mucus layer formed by proteolytic and glycosidic degrada-
tion of highly polymerized gel-like MUC2 mucin was
similar in thickness in stomach and jejunum, but markedly
increased in ileum, and thickest in colon (Table 1) [36].
Microbes are associated mostly in the outer loose mucus
layer and absent from the inner firm mucus layer, indicating
that the inner firm mucus layer functions as a critical
protective barrier against bacterial adhesion and invasion of
underlying epithelial cells [41e¢]. The outer loose mucus
layer provides a good habitat for microbial colonization,
because oligosaccharides of MUC2 mucin provide numerous
microbial attachment sites and energy source (Fig. 1) [42¢].
Muc2-deficient mice lack the intestinal mucus layers and
demonstrate increased permeability and bacterial adherence
to the epithelial cell surface [41, 43]. The thickness of mucus
layers is maintained by a balance between synthesis,
secretion, and degradation, modulated by the microbial
glycosidases and proteases and the mechanical shear forces
of peristalsis. The important role of membrane-bound
mucins at the apical cell surface and at the interface of the
cell surface and the inner mucus layer was demonstrated by
MucI-deficient mice showing increased susceptibility to
invasion by Campylobacter jejuni [44].

Intestinal Mucus Barrier, Microbes, and Probiotics

The human adult intestinal microbiota colonizing the outer
loosely adherent mucus layer is made up of more than 10"
bacteria with increasing gradient of concentration and
complexity of bacterial population from jejunum to colon;
stomach, duodenum, and jejunum with 10°-10° aerobic
bacteria per gram luminal content, and 10’—10® and 10''—
10'? predominantly anaerobic bacteria per gram in distal
ileum and colon, respectively [45¢]. Recent studies using
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Table 1 Thickness of the two mucus layers in vivo in the rat gastrointestinal tract®

Mucus layer Mean mucus thickness+SE, pm

Stomach Small intestine Colon

Corpus Antrum Duodenum Jejunum Ileum 1-2cm distal to cecum
Loosely adherent mucus layer 109+12 120+38 154439 108+5 447+47 714+£109
Firmly adherent mucus layer 80+5 154+16 16+3 1542 29+8 116+51
Total mucus layer 18911 274+41 170+38 123+4 476+47 830+110

# N=6-11 animals per determination.
SE—standard error.
(Data from Atuma et al. [36].)

culture-independent techniques of 16S ribosomal RNA
gene sequencing and meta genomic sequencing methods
estimate the presence of 200-300 species per individual
from more than 1000 prevalent bacterial species in human
adult intestine. It was further shown that 99% of intestinal
resident/commensal microbiota belongs to only four phyla:
Firmicutes (composed mostly of Clostridium XIX and IV
groups) and Bacteroidetes (which together constitute more
than 90% of the total intestinal microbes), with Proteobac-
teria and Actinobacteria making up the rest. However, the
analysis of mucosally associated bacteria showed enrich-
ment of streptococcal and Lactobacillus spp (Bacillus
subgroup of Firmicutes) [46, 47].

The normal intestinal mucosal epithelium has tolerance
to commensal microbiota because of its ability to
distinguish commensal microbiota from pathogenic micro-
organisms by their molecular patterns, such as microbe-
associated molecular patterns and pathogen-associated
molecular patterns, through pattern recognition receptors
(PRRs) such as cell surface Toll-like receptors (TLRs) and
cytoplasmic nucleotide-binding oligomerization domain
(NOD) proteins [48, 49]. These PRRs are thought to
activate a common signaling pathway leading to the
activation of NF-kB that stimulates the production of
inflammatory cytokines and co-stimulatory molecules.
However, the normal intestinal epithelial cells express low
levels of TLR4 and TLR2 and are hyporesponsive to the
stimuli caused by the respective ligands.

