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Intestinal microbiome composition and its relation
to joint pain and inflammation
Cindy G. Boer 1, Djawad Radjabzadeh1, Carolina Medina-Gomez 1, Sanzhima Garmaeva 2,

Dieuwke Schiphof 3, Pascal Arp1, Thomas Koet1, Alexander Kurilshikov 2, Jingyuan Fu 2,4,

M. Arfan Ikram 5, Sita Bierma-Zeinstra3,6, André G. Uitterlinden 1,5, Robert Kraaij1, Alexandra Zhernakova2 &

Joyce B.J. van Meurs1*

Macrophage-mediated inflammation is thought to have a causal role in osteoarthritis-related

pain and severity, and has been suggested to be triggered by endotoxins produced by the

gastrointestinal microbiome. Here we investigate the relationship between joint pain and

the gastrointestinal microbiome composition, and osteoarthritis-related knee pain in the

Rotterdam Study; a large population based cohort study. We show that abundance

of Streptococcus species is associated with increased knee pain, which we validate by absolute

quantification of Streptococcus species. In addition, we replicate these results in 867

Caucasian adults of the Lifelines-DEEP study. Finally we show evidence that this association

is driven by local inflammation in the knee joint. Our results indicate the microbiome is a

possible therapeutic target for osteoarthritis-related knee pain.
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O
steoarthritis (OA) is a degenerative joint disease and the
most common form of arthritis: an estimated 22% of the
adult population has at least one joint affected by

osteoarthritis and this prevalence increases to 49% in individuals
over 65 years of age1. The hallmark clinical symptom of OA is
pain, which is one of the leading causes of disability in OA2.
Pathological changes in OA affect all joint tissues: degradation of
cartilage and bone, abnormal bone formation (osteophytes), and
inflammation of the synovial membrane, (synovitis). Although
OA is often described as predominantly caused by mechanical
factors and genetic predisposition, the existence of inflammation
in OA, locally or systemic, is widespread3–5. In addition, it has
become apparent that, by promoting or exacerbating OA symp-
toms, predominantly OA joint pain4–7 this local or systemic
inflammation has a causal role in OA pathology3–5.

Obesity, a well-known risk factor for OA, is thought to increase
OA risk through increased mechanical loading on weight-bearing
joints. However, obesity also increases the risk for OA in non-
weight-bearing joints5,8. The increased risk of OA in non-weight-
bearing joints seen in obese individuals might be directed through
low-grade systemic inflammation9,10. The gastrointestinal
microbiome has emerged as one of the factors triggering obesity
associated low-grade systemic inflammation10–13. Obesity is
associated with changes in gastrointestinal-microbiome compo-
sition, which can lead to an increased intestinal absorption of
immunogenic bacterial products12,14,15. Gastrointestinal bacteria
produce a wide range of biologically active molecules, such as
metabolites, short-chain fatty acids, proteins and enzymes, of
which some are secreted in, outer membrane or membrane
vesicles (OMVs/MVs). All gram-negative bacteria, archaea, fungi
and several gram-positive bacteria can constitutively produce
these vesicles16–18. These vesicles are insensitive to proteases,
suggesting they can transport their content over long distances
from their sites of origin. The content of these vesicles can be
delivered to different organs in a concentrated manner19. Also,
some of these biologically active molecules can affect intestinal
mucosal permeability (short-chain fatty acids) or activate the
immune system (lipopolysaccharide)20. Specifically, these mole-
cules can affect macrophage activation and Toll-like-receptor
(TLR) pathways16,21, which have recently been shown to be the
predominant inflammatory responses seen in OA4. Indeed, ele-
vated levels of the bacterial endotoxin LPS (lipopolysaccharide),
in the blood or in the synovium of OA patients, is associated with
more severe knee OA, knee pain and inflammation22. This and
other studies link gut-microbiome composition to low-grade
systemic and local inflammation seen in OA23–25.

In the present study we examine stool microbiome as a proxy
for the gastrointestinal-microbiome composition in relation to
knee OA severity, OA-related knee pain, measured by the
WOMAC-pain score, and obesity, in a large population-based
cohort. We report a significant association between Streptococcus
species (spp.) abundance in stool microbiome samples, knee
WOMAC pain, knee inflammation, and replicate this finding in
an independent cohort. Our results suggest a true relationship
between the gastrointestinal microbiome, low-grade inflamma-
tion in the knee, and knee OA pain, independent of obesity.

