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Adverse fluctuations in the distribution of the intestinal microbiome cohort has been

associated with the onset of intra- and extra-intestinal inflammatory conditions, like

the metabolic syndrome (MetS) and it’s hepatic manifestation, non-alcoholic fatty liver

disease (NAFLD). The intestinal microbial community of obese compared to lean subjects

has been shown to undergo configurational shifts in various genera, including but

not limited to increased abundances of Prevotella, Escherichia, Peptoniphilus, and

Parabacteroides and decreased levels of Bifidobacteria, Roseburia, and Eubacteria

genera. At the phylum level, decreased Bacteroidetes and increased Firmicutes have

been reported. The intestinal microbiota therefore presents an important target for

designing novel therapeutic modalities that target extra-intestinal inflammatory disorders,

such as NAFLD. This review hypothesizes that disruption of the intestinal–mucosal

macrophage interface is a key factor in intestinal-liver axis disturbances. Intestinal

immune responses implicated in the manifestation, maintenance and progression of

NAFLD provide insights into the dialogue between the intestinal microbiome, the

epithelia and mucosal immunity. The pro-inflammatory activity and immune imbalances

implicated in NAFLD pathophysiology are reported to stem from dysbiosis of the

intestinal epithelia which can serve as a source of hepatoxic effects. We posit that the

hepatotoxic consequences of intestinal dysbiosis are compounded through intestinal

microbiota-mediated inflammation of the local mucosa that encouragesmucosal immune

dysfunction, thus contributing important plausible insight in NAFLD pathogenesis. The

administration of probiotics and prebiotics as a cure-all remedy for all chronic diseases

is not advocated, instead, the incorporation of evidence based probiotic/prebiotic

formulations as adjunctive modalities may enhance lifestyle modification management

strategies for the amelioration of NAFLD.

Keywords: intestinal microbiome, intestinal epithelial cell dysbiosis, dysbiosis, macrophage, inflammation,

mucosal immunity, NAFLD

INTRODUCTION

NAFLD is a growing public health concern, laying claim to both a steadily rising prevalence as
well as an increasingly young age at diagnosis (Welsh et al., 2013; Nobili et al., 2014). These trends
reflect the increased rates of risk factors associated with an obesogenic lifestyle and the development
of type 2 diabetes mellitus (T2DM) (Targher et al., 2007; Welsh et al., 2013). The prevalence of
NAFLD in obese adults or those with T2DM has been reported to be 67.5 and 74%, respectively,
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(Williams et al., 2011; Paquissi, 2016) compared to only 25%
in the general adult population (Younossi et al., 2016). As a
spectrum of diseases, NAFLD has been associated with significant
morbidity and mortality, with advanced forms of the disease
expressed as fibrosis, cirrhosis, and hepatocellular carcinoma
(HCC).Additionally, insulin resistance (IR) and obesity have
been identified as NAFLD risk factors (Gaggini et al., 2013),
with NAFLD also reported to increase the risk of T2DM and
cardiovascular disease, justly classifying NAFLD as the hepatic
manifestation of the metabolic syndrome (MetS) (Adams et al.,
2005; Targher et al., 2007, 2010; Dunn et al., 2008; Starley et al.,
2010; Gregor and Hotamisligil, 2011; Lumeng and Saltiel, 2011;
Dietrich and Hellerbrand, 2014; Paolella et al., 2014; Paquissi,
2016). NAFLD hence presents as amulti-systemic disease (Starley
et al., 2010; Paolella et al., 2014). In light of the potential
of NAFLD to progress to an ever-increasing prevalence, an
appreciation of the molecular mechanisms that facilitate the
manifestation of NAFLD disease chronicity and the pathways
that trigger the transition across the spectrum of diseases
is a pertinent aspect in designing novel effective therapeutic
modalities. With the purported pathogenic mechanisms of
NAFLD being intertwined with peripheral IR, increased liver
lipolysis is reported to contribute to increased levels of hepatic
free fatty acids (FFAs) (Paolella et al., 2014). IR simultaneously
triggers increased gluconeogenesis and reduced glyconeogenesis,
which further increases the production of circulating FFAs
(Paolella et al., 2014).

