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Abstract: The existence of orderly structures, such as tissues and organs is made possible by cell
adhesion, i.e., the process by which cells attach to neighbouring cells and a supporting substance
in the form of the extracellular matrix. The extracellular matrix is a three-dimensional structure
composed of collagens, elastin, and various proteoglycans and glycoproteins. It is a storehouse for
multiple signalling factors. Cells are informed of their correct connection to the matrix via receptors.
Tissue disruption often prevents the natural reconstitution of the matrix. The use of appropriate
implants is then required. This review is a compilation of crucial information on the structural and
functional features of the extracellular matrix and the complex mechanisms of cell–cell connectivity.
The possibilities of regenerating damaged tissues using an artificial matrix substitute are described,
detailing the host response to the implant. An important issue is the surface properties of such an
implant and the possibilities of their modification.
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1. Introduction

A cell is the smallest structural and functional unit of a living organism, capable of
carrying out all basic life processes. Cells show remarkable morphological and biochemical
diversity. They may constitute an independent organism or hierarchically build multicel-
lular organisms. Appropriate structural support makes the orderly organisation of cells
into tissues and organs possible. The substance filling the spaces between cells is called the
extracellular matrix (ECM). It is a network of proteins and polysaccharides secreted locally
by the cells. The composition of the extracellular matrix determines the properties of the
tissue it builds [1].

The correct development of tissue and the maintenance of its functionality result from
a controlled flow of information between cells. Receiving and responding to signals from
the surrounding environment is made possible by receptors. Receptors process and amplify
signals and transduce them into the cell via a series of signalling molecules. Coordinated
interaction between cytoskeleton, receptor and matrix is essential. Therefore, cell adhesion
is a dynamic process and not just a passive anchoring to the matrix [2–4].

As a result of mechanical damage or lesions, the structural integrity of the tissue can
be damaged. The body is often incapable of naturally repairing such defects. Therefore,
the cells need an artificial scaffold that mimics the natural extracellular matrix and the
properties of the regenerated tissue. Such an implant should accelerate the healing process
and, above all, not provoke a negative response from the body. It depends mainly on the
surface properties of the implant. Both new materials and methods of their modification
are constantly being sought to improve patient treatment [5].

2. The Extracellular Matrix—Composition, Structure, Functions

The extracellular matrix is often referred to as the natural scaffold of tissues and
organs. Still, the functions of this structure go far beyond being mere physical support for
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the cells. The extracellular matrix regulates cell life processes from adhesion, differentiation,
proliferation, migration to apoptosis because of the extensive network of matrix compo-
nents, their ability to interact with each other, with signalling factors and with membrane
receptors [2,6–8].

The ECM is an essential component primarily of connective tissue, one of the four
main tissue types in the human body (along with epithelial, muscle, and nerve tissue). It is
a complex mixture of water, proteins, and polysaccharides. The balance of these three com-
ponents is determined mainly by the tissue type (cartilage, bone, fat, connective tissue that
builds tendons, etc.) and by its development stage and pathophysiological state [2,9–12].
The ECM components are locally synthesised and secreted by cells, mainly fibroblasts, the
most numerous, although least specialised, of the connective tissue cells [8,13,14]. The
organisation of the matrix structure is influenced by the arrangement and orientation of the
intracellular cytoskeleton [8].

2.1. Two Types of the Extracellular Matrix

Although the basic organisation of the ECM structure is the same throughout, two
basic types of the matrix are distinguished by their location and composition: the interstitial
matrix, which forms a three-dimensional porous network surrounding the cells (especially
connective tissues), and the pericellular matrix, which is more compact and forms a layer
adjacent to the cells [15,16] (see Figure 1).
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Figure 1. Simplified extracellular matrix structure: three-dimensional macromolecular network
composed of various proteins and polysaccharides. The pericellular matrix forms a layer adjacent
to the cells: integrins bind to polymerised laminin, which, in turn, is connected via nidogen to
the type IV collagen. Interstitial matrix forms porous network of fibrillar collagens, elastic fibres,
and proteoglycans.