Results
Rotterdam Study Microbiome cohort profile. For 1427 parti-
cipants from the Rotterdam Study (RSIII) we determined the
gastrointestinal-microbiome composition by taking the stool
microbiome as a proxy for the intestinal microbiome. In the
Rotterdam Study Microbiome cohort, we sequenced two hyper-
variable regions of the bacterial 16S rRNA gene, hypervariable
regions V3 and V4. After quality control, the 16S reads were

directly mapped against the Silva 16S sequence database (v128)
using RDP classifier for taxonomic classification. Classification
prediction was done on multiple taxonomic levels: domain,
phylum, class, order, family and genus. Gastrointestinal-
microbiome composition of the 1427 participants in the Rotter-
dam Study Microbiome cohort is schematically presented Fig. 1.
In total, there are 596 single taxonomies in our cohort, with
unknown and unclassified bacteria excluded, as these could not
be identified for clinical therapeutic relevance. At phylum level,
the dominant phyla are Firmucutes (77.8%) and Bacteriodites
(12.5%), followed by Proteobacteria (4.9%) and Actinobacteria
(4.1%, Fig. 1). This is in concordance with other large-scale
population-cohorts of Caucasian adults26,27. General character-
istics of the Rotterdam Study Microbiome cohort are presented in
Table 1. The study population (n= 1427) consisted of 57.5%
women (n= 821) and was slightly obese, with an average body
mass index (BMI) of 27.5. A total of 124 individuals had radio-
graphic knee OA, while 285 participants reported knee OA pain
(WOMAC pain score > 0). The majority of participants reporting
knee pain was female (n= 206). The average WOMAC pain score
was also significantly higher in females compared to males (P-
value= 1.1 × 10−07, Student’s T-test, Table 1).

Streptococcus abundance is associated with OA knee pain. First,
we examined whether the overall microbiome composition was
different across knee WOMAC pain scores and OA severity
(Kellgren-Lawrence radiographic OA severity scores). We found
that knee WOMAC pain significantly contributes to the intestinal
microbiome β-diversity as evaluated at genus level (Aitchison
distance, r2= 0.0014, P-value= 0.005, PERMANOVA, Supple-
mentary Fig. 1). This association was attenuated when BMI was
added to the model and significance was lost (r2= 0.00088, P-
value= 0.143, PERMANOVA). The intra-individual gastro-
intestinal-microbiome diversity (α-diversity, Shannon index and
inverse Simpson) was not associated with knee WOMAC pain.
For knee OA severity (KLsum, n= 941), we did not identify an
association with gastrointestinal microbiome α- and β-diversity
(Supplementary Table 1).

To gain more insight into which gut-microbiome taxonomies
drive the association with knee WOMAC pain, we performed
multivariate association analysis on the 256 taxonomies remaining
after additional QC. After adjusting for age, sex and technical
covariates, we found four microbiome abundancies significantly
(FDR < 0.05) associated with kneeWOMAC-pain severity (Table 2).
These were all in the same clade; from class, order, family leading to
the bacterial genus of Streptococcus (genus: coefficient= 5.0 ×
10−03, FDR P-value= 1.2 × 10−05, MaAsLin, Table 2; See Supple-
mentary Data 1 for the full summary statistics). After additional
correction for possible confounders (smoking and alcohol con-
sumption)28, Streptococcus spp. abundance remained significantly
associated with knee WOMAC pain (coefficient= 4.8 × 10−03, FDR
P-value= 3.8 × 10−05, MaAsLin, Supplementary Table 2). This
association is largely independent of BMI (coefficient= 4.1 × 10−03,
FDR P-value= 2.1 × 10−03, MaAsLin, Supplementary Table 2).
Ethnicity has recently been put forward as a possible confounder for
gastrointestinal-microbiome composition26. However, after exclu-
sion of individuals with non-European ancestry (n= 163) from our
analysis, Streptococcus spp. remained associated with knee WOMAC
pain (coefficient= 5.0 × 10−03, FDR P-value= 5.8 × 10−05, MaA-
sLin, Supplementary Table 3), also, after adjustment for con-
founders (coefficient= 4.3 × 10−03, FDR P-value= 1.9 × 10−03,
MaAsLin). Altogether, we found that the gut microbiome, and in
particular a greater relative abundance of Streptococcus spp., is
significantly associated with higher knee WOMAC pain indepen-
dent of smoking, alcohol consumption and BMI.
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Streptococcus association not driven by oral medication use.
Proton Pump Inhibitors (PPI) are among the most widely used
over-the-counter drugs in the world. They are used to treat
gastro-esophageal reflux and prevent gastric-ulcers. Recent
research has shown that the gastrointestinal-microbiome com-
position of PPI users is profoundly different from non-PPI users,
mainly due to a strong increase in Lactobacilli abundance, driven
by Streptococcus spp.29. Another potential over-the-counter
medication frequently taken by patients with joint complaints
are non-steroidal anti-inflammatory drugs (NSAIDs), which also
affect the gastrointestinal microbiome29. To investigate, whether
the association between Streptococcus spp. abundance and knee

WOMAC pain is mediated by use of these drugs, we included PPI
and NSAID use as covariates in our model (in addition to age,
sex, technical covariates, smoking, alcohol consumption, and
BMI). After adjustment for these covariates, the coefficient was
attenuated, but the association remains significant (coefficient=
3.4 × 10−03, P-value= 2.4 × 10−04, MaAsLin, Supplementary
Table 4). In line with these results, excluding all current PPI users
(n= 265) from the analysis, greater Streptococcus spp. abundance
was significantly associated with higher knee WOMAC pain (n=
1104, coefficient= 2.4 × 10−03, P-value= 4.0 × 10−03, MaAsLin).
Thus, the association between, Streptococcus spp. and knee
WOMAC pain was not due to the confounding effect of PPI use.