The definition of NAFLD covers a spectrum of liver
histologies, ranging from the benign and usually non-progressive
simple steatosis (SS) (Tilg and Moschen, 2010; characterized
by the accumulation of lipid droplets that exceed 5% of
the total weight of the liver) to non-alcoholic steatohepatitis
(NASH) which is found in 30% of NAFLD patients and
is described as the beginning stages of inflammation and
lobular ballooning which results from persistent hepatic injury
(Jiang et al., 2015). Chronic inflammation can cause the liver
to respond with compensatory tissue repair, a mechanism
that initiates fibrosis and even cirrhosis through collagen
deposition and scarring—which eventually forms the foundation
of hepatocellular cancer (HCC) in extremely rare cases (Tilg
and Moschen, 2010; Bieghs and Trautwein, 2014). Systems
biology continues to probe the pathophysiology of this
disease and the factors that establish it’s manifestation and
drives disease progression across the spectrum toward severe
phenotypes.

The manifestation and progression of NAFLD is tentatively
attributed to a range of factors as part of the multiple
parallel hits hypothesis, which postulates that NAFLD is the
result of inflammation in the liver induced by numerous
intestinal-derived or adipose tissue-derived triggers (Tilg and
Moschen, 2010). With the first hit said to be the onset and
maintenance of SS, and the additional hits of gut-derived
endotoxins and pro-inflammatory cytokines from adipose tissue
reported to provide the impetus for NASH development and
subsequent progression (Day and James, 1998). This hypothesis
is flagging the importance of aberrant innate immunity as a
central pathway for NAFLD progression (Miele et al., 2009;

Tilg and Moschen, 2010) along with stress signaling networks
and circulating adipocytokines and pro-inflammatory cytokines
(Miele et al., 2009; Tilg and Moschen, 2010).

Although the molecular pathways that lead to the
pathogenesis and progression of NAFLD remain poorly
understood, it is accepted that inflammation is a major factor
in hepatic injury (Bieghs and Trautwein, 2014). Currently,
experimental data suggests that interactions of the innate
immune system with the different resident liver cell types help
perpetuate and maintain adverse inflammatory responses in
the liver (Starley et al., 2010; Farrell et al., 2012; Bieghs and
Trautwein, 2014). Serum markers of inflammation, including
C-reactive protein (CRP), interleukins (ILs), and other general
immunity markers are associated with the diagnosis and
prognosis of NAFLD (Chiang et al., 2010; Harley et al., 2014),
whilst at the cellular level, data has implicated an imbalance in T
helper 17 (Th17) cells over regulatory T (Treg) cells, that occurs
from an over-differentiation of T helper cells (Hammerich et al.,
2011). A disturbance to the equilibrium between Th17 and Treg
cells is a key event in the initiation of pro-inflammatory activity.

The innate immune system responds to cell damage or
pathogenic invasion through pattern recognition receptors
(PRRs), that are expressed intracellularly or on the surface
of resident liver cells (Bieghs and Trautwein, 2014). These
PRRs are programmed to detect damage-associated molecular
patterns (DAMPs) that are released by injured cells or
pathogen-associated molecular patterns (PAMPs), which are
derived from intestinal bacterial metabolites (Pedra et al.,
2009; Takeuchi and Akira, 2010). From a consideration of
the consequences of intestinal epithelial dysbiosis, this review
hypothesizes that the cascade of signals that activate adverse
innate immune system and inflammatory activity implicated in
NAFLD pathophysiology are triggered by the continuous release
of endotoxins and other intestinal bacterial-derived products
which can reach the liver through the gut-liver axis interface.

Resident liver cells have their own PRRs in toll-like receptors
(TLRs). Activating these TLRs is an important step in the
development of NAFLD as they are responsible for inducing
gene transcription that facilitates responses of the innate immune
system (Takeuchi and Akira, 2010). Kupffer cells, stellate cells,
and hepatocytes amongst others, express TLRs and recognize a
large array of PAMPs, which enable pro-inflammatory activity
by activating different liver cells. PAMPs and DAMPs as well as
irritants from the host’s environment are themselves recognized
by inflammasomes, receptors of the innate immune system.
In response to sensing infectious microbes, inflammasomes
are responsible for the pro-inflammatory activity observed in
the initiation or manifestation of inflammatory diseases, like
NAFLD. NLRP3 is an inflammasome that has been reported
to be specifically and critically involved in NAFLD progression,
with experimental and clinical data identifying higher levels of
expression in NASH-affected subjects.

The intestinal microbiome is central to the narrative that
NAFLD manifestation is largely a consequence of dysregulated
innate immunity in response to persistent pro-inflammatory
activity. The role of the intestinal microbiome is multi-factorial,
functioning as an immunological, metabolic, and protective
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tool for optimal host health. When the intestinal microbiome
is in dysbiosis, the health of the host is compromised as the
microbiome is unable to maintain control of local homeostasis,
increasing intestinal permeability. Disruption to intestinal
epithelial homeostasis leads to hepatic exposure to exogenous
and endogenous antigens that drives hepatoxic influences via the
gut-liver axis interface (Glavan et al., 2016).

