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RESEARCH ARTICLE
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Abstract

An altered intestinal microbiota composition has been implicated in the pathogenesis of met-

abolic disease including obesity and type 2 diabetes mellitus (T2DM). Low grade inflamma-

tion, potentially initiated by the intestinal microbiota, has been suggested to be a driving

force in the development of insulin resistance in obesity. Here, we report that bacterial DNA

is present in mesenteric adipose tissue of obese but otherwise healthy human subjects. Pyr-

osequencing of bacterial 16S rRNA genes revealed that DNA from the Gram-negative spe-

cies Ralstonia was most prevalent. Interestingly, fecal abundance of Ralstonia pickettii was

increased in obese subjects with pre-diabetes and T2DM. To assess ifR. pickettii was caus-

ally involved in development of obesity and T2DM, we performed a proof-of-concept study

in diet-induced obese (DIO) mice. Compared to vehicle-treated control mice, R. pickettii-

treated DIOmice had reduced glucose tolerance. In addition, circulating levels of endotoxin

were increased in R. pickettii-treated mice. In conclusion, this study suggests that intestinal

Ralstonia is increased in obese human subjects with T2DM and reciprocally worsens glu-

cose tolerance in DIO mice.
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Introduction

The worldwide epidemic of obesity, which is a major risk factor for insulin resistance, drives

the development of common medical conditions such as type 2 diabetes mellitus (T2DM), dys-

lipidaemia and cardiovascular disease [1]. The development of obesity and T2DM is complex

and is driven by both environmental and genetic factors [2]. Obesity-induced inflammatory

changes in white adipose tissue have been postulated to play a crucial part in the pathophysiol-

ogy of obesity and T2DM. Although the majority of our fat depot is located in subcutaneous

adipose tissue, approximately 10–20% of the total adipose tissue mass is located intra-abdomi-

nally [3]. Especially mesenteric visceral adipose tissue inflammation is linked to insulin resis-

tance reflected in reduced plasma adiponectin levels, which are associated with development

of insulin resistance [4] and macrophage influx [5]. In turn, insulin resistance correlates with

upregulation of visceral adipose genes involved in innate immunity and inflammation [5].

An increasing body of evidence suggests that the composition of the intestinal microbiota is

related to energy intake and obesity [6] and to the development of chronic low-grade inflam-

mation and insulin resistance [7, 8]. This is further supported by data suggesting that (post-

prandial) endotoxins derived from Gram-negative intestinal bacteria are involved in chronic

low-grade inflammation and insulin resistance [9–11]. Indeed, the degree of endotoxemia was

found to predict insulin resistance and development of T2DM in otherwise healthy obese sub-

jects [12] through a process that is thought to stem from impaired gut barrier function [13].

Murine studies showed that macrophages in mesenteric adipose tissue indeed contain bacterial

DNA that originates from the intestine [14]. However, it remains to be proven that specific

intestinal bacteria are indeed causative in the pathogenesis of insulin resistance [15].

Here, we report that bacterial 16S rDNA, including that of the Gram-negative species Ral-

stonia, can be identified in mesenteric visceral adipose tissue of human obese subjects that

were otherwise healthy. Interestingly, in a separate cohort of obese subjects with T2DM, fecal

abundance of Ralstonia pickettii was increased compared to non-diabetic obese controls. To

assess a potential causal role of R. pickettii in development of a diabetes-like phenotype in an

obese model system, we treated diet-induced obese (DIO) mice with R. pickettii for four weeks.

Interestingly, R. pickettii-treated DIO mice had reduced glucose tolerance compared to glyc-

erol treated controls.

Results

Identification of Ralstonia bacterial DNA in mesenteric visceral adipose
tissue from obese individuals

Bacterial 16S rDNA was PCR amplified from DNA isolated from human mesenteric visceral

adipose tissue biopsies, whereas PCR amplification from omental or subcutaneous adipose tis-

sue biopsies barely yielded any 16S rDNA amplicons. Amplicons from DNA isolated from

mesenteric adipose tissue were subjected to denaturing gradient gel electrophoresis (DGGE)

profiling (Fig 1A). Subsequent Sanger sequencing identified that the dominant band showed

highest similarity to Ralstonia spp. Pyrosequencing analysis of bar-coded 16S rDNA amplicons

obtained from the same DNA, identified seven bacterial genera in the mesenteric visceral adi-

pose tissue from obese humans. Actinobacteria was the most prevalent Gram-positive and Ral-

stonia the most prevalent Gram-negative bacteria (Fig 1B). Considering emerging data in the

field suggesting that endotoxin derived from Gram-negative bacteria is involved in metabolic

endotoxemia and reduced glucose tolerance [9, 14, 16], for this project we focused on the role

of Ralstonia in glucose homeostasis.