Intestinal commensal microbiota depends on mucus and
undigested dietary carbohydrates for binding sites and
energy source and affects intestinal epithelial functions,
including those of goblet cells and mucus layers, by a
“cross talk” feedback mechanism. Diverse oligosaccharides
of mucin glycoproteins were evolved to promote symbiotic
relationship with commensal bacteria and to evade patho-
gens [1, 2, 42+¢]. Microbiota and microbial products can
modulate mucin synthesis and secretion, either by direct
activation of diverse signaling cascades or through bioactive
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factors generated by epithelial and lamina propria cells.
Enteric pathogens circumvent the protective function of
mucus layer by developing motility, mucolytic activity, and
other virulence factors, causing the degradation and pene-
tration of mucus layers and subsequent attachment and
invasion of epithelial cells. The bacteria that gain access to
the intestinal mucosal cell surface adhere more frequently to
the glycocalyx of the most luminal portion of the villi or
upper crypt in the intestine. Most commensal and pathogenic
bacteria attach to the intestinal mucosal cells through
interaction of adhesins to the mucosal receptors, such as
integrins, carcinoembryonic antigen-related cell adhesion
molecules (CEACAM) or sialylated, galactosylated, or
mannosylated glycoproteins or glycolipids. Probiotics such
as Lactobacillus plantarium were reported to induce MUC2
and MUC3 mucins and inhibit the adherence of EPEC
(enteropathogenic Escherichia coli), indicating that en-
hanced mucus layers and glycocalyx overlying the intesti-
nal epithelium and the occupancy of the microbial binding
sites by Lactobacillus spp provide protection against
invasion by the pathogens [50, 51]. Probiotics also cause
qualitative alterations in intestinal mucins, preventing the
pathogen binding.

Other Goblet Cell Products
Intestinal Trefoil Factor

The trefoil factor family comprises a group of small
peptides (6.5-12 kDa) with three intramolecular disulphide
bonds, which is highly expressed in the mucus-producing
cells of the gastrointestinal tract and plays a significant role
in epithelial restitution (Table 2) [8, 52]. TFF3/intestinal
trefoil factor (ITF) is expressed and secreted by goblet cells
in the intestine, whereas TFF1 and TFF2 are expressed and
secreted by gastric surface foveolar cells and mucous neck
cells/pyloric glands, respectively. TFF3 is the second most
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Table 2 Major goblet cell products

Study Name Other names Peptide Functions

Lievin-Le Moal and Servin [1], MUC2 Goblet cell mucin Monomer Major component of mucus layers (protective
Hollingsworth and Swanson [3], Secretory mucin (2.5 MDa) barrier, lubrication, elimination). Binding
Andrianifahanana et al. [4], Gum Oigomer sites and nutrient sources of microbes.
et al. [15] (100 MDa)

Hattrup and Gendler [21], Ho et al. MUCI/  Membrane-bound Variable sizes Cell surface protective barrier, extracellular
[22], Luu et al. [23] MUC3/ mucin 200—>2000 portions cleaved or shed and bioactive for

MUC17 kDa epithelial restitution

Taupin and Podolsky [8], Kjellev TFF3 Intestinal trefoil Monomer Epithelial restitution and wound healing.

[52] factor (ITF) (6.6 kDa) Facilitates cell migration. Blocks apoptosis.
Dimer (13 kDa) Increases mucus viscosity and structural
integrity of mucus layers.

Artis et al. [57], Nair et al. [58], RELMP  Resistin-like molecule ~ Monomer Upregulates MUC2 expression/secretion.
Hogan et al. [59], Herbert et al. B, F1272 (12.5 kDa) Induces goblet cell hyperplasia. Functions as
[60] Dimer (25 kDa)  Th2 cytokine-induced immune-effector

molecule in resistance to intestinal nematode
infection. Inhibits chemotaxis of nematode by
direct binding to their chemosensory
apparatus.