THE INTESTINAL MICROBIOME AND THE
EPITHELIAL BARRIER

The microbial ecosystem of the gastrointestinal tract (GIT)
comprises a metabolically and immunologically complex and
active organ (Vitetta et al., 2013). Recognized as the most
biodiverse and dense microbial site, the intestinal microbiome is
estimated to harbor over 1014 bacterial cells (Jiang et al., 2015).
Serving as a key influence of host health, the GIT is the site that
facilitates the exposure of environmental, dietary, and microbial
antigens to the immune system (Vitetta et al., 2013). Existing in a
state of symbiotic homeostasis, the intestinal microbiome and the
immune system largely co-develop from birth (Nicholson et al.,
2012). Subject to an array of complex interactions, dependent
on host genetics, lifestyle, dietary and environmental cues, the
microbiome and host share a bi-directional relationship, with
both parties helping to shape each other’s development and
composition (Nicholson et al., 2012).

The intestinal epithelial barrier is a dynamic network made up
of luminal and mucosal components (Paolella et al., 2014); with
an epithelial cell layer interlaced with innate mucosal immunity
and neuroendocrine elements, encasing the paracellular space
that houses the intestinal microbiome diverse niches (Paolella
et al., 2014; Ringel et al., 2015). The single layer of epithelial
cells that line the intestines is bound by a tight junction
protein (TJP) network, serving to form the physical barrier,
which provides protection against potential pathogenic assaults
and toxins that increases the risk of systemic sepsis. Intestinal
epithelial cells have a rapid time of turnover of between 2 and 6
days (Ramachandran et al., 2000). The TJP network also regulates
intestinal permeability, providing the pores and channels for
passage of molecules (i.e., water, electrolytes, nutrients) by
selective permeability (Paolella et al., 2014). The intestinal barrier
is also involved in the co-ordination of responses of the innate
immune system, with macrophage/dendritic cell activation
contributing to host defenses against microbial-induced systemic
infections (Paolella et al., 2014). The protrusions that characterize
macrophages/dendritic cells allow for the sensation of potential
pathogens that have breached the intestinal mucus layers,
the mucosa, as well as those sensed in other parts of the
intestinal lumen, resulting in the induction of responses such as
phagocytosis and of the acquired immune system through B-cell
activation (Kumar et al., 2011; Kinnebrew and Pamer, 2012).
Figure 1 details the maintenance of the homeostatic state of the
intestinal barrier.

Intestinal microbial metabolites provide the substrate for
the fermentation of complex dietary carbohydrates to produce
short-chain fatty acids (SCFAs), as well as assist the host in

harnessing maximal energy from dietary consumption (Jiang
et al., 2015). The various metabolites exert varying effects on
the host, from the beneficial production of signaling molecules
(e.g., butyrate), to inducing mucus and other secretions, to
provide the triggers that facilitate the innate mucosal system to
maintain local homeostasis. In states of dysbiosis, the intestinal
barrier increases in permeability as a result of a disruption to
the regulation of the epithelial cell-to-cell tight junction protein
network. A compromised intestinal barrier can be associated with
bacterial translocation from the gut into the systemic circulation
increasing the risk of sepsis. Lipopolysaccharides (LPS), a
constituent of gram negative bacteria (Jiang et al., 2015), is found
to be increased in the systemic circulation, indicative of dysbiosis
(Boulangé et al., 2016). LPS has been associated with inducing
apoptosis of lymphocytes under in vivo conditions (Norimatsu
et al., 1995; Nielsen et al., 2012; Jiang et al., 2015) demonstrating
an immune-modulatory effect. Studies have posited that a loss
of lymphocytes in the intestinal mucosa is a consequence of
intestinal epithelial dysbiosis and subsequent release of metabolic
endotoxins (Jiang et al., 2015). LPS has also been implicated as an
inductor of a pro-inflammatory environment which is conducive
to MetS, IR and T2DM (Cani et al., 2008). Gram-negative
bacteria containing LPS are therefore hypothesized to contribute
to NAFLD development. Furthermore, dysbiosis and elevated
systemic LPS can be envisaged as markers of intestinal toxicity
(Nolan, 2010). Intestinal toxicity driven dysbiosis supports local
mucosal inflammatory responses that is concomitant with an
increase in intestinal permeability. This combined disruption of
the intestinal barrier/mucosal immunity activity can promote
and mediate NAFLD pathogenesis via the gut-liver axis (Littman
and Pamer, 2011; Wieland et al., 2015).