Table 1 General characteristics of the Rotterdam Study Microbiome cohort

Rotterdam Study Microbiome Females Males Total

Cohort participants 821 606 1.427

Age (years) 56.8 (5.9) 56.9 (5.9) 56.9 (5.9)

BMI (kg/m2) 27.4 (4.9) 27.6 (4.0) 27.5 (4.5)

Alcohol (g/day) 1.3 (2.7) 1.3 (2.3) 1.3 (2.6)

Smoking (y/n) 98 smokers/721 non smokers 97 smokers/507 non smokers 195 current smokers

PPI (y/n) 182 users/638 non-users 114 users/492 non-users 296 current PPI users

NSAIDs (y/n) 127 users/693 non-users 51 users/555 non-users 178 current NSAID users

Knee phenotypes

Knee OA (y/n) 84 cases/456 controls 40 cases/361 controls 124 cases/817 controls

KLSum score 1.0 (1.4) 0.7 (1.2) 0.8 (1.3)

WOMAC-Pain score 1.2 (2.6) 0.6 (1.9) 0.9 (2.3)

WOMAC-Pain score > 0 206 79 285

α-diversity metrics

Shannon Index 4.0 (4.1) 4.0 (4.0) 4.0 (0.5)

Inverse Simpson Index 26.0 (12.1) 25.5 (12.2) 25.8 (12.2)

Depicted are the mean and the SD (standard deviation) in parenthesis

PPI oral use of proton pump inhibitors, NSAIDs oral use of non-steroidal anti-inflammatory drugs, OA osteoarthritis, WOMAC Western Ontario and McMaster Osteoarthritis Index
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Fig. 1 Schematic representation of the gut-microbiome taxonomic abundance in the Rotterdam Study cohort. a overview of the number unique taxonomies

detected at each level, unknown and unclassified bacteria were excluded. a Above, as an example, the taxonomic classification for Streptococcus is shown.

b Donut plot of the relative abundancy in percentage (%) of the different unique phyla present in the entire dataset (n= 1427) unknown and unclassified

bacteria were excluded
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Since knee WOMAC-pain scores were not normally distributed
(left-skewed with an overabundance of zeros), we also assessed
the association using a Poisson-regression model, which can
account for the non-normal distribution. Here as well, a sig-
nificant association with Streptococcus spp. abundance was
observed (beta= 1.85, P-value= 1.4 × 10−04, Poisson-regression).
Further sensitivity analysis excluding individuals who did not
report pain (n= 1142) or whose knee WOMAC-pain scores were
deemed as outliers (WOMAC-pain score >10, > 4 SD, n= 56)
resulted in slight changes in the association coefficients. The
association, however, remained significant (Supplementary
Table 5). Altogether, these analyses show that the association
between relative abundance of streptococcus spp. and knee
WOMAC pain is robust.

Quantitative determination of Streptococcus spp. As 16S rRNA-
sequencing derived relative microbiome data cannot provide
information about the extent or directionality of changes in
microbiome taxa abundance30, we determined the absolute
amount of Streptococcus spp. in the individuals of our study
population. For each sample in our cohort (n= 1427), we
quantified the number of Streptococcus spp. using genus specific
qPCR and the total microbial load using 16S rRNA qPCR. We
calculated the absolute quantity of Streptococcus spp. and nor-
malized for the total bacterial load in each samples as measured
by 16S rRNA qPCR. The 16S rRNA-sequencing results and qPCR
Streptococcus spp. quantity yielded similar results (Spearman
correlation, r= 0.80, P-value= 2.2 × 10−16, Supplementary
Fig. 2). Using the absolute abundance of Streptococcus measured
by qPCR instead of the relative abundance derived from the 16S
rRNA-sequencing profiles, we again found a significant associa-
tion between higher knee WOMAC pain and greater absolute
Streptococcus spp. abundance (beta= 0.10, P-value= 7.4 × 10−03,
Poisson regression), also after adjustment for smoking, alcohol
consumption, and BMI (beta= 0.074, P-value= 4.5 × 10−02,
Poisson regression).

To adjust for possible spurious collinearity between microbe
abundancies31, we have used the isometric log-ratio transforma-
tion (ILR). Using ILR, we have compared the relative Strepto-
coccus spp. abundancy against the geometric mean of the
abundancy of all other genera. Results show that the ILR
transformed Streptococcus spp. abundancy is associated with knee
WOMAC pain (P-value= 9.9 × 10−06, MaAsLin, Supplementary
Table 6). The association remained significant after adjusting for
smoking, alcohol consumption and BMI (P-value= 8.4 × 10−04,
MaAsLin, Supplementary Table 6), and NSAID and PPI use (P-
value= 8.5 × 10−03, MaAslin, Supplementary Table 6). The qPCR
results and ILR transformation demonstrate that the association
between Streptococcus spp. abundance and knee WOMAC pain is
not an artefact of the 16S rRNA sequencing.