Ralstonia pickettii and obesity
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The Ralstonia genus belongs to the Proteobacteria phylum and Burkholderiales order, and

comprises flagellated facultative anaerobic Gram-negative rod-shaped bacteria that are pre-

dominantly found in soil and water. Four species of Ralstonia (R. insidiosa, R. eutropha, R.

mannitolilytica and R. pickettii) are known to reside in the human intestinal tract, with R. pick-

ettii being most frequently associated with human infections [15].

Fig 1. Ralstonia pickettii levels correlate with insulin resistance and T2DM in obese subjects. (A) Bacterial DNA is present in mesenteric-visceral
adipose tissue from otherwise healthy obese subjects that underwent laparoscopic surgery. Each lane depicts bacterial amplicons in a single mesenteric
adipose tissue specimen of a subset of 6 patients. Arrow depicts the dominant amplicon ofRalstonia spp. as identified by Sanger sequencing of isolated
bands. M = standard. (B) Pyrosequencing revealed presence of different species (percentage of total bacterial DNA) in humanmesenteric visceral adipose
tissue specimen (n = 12 subjects) withRalstonia spp. being the most abundant Gram-negative bacteria. (C) Fecal 16S rRNAR. pickettii levels in obese
postmenopausal women with normal glucose tolerance (NGT) (n = 42), impaired glucose tolerance (IGT) (n = 45) and type 2 diabetes mellitus (T2DM)
(n = 47). (D) Correlation between fecalR. pickettii and plasma adiponectin in obese postmenopausal women with NGT, IGT and T2DM (population mixed in
this figure). Error bars are represented as mean ± SEM. Mann-Whitney U testing (two sided) was performed to analyze the difference between clinical
groups (C) and Spearman rank test (two sided) was used to calculate correlation coefficients (D). P-values < 0.05 (indicated by *) were considered
statistically significant (using GraphPad Prism 5.1 and SPSS).

https://doi.org/10.1371/journal.pone.0181693.g001
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Increased levels of fecal R. pickettii in patients with IGT or T2DM

Based on previous data regarding the association between altered intestinal microbiota and

insulin resistance, we thus tested the hypothesis whether fecal R. pickettii levels could classify

subjects with normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and T2DM

in a cohort of otherwise healthy subjects [7, 17]. Interestingly, fecal R. pickettii levels were

significantly increased in IGT and T2DM subjects compared to NGT controls (Fig 1C). Fur-

thermore, fecal R. pickettii levels correlated significantly (r = 0.059, p = 0.02) with plasma adi-

ponectin in IGT and T2DM subjects (Fig 1D). Based on these associative data in obese T2DM

human subjects, we questioned if R. pickettii could place a causal driving role in development

of insulin resistance in a rodent model for obesity and insulin resistance.

Metabolic effects ofR. pickettii gavage in diet induced obesity (DIO)
mice

To examine potential causality of R. pickettii in development of obesity and insulin resistance,

mice were fed a high-fat diet (HFD) (60% Kcal) for eight weeks. DIO-mice were then gavaged

daily with heat-inactivated (HI) or living R. pickettii (106 CFU in 10% glycerol in PBS, final vol-

ume 100ul) for four weeks. 10% glycerol in PBS (glycerol) was used as control treatment.

During the four-week treatment period, weight gain in HI-R. pickettii-treated DIO mice

was increased compared to glycerol- and R. pickettii treated controls (Fig 2A). It is important

to point out though, that HI-R. pickettii-treated DIO mice had slightly higher body weight at

the start of the treatment period. Although we cannot fully explain this discrepancy, it might

in part contribute to the increased relative weight gain (Fig 2B) upon HI R. pickettii treatment.