THE GUT-LIVER AXIS

The venous system of the portal circulation defines the gut-liver
axis and highlights the close anatomical proximity and functional
interactions of the gastrointestinal tract and the liver (Paolella
et al., 2014; Brandl et al., 2017). The axis is described as a means
of enhancing interactions between metabolites of the intestinal
microbiome and receptors on the liver, which can trigger a
cascade of events that culminates in IR, inflammation of the liver,
and eventually the development of liver fibrosis (Paolella et al.,
2014). The anatomical and functional link between the gut and
liver delivers 70% of hepatic blood supply via the portal vein.
The portal vein is the direct venous outflow from the intestines
and thus when the intestinal mucosal barrier is compromised it
exposes hepatic tissue to toxic factors derived from the intestines.
Therefore, various metabolites produced by intestinal bacteria
that reach the liver, have been linked to the manifestation of
simple steatosis and NASH (Raman et al., 2013). Dynamic shifts
in the gut-liver axis, contributed by either the physical barrier,
the microbiome or the liver itself, are a result of alterations to
the permeability of the intestinal epithelium and or microbial
composition that have been implicated in NAFLD manifestation
(Mehal, 2012). Experimental and clinical evidence increasingly
implicate dysfunctions of the gut-liver axis in the development
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FIGURE 1 | Intestinal epithelial barrier and homeostasis. Several mechanisms, including a mucus layer, antimicrobial peptides and a tight junction protein network

collaborate to ensure that the intestinal barrier is not compromised. Goblet cells secrete mucin to provide a protective coating, provide structural integrity and regulate

macrophage and adaptive T cell responses during inflammation. Goblet cells also facilitate microbial translocation. The intestinal epithelia network of cells produce a

range of soluble protein factors and also express the integrin ligand semaphorin 7A that modulates intestinal CX3CR1 macrophage function. Localized CX3CR1

macrophages further release IL-10 to support the proliferation of induced Treg cells and B cell activating factor (BAFF) to further stimulate the production of migrating

secretory IgA (sIgA) across the epithelium. Dendritic cells sample bacteria and present antigens to other cells including innate lymphoid cells (ILCs). Dietary starch is

converted by intestinal bacteria into short chain fatty acids that serve as a source of energy for the epithelial cells but also act as signaling molecules. Signals from

commensal bacteria help maintain tight junction via Toll-like receptor 2 (TLR-2) redistribution of ZO-1 proteins. (Kidd, 2003; Wahl, 2007; Hume, 2008; Ogino et al.,

2011; Kayama et al., 2012; Abbas et al., 2013; Smith et al., 2013; Zheng, 2013; Ai et al., 2014; Guilliams et al., 2014; Peterson and Artis, 2014; Gottschalk and Kurts,

2015; Robinson et al., 2015; Nakahashi-Oda et al., 2016) Adapted from Peterson and Artis (2014).

and progression of NAFLD through small intestinal bacterial
overgrowth (SIBO) in conjunction with intestinal dysbiosis and
increased permeability (Compare et al., 2012; Li et al., 2013;
Miele et al., 2013; Vajro et al., 2013; Paolella et al., 2014). Recent
experimental and clinical studies suggest that the gastrointestinal
microbiome affects NAFLD pathogenesis through pathways that
(i) facilitate metabolism and energy harvesting (Turnbaugh et al.,
2006; Jiang et al., 2015), as described from high-fat fed mice
models treated with high levels of pro-inflammatory cytokines
that promote NAFLD development (Le Roy et al., 2013); (ii)
dynamic interactions with the host’s innate immune system
where NAFLD is reported consequent to disrupted local immune
cell functionality (Su et al., 2012).

INTESTINAL MICROBIAL COMPOSITION
AND NAFLD

Widespread biodiversity exists in the microbial ecosystems of
humans, particularly in the intestinal tract. However, despite

the extensive variety of bacteria, four main phylum dominate
in the intestines: Firmicutes, Bacteroidetes, Actinobacteria, and
Proteobacteria (Mokhtari et al., 2017), with up to 90% of
microbes estimated to belong to the Firmicutes and Bacteroidetes
phyla (Eckburg et al., 2005). In both human and experimental
model based studies, NAFLD has been associated with altered
microbiome abundance, composition and dysbiosis (Wigg et al.,
2001; Mouzaki et al., 2013; Zhu et al., 2013). Analyses have also
correlated changes in microbiota composition with change in
disease severity (Shavakhi et al., 2013; Eslamparast et al., 2014,
2015; Rahimlou et al., 2015; Yari et al., 2016).