The interstitial matrix can be equated with the “proper” matrix, as it forms the struc-
tural scaffolding for the cells. Its basic components are heterotypic fibrils, composed mainly
of type I collagen with small amounts of type III and V collagens in variable proportions,
both playing an important role in fibrillogenesis [16]. The collagens of the interstitial



Cells 2022, 11, 914 3 of 33

matrix are mostly secreted by fibroblasts [17]. Important components of this “amorphous
three-dimensional gel” also include fibronectin and elastin, involved in the organisation of
the structure [18,19].

A typical example of the pericellular matrix is the basement membrane, a delicate and
flexible nanostructure that separates the epithelium from the deeper layers of connective
tissues. It ensheathes smooth, skeletal, and cardiac muscle fibres, Schwann cells, and
adipocytes. The basement membrane forms a specific boundary of many organs in mature
tissues, often surrounding their functional units [16,20–22]. It is mainly composed of type
IV collagen, laminins, nidogens and heparan sulfate proteoglycans (HSPGs): perlecan and
agrin [21]. The basement membrane contains so-called matricellular proteins that do not
contribute to its physical stability or structural integrity, although they may be connected
to building components. Instead, they have regulatory functions and interact with sur-
face receptors, proteases, hormones or other biologically active molecules. They may be
tissue-specific in terms of function and structure [23–26]. Matricellular proteins include
SPARC (secreted protein acidic and rich in cysteine, or osteonectin; characteristic of miner-
alising tissues, mainly bone), thrombospondin-1 (which is rich in platelet α-granules; when
secreted, it causes, among other things, activation of TGF-β1, i.e., transforming growth
factor-beta 1), and tenascin-C (the gene of this protein is expressed during embryonic life,
while in adult tissues, tenascin-C is very poorly detectable, being present rather in the
course of pathological processes [27–29]. The tasks of the basement membrane include
regulation of tissue development, function, and regeneration by controlling the cellular re-
sponse. It is a storehouse of growth factors and modulates their activity and concentration.
It serves to maintain the phenotype of the cells it surrounds [30]. The interstitial matrix and
the basement membrane are closely interconnected, ensuring the integrity of the tissue [16].

The functional equivalent of the basement membrane described above is a type of
pericellular matrix that surrounds chondrocytes in articular cartilage [31]. It acts as a physi-
cal barrier that filters molecules entering and leaving the cells. Together with an adjacent
thin layer of matrix, each chondrocyte forms a structural unit called a chondron [32]. The
morphology of chondrons varies. They can take a discoid/ellipsoid/rounded shape and
a variable orientation, which depends on the position, i.e., the depth of location in the
cartilage. In some cases, a chondron comprises more than one cell (up to four) [33]. In this
case, an essential component of the pericellular matrix is type VI collagen, although it gen-
erally constitutes a negligible percentage of the collagens of cartilage tissue [34]. However,
because of its specific presence in the chondrocyte environment of articular cartilage, it
often serves as a marker of chondrons [34,35]. A characteristic feature of articular cartilage
is the small number of chondrocytes compared to the extensive extracellular (interstitial)
matrix for which synthesis, organisation, and maintenance they are responsible [34].

When describing the types of the ECM, the term ‘pericellular matrix’ is sometimes
omitted and replaced by the basement membrane itself, leading to the mistaken assump-
tion that it is the same structure [17–19]. However, the basement membrane should be
considered a more specialised form of the pericellular matrix.

2.2. Major Components of the Extracellular Matrix and Their Functions
2.2.1. Collagens

Collagen proteins account for up to 30% of all proteins in vertebrates and are major
extracellular matrix components. The basic collagen macromolecules are composed of
three same (homotrimers) or different (heterotrimers) polypeptide chains. They are charac-
terised by the repetitive Gly-X-Y sequences, where X usually stands for proline and Y for
4-hydroxyproline. The intertwined chains form a specific triple helix structure [17,36,37].