Johansson et al. [37], Kobayashi et al. ~ Fcgbp Fc-y binding Full-length Binds 1gG antibodies. Stabilization and

[62] protein

IgG Fc binding protein

protein
(596 kDa)

cross-linking of the MUC2 mucin networks
of the inner firm mucus layer.

abundant goblet cell product present in the theca of mature
goblet cells, and monomeric (6.6 kDa) and dimeric
(13 kDa) forms of TFF3 can be found in vivo. In vitro
and in vivo studies indicate that TFF3 facilitates not only
intestinal epithelial restitution but also mucosal protection
[8, 52]. TFF3 and mucin together were more effective in
protecting epithelial cells in vitro when compared with
either one alone [53]. Mice overexpressing rat TTF3 in the
intestine showed increased resistance to intestinal damage
and ulceration, whereas TFF3-deficient mice were more
susceptible to dextran sodium sulfate (DSS)-induced colitis.
Furthermore, administration of recombinant TFF3 improved
DSS-induced colitis by restoring the capacity for restitution
[8, 52]. The recent studies on the molecular mechanisms
through which TFF3 promotes epithelial restitution indicate
the involvement of multiple interactive mechanisms. TFF3
facilitates cell migration but not cell proliferation, unlike
other motogenic molecules, such as transforming growth
factor 3 (TGFf) or hepatocyte growth factor (HGF). In
addition, TFF3 blocks apoptosis and contributes to the
innate immune response mediated by the mucosal sensor
systems for commensal microbiota, such as Toll-like
receptor family members, TLR2 and TLR4 [54]. TLR2
stimulation induced TFF3 transcription via Ras/MEK/
MAPK and PI3K/Akt pathways but not MUC2 transcrip-
tion in vivo in mice. TLR2-deficient mice showed a
selective defect in TFF3 and TFF3 administration improved
DSS-induced colitis by suppressing mucosal apoptosis [54].
Furthermore, TFF3 has been suggested to increase the

viscosity of mucin by binding to the vWF C domain of
MUC2, enhancing the structural integrity of the intestinal
mucus barrier [55]. Recently, TFF3 was reported to form
disulfide-linked heteromer with Fcgbp protein, which could
interact with MUC2 mucin in a covalent and non-covalent
manner, contributing to the stability of mucin network in
the mucus layer [56].

Resistin-like Molecule 3

RELMf{ belongs to a family of resistin-like cytokine
molecules consisting of small, cysteine-rich secreted proteins.
It contains 12.5-kDa subunits that form disulfide-dependent
dimeric units. RELMf3 is produced by goblet cells in the
intestine, with an increasing anterior to caudad gradient, and
secreted into the intestinal lumen at high concentration as a
homodimer (Table 2) [57]. RELMf is highly induced in the
intestinal goblet cell by colonization with normal enteric
bacteria and in mouse models of gastrointestinal helminth
infection and inflammatory bowel disease [58, 59]. RELM[f3
may have an immunoregulatory function. RELMf3 induced
by Th2-associated nematode infection had antiparasitic
activity through IL-4 and IL-13 dependent mechanism [60].
Induction of Th2 cytokines, IL-4 and IL-13, caused
expulsion of parasites such as Nocardia brasiliensis and
Heligmosomoides hypogyrus from the intestinal lumen, by
inducing RELM 3, which functions not only as Th2 cytokine
immune effector molecule but also as an inhibitor of
chemotaxis of parasites, interfering with parasite nutrition
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by directly binding to the chemosensory components of the
parasites. Induction of RELM[3 was much more significant
than Muc2 and TFF3 on Th2 immune stimulation [60].
Furthermore, RELM[3 upregulates Muc2 transcription and
secretion, contributing to the mucosal barrier integrity. It
showed a markedly preventive effect on trinitrobenzene
sulfonic acid (TNBS)—induced colitis in mice [61].
RELMf3-deficient mice showed reduced susceptibility to T-
cell-independent DSS-induced colitis, but increased suscep-
tibility to T-cell-dependent TNBS-induced colitis, indicating
that RELMf may trigger protective or proinflammatory
effects, depending on the nature of the chemically induced
colitis [59].