The epididymal white adipose tissue (eWAT) compartment was significantly increased in HI-

R. pickettii-treated mice compared to glycerol and R. pickettii-treated mice whereas mesenteric

and kidney WAT compartments did not differ between groups (Fig 2C). R. pickettii content

was increased in feces of HI-R. pickettii and R. pickettii-treated mice compared to glycerol-

treated controls (Fig 2D). In contrast, R. pickettii DNA was not increased in mesenteric white

adipose tissue (mWAT) of HI-R. pickettii treated mice compared to glycerol controls, whereas

R. pickettii treated mice had increased levels of R. pickettii DNA in this adipose tissue compart-

ment (Fig 2E). This suggests that live bacteria may be required for translocation from the gut

consistent with a previous finding (14).

Oral glucose tolerance testing (OGTT) in week three of the treatment period revealed that

clearance of glucose from the circulation was reduced in HI- and R. pickettii-treated DIO mice

(Fig 3A). To assess if HFD feeding was a prerequisite to reduce glucose tolerance following

four weeks of R. pickettii treatment, lean, chow-fed mice (age-matched with DIO mice) were

gavaged daily with R. pickettii (106 CFU in 10% glycerol in PBS, final volume 100ul) for four

weeks. Importantly, lean mice were not susceptible to weight gain and reduced glucose toler-

ance during the four week treatment period (S1A and S1B Fig).

Metabolic endotoxemia, a process resulting from translocation of endotoxic compounds

(e.g., LPS) of Gram-negative intestinal bacteria, was first described based on the association

between alterations in intestinal microbiota composition, circulating levels of the bacterial cell

membrane component LPS and onset of T2DM (9). To assess if R. pickettii administration

affected circulating endotoxin levels, we analyzed endotoxin levels in (HI) R. pickettii-treated

DIO (Fig 3B) and lean (S1C Fig) mice. In DIO mice, endotoxin levels were significantly

increased in the live R. pickettii-treated group compared to glycerol treated controls. Interest-

ingly, HI-R. pickettii-treatment did not increase circulating endotoxin levels: endotoxin levels

were comparable to levels in glycerol-treated DIO mice (Fig 3B). Although treatment with live

R. pickettii increased endotoxin levels compared to treatment with HI-R. pickettii in lean mice,

Ralstonia pickettii and obesity
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Fig 2. Ralstonia pickettii augments weight gain in DIOmice.Diet-induced obese (DIO) C57Bl6 mice received 10E6 CFU heat-inactivated (HI)- or
R. pickettii daily by means of oral gavage for four weeks. Glycerol was used as control. (A) Absolute body weight (g) during intervention time. HIR.
pickettii group had higher starting body weight compared to glycerol andR. pickettii treated mice and gained more weight throughout the gavage

Ralstonia pickettii and obesity
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this difference did not reach statistical significance (S1C Fig). In line, fecal R. pickettii DNA

content (S1D Fig) was higher only in live R. pickettii-treated lean mice compared to the HI R.

pickettii and glycerol treated controls. Despite similar daily CFU doses, HI-R. Pickettii-treated

DIO mice had reduced levels of circulating endotoxin compared to live R. pickettii-treated

mice and this group gained more weight and had reduced glucose tolerance compared to glyc-

erol-treated mice. This indicates that potential translocation and endotoxemia are not a pre-

requisite to develop reduced glucose tolerance upon Ralstonia administration.

Toll-like receptors (TLR) are pattern recognition receptors (PPRs) that interact with bacte-

rial cell wall components and can subsequently induce an inflammatory response. To investi-

gate the effect of R. pickettii administration on mWAT inflammation, gene expression levels of

Tlr1, Tlr2, Tlr4 and Tlr5were measured using qPCR (Fig 3C). Tlr5 expression was significantly

upregulated in mWAT of DIO-mice treated with R. pickettii compared to HI- R. pickettii or

glycerol-treated controls. In addition, expression of interleukins (IL) 1B and Il10were signifi-

cantly enhanced and indicative of activation of inflammatory pathways in mWAT of R. picket-

tii-treated DIO-mice. TNFa, F4/80,CD68 and CD14awere unaffected by (HI) R. pickettii-

treatment. As control, gene expression of Tlr1, Tlr2, Tlr4, Tlr5, IL1B, IL10, TNFα, F4/80,CD68
and IFNγ was assessed in epididymal white adipose tissue (eWAT, S1E Fig). In contrast to

mWAT, expression levels of assessed genes were mainly unaffected in eWAT. TNFα expres-

sion, however, like TNFα expression in mWAT, was significantly increased in (HI)-R. picket-

tii- treated mice compared to glycerol-treated controls. To assess if circulating TNFα levels

were affected, we performed ELISA analysis in plasma. Circulating TNFα levels were below

detection limit in all study groups.