Due to their supramolecular organisation, fibrillar (types I, II, III, V, XI, XXIV, and
XXVII) and non-fibrillar collagens are distinguished. Characteristic for the non-fibrillar
collagens is a disrupted continuity of the typical structure. Compared to fibrillar collagens,
they contain shorter (although more numerous) helical (collagenous) domains interspersed
with so-called telopeptides, i.e., non-helical domains. As a result, they may occur in various
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forms, forming, e.g., network systems (types IV, VIII, X), anchor fibres (type VII), beaded
filaments (type VI), or belong to the FACIT group (i.e., fibril-associated collagen with
interrupted triple helix, types XI, XII, XIV, XVI, XIX-XXII). The terminology and affiliation
are not fully systematised. Collectively, collagens form a family of 28 proteins [38–44].

Historically, collagens were thought to have only a supportive function. Although
their main function is indeed to form the structural scaffolding of cells (especially for types I,
II, and III), it is known that their role is much broader [15,18,37,45]. Collagens are involved
in regulating the course of cell adhesion (as ligands of cell receptors) [46–49], cell migration
(contact guidance) [50–52] and tissue reconstruction and remodelling [37,40,45,53,54]. Not
only is the physical deposition or movement of cells itself important, but also the processes
conditioned by this, e.g., wound healing, immune response, etc. Although collagens are
present in most body tissues and affect their mechanical properties, their distribution
varies, e.g., type I collagen is characteristic of bone, skin and tendon, and type II collagen of
cartilage tissue [55,56].

2.2.2. Elastin

Elastin is a hydrophobic fibrillar protein, which owes its characteristic elastic properties
to extensive covalent cross-linking of the structure [57]. The monomer from which the
mature insoluble protein is formed is tropoelastin, secreted by fibroblasts, smooth muscle
cells, endothelial cells, respiratory epithelial cells, chondrocytes, and keratinocytes [58–62].
After secretion into the intercellular space, tropoelastin spontaneously associates into
larger particles through interactions between hydrophobic domains in a process called
coacervation [63]. Such precursors undergo oxidative deamination of lysine residues in
tropoelastin. The process is catalysed by LOX family enzymes (lysyl oxidases). The result
is the formation of allysine from lysine. Cross-linking occurs via the reaction between
lysine and allysine residues (Schiff base reaction) or by aldol condensation of two allysine
residues [64–67]. The final fibres are not composed of elastin alone. Elastin forms a core
(about 90% of the whole structure), covered by an envelope of microfibrils composed
mainly of glycoproteins from the fibrillin group (fibrillin-1 and -2) [58,68,69]. In this way,
elastic fibres are formed, giving tissues susceptibility to stretching. They are a particularly
important component of blood vessel walls, skin, lungs, heart, tendons, ligaments, bladder,
elastic cartilage tissue (e.g., auricle, larynx, epiglottis), etc. [15,68,70].

The gene expression and formation of elastic fibres occur at early development stages
—prenatal and early childhood. De novo production of elastin in adult organisms is unlikely
to occur, which is quite uncommon among the ECM components [58,71–74]. However,
elastin has high metabolic stability and a half-life of approximately 70 years, making
the limited synthesis time sufficient (by comparison, the half-life of type VII collagen is
estimated to be approximately one month [75,76]. The adult organism cannot reconstitute
elastic fibres that become damaged or degrade progressively with age. They are then
repaired incorrectly and consequently do not perform their normal functions. The tissues
become too stiff, leading to cardiovascular disease, lung disease or typical signs of ageing,
such as loss of skin elasticity [15,67,77,78].

2.2.3. Proteoglycans

Proteoglycans are macromolecules of a complex three-dimensional structure. They are
composed of a protein core covalently linked to one or more chains of glycosaminoglycans
(GAGs), a type of linear, unbranched heteropolysaccharides. The glycosaminoglycan
chains may belong to one or different types. Based on localisation, four basic groups of
proteoglycans can be distinguished: intracellular and those occurring on the cell surface, in
the pericellular space (basement membrane) or intercellular space [15,79–81].