Independent replication of Streptococcus association. We
sought replication for all four associations with WOMAC pain,
i.e., class, order, family and, the bacterial genus of Streptococcus,
in an independent Dutch cohort, LifeLines-DEEP (LLD) (Sup-
plementary Table 7). LLD has a lower sample size (n= 867),
younger age (mean age= 45.6) and fewer individuals with OA-
related knee pain (WOMAC pain > 0, n= 197), however, the
average knee WOMAC pain was very similar compared with the
Rotterdam Study cohort (RS= 0.9 and LLD= 0.9, Table 1 and
Supplementary Table 7). Despite lower power in the replication
cohort we observed a significant association (P-value < 0.05)
between knee WOMAC-pain scores and all four taxonomies to
the genus of Streptococcus (coefficientreplication= 3.3 × 10−03,
P-valuereplication= 3.7 × 10−02, MaAsLin, Table 2). Also, in theT
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meta-analysis of RS and LLD, greater Streptococcus spp. abun-
dance was significantly associated with higher knee WOMAC
pain (P-valuemeta= 1.3 × 10−08, MaAsLin, n= 2256, Table 2).
After adjusting for BMI, we found significant replication on class,
order and the family level of Streptococcacea (coefficientreplication=
2.7 × 10−03, P-valuereplication= 3.5 × 10−02, MaAsLin, Supple-
mentary Table 8). In the replication study, additional adjustment
for BMI slightly attenuated the association, a 9.1% decrease in
coefficient, for the genus of Streptococcus (Supplementary
Table 8). This was in concordance with the 14.5% decrease in
coefficient for streptococcus, seen in the discovery cohort after
BMI adjustment (Supplementary Table 2). In the BMI adjusted
meta-analysis for RS and LLD, the association between knee
WOMAC pain and Streptococcus spp. was highly significant
(P-valuemeta= 1.1 × 10−06, METAL, n= 2256, Supplementary
Table 8).

Streptococcus association with knee joint inflammation. If
Streptococcus spp. abundance is causally related to higher knee
WOMAC pain, a possible mechanism might be through local
priming of macrophages in the synovial lining resulting in
inflammation22. For a random subset of the Rotterdam Study
Microbiome cohort, knee magnetic resonance images (MRI) were
available (n= 373, all females)32 at the time of microbiome mea-
surements. Knee joint inflammation was assessed by scoring the
amount of effusion in the tibiofemoral joint and in the patellofe-
moral joint for both knees. We found that higher WOMAC-
pain scores were significantly correlated with more knee effusion
(Spearman correlation r= 0.14, P-value= 9.0 × 10−03). In addi-
tion, we observed that greater Streptococcus spp. abundance
was significantly associated with more effusion in the knee
joints (coefficient= 1.0 × 10−02, P-value= 1.3 × 10−02, MaAsLin,
Table 3). When WOMAC pain was added to the model, the
association of knee effusion with Streptococcus spp. disappears
(coefficient= 3.3 × 10−03, P-value= 0.21, MaAsLin), indicating
that the association of Streptococcus spp. with knee pain severity is
driven by knee inflammation severity.

Discussion
Using a large, deeply phenotyped population-based cohort, we
identified a significant association between greater relative and
absolute Streptococcus spp. abundance and higher OA-related
knee pain. These results were validated by replication in an
independent cohort and by meta-analysis. Finally, we presented
evidence that this association was driven by local inflammation in
the joint.

We observed that the intestinal microbiome β-diversity was
significantly associated with knee WOMAC scores. After testing
256 taxonomies individually, we found a microbiome-wide
association with knee WOMAC pain and Streptococcus spp.,
where greater Streptococcus spp. relative abundance is associated
with higher knee WOMAC pain. We found this association to be

robust, not be caused by outlier observations, or due to the
confounding effects of smoking, alcohol intake, oral medication
usage or BMI28,29. Neither was the association an artefact of the
microbiome profiles as relative fractions of the 16S rRNA
sequencing, or due to possible co-linearity in the data30,33.

Although, the results of the sensitivity analyses were in line
with a true association between Streptococcus spp. and knee
WOMAC pain in our cohort, validation in an independent cohort
is essential. Replication of microbiome abundance, however, is
difficult, because data might not be similar between studies if
sample preparation and data analysis are not done in the exact
same way34. We sought replication in the LLD cohort, which has
a different study population and data preparation method than
our cohort does27. Despite these differences, we could replicate
our association in LLD for all taxonomic levels, class, order,
family and for the genus of Streptococcus. Also, in the meta-
analysis of RS and LLD, Streptococcus spp. was significantly
associated with knee WOMAC pain.

Obesity-mediated gastrointestinal-microbiome changes are
postulated to affect low-grade systemic and local inflammation in
OA23–25. Nevertheless, in our study the effect of Streptococcus
spp. on knee WOMAC pain is not fully driven by BMI. This
suggests a direct role for the gastrointestinal microbiome in OA-
related knee pain and inflammation. We postulate that greater
Streptococcus spp. abundance leads to higher knee WOMAC pain
through local joint inflammation. This is in line with our
observation that Streptococcus spp. abundance was significantly
associated with effusion severity in the knee joints. This leads to
believe that Streptococcus spp. might also be involved in other
inflammatory joint pain disorders. This is not unlikely since
several Streptococcus spp. have been linked to osteomyelitis35,36,
rheumatic fever37,38 and, post-streptococcal reactive arthritis39,40.
The last two are disorders in which due to molecular mimicry
with group A Streptococcus, cross-reactive antibodies are
produced against joint tissues, leading to rheumatic joint
inflammation and damage38. However, these disorders involve
mainly pathogenic species, such as S. pyogenes. Yet, most Strep-
tococcus spp. are commensal species and have been found
throughout the human oral-gastro-intestinal microbiome41–43,
still, these can produce immunogenic bacterial products. Several
Streptococcus spp. have been shown to constitutively produce
MVs18. These MVs may present Streptococcus spp. epitopes and/
or may contain immunogenic products17,24. Such bacterial pro-
ducts can trigger macrophage activation through TLR pathways.
This type of macrophage activation is predominantly seen in OA-
related joint inflammation16,21 and is thought to be related to
pain3–7.