Error bars are represented as mean ± SEM; p values were determined by Mann-Whitney U

test or two-way ANOVA testing with Bonferroni post-test for multiple-comparison analysis

(for weight gain and OGTT). P-values< 0.05 (indicated by �) or< 0.01 (indicated by ��) were

considered statistically significant (using GraphPad Prism 5.1 and SPSS).

Discussion

The development of insulin resistance and type 2 diabetes mellitus is associated with low-

grade inflammation, or metabolic endotoxemia [10, 12, 16]. Although there is much debate as

to whether intestinal microbiota composition is a causal factor or just a bystander in develop-

ment of T2DM in humans [7, 8, 18, 19], mesenteric visceral adipose tissue inflammation is a

well-known pathophysiological driver of insulin resistance [2]. Others have shown that Gram-

negative flagellin-bearing pathogens, including Ralstonia are present in feces of human T2DM

patients [16, 20]. In agreement with these observations we here demonstrate that DNA from

Gram-negative Ralstonia species resides in human intestine but also in mesenteric visceral adi-

pose tissue. Moreover, R. pickettii fecal concentrations were associated with impaired glucose

tolerance and T2DM in human obese subjects. Furthermore, fecal R. pickettii levels correlated

with plasma adiponectin levels as marker for impaired metabolic control.

experiment. (B) Relative (%) weight gain of glycerol, heat-inactivated (HI)- andR. pickettii-treated mice. HI-R. pickettii-treated mice gained more
weight compared to glycerol- andR. pickettii-treated counterparts. (C) Relative weight (as % of body weight at time of termination) of mesenteric white
adipose tissue (mWAT); epididymal white adipose tissue (eWAT) and kidney white adipose tissue (kWAT). eWAT weight was higher in HIR. pickettii-
treated mice compared to glycerol andR.pickettii-treated mice. (D) qPCR analysis ofR. pickettiiDNA abundance per gram feces (per cage of mice)
treated with glycerol, HI R. pickettii andR. pickettii. (E) qPCR analysis ofR. pickettii DNA abundance per grammesenteric white adipose tissue
(mWAT) of mice treated with glycerol, HIR. pickettii andR. pickettii. N = 10 mice per group. Error bars are represented as mean ± SEM; p values were
determined by Mann-Whitney U test or two-way ANOVA testing with Bonferroni post-test for multiple-comparison analysis (for weight gain). P-
values < 0.05 (indicated by *) or < 0.01 (indicated by **) were considered statistically significant (using GraphPad Prism 5.1 and SPSS).

https://doi.org/10.1371/journal.pone.0181693.g002

Ralstonia pickettii and obesity
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Fig 3. Ralstonia pickettii supplementation reduces glucose tolerance and augments inflammatory tone in DIOmice. (A) Oral glucose
tolerance testing (OGTT) revealed that (HI)-R. pickettii treatment decreased glucose tolerance compared to glycerol treatment in DIO-mice. Area under
the curve (AUC) is represented in the insert. (B) Plasma endotoxin levels (EU/ml) were increased inR. pickettii-treated mice compared with glycerol
and HIR. pickettii-treated counterparts. (C) Relative mRNA expression of Tlr1, Tlr2, Tlr4, Tlr5, IL1B, IL10, TNFα, F4/80,CD68 and IFNγ in mesenteric
white adipose tissue (mWAT) of mice treated with glycerol, HIR. pickettii andR. pickettii. Gene expression was normalized using 36B4 as a

Ralstonia pickettii and obesity
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Our proof-of-concept studies in mice suggested that intestinal bacterial strains like R. pick-

ettiimay indeed be causally linked to the pathophysiology of insulin resistance in obesity. R.

pickettii inoculation reduced glucose tolerance and increased markers of mesenteric visceral

adipose tissue inflammation in DIO mice. Interestingly, heat-inactivated bacteria generated

similar effects as viable bacteria. Lean, chow-fed mice did not develop these pathologies when

challenged with this bacterium. A HFD diet therefore seems to be a prerequisite for R. picket-

tii-mediated augmentation of metabolic derangements.