Fc-y Binding Protein

Fc-y binding protein (Fcgbp) is expressed in the mucus
granule of goblet cells [62]. Fcgbp contains 13 vWF D
domains and was reported to bind IgG antibodies through
Fc part of IgGs. Recent proteomic analyses of the two
mucus layers from the colon of mice and humans showed
that N terminal parts of Fcgbp was covalently attached to
Muc2 mucin (Table 2) [37]. It was suggested that covalent
attachment of Fcgbp protein to MUC2 contributes to cross
linking and stabilization of mucin network in the inner
mucus layer [37].

Goblet Cells and Mucins in Disease
Intestinal Infections

In most intestinal infections, induction of goblet cells and
mucin synthesis and secretion occur frequently during acute
phase. However, chronic infection results in the depletion
of goblet cells and quantitative and qualitative alteration in
mucus layers due both to altered synthesis and secretion of
mucins and to microbial glycosidases and proteases [1, 2,
48]. Rapid and massive secretion of goblet cell mucus not
only facilitates the expulsion of pathogens but also maintains
the integrity of mucus protective layers. Intestinal parasitic
infections cause profound changes in the goblet cells and
mucins of the small intestine. Many experimental helminth
infections such as Nippostrongylus brasiliensis and Trichi-
nella spiralis have been shown to cause intestinal goblet
cell hyperplasia and increased mucus secretion, mediated
by Th2 immune responses (IL-13 and IL-4), contributing to
increased intestinal mucosal protection and worm expulsion
[48, 63]. Expulsion of the nematode, Trichuris muris, in
resistant, susceptible, and Muc2-deficient mouse strains
showed that the increased Muc2 production, observed
exclusively in resistant mice, correlated with worm expul-
sion, whereas worm expulsion from the intestine was
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significantly delayed in Muc2-deficient mice [64¢°]. In
addition, the mucus barrier in resistant mice was less
permeable than that of susceptible mice. These findings
underscore the important innate defense function of mucins
in enteric infection.

However, with sustained hypersecretion of stored mucins,
depletion of goblet cells occurs, resulting in defective mucin
synthesis and mucus barrier. In N. brasiliensis infection in
rodents, goblet cell hyperplasia is accompanied by alteration
of terminal sugar residues of goblet cell mucins, such as
increased sialylation, which is mainly responsible not only
for the expulsion of damaged worms but also for the
prevention and attachment/migration of normal worms [65].
The pathogens have evolved mechanisms to invade the
intestinal mucosal cells by penetrating through the mucus
layers. A protozoan parasite, Entamoeba histolytica colo-
nizes mucus layer of the colon by adhering to mucin
oligosaccharides. The parasite then invades through the
mucus layers by secreting cysteine proteases, which cleave
the MUC2 mucin, resulting in defective mucus barriers,
through which it can invade and attach to the intestinal
mucosal cell surface [66].

Cystic Fibrosis

Despite the well-known clinical manifestation of mucus
accumulation in the lung, intestine, and other organs in CF,
the mechanisms underlying mucus-associated pathology
remain unclear [67]. Within goblet cells, mature mucin
polymers are thought to exist in a highly condensed form,
due mainly to neutralization of the repulsive forces of the
polyanionic charge of the oligosaccharide side chains by the
high concentration of H" and Ca"" within the granules.
During exocytosis, H" and Ca" are removed from the
anionic sites by extracellular HCO;  causing rapid expansion
of compact mucin polymers into the meshed network of
viscous mucus gels due to anionic repulsive electrostatic
forces [68, 69¢]. The loss of CFTR in CF results in the loss
of CI' and HCO; transport [69¢]. HCO5™ is critical for
normal mucus gel formation, and aggregated mucus ob-
served in CF may be caused by defective HCO;  transport
[67, 69¢]. Increased fucosylation of mucin glycans due to
induction of fucosyl «l-2 glycosyltransferase may also
contribute to the increased viscosity of mucin [70]. CF mice
exhibited decreased intestinal motility with longer exposure
to the bacteria entrapped in the mucus and small intestinal
bacterial overgrowth, which responded to treatment with
antibiotics and laxatives [71].