We therefore propose that greater Streptococcus spp. abundance
may lead to an increase of bacterial products in the circulation
through increased production of metabolites that pass the gut-
blood barrier or through immunogenic products that prime local
or systemic macrophages. We have summarized this hypothetical
model in Fig. 2.

Table 3 Results of the association analysis of Streptococcus and knee joint effusion

Taxonomy N Model 1 CoE Model 1 P-value Model 2 CoE Model 2 P-value

Class Bacilli 314 9.4 × 10−03 3.4 × 10−02 2.7 × 10−03 3.5 × 10−01

Order Lactobacillales 314 9.8 × 10−03 2.7 × 10−02 2.7 × 10−03 3.6 × 10−01

Family Streptococcaceae 310 9.6 × 10−03 1.7 × 10−02 3.0 × 10−03 2.6 × 10−01

Genus Streptococcus 308 1.0 × 10−02 1.3 × 10−02 3.3 × 10−03 2.1 × 10−01

Knee joint inflammation was measured as severity of effusion as measured on knee MRI. Knee MRI’s were only available for an all-female obese subgroup of the Rotterdam Study Microbiome dataset

(n= 373). First model assessed the association of Knee effusion with the microbiome, adjusted for age, sex, DNA isolation batch and TimeInMail (technical covariates). Second model was WOMAC-pain

score adjusted for age, sex, technical covariates and, effusion severity. P-values were determined by MaAsLin analysis. N= number of individuals in cohort where microbial abundancy is not zero for that

taxonomy

CoE coefficient
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Our results show a difference in microbiome β-diversity in
individuals with higher knee WOMAC-pain scores, which is
driven by greater abundancy of Streptococcus spp. This association
is highly robust. Moreover, we replicated our findings in an
independent cohort. However, our study has some limitations.
First, a cross-sectional study design was used and cannot
unequivocally establish causality. For this, longitudinal studies are
required. Second, other follow-up studies are needed to better
elucidate the molecular pathway connecting Streptococcus spp.,
knee inflammation and WOMAC pain, to validate or reject our
postulated hypothesis (Fig. 2). Blood and joint tissue could be
examined for the presence of Streptococcus MVs, metabolites, and
their possible association to knee inflammation and WOMAC
pain severity. Third, to examine whether the association found in
this study is unique for knee OA pain, other quantitative pain
measurements should be examined, as well as measurements of
pain at other joints. In, addition, other inflammatory joint dis-
orders could also be examined. Forth, due to the limited

resolution of 16S rRNA-sequencing methodology, we were unable
to identify whether a specific Streptococcus species or strain was
driving the association. Last, we find no association between knee
OA severity (KLsum) and gastrointestinal-microbiome compo-
sition. Knee OA severity, however, was measured by radiographic
OA severity, and this does not include the clinical symptom of
joint pain. Although considering our proposed mechanism, an
effect on knee OA severity could be expected, as inflammation
can lead to joint damage. It is possible that our study currently
lacks the power to detect such an association, or requires a
longitudinal design to detect such effects on OA severity or dis-
ease progression.

In sum, we demonstrate an association between greater
abundance of Streptococcus spp. and higher osteoarthritis-related
knee pain, but the causality of this association needs to be
established. A possible explanation for the found association is
the induction or exacerbating of local joint inflammation by
Streptococcus spp. The precise mechanisms by which
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WOMAC pain and knee effusion. No causality has been established between Streptococcus spp. abundance and OA-related knee pain, however, if such

causality exists, we propose the following model: Members of the Streptococcus spp. are known to produce metabolites and membrane vesicles, which both

may interact with host cells. These bacterial products can pass the gut-blood barrier, and possibly either a target the knee joint through activation of

macrophages in the synovial lining, leading to joint inflammation and damage, or b enter the circulation, activate macrophages to pro-inflammatory

macrophages, which may trigger a low-grade systemic inflammatory state, invoking or exacerbate joint inflammation and damage, leading to increased

knee pain
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Streptococcus spp. may trigger joint inflammation, are not known.
We hypothesized that it may involve metabolites or MVs pro-
duced by Streptococcus spp. in the gastrointestinal tract. As joint
pain is one of the most impacting clinical OA symptoms and pain
in OA has a high socioeconomic burden, it is of crucial impor-
tance to identify novel treatments that reduce clinical symptoms,
in particular pain, and decrease the socioeconomic burden. Our
results point to the microbiome as a therapeutic target for OA-
related joint pain and possibly for other inflammatory joint pain
disorders. The gastrointestinal microbiome is a promising ther-
apeutic target, because it is sensitive to change through (diet)
interventions. This could offer an easily accessible and safe
treatment options for OA associated joint pain. Therefore, it is
pivotal to explore the causal mechanism and possible translation
of the present findings into clinical practice.