Our findings align with recent studies using murine conditional knockout models that sug-

gest a distinct role for the intestinal bacterial pathogens and epithelial pattern recognition

receptors in the development of insulin resistance [21–25]. The underlying mechanisms, how-

ever, remain to be studied but could be mediated by intestinal adaptive immune cells such as

Innate Lymphoid Cells (ILC) [26, 27] or via enhanced B cell-mediated IgA antibody produc-

tion against pathogens such as Ralstonia [28]. A potential relation between inflammatory tone,

the innate immune system and TLRs has been implicated in the development of murine obe-

sity and T2DM [5, 29, 30]. On the other hand, intestinal pathogens catabolize mucosal carbo-

hydrates during their expansion that could subsequently enhance bacterial translocation [31].

Bacterial translocation has been defined as the passage of viable bacteria from the gastrointesti-

nal tract to otherwise sterile peripheral tissues. This translocation potentially occurs via mesen-

teric lymph nodes and then to peripheral organs [32]. Recent data obtained from studies in

humans have suggested that bacteria might be able to directly translocate from the intestinal

wall to mesenteric adipose tissue via the circulation [33].

Our study has certain limitations. First, as Ralstonia spp. can be found in different environ-

ments including soil and (drinking) water [34], we cannot fully exclude potential contamina-

tion [35]. However, as we could not identify bacterial (Ralstonia) DNA in human omental and

subcutaneous adipose tissue or in our controls, this seems to be less plausible. Moreover, the

fact that R. pickettii inoculation reduced glucose tolerance in mice reduces the likelihood that

R. pickettii effects are merely due to contamination. Second, it is currently unknown whether

bacterial DNA detected in mesenteric adipose tissue is derived from alive or dead bacteria and

studies using labelled bacteria are needed to study in vivo bacterial translocation. In addition,

it remains to be determined whether bacterial DNA is equally present in all mesenteric adipose

tissue depots along the human gastrointestinal tract and what mechanism underlies potential

Ralstonia translocation. Our findings that HI-R. pickettii-treated mice have reduced circulating

endotoxin levels and reduced 16S rDNA content in mesenteric adipose tissue suggests that in

part alive bacteria are required in order to breach the gut-epithelial lining and reach the extra-

intestinal compartment. Inflammatory markers in mesenteric adipose tissue of HI- or live R.

pickettii-groups, however, were increased to similar extend for some (i.e., IL10, TNFα and

CD68) but not all (i.e., TLR5 and IL1ββ) genes. If and how these differences in inflammatory

expression patterns are related to potential bacterial translocation remains to be determined.

Nevertheless, both HI-R. pickettii and active R. pickettii-treated mice had reduced glucose tol-

erance compared to glycerol-treated controls. Although we have not addressed this option, we

speculate that increased levels of HI- R. pickettiimight be sensed by the local intestinal immune

system, thereby affecting inflammatory tone and augmenting glucose intolerance [36].

In conclusion, this proof-of-concept study shows that specific gram negative intestinal bac-

terial like R. pickettii are associated with the pathophysiology of insulin resistance in obesity.

housekeeping gene. N = 10 mice per group. Error bars are represented as mean ± SEM; p values were determined by Mann-Whitney U test or two-way
ANOVA testing with Bonferroni post-test for multiple-comparison analysis (for OGTT). P-values < 0.05 (indicated by *) or < 0.01 (indicated by **) were
considered statistically significant (using GraphPad Prism 5.1 and SPSS).

https://doi.org/10.1371/journal.pone.0181693.g003
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Our data support the preliminary hypothesis that bacterial translocation of these bacterial

strains might be involved in the development of insulin resistance. Disentangling such a spe-

cific signature of intestinal microbiota involved in insulin resistance shifts might help to apply

approaches aiming to better predict loss of insulin sensitivity and design targeted microbiota-

based interventions in obese humans.