In reviewing the literature, studies that have analyzed
the intestinal microbial composition of NAFLD patients in
comparison to healthy controls have reported identifying
patterns or trends that can be associated with NAFLD
development (Harris et al., 2012).

Studies that have profiled the intestinal microbiome of
NAFLD patients report that specific configurational and
compositional shifts are associated with intestinal epithelial
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FIGURE 2 | Dysbiosis and the gut-liver axis. Increased intestinal permeability, small intestine bacterial overgrowth (SIBO) and elevated serum endotoxin like

lipopolysaccharide (LPS) is found in patients with NAFLD. LPS, a hepatoxic component of gram-negative bacteria, is elevated in cases of SIBO. Increased intestinal

permeability leads to increased bacterial translocation. Activated macrophages release inflammatory cytokines and dendritic cells stimulate the differentiation of naïve

T cells to pro-inflammatory Th17 cells induced by TGF-β, IL-6, IL-23, and IL-1β. Th17 cells secrete neutrophil-activating IL-17. Lymphoid Th17 also migrate to the liver

where IL-17 stimulates monocytes, Kupffer cells, biliary epithelial cells, and stellate cells, to secrete pro-inflammatory cytokines and chemokines—inducing liver

inflammation. LPS, bacterial endotoxins, IL-17, pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) may reach the

liver via the portal vein and induce inflammation via Toll-like receptor 4 (TLR-4) and interleukin-17 (IL-17) receptors. The gut-liver axis is underlined by the fact that at

least 70% of the liver’s blood supply is delivered directly from the intestinal tract via the portal vein outflow of the intestine. (Zheng, 2013; Carding et al., 2015;

Robinson et al., 2015; Fukui, 2016; Kumar et al., 2016) Adapted from Peterson and Artis (2014).

cell dysbiosis and the elicitation of pro-inflammatory immune
responses, central to NAFLD manifestation and progression
(Kirpich et al., 2015). Specific bacteria have been associated with
NAFLDphenotypes, serving as both antagonists and protagonists
in NAFLD pathogenesis. Studies which profiled the intestinal
microbiome of healthy controls and NAFLD patients across the
spectrum, were able to identify families, genera and phyla that
differed significantly in their abundance between the healthy
controls and those with a NAFLD diagnosis. Whilst data is
inconsistent regarding the association between the intestinal
microbiome profile and NAFLD, patterns are emerging which
highlight potential relationships between bacterial types and host
health (Lau et al., 2015). A study comparing subjects diagnosed
with NAFLD compared to lean adults, reported that gram
negative bacteria were significantly enriched (P =0 .009) and
gram positive bacteria were markedly decreased (P = 0.001)
in the NAFLD cohort (Wang et al., 2016). Findings from

similar studies confirm the strong relationship between the
composition and configuration of the intestinal microbiome
and fatty liver histologies, suggesting that adverse shifts in
intestinal microbiome profiles are related to the development
of NAFLD (Wang et al., 2016). In a prospective cross sectional
study, a 20% increase in the Bacteroidetes phylum (p = 0.005)
and a 24% decrease in Firmicutes (p = 0.002) was found
in healthy controls in comparison to NAFLD patients (Wang
et al., 2016). Interestingly, among the species belonging to the
Firmicutes phylum, SCFA-producing bacteria were significantly
decreased. Specific microbiome signatures of intestinal bacteria
that are reported to be associated with significant reductions in
butyric acid (Consolandi et al., 2015) may comprise a significant
marker for the depletion of intestinal bacterial species that are
important for the maintenance of intestinal barrier integrity and
innate mucosal immunity equilibrium. However, currently it is
difficult to identify which microbiome differences are causal and
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which are coincidental in the development of intestinal barrier
dysbiosis and moreover NAFLD. Variations between studies,
which profile microbiome composition of NAFLD patients,
may in part be accounted for by different analytical techniques
that have been employed. Furthermore, differences in study
design, including anthropometric measures, markers used for
NAFLD diagnosis as well as ultra-sonographic vs. biopsy NAFLD
diagnosis adds additional discrepancies. As such Mouzaki et al.
(2013), reported an inverse relationship betweenNASH diagnosis
and the proportion of the phyla Bacteroidetes detected. These
results were contrasted by Zhu et al (Zhu et al., 2013) who
reported that NASH diagnosis was accompanied by higher levels
of alcohol-producing bacteria and endogenous levels of ethanol,
a result that was supported by Wong et al. (2013).

The intestinal microbial variations were also observed at
the genus level, with data purporting to Ruminococcus and
Roseburia genera being shown to be inconclusive. Whilst
Zhu et al. (2013) and Raman et al. (2013) reported a non-
significant decrease in the abundance of Ruminococcus in
NAFLD patients compared to a group of healthy controls,
whereas Del Chierico et al. (2017) and Jiang et al. (2015)
found an increase in the genus’ abundance in NAFLD
patients.