GAG chains are built by repeating disaccharide units, where one residue is an amino
sugar (N-acetylated hexosamine), and the other is uronic acid (D-glucuronic or L-iduronic
acid). GAGs differ in the type of monosaccharide residues and the geometry of the link-
ages between the constituent units (α- and β-glycosidic linkages) and the degree of sul-
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fation of the polysaccharide backbone and the position of this substitution. Based on
the chemical structure of the chain, four basic groups of glycosaminoglycans are distin-
guished: heparan/heparan sulfate, keratan sulfate, chondroitin sulfate/dermatan sulfate,
and hyaluronic acid [15,82–86]. Hyaluronic acid represents the simplest type of struc-
ture. It is the only one that does not contain sulfate groups (hydroxyl groups are not
esterified with sulfate groups) and does not undergo complex modifications in the Golgi
apparatus [84,87,88]. Unlike other GAGs, it does not form covalent bonds with proteins
and, therefore, is not part of typical proteoglycans. Instead, it can exist in the form of
non-covalent complexes with other protein components of the ECM [85,86,89–91].

Hyaluronan has excellent water retention ability. It is abundant in the skin, cartilage,
brain, vitreous body, umbilical cord, and synovial fluid. Its physical and physiological
properties depend on molecular weight and concentration in the tissue. When highly con-
centrated, hyaluronan molecules form a three-dimensional meshwork structure exhibiting
remarkable viscoelasticity. The organised structure acts as a molecular sieve of proteins
and other macromolecules. Hyaluronan is reported to modulate cellular behaviours via the
reprogramming of cellular metabolism coupled to its production [92]. Hyaluronan activates
signalling cascade by interacting with CD44 receptor. CD44 was originally identified as
a hyaluronan and hyaluronic acid receptor but can bind to various other ligands. It also
serves as a marker for stem cells of several types [93].

Glycosaminoglycan chains (and, therefore, the proteoglycans) are negatively charged.
It is the result of carboxyl and sulfate residues in their structure [88,94]. Due to the
strong negative charge, these molecules tend to elongate in solution under physiological
conditions. This allows them to bind large amounts of water and form a gel. Such properties
provide tissues with resistance to deformation by high physical forces, as exemplified
by aggrecan, the most important cartilage proteoglycan [79,86,95,96]. The proteoglycan
family also includes compounds, such as syndecans (trans-membrane receptors; they
bind numerous ligands present in the ECM, mediate signal transduction, cell adhesion,
migration et al.) [97,98], serglycin (the only known intracellular proteoglycan; found in
leukocyte granules, regulates granulopoiesis) [99–101], perlecan and agrin (characteristic
of the basement membrane, regulators of many cellular processes; agrin is involved in
the formation of neuromuscular synapses) [102–107] and fibromodulin (involved in the
collagen fibrillogenesis) [108,109].

2.2.4. Glycoproteins

Like proteoglycans, glycoproteins are composed of covalently linked protein and
carbohydrate parts. However, the saccharide chains are much shorter, contain no (or few)
repeating units, and are usually branched [2,110,111]. Glycoproteins often act as connectors
in the ECM, as they have functional groups capable of binding other proteins, growth fac-
tors, or receptors [2,112,113]. Their participation is essential for many biological processes:
fertilisation, immune and inflammatory response, blood coagulation, wound healing,
etc. [112,114–120]. The two most important glycoproteins are fibronectin and laminin.
The glycoprotein family also includes fibulins [121], tenascin [122], fibrinogen [123], vit-
ronectin [124], osteonectin [27], bone sialoprotein [125], and reelin [126].

The basic structural unit of fibronectin is a dimer composed of two nearly identical
polypeptide chains linked by a pair of disulfide bonds. Each such chain is built by ir-
regularly repeating amino acid units (types I, II, and III), forming a mosaic structure of
the protein. The molecules consist of domains, i.e., differently structured sections with
different functions [127–129]. Fibronectin contains domains capable of interacting with the
ECM proteins (e.g., collagen), glycosaminoglycans, surface receptors and other fibronectin
molecules. Due to these properties, fibronectin can simultaneously bind to cells and com-
ponents of the surrounding matrix [128,130–134]. In the body, fibronectin exists in two
forms: soluble plasma fibronectin (synthesised by hepatocytes and secreted into the blood)
and insoluble cellular fibronectin (produced by fibroblasts, endothelial cells, chondrocytes,
myocytes, and others). The insoluble form is a fibrillar cross-linked structure on the cell
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surface and in the ECM. It is responsible for cell adhesion, proliferation, migration, and the
ECM protein deposition [128,135–139]. Both forms of fibronectin are encoded by one gene,
while structural differences result from alternative mRNA splicing [140,141].