Materials andmethods

Participants

Caucasian subjects (Fig 1A and 1B) (male/postmenopausal females, scheduled for elective

laparoscopic cholecystectomy) were screened by the attending surgeon (n = 12 individuals

included). Inclusion criteria were: age between 18–75 years and body-mass index (BMI)

between 25–40 kg/m2. Exclusion criteria were: malignancy, diagnosed T2DM, chronic inflam-

matory disease and use of probiotics and/or antibiotics in the past three months. Written

informed consent was obtained from all subjects. The study was approved by the AMC Ethics

committee and conducted at the Flevo hospital (Almere, The Netherlands), Sint Lucas Andreas

hospital (Amsterdam, The Netherlands) and Academic Medical Center (Amsterdam, The

Netherlands), in accordance with the Declaration of Helsinki. Participants could continue

their own diet, but were asked to fill out a week-long online nutritional diary (www.

dieetinzicht.nl) to monitor caloric intake. Prior to surgery, anthropometric measurements

were taken and a fasted blood sample was taken to determine levels of metabolic parameters in

plasma. (see S1 Table).

The DIWA study (Fig 1C and 1D) included overweight women (average age 70 years old,

BMI 25.8 to 28 kg/m2) with either normal glucose tolerance (NGT), impaired glucose toler-

ance (IGT) or type 2 diabetes mellitus (T2DM). Exclusion criteria were chronic inflammatory

disease and treatment with antibiotics during the preceding three months. Further details

about this cohort have been described elsewhere [7, 17]. All subjects gave informed consent

and provided a fresh morning stool sample.

Animals

Male C56BL6/J mice were obtained from Charles River Laboratories. Mice were randomly

allocated in treatment groups. Mice were fed a standard laboratory chow diet (Research Diets

Inc., USA) or a high-fat diet (HFD) (60% Kcal fat, D12492, Research Diets Inc., USA) as indi-

cated in the manuscript. Dietary components of the HFD are depicted in Table 1.

Diet-induced obesity (DIO) was realised by feeding mice a HFD for eight weeks starting at

four weeks of age. Mice were housed in a constant 12-hour light-dark cycle with controlled

temperature and humidity and were given access to food and water ad libitum.

Starting at the age of 13 weeks, Ralstonia pickettii (DSM 6297, Deutsche Sammlung von

Mikroorganismen und Zellkulturen) was administered daily for four weeks by oral gavage (106

CFU in 10% glycerol in PBS, final volume 100ul). Heat-inactivated (10 min at 70˚C) R. picketti

(106 CFU in 10% glycerol- PBS, final volume 100ul) and glycerol (10% in PBS, final volume

100ul) were used as controls. Heat-inactivation fully impaired the ability of R. pickettii to grow

(S2 Fig). Viability and purity of all R. pickettii stored at -80˚C was tested up to 12 months by

culture and sequencing. Weight gain and food intake were monitored throughout the treat-

ment period. Feces was collected per cage (n = 5 mice per cage) in week three of treatment.

Oral glucose tolerance tests (OGTT) were performed in week three of the treatment period.

Mice were fasted for 4 hours and blood glucose levels were measured from the tip of the tail.

Mice received an oral bolus of D-glucose (2 g/kg bodyweight in 200ul sterile saline) and blood

glucose levels were subsequently measured at t = 30, 60, 90, and 120 minutes.
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After four weeks of R. pickettii- or control-treatment, mice were terminated by cardiac

puncture under sodium pentobarbital anesthesia. Blood was collected in EDTA-coated tubes

and was kept on ice until centrifugation (8,000xg, 4˚C, 20min). Plasma was aliquoted and used

for analysis immediately or stored at -80˚C. Organs and tissues including mesenteric adipose

tissue (aligning the colon transversum) were quickly excised under sterile conditions, snap-

frozen in liquid nitrogen and stored at -80˚C until further analysis.

All animal experiments were conducted in accordance with the principles of the “Guide to

the Care and Use of Experimental Animals” and were prospectively approved by the Institu-

tional Animal Care and Use Committee ("Dierexperimentencommissie (DEC) of the Aca-

demic Medical Center (AMC) in Amsterdam).