Inflammatory Bowel Disease

IBD is thought to be caused by continuous pathologic
immune responses to altered and/or dysbiosis of commensal
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microbes and microbial products [45, 72]. Accumulating
evidence indicates that complex interactions of the following
events are involved in the pathogenesis of IBD: 1) altered
and/or dysbiosis of commensal microbiota, such as de-
creased ratio of protective to aggressive commensal bacterial
species or functional alteration of commensal bacteria; 2)
defective bacterial killing and processing by the intestinal
mucosal cells due to genetic defect; 3) defective mucosal
barrier function resulting from abnormal synthesis and or
processing of mucins and TFF3; and 4) defective host
immune response, such as defective innate and or adaptive
immunity. Alterations of mucin production and glycosyla-
tion occur in IBD, but whether they contribute to initiation of
inflammation or are the result of inflammation is unknown.

Goblet cells are reduced in number and size in ulcerative
colitis. Recent studies in mouse models of colitis highlight
the importance of the role of mucin in maintaining the
integrity of protective mucus barriers whose breakdown can
result in colitis. Muc2-deficient mice with no morphologi-
cally identifiable goblet cells and absent Muc2 expression
(TFF3 and RELMf3 were expressed) in the intestine recently
were reported to have markedly deficient mucus layers with
increased permeability and enhanced bacterial adhesion to
the mucosal cell surfaces. These mice developed spontane-
ous colitis and were susceptible to DSS-induced colitis [41,
43]. Two strains of mice with single missense mutations in
oligomerization domains (VWF D3 and vWF C, respectively)
showed aberrant Muc2 synthesis, reduced storage of mucin
in the theca of goblet cells, diminished mucus layers with
increased permeability and increased production of Thl and
Th2 cytokines, and developed spontaneous distal colitis and
increased susceptibility to DSS-induced colitis [73¢¢]. These
mice showed aberrant assembly and processing of mucin
complex and biochemical and histologic evidence of
endoplasmic reticulum stress in goblet cells and Paneth
cells, the phenomena observed in the patients with ulcerative
colitis [73e°].

Changes in mucin glycosylation have been reported to
cause defective mucus barrier and increased permeability and
increased susceptibility to DSS-induced colitis, which may be
caused by early thinning and weakening of the mucous layer
allowing increased bacterial translocation [74]. Mice lacking
core 3 [31,3-N-acetylgulcosaminyl-transferase enzyme with
defective O-glycans in mucins showed decreased Muc2
synthesis, increased intestinal permeability and increased
susceptibility to DSS-induced colitis [75¢¢]. Similarly, mice
lacking core 2 [31,6-N-acetylglucosaminyl-transferase
enzyme that initiate core 2 type protein O glycosylation in
mucin, demonstrated increased intestinal permeability and
increased susceptibility to DSS-induced colitis [76].

Increased numbers of mucosa-associated (adherent
invasive) E. coli are observed in IBD. A recent study on
tissue-associated microflora using 16S rRNA gene

sequencing in patients with IBD showed that the IBD
group had depletion of commensal bacteria, especially
members of the phyla Firmicutes (largely Clostridium
XIVa and IV groups) and Bacteroidetes with concomitant
increases in Proteobacteria and Actinobacteria [46].
Although the causes of the altered pattern of microflora
(dysbiosis) in IBD patients are not clear, a recent
observation that coordinated regulation of glycan degra-
dation and polysaccharide capsule synthesis can occur in
the intestinal lumen, underscores the importance of the
dynamic interplay between mucin glycan metabolism and
microbial ecology [42e°].

Mucinous Adenocarcinoma

Mucinous carcinoma is characterized by pools of abundant
amounts of extracellular mucin, and defined as the tumor
with mucin representing more than 50% of the tumor mass.
By contrast, signet-ring cell carcinoma is defined by the
presence of more than 50% of tumor cells with prominent
intracytoplasmic mucin, and has worse prognosis than
mucinous carcinoma. Mucinous carcinoma occurs more
frequently in the colon, where it accounts for 6—19% of all
colorectal cancer cases, than in the small intestine, where it
occurs mostly in the appendix. Mucinous carcinoma has
clinicopathologic properties and molecular changes that are
different from nonmucinous cancer, such as higher stage at
diagnosis, more frequent invasion of adjacent organs,
lymph node metastasis and peritoneal dissemination, and
more frequent occurrence of microsatellite instability
(MSI), CpG island methylator phenotype (CIMP), and
BRAF mutations [77].