Laminins are a group of large, multi-domain glycoproteins of a heterotrimeric structure.
The three subunits (α, β, and γ chains) connected by a pair of disulfide bonds form a charac-
teristic Latin cross-shaped structure (a Y-shape/rod shape form is also possible [142–144]).
The three shorter arms (their globular N-terminal domains) are mainly involved in laminin
polymerisation and network self-assembly. At the same time, the longer one mediates
cell–cell interactions by binding to receptors [145–149]. Proteins of the laminin family
are an integral part of the basement membrane and play an essential role in forming and
maintaining its structure. A critical step in developing the basement membrane is the
polymerisation of laminin [149–151]. This process is initiated by binding laminin molecules
to the cell surface. A connection is formed between the long arm of the protein and the
receptors—cognate integrin and dystroglycan. As a result, there is a local increase in the
concentration of laminin, and after exceeding a critical value, polymerisation occurs. The
structure, thus, formed binds to nidogens and HSPGs (perlecan). The entire network is
further stabilised by polymerising type IV collagen [151–158]. The basement membrane
layer built up by the complex network of the described components is called lamina densa
(the middle layer between the lamina lucida and the lamina fibroreticularis [159].

2.3. The Dynamic Structure of the Extracellular Matrix

The structure of the extracellular matrix undergoes continuous remodelling, during
which changes in its composition and overall architecture occur. Cells embedded in
the ECM are actively involved in its reorganisation. In addition to synthesising and
secreting building components, they are also the source of enzymes that degrade these
components. Remodelling processes are complex and must be tightly regulated to maintain
environmental homeostasis [19,160–162].

Protein-degrading enzymes belong to the class of hydrolases and are called proteases
(proteinases). Depending on the mechanism of catalysis, they can be divided into several
families, including serine proteases (serine residue in the enzyme active site), cysteine
proteases (cysteine residue) or metalloproteases (they require the presence of a metal cation
in the active centre). These enzymes can be secreted by the cell into its external environment
or remain anchored in the cell membrane [163,164].

The main group of enzymes involved in ECM degradation are the zinc-dependent
matrix metalloproteinases (MMPs). More than 20 representatives of this group are known,
capable of degrading different types of collagen, gelatin, elastin, laminin, fibronectin and
many others [165–167]. The sources of MMPs are mainly connective tissue cells (fibroblasts,
osteoblasts), inflammatory cells (macrophages, neutrophils, mast cells), and endothelial
cells [165,168]. MMPs are secreted in the form of zymogens, inactive precursors that
must undergo biochemical modifications to be activated [19,165,168]. Through controlled
degradation of ECM proteins, metalloproteinases facilitate cell migration and trigger the
release of growth factors [169–171]. They participate in tissue remodelling, an interesting
example of which is postpartum uterine involution. In addition, they regulate angiogenesis
(blood vessel formation), wound healing, embryonic development, etc. [165,172,173]. In
pathological states, their abnormal and/or increased activity contributes to the course of
cardiovascular, cancer, autoimmune diseases, etc. [165,174–176].

The proteolysis occurring in tissues relates not only to the extracellular matrix per
se but also concerns the so-called ectodomain shedding, i.e., proteolytic cleavage of cell
surface proteins. Modification, degradation, and changes in the activity of these proteins
are one of the mechanisms of the cell’s response to changes in microenvironment condi-
tions [177,178]. Enzymes of the ADAM (a disintegrin and metalloproteases) family, also
known as adamalysins, are mainly involved in this process. They have various functions,
primarily engaged in intercellular interactions and signal transduction [19,179,180]. The
release of biologically active extracellular domains of multiple proteins (cytokines, adhesion
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molecules, growth factors) from the cell membrane can contribute, e.g., to inflammation
(physiological and pathological), as occurs as a result of ADAM17 enzyme activity. The
pro-inflammatory action of this sheddase consists of a modification of the cell surface and
enrichment of its environment with active soluble molecules [181–184]. The structure and
function of ADAM group proteins are similar to the metalloproteinases found in snake
venom, responsible for the typical effects of snakebites (haemorrhage, tissue necrosis) [185].