Bacterial DNA isolation and sequencing

Genomic DNA of both prokaryotic and eukaryotic origin was isolated from biopsies according

to the phenol-choloform method as described by Zoetendal et al. [37]. In short, a standardized

amount of fat tissue was treated with a mix of SDS and proteinase K at 55˚C and homogenized

by mechanical disruption using zirconium glass beads (1mm) in the FAST Prep-24 (MP Bio-

medical) in the presence of phenol. The genomic DNA was extracted using a series of phenol/

chloroform extractions and precipitated in the presence of absolute ethanol.

The prokaryotic fraction was studied using a range of 16S rRNA specific primers and

assays. Full-length 16S rDNA amplicons were generated using PCR by using primers Bact-

27F (5’GTTTGATCCTGGCTCAG-3’) and Prok-1392R (5’GCCCGGGAACGTATTCACCG-
3’). The PCR conditions have been described by Rajilic-Stojanovic et al. [38]. The resulting

amplicons were purified and used as input for a nested PCR using primers 968-GC-F

and 1392, generating fragments fit for a diversity analysis by denaturing gradient gel

Table 1. Dietary components of the HFD.

gm% kcal%

Protein 26.2 20

Carbohydrate 26.3 20

Fat 34.9 60

Total kcal/gm 5.24

gm kcal

Casein, 30 Mesh 200 800

L-Cysteine 3 12

Corn Starch 0 0

Maltodextrin 10 125 500

Sucrose 68.8 275.2

Cellulose, BW200 50 0

Soybean Oil 25 225

Lard 245 2205

Mineral Mix S10026 10 0

DiCalcium Phosphate 13 0

Calcium Carbonate 5.5 0

Potassium Citrate, 1 H2O 16.5 0

Vitamin Mix V10001 10 40

Choline Bitartrate 2 0

FD&C Blue Dye #1 0.05 0

Total 773.85 4057

https://doi.org/10.1371/journal.pone.0181693.t001
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electrophoresis (DGGE) profiling using conditions described by Heilig et al. [39]. Impor-

tantly, no amplicons were obtained from control PCRs with water and buffers. The domi-

nant band appearing in the DGGE analyses was subcloned from the DGGE amplicon in a

pGEM-T easy vector (Promega, Leiden, The Netherlands) and transformed into Stratagene

E. coli XL-1 Blue competent cells (Agilent Technologies, Amstelveen, The Netherlands)

according to the manufacturers’ specifications. Clones containing the correct insert that

migrated to the same position as the dominant band in the DGGE gel were subjected to

Sanger Next Generation Sequence analysis (GATC Biotech, Konstanz, Germany). Sequences

were identified by performing a BLAST search (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Sequence analysis of the dominant band appearing in DGGE showed highest similarity to

sequences of Ralstonia species.

Moreover, the genomic DNA was subjected to 454-pyrosequencing of the V4-V6 region of

the 16S rRNA (using primers 520F 5'- AYT GGG YDT AAA GNG -3' and 1100R 5'-
GGG TTN CGN TCG TTG -3'). The quality-controlled reads (normalized to at least 1000

reads per sample) were processed through the QIIME pipeline [40]. To quantify the Ralstonia-

spp. bacteria, we performed a qPCR in the fecal DNA and mWAT DNA samples [41]. Samples

were analyzed in a 25-μl reaction mix consisting of 12.5 μl 1xSYBR Green Master Mix buffer

(Thermo Scientific, Waltham, Massachusetts, USA), water, 0.2 μM of each primer and 5 μl of

template of genomic DNA extracted from feces or mWAT. Standard curve of 16S rRNA PCR

product of Ralstonia pickettii was created using serial 10-fold dilution of purified full length 16S

rDNA PCR product. The qPCR primers were based on R. pickettii (F’: ATGATCTAGC-
TTGCTAGATTGAT; R’: ACTGATCGTCGCCTTGGTG). Data are expressed as copies of 16S
rDNA Ralstonia compared to total bacterial DNA [42].