The changes in mucins that occur in colorectal cancer
may be broadly classified into two main types: aberrant
mucin gene regulation and glycosylation. Mucinous carci-
noma expresses high levels of MUC2 goblet cell mucin
whereas MUC?2 expression is downregulated in nonmuci-
nous cancer. Upregulation of MUC2 transcription in
mucinous carcinoma is caused by altered epigenetic and
genetic regulation of MUC2, such as MUC2 promoter
hypomethylation and increased binding of goblet cell
lineage associated transcription factor, HATH1, to MUC?2
promoter [13, 34]. Mucinous carcinoma ectopically
expresses gastric mucin, MUCS5AC, which is absent from
normal intestine, more frequently than nonmucinous cancer.
In addition, MUCI membrane mucin is expressed at lower
level in mucinous carcinoma compared to nonmucinous
cancer [78]. Changes in glycan structures of mucins in
epithelial cancers include truncation of oligosaccharide side
chains (resulting in the expression of T, Tn, sialylTn
antigenic determinants) and neosynthesis of glycans (result-
ing in the expression of sialylLeA and sialylLeX antigens).
Studies have shown that these glycan antigens are highly
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expressed in both mucinous and nonmucinous cancers [3,
4, 25, 79].

Accumulating evidence indicates that mucin plays an
important role in several stages of metastatic processes of
colorectal cancer. First, colon cancer cell lines selected for
high capacity for metastasis express high levels of MUC2.
Second, colon cancer cells selected for high mucin
production showed increased liver colonization and metas-
tasis. Third, inhibition of mucin O-glycosylation in colon
cancer cells decreased cancer cell binding to E-selectin
expressed on endothelial cells, and liver colonization.
Fourth, downregulation of MUC?2 expression by antisense
techniques decreases the metastatic activity of human colon
cancer cells in nude mouse model system. To summarize,
altered level and pattern of mucin gene expression and
altered glycosylation in cancer cells affect their biologic
properties, such as cell proliferation, adhesion, motility,
invasion, escape from host immune surveillance, tumorige-
nicity, and metastasis [79].

Conclusions

The major function of intestinal goblet cells and their main
secretory product, mucin, is the formation of mucus layers
which serve as the front line innate host defense mecha-
nism. The mucus layers play key roles in the establishment
of the commensal intestinal microbiota and the protection
from colonization and invasion by the pathogenic micro-
biota. The defective mucosal barrier, abnormal commensal
bacteria, and defective host innate and adaptive immune
response result in intestinal inflammation and injury.
Identification of the specific epitopes in mucin glycopro-
teins as binding sites for commensal and pathogenic
microbes in health and disease, and analysis of the effect
of native and altered mucins on the ratio of protective/
aggressive commensal microbes in the intestine, will
contribute significantly to the development of novel
therapeutic approaches in the management of intestinal
diseases. Methods to promote or strengthen the intestinal
mucus layer or the content of bioactive protective mole-
cules may also be helpful in prevention or therapy of
intestinal diseases. Further studies are needed on identifi-
cation and functional significance of various components of
mucus layers and the complex interactions between mucus
layers, microbiota (prebiotics and probiotics), epithelial
cells, and the underlying innate and adaptive immunity. In
addition to the formation of a protective barrier, mucins
play an important role in the development and progression
of cancer. Changes in mucins caused by altered mucin gene
regulation and/or altered mucin glycosylation in cancer
cells serve not only as diagnostic and prognostic tumor
markers but also as therapeutic targets. Further elucidation
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of the regulatory mechanisms involved in mucin changes in
cancer and inflammation will be important for the
development of novel therapeutic approaches.
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