2.4. The Extracellular Matrix as a Storehouse of Growth Factors

The ECM significantly influences the cell’s most important natural biological processes:
growth, proliferation, and programmed death [186]. In addition to mediating interactions
and activating relevant mechanisms by contact with its building proteins, the ECM serves as
a storehouse of growth factors (and proteases and protease inhibitors). These molecules can
be released by proteolytic degradation of the matrix, and the degradation itself regulates
the rate, site and intensity of such activation. The fact that growth factors are stored in the
vicinity of cells favours increased specificity of their action [19,187–189].

Growth factors are generally not freely dispersed in the extracellular space but bind,
for example, to heparan sulphate proteoglycans. HSPGs then participate in the matrix
storage function by preventing the movement and proteolysis of growth factors. They
allow their controlled release when necessary. However, another role of HSPGs is also to
bind to such molecules to activate them. Then, they act as a coreceptor in ligand–receptor
interactions [187,190–192]. The type of interaction of HSPGs with growth factors depends
on the localisation of these proteoglycans. They may remain anchored to the cell membrane
or form a structural component of the ECM [193].

A well-studied group is the fibroblast growth factors (FGF), which include 22 proteins
with key functions in cell development, morphogenesis, tissue repair processes, and angio-
genesis. They are among the neurotrophic factors, i.e., those that stimulate and regulate
neurogenesis. Some are being investigated for involvement in the development of de-
pression [192,194]. FGF molecules are mainly bound by heparan sulfate and heparin
chains [195,196]. Proteolytic release of FGF allows subsequent binding of FGF ligands to
receptors on the cell surface. This stimulates cell signalling [2].

Another example is transforming growth factor-beta (TGF-β), specifically its three iso-
forms, responsible for stimulating and inhibiting cellular proliferation. Among other things,
the TGF-β cytokine controls the course of wound healing by interacting with different cell
types. For example, TGF-β1 is released in large amounts at the wounding site by platelets
and stimulates chemotaxis of monocytes and fibroblasts [197]. Cells secrete biologically
inactive TGF-β molecules, which, in the latent form, are bound by matrix proteins (via
glycoproteins of the LTBP family bound to ECM proteins, mainly fibronectin and fibrillins)
in the form of complexes [188,198,199]. TGF-β activation (in vivo and in vitro) can occur in
several ways: through enzymatic proteolysis of the complex (matrix metalloproteinases,
serine proteases) [200,201], interaction with integrins [202–204] or other proteins [205,206]
and in response to physicochemical conditions (radiation [207,208], low/high pH [209,210],
temperature [211], and reactive oxygen species [212]).

2.5. Anoikis—Programmed Death

The normal functioning of most cells depends on their proper connection to the matrix.
The cell is informed of this connection mainly by integrins (one type of membrane protein),
acting as the ECM signal transducers [3,8,213,214]. However, if a cell detaches from the
surface of the matrix, there is a risk that it will move and become embedded elsewhere.
To prevent the abnormal proliferation of cells away from their parent tissue, a defence
mechanism called anoikis (Greek for homeless), a type of apoptosis, is induced in the
adherent cell if contact with the matrix is lost [215–218].

The term anoikis was introduced in 1994 by Frisch and Francis, who conducted studies
on Madin–Darby Canine Kidney (MDCK) [217]. The relationship between a cell’s ability
to anchor to a substrate and proliferate by affecting cell cycle progression was already



Cells 2022, 11, 914 8 of 33

known [219]. In subsequent years, this form of apoptosis was studied and described in
a number of different types of adherent cells, such as fibroblasts [220,221], endothelial
cells [222,223], keratinocytes [224,225], oligodendrocytes (glial cells) [226], and neurons
(dopaminergic) [227], as well as bronchial [228,229], intestinal [230–232], or mammary
gland epithelial cells [233]. The mechanism of anoikis can be induced by various signalling
pathways, all of which ultimately lead to the activation of proteolytic enzymes of the
caspase family and the degradation of cellular proteins [224,233–236]. Apoptotic cell
death comes to an end with removing the cell’s genetic material, i.e., DNA fragmentation
controlled by endonuclease enzymes [236,237].