Plasma endotoxin measurement

Blood LPS endotoxin activity was measured using Endosafe-MCS (Charles River Laborato-

ries, Lyon, France) based on the Limulus amaebocyte Lysate (LAL) kinetic chromogenic

methodology that measures color intensity directly related to the endotoxin concentration in

a sample. Plasma was diluted 1/10 with endotoxin free buffer (Charles River Laboratories) to

minimize interferences in the reaction and heated for 15 min at 70˚C. Each sample was

diluted with endotoxin-free LAL reagent water (Charles River Laboratories) and treated in

duplicate. Two spikes for each sample were included in the determination. All samples have

been validated for the recovery and the coefficient variation. The lower limit of detection was

0.005 EU/ml [43].

Quantitative Real time PCR. Mouse (mesenteric and epidydimal) adipose tissue sections

were homogenized using tissue-magnaLyzer (Roche, Switzerland). Total RNA was extracted

using Tri-pure reagent (Roche). cDNA was prepared by reverse transcription of 1μg total RNA

using a reverse transcription kit (BioRad, USA). Real-time qPCR was performed using Sensi-

fast SYBR master mix (GC biotech). Gene-specific intron-exon boundary spanning primers

were used and all the results were normalized to the house keeping gene 36B4. All samples

were analyzed in duplicate and data were analyzed according to the 2ΔΔCTmethod.

Statistical analysis

MannWhitney tests (two sided) were used to analyze the difference between (clinical) groups.

Spearman rank test (two sided) was used to calculate correlation coefficients. P-values< 0.05

(indicated by �) or< 0.01 (indicated by ��) were considered statistically significant (using

GraphPad Prism 5.1 and SPSS).
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Supporting information

S1 Fig. Lean mice are protected from Ralstonia pickettii-mediated glucose intolerance.

Lean, chow-fed C57Bl6 mice received 10E6 CFU (HI) R. pickettii daily by means of oral

gavage for four weeks. Glycerol was used as control. (A) Relative (%) weight gain during four

weeks of glycerol, HI R. pickettii or R. pickettii administration. (B) Oral glucose tolerance

tests (OGTT) in glycerol, HI R. pickettii or R. pickettii-treated mice. (C) Plasma endotoxin

levels (EU/ml) in 4-hr fasted mice treated with glycerol, HI R. pickettii and R. pickettii. (D)

qPCR analysis of R. pickettii DNA abundance per gram feces (per cage of mice) treated with

glycerol, HI R. pickettii and R. pickettii. (E) Diet-induced obese (DIO) C57Bl6 mice received

10E6 CFU heat-inactivated (HI)- or R. pickettii daily by means of oral gavage for four weeks.

Glycerol was used as control. Relative mRNA expression of Tlr1, Tlr2, Tlr4, Tlr5, IL1B, IL10,

TNFα, F4/80,CD68 and IFNγ in epididymal white adipose tissue (eWAT) of DIO mice

treated with glycerol, HI R. pickettii and R. pickettii. Gene expression was normalized

using 36B4 as a housekeeping gene. N = 10 mice per group. Error bars are represented as

mean ± SEM; p values were determined by Mann-Whitney U test or two-way ANOVA

testing with Bonferroni post-test for multiple-comparison analysis (for weight gain). P-

values< 0.05 (indicated by �) or< 0.01 (indicated by ��) were considered statistically signifi-

cant (using GraphPad Prism 5.1 and SPSS).

(EPS)

S2 Fig. Heat-inactivation fully impairs the ability of R. pickettii to grow. R. pickettii was

heat-inactivated at 70˚C for 10min. HI- or live R. pickettii were streaked onto blood agar plates

and grown aerobically at 37˚C overnight. Arrows indicate example colonies or R. pickettii.

(EPS)

S1 Table. Anthropometric data of human subjects scheduled for surgery.Data are pre-

sented as mean±standard deviation.

(EPS)
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Fredrik Bäckhed, Willem M. de Vos, Max Nieuwdorp.

Data curation: Shanthadevi D. Udayappan, Kristien E. Bouter, Clara Belzer, Noor de Sonna-

ville, Daniel H. van Raalte, Göran Bergström.

Formal analysis: Petia Kovatcheva-Datchary, Patrice D. Cani, Julia J. Witjes, Geesje M. Dal-

linga-Thie.

Funding acquisition:Max Nieuwdorp.

Methodology: Stefan R. Havik, Hilde Herrema, Hans G. H. J. Heilig.

Resources: Guido J. Bakker, Anne Vrieze, Alice Chaplin, Steven Aalvink, Suzan van der Meij,

Bart A. van Wagensveld, WillemM. de Vos, Max Nieuwdorp.

Supervision: Geesje M. Dallinga-Thie, Fredrik Bäckhed, Max Nieuwdorp.
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