Despite the various limitations, preliminary studies highlight
and support the hypothesis that configurational shifts in the
intestinal microbiome composition may contribute to the
development and progression of NAFLD. Whilst further
studies on a larger scale with accurate measures and controlled
variables are warranted, the potential contribution of intestinal
microorganisms and their metabolites are implicated in
the pathophysiology of NAFLD. Studies that administer
probiotics/prebiotics, which posit to encourage the intestinal
microbiome to re-establish intestinal-mucosal macrophage
crosstalk homeostasis that then translates to reducing the
progression of NALFD are very much warranted.

MECHANISMS LINKING THE INTESTINAL
MICROBIOTA AND NAFLD

Research identifies several mechanisms by which the intestinal
microbiome cohort-arrangement can affect NAFLD pathogenesis
and maintenance. Increased intestinal permeability (Jandhyala
et al., 2015), small intestine bacterial overgrowth (SIBO) (Zhu
et al., 2013) and elevated serum endotoxin like lipopolysaccharide
(LPS) (Brun et al., 2007; Soares et al., 2010), have been reported by
studies with NAFLD patients, with varying disease severity and
staging (Elshaghabee et al., 2016). LPS, a component of gram-
negative bacteria, is elevated in cases of bacterial overgrowth
and increased intestinal permeability, yielding hepatoxic effects
through the activation of TLR4 and initiation of a cascade of pro-
inflammatory innate immune responses (Wigg et al., 2001; Soares
et al., 2010).

Experimental and clinical data suggests that SIBO and a
disturbed intestinal epithelial barrier are involved in NAFLD
pathogenesis (Bode et al., 1987; Purohit et al., 2008; Wan
et al., 2016). Furthermore, investigations have shown that the

serum from NAFLD patients have elevated levels of LPS-binding
protein, TLR-4, and TNF-α in hepatic tissue (Ruiz et al., 2007;
Wan et al., 2016).

The gut microbiota also contributes to NAFLD pathogenesis
through enriched numbers of ethanol-producing bacteria,
primarily Escherichia coli (Small et al., 2013; Zhu et al.,
2013; Jiang et al., 2015). The alcohol produced by these
bacteria are reported to be involved in compromising intestinal
barrier integrity which instigates inflammatory activity and
ultimately hepatoxic events. Ethanol is a common and dominant
metabolite of numerous resident intestinal microbes. As a
product of hetero-lactic organisms, endogenously produced
ethanol is implicated as a pro-inflammatory hepatoxic factor
in NAFLD pathogenesis (Cope et al., 2000; Baker et al.,
2010). Linked with increased concentrations of serum ethanol,
enrichment in the presence of alcohol-producing intestinal
bacteria, like E. coli, has been demonstrated to increase intestinal
epithelial permeability (Aron-Wisnewsky et al., 2013; Jiang et al.,
2015).

A prelude to the liver’s averseness to excessive accumulation
of FFAs, is intestinal dysbiosis. Dysbiosis is the concept that
describes compositional alterations away from the conventional
symbiotic intestinal microbiota that may be associated with
pathology within the host and is visually described in Figure 2.
Herein we further posit that compositional alterations in the
intestinal microbiota adversely affect the intestinal epithelial
barrier exacerbating epithelial cell dysbiosis. It has been shown
that intestinal epithelial cell disruption can directly adversely
affect intestinal resident macrophages and act as critical effector
cells in the initiation of inflammation in the pathogenesis of
metabolic diseases (Chawla et al., 2011). Disturbances of the TJP
network which link the epithelial cells to form the intestinal
barrier is a central regulatory mechanism, facilitating selective
permeability across the intestinal mucosa and limiting bacterial
translocation. Examining the duodenum of NAFLD patients
and healthy adults has revealed that in comparison to NAFLD
patients, (Jiang et al., 2015) the TJP network was significantly
more intact in the duodenum of a healthy adult, with regular
alignment and extensive abundance of the microvilli(Jiang et al.,
2015). These observations are in stark contrast to the significantly
wider gaps and disrupted TJPs reported in NAFLD patients,
suggesting a loss of barrier integrity with a consequent increase in
bacterial translocation through increased intestinal permeability
(Briskey et al., 2016). Additional assessment of the serum
biomarkers of the TJPs, including occludin proteins, which
are structural components of the tight junctions, have been
reported with significantly higher levels in the intestinal mucosa
of healthy adults compared to NAFLD patients (Jiang et al.,
2015). Measuring the serum levels of the proteins that comprise
the structural backbone of the intestinal TJP network lends
further supportive data to the hypothesis that intestinal mucosal
permeability is greater in NAFLD patients than lean subjects
or controls, suggesting intestinal epithelial dysbiosis is a causal
factor in NAFLD pathogenesis.