Methods
Rotterdam study cohort. The Rotterdam study (RS) is a large population-based
prospective study population (14,926 participants) ongoing since 1990 to study
determinants of chronic disabling diseases. The first cohort RS-I, started in 1990
and includes individuals of 55 years and older living in the Ommoord district of
Rotterdam in the Netherlands. In 2000, a second cohort was started RS-II with
individuals who had become 55 years of age or moved into the study district since
the start of the study. In 2006, the third cohort was initiated, RSIII, of individuals
aged > 45, living in the Ommoord district. The cohorts are predominantly Cau-
casian and a further detailed description of the design and rationale of the Rot-
terdam Study has been published elsewhere44. The Rotterdam Study has been
approved by the Medical Ethical Committee of the Erasmus MC, University
Medical Center Rotterdam, the Netherlands (MEC 02.1015). All subjects provided
written consent prior to participation in the Rotterdam Study.

Stool sample collection started in 2012 during the second visit of the Rotterdam
Study III population (RSIII-2). A random group of 2440 participants was invited to
provide a stool sample. In total 1691 (response rate= 69%) stool samples were
received via mail at the Erasmus MC for analysis of stool microbiome composition
as a marker for gastrointestinal-microbiome composition. After quality control
1427 samples remained for further analysis.

Taxonomic profiling of gastrointestinal microbiota in RS. Sample collection:
Stool samples were collected at home by the participant using a Commode Spe-
cimen Collection System (Covidien, Mansfield, MA) and ~1 g aliquot was trans-
ferred to a 25 × 76 mm feces collection tube, which was sent via the regular mail to
the Erasmus MC. Participants also filled out a short questionnaire addressing date
and time of defecation, current or recent antibiotics use, current probiotics use, and
recent travel activities. Upon arrival samples were stored (−20 °C), samples taking
longer than 3 days to arrive at the Erasmus MC were excluded from further
analysis, for the remaining samples TimeInMail (in days) was registered as a
technical covariate. DNA isolation: For each participant, frozen stool samples were
allowed to thaw for 10 min at room temperature prior to DNA isolation. An
Aliquot of ~300 mg of stool was homogenized using 0.1 mm silica beads (MP
Biomedicals, LLC, Bio Connect Life Sciences BV, Huissen, The Netherlands) and
DNA was isolated from the samples using the Arrow stool DNA kit according to
the manufacturers’ protocol (Arrow Stool DNA; Isogen Life Science, de Meern, The
Netherlands). 16S rRNA gene sequencing: The V3 and V4 hypervariable regions of
the 16S rRNA gene were amplified using the 319F (ACTCCTACGGGAGGCA
GCAG) −806R (GGACTACHVGGGTWTCTAAT) primer pair and dual index-
ing45, a full list of all primers used can be found in Supplementary Table 9.
Amplicons were normalized using the SequalPrep Normalization Plate kit (Thermo
Fischer Scientific) and pooled. Amplicon pools were purified prior to sequencing
(Agencourt AMPure XP, Beckman Coulter Life Science, Indianapolis, IN) and size
and quantity was assessed (LabChip GX, PerkinElmer Inc., Groningen, The
Netherlands). A Control library was added to ~10% of each amplicon pool as a
positive control (PhiX Control v3 library, Illumina Inc., San Diego, CA). The
hypervariable V3 and V4 regions of the 16S rRNA gene were sequenced in paired-
end mode (2 × 300 bp) using the MiSeq platform (Illumina Inc., San Diego, CA)
with an average depth of 50,000 paired reads per sample. Data processing and
quality control: Sequence read quality control and taxonomic classification, was
done using an in-house pipeline (µRAPtor) based on QIIME version 1.9.046 and
UPARSE version 8.147. Low-quality, merged, and chimeric reads were excluded.
Duplicate samples, samples with <10,000 reads, and samples from participants that
have used antibiotics (self-reported) in the 6 months prior to sample production
were excluded. The remainder of the reads (~93%) were normalized using random
10,000 read subsampling (rarefication). To reconstruct taxonomic composition a
direct classification of 16S sequencing reads using RDP classifier (2.12) and the
SILVA 16S rRNA database (relase.128)48. This was done for each taxonomic level
available: domain, phylum, class, order, family, and genus, with binning posterior
probability cutoff of 0.8. The microbial Shannon diversity index was calculated on

the taxonomic level of genera, using vegan package in R. Relative abundancies were
calculated for each taxonomic level prior to any additional QC (domain, phylum,
class, order, family and genus). Unknown or unassigned classifications were
excluded from the final dataset (n= 69), as these currently cannot be used for
clinical or therapeutic applications. In total, we were left with gut-microbiome
taxonomies for 1427 individuals and 596 taxonomic classifications for analysis
(Fig. 1).