With the establishment of the intestinal microbiota as a
participant in the onset and maintenance of low-grade systemic
inflammation, the probing of the intestinal microbiome as a
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potential therapeutic target for extra-intestinal inflammatory
conditions, such as NAFLD begun.

The supposition that the intestinal microbiome could
indirectly and adversely influence the physiological function
of an end–organ such as the liver, by contributing pro–
inflammatory activity in the intestinal mucosa, is a novel concept
with biological plausibility. As an example, the uptake of Shiga-
toxin from the pathogen enterohemorrhagic E. coli by M cells
and the underlying macrophages in the Peyer’s patches is a
critical step that teaches about bacterial translocation. This step
has been correlated to the efficiency of the infection by the
pathogen (Etienne-Mesmin et al., 2011). Numerous bacterial
pathogens and their products cross the epithelial barrier though
M cell junctions that are then subsequently captured by intestinal
resident macrophages (Alisi et al., 2017). Moreover, the LPS
components of bacteria are ligands of TLR4 that are expressed on
various immune cells, including intestinal macrophages (Vijayan
et al., 2017). TLR4 in the M1 configuration is a mediator of
inflammation that may imply that increased LPS/TLR4 signaling
could be a driving factor in the accelerated inflammation process
in patients with NAFLD (Alisi et al., 2017). LPS also induces
activation of genes on macrophages such as the early growth
response gene 1 (EGR1) as well as the LPS-induced expression
of TNF-α, an action that is directly mediated through EGR1
and NF-kB (Xu et al., 2001). Therefore bacterial products that
activate macrophages and other immune cells to produce pro-
inflammatory mediators can trigger inflammation in an end
organ such as the liver (Tateya et al., 2013). Signals released in
response to microbial dangers are absorbed on a backgorund of
increased and dysregulated intestinal barrier permeability. These
signals are recognized by PRRs, including TLR-4 (Szabo et al.,
2010; Wan et al., 2016), and when sensed by NLRP3, support the
hypothesis that inflammasome-driven microflora are potential
drivers of NAFLD onset (Wan et al., 2016).

Intestinal homeostasis is pivotal in optimal functionality
of the innate immune system and hinges on macrophages
eliminating pathogenic bacteria and their particles (Vitetta,
2016). Activated macrophages play a dual role within the
innate immune system (Sansonetti, 2002; Vitetta, 2016). Firstly,
they help to elicit appropriate immune responses to detected
microbial proteins by facilitating the presentation of antigens
to T lymphocytes (Sansonetti, 2002; Vitetta, 2016). Secondly,
activated macrophages serve as a secretory source for an array
of cytokines that regulate the activation of T cell lymphocytes,
including IL-1, INF–α, and cytotoxic proteins (Sansonetti, 2002;
Vitetta, 2016). The overall action of the macrophage within the
immune responses rely on their ability to neutralize exogenous
antigens, cellular debris, insoluble particles, and activated clotting
factors via phagocytic activity (Tacke, 2017).

REPRISE

NAFLD’s pathway to pathogenicity is characterized by the
presence of ectopic fat within hepatocytes that results from an
imbalance in the levels of lipogenesis and lipolysis (Machado
and Cortez-Pinto, 2014). Triglycerides are synthesized from FFAs

that are reported to accumulate in the liver. Therefore, it is
envisaged that the concentration of FFAs function as a regulator
of lipogenesis in the liver.

Previous studies have associated bacterial phyla, families, or
even single genera with obese or lean phenotypes, with an
increased lactobacilli count and decreased Bacteroidetes presence
associated with leanness (Armougom et al., 2009). In support of
this, an increased abundance of genus’ of the Bifidobacterium
animalis or Lactobacillus species were associated with weight
management and a healthy body weight (Million et al., 2012).
Lactobacillus reuteri has specifically been identified as being
associated with an obese phenotype (Million et al., 2012).
Assessing intestinal microorganisms for possible correlations
with NAFLD is a biologically plausible next step in progressing an
understanding of how much influence the intestinal microbiome
as a metabolic and immunological organ may have on the
development and progression of NAFLD.