Phenotype descriptions. Osteoarthritic knee joint pain was determined by the
WOMAC questionnaire, which is a disease specific questionnaire to assess the
severity of hip and knee OA, consisting of 24 items covering three domains: pain,
stiffness, and function49. The WOMAC includes five items that measure OA joint
specific pain, scored on a 5-point Likert scale, 0–4. The five knee specific WOMAC-
pain scores were summed to create the knee WOMAC pain score, ranging from 0
to 20, where higher scores represent worse OA-related knee joint pain. Knee OA
severity was determined by the radiographic Kellgren and Lawrence score (KL-
score)50. Using radiographs of both knee joints, left and right, the KL-score was
determined for each joint. Scores were subsequently summed for the left and right
knee to form the Knee KLsum score. Knee joint effusion could be determined, for
an all-female random subset of the Rotterdam Study III cohort (RSIII), by knee
MRIs using a 1.5T MRI scanner (General Electric Healthcare, Milwaukee, Wis-
consin, USA). For further detail of our used MRI protocol see ref. 51. All MRI
images were scored by a trained reader (blinded for clinical, radiographic and
genetic data). Joint effusion was determined in the tibiofemoral joint (TFJ) and in
the patellofemoral joint (PFJ) together (grade 0–3: 0= no joint effusion, 1= small
joint effusion, 2=moderate joint effusion, and 3= severe joint effusion). The
scores of the left and the right knee were summed, resulting in a score from 0 to 6,
where higher scores represent more severe knee joint effusion. For all phenotypes,
if data on either the left or right knee joint was missing, individuals were excluded.
Oral medication usage such as, proton pump inhibitors (PPIs) and non-steroidal
anti-inflammatory drugs (NSAIDs), were determined by questionnaire at the same
time point as WOMAC scores, knee X-rays, knee MRIs, and stool sample
collection.

Lifelines-DEEP replication cohort. The LifeLines-DEEP (LLD) cohort is a sub-
cohort of the LifeLines cohort (167,729 participants) that employs a broad range of
investigative procedures to assess the biomedical, socio-demographic, behavioral,
physical and psychological factors that contribute to health and disease in the
general Dutch population52. A subset of approximately 1500 participants was
included in LLD subcohort. For these participants, additional biological materials
were collected, including analysis of the gut-microbiome composition. The col-
lection, phenotyping, and processing of LLD have been described in detail27,53.
Briefly, microbiome data was generated for 1179 LLD samples. Fecal samples were
collected at home within two weeks of blood sample collection and stored
immediately at 20 °C. After transport on dry ice, fecal samples were stored at −80 °
C. Aliquots were made and DNA was isolated with the AllPrep DNA/RNA Mini
Kit (Qiagen; cat. #80204). The 16S rRNA gene of the isolated DNA was sequenced
at the Broad Institute, Boston, using Illumina MiSeq pair-ends. Hypervariable
region V4 was selected using forward primer 515F (GTGCCAGCM
GCCGCGGTAA) and reverse primer 806 R (GGACTACHVGGGTWTCTAAT)
(Supplementary Table 9)54. Closed-reference OUT picking has been done with 97%
similarity cutoff using UCLUST55 program and GreenGenes 13.5 reference data-
base56 from QIIME146 software. Overall, for 878 samples, both WOMAC scores
and microbiome information was available. The library size of microbial sequen-
cing was rarefied to 10,000 read-depth using the rarefy function in R package vegan
(version 2.5–2). At this depth, 11 subjects were excluded. After the exclusion step,
we had 867 samples (362 men and 505 women) remained for the final analysis.
Their characteristics are summarized in Supplementary Table 7. The LifeLines-
DEEP study has been approved by the medical ethical committee of the University
Medical Center Groningen, The Netherlands.

qPCR replication of 16S rRNA-sequencing results. To validate the 16S rRNA-
sequencing results we determined the absolute quantitative amount of Strepto-
coccus spp. using qPCR. We determined the amount of Streptococcus spp. for each
fecal DNA sample using the BactoReal qPCR assay (Ingenetix GmbH, Vienna,
Austria) based on the Streptococcus 23S rRNA gene. A standard curve of a Plasmid
standard containing the 23S rRNA gene (Ingenetix GmbH, Vienna, Austria) was
included in each plate to calculate the amount of Streptococcus spp. present in each
sample. Each sample was run in duplo in a 384-wells PCR plate containing 40 ng
fecal DNA, 1x primers and probes (Ingenetix GmbH, Vienna, Austria), 1x TaqMan
Gene Expression Master Mix (Life technologies) in a total volume of 5 µl. The
qPCR was performed in a QuantStudio 7 Flex (ThermoFisher) with an initial
denaturation at 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 s and 60 °C
for 60 s. To normalize the amount of Streptococcus spp. for the total amount of
bacteria in each sample, a 16 S qPCR was performed (U16SRT-F: ACTCCT
ACGGGAGGCAGCAGT and U16SRT-R: TATTACCGCGGCTGCTGGC, Sup-
plementary Table 9)57. A standard curve of a Bacterial DNA Standard (Zymo
Research) sample was included in each PCR plate to calculate the total amount of
bacteria. Each sample was run in duplo in a 384-well plate containing 200 pg fecal
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DNA, 200 pmol forward and reverse primers, 1x SYBR Fast ABI PrismTM Mas-
termix (KapaBiosystems) in a total volume of 5 μl. The qPCR was performed in a
QuantStudio 7 Flex (ThermoFisher) with an initial denaturation at 95 °C for 3 min,
followed by 40 cycles of 95 °C for 5 s and 60 °C for 20 s. Absolute abundancies were
calculated from the standard curves. We adjusted the total absolute abundancy of
bacteria for the average number of 16S copies (4.2 copies per bacteria58). We
adjusted the absolute abundance of Streptococcus spp. for the average number of
23S rRNA gene copies in Streptococcus spp. (3.36 copies per Streptococcus spp.,
based on S. pneumoniae, S. thermophiles, S. pyogens, S. parasanguinis, S. dysga-
lactiae, S. salivarius, S. suis, S. mutans, and S. agalactiae). We normalized the
absolute abundance of Streptococcus spp. by calculating the log transformed value
of the number of Streptococcus spp. per 1000 bacteria in each sample:

log
Streptococcus absolute abundance
total abundance of bacteria=1000

� �

Statistical analysis. Statistical analyses were performed in R: A Language and
Environment for Statistical Computing59. Inter-individual microbial composition
(β-diversity) was calculated using the Aitchison distance calculated from the CLR
(centered log-ratio) normalized data. CLR normalization was calculated on the
counts of the directly taxonomic classified reads. The full dataset, including
unknown and unclassified taxonomies was used for the CLR. To all read counts 1
was added to cope with the overabundance of zero’s in the data, for CLR33. Sub-
sequent statistical analysis was done through permutation analysis of variance
(PERMANOVA) to inspect the global effect of WOMAC-pain score and KLsum
score on the overall microbiome profiles, using the adonis PERMANOVA function
in VEGAN. PERMANOVA models included age, sex, TimeInMail, DNA isolation
batch, BMI and WOMAC-pain score or KLsum, in that order. Results were
visualized using a PCA plot. CLR method and PCA plot were based on Gloor
et al.33. Intra-individual microbial composition metrics (α-diversity) used are the
Shannon Index and Inverse Simpson Index. Association of α-diversity with
WOMAC pain score was examined by Poisson-regression model adjusted for age,
sex, batch and TimeInMail. To identify associated microbiological taxa with the
investigated phenotypes, we have used the multivariate statistical linear regression
analysis, R package: MaAsLin60. MaAsLin is a specialized statistical R package for
the analysis of microbial community abundance data and clinical/phenotypic
metadata. All unknown and unclassified taxonomies were excluded from this
analysis (n= 63). In MaAsLin, we have used adjusted default settings, i.e., Linear
model based, quality control (QC) and exclusion of outliers based on the Grubbs
test on the microbiome data only, and arcsine-square-root transformation of the
single taxonomies relative abundance table to normalize the microbiome profiles.
After MaAsLin QC we were left with 256 taxonomies for analysis (2 domains, 12
phyla, 18 classes, 25 orders, 41 families, and 158 genera). Missing values were not
imputed, nor was automatic QC of the metadata, WOMAC pain score and cov-
ariates, or boosting by excluding metadata from the association analyses per-
formed. For each analysis we forced the following cofactors: age (years), sex (0/1),
technical covariates: DNA isolation batch (0/1) and TimeInMail (days). Depending
on the model we additionally forced the following cofactors: BMI (body mass
Index), smoking (current smoker, y/n), daily alcohol consumption (glass/day), PPI
use (y/n), and NSAID use (y/n). Statistical significance was determined by multiple
testing correction, Benjamini-Hochberg False discovery rate (FDR) < 0.05. Removal
of possible collinearity in the microbiome data was done by ILR (isometric log-
ratio transformation) on the counts of the directly taxonomic classified reads. The
full dataset including unknown and unclassified taxonomies was used. Multivariate
linear regression model adjusted for age, sex, and cohort-specific technical cov-
ariates was performed on the ILR transformed data. Replication analysis in
LifeLines-DEEP (LLD), used MaAsLin using similar settings, with the exception of
the automatic QC in MaAsLin. In LLD the QC of the metadata was done manually.
All analysis were also adjusted for age, sex, and cohort-specific technical covariates.
Meta-analysis of RS and Lifelines was performed using inverse-variance weighting
by METAL61. Correlation between 16S sequencing Streptococcus spp. abundancy
and qPCR Streptococcus spp. abundance was done by Spearman correlation in R.
Association of knee WOMAC pain and qPCR data were done by Poisson-
regression models adjusted for age, sex, and qPCR technical covariates (plate
number). All figures and graphs were made in R and adapted in Adobe Illustrator.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available within the article

and its supplementary information files. Data underlying Fig. 1 and Supplementary

figures 1 and 2 are provided as Source Data file. Other data are available from the

corresponding author upon reasonable requests. Due to ethical and legal restrictions,

individual-level data of the Rotterdam Study cannot be made publicly available. Data are

available upon request to the data manager of the Rotterdam Study Frank van Rooij

(f.vanrooij@erasmusmc.nl) and subject to local rules and regulations. This includes

submitting a proposal to the management team of RS, where upon approval, analysis

needs to be done on a local server with protected access, complying with GDPR

regulations.
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