Methodological and technological difficulties have largely
prevented robust and definitive data from studies that specifically
assess the intestinal microbiota of adults with NAFLD and the
health of the intestinal mucosal barrier as well as a need for
further knowledge into what constitutes a healthy microbiota.
When the mucosal barrier of the intestine, which also serves
as the largest immune area of the intestinal immune system, is
impaired and disrupted, the liver is exposed to intestinal-derived
bacterial factors, which are potentially hepatoxic through the
gut-liver axis.

A majority of the current literature details the involvement of
the innate branch of the immune system in pro-inflammatory
pathways leading to NAFLD pathogenesis and progression.
However, the adaptive immune system is also implicated in
NAFLD development (Ganz and Szabo, 2013; Sutti et al., 2016).
Linking the innate and adaptive branches, natural killer (NK)
cells are abundant in hepatic tissue and have been reported to
influence the development of liver injury and fibrotic deposition
that spark NASHmaterialization (Ganz and Szabo, 2013). Studies
in both animal and human models have found a decrease
in circulating NK cells in obese subjects compared to lean
counterparts (Ganz and Szabo, 2013), with further exploratory
investigations suggesting a reduction in their levels and thus
activity may in turn increase the sensitivity of obese patients
to develop progressive forms of NAFLD, including cirrhosis
(Radaeva et al., 2006). A subset of NK cells, the natural killer T
(NKT) cells, also known for their exhibition of both innate and
adaptive immunity features, serve to regulate hepatic immune
responses by secreting both Th1 and Th2 cytokines (Godfrey
et al., 2000). Experimental and clinical data indicates that a
depletion in NKT cells can lead to the chronic pro-inflammatory
environment that can accompanies hepatic steatosis (Li et al.,
2005; Ronchi and Falcone, 2008).

With no effective medication having yet been tested for
managing or treating NAFLD and the only universally accepted
treatment strategy being lifestyle modifications that focus of
weight loss, novel therapeutic agents are being pursued in an
endeavor to address the rise of NAFLD as one of the most
common non-communicable liver disease world-wide (Volynets
et al., 2012).
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Whilst lifestyle modification recommendations encourage
weight loss, this approach requires significant commitment and
efficiency decreases over the long term due to waning dedication.
Intestinal microbial manipulation through the administration
of probiotics presents as an attractive therapeutic adjunct.
In an attempt to reduce intestinal epithelial inflammation,
probiotics shift the intestinal microbial community toward
beneficial bacterial communities such as the Parabacteroides,
Prevotella, and Oscillibacter (Ohland and MacNaughton, 2010).
These microbial communities are well known to produce anti-
inflammatory metabolites such as SCFAs (Schwiertz et al., 2010).
SCFAs, such as butyrate, serve as important facilitators in the
harvesting of energy and harnessing it for peripheral tissues and
the intestinal epithelia (Elshaghabee et al., 2016). Oscillibacter
and Parabacteroides are associated with T-cell differentiation
by enhancing and maintaining the IL-10 producing Treg cells
(Arpaia et al., 2013). Moreover, a probiotic formulation that
attenuated hepatocellular carcinoma in a murine model offered
further insight on how the intestinal microbiota influences the
regulation of T-cell differentiation of mucosal immunity in the
intestines and in turn, there is down-regulation of the level
of pro-inflammatory cytokines (Li et al., 2016). A recently
completed murine study by our group reported attenuation of
steatosis by 60% in a high fat diet model of NAFLD (Briskey et al.,
2016). As such the administration of probiotics to attenuate the
progression of NAFLD is both clinically plausible and very much
warranted.

Despite increasing focus and attention directed at identifying
the mechanisms by which NAFLD develops and progresses,
ambiguity remains surrounding the driving factors and
molecular pathways that result in NAFLD onset. Immunological
mechanisms, including the collaboration of the consequences
of innate immunity, adaptive immunity, and TLR receptor

signaling dysfunction with the gut-liver axis are each posited to
contribute to disease pathogenesis and maintenance.

This narrative review has highlighted the requisite for
the completion of a systematic literature review detailing the
association between innate immune responses triggered by
intestinal epithelial inflammation and dysbiosis and the onset
of extra-intestinal pathologies, such as NAFLD. The intestinal
microbiome is a significant environmental factor in NAFLD
pathogenesis, specifically through effects on intestinal barrier
integrity. A review of the literature which explores the correlation
between changes in intestinal integrity, intestinal permeability,
and therefore endotoxin translocation will help elucidate
the specific patterns or profiles of intestinal microorganisms
that are of interest in NAFLD manifestation and therefore
relevant for therapeutic target purposes. Furthermore, such
a review may also define bacterial species that elicit a
hepatoprotective effect on the microbiome and extra-intestinal
inflammation.
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