The acquisition of resistance to anoikis is a characteristic feature of circulating tumour
cells, enabling them to survive in non-adherent conditions. After detaching from the
primary tumour, they are transported with the peripheral blood and are responsible for
forming metastases [236]. Studies suggest that there are different mechanisms for the
development of such immunity [238–241].

2.6. Genetic Mutations of Matrix Components and Their Consequences

To emphasise how important the extracellular matrix components are for the proper
functioning of the organism, one should look at the consequences of abnormalities in their
synthesis. The consequence of mutations in genes encoding the ECM proteins is a wide
group of genetic disorders of connective tissue, with better or worse understood pathogen-
esis and often varied course. Dysfunction of the matrix may occur due to two different
mechanisms of mutations. The first one involves a violation of the structural integrity of
the matrix by quantitative reduction in its components as a result of nonsense mutations
(formation of a premature stop codon) and/or frameshift mutations (insertion/deletion
of a number of nucleotides indivisible by three). In the second type, the secretion of mu-
tant proteins qualitatively affects the matrix structure, as it disrupts the stability of their
interactions with normal, genetically unaltered components [242,243].

One of the most important is osteogenesis imperfecta (OI), a group of inherited
disorders characterised by low bone mass leading to increased bone susceptibility to
fracture [242,243]. The incidence rate is estimated to be around 1/10,000 births [244], so
it is a relatively rare condition. In most cases, OI is caused by mutations in the genes
encoding the α1(I) and α2(I) chains of type I collagen, manifesting as reduced production
of this protein or its structural deformities [244,245]. Several clinical types of OI have
been identified. According to Sillence’s 1979 classification, four are distinguished based
on clinical and radiological symptoms and mode of inheritance [246]. New OI types have
been described in recent years, resulting from mutations in so-called non-collagenous
genes [247]. Clinically, however, they do not differ from the classical forms of this disease
and are, therefore, included in them [242]. A rather peculiar symptom of OI is the blue
sclera. Collagen fibres are one of the main building components of the sclera. A reduction
in their thickness causes the deeper-laying choroid to become visible [244,248,249].

Another group of diseases mainly associated with abnormalities in the synthesis
of fibrillar collagens or enzymes responsible for their post-translational processing is
Ehlers-Danlos syndrome (EDS). Thirteen subtypes of EDS have been recognised (six ac-
cording to the older Villefranche classification), manifested by a range of symptoms. The
most characteristic is joint hypermobility, skin hyperelasticity, and general tissue tender-
ness [250–252]. The changes seen in classical EDS include loosely and irregularly packed
collagen fibres and fibres called “cauliflowers” because of their characteristic cross-sectional
shape. In the normal fibres, the cross-section is circular [251,253]. People affected by the
vascular type of Ehlers–Danlos syndrome have translucent skin, a distinctive facial appear-
ance (thin lips and nose, small chin, large eyes), and are prone to spontaneous bruising and
a rupture of the arteries, intestine, and, in the case of pregnancy, the uterus [254,255]. It is
estimated that between 1/2500 and 1/5000 people suffer from EDS. These numbers may be
underestimated because patients with mild symptoms often go undiagnosed [252,255,256].
Depending on the type, EDS is inherited in an autosomal dominant or recessive manner,
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but a de novo mutation may also occur [252]. Like OI, Ehlers–Danlos syndrome is an
incurable disease. Current therapies are aimed only at improving the quality of the patient
life [255].

Genetic diseases of connective tissue do not only include abnormalities in collagen
synthesis. One of the representatives of fibrilinopathies is Marfan syndrome (MFS), caused
by a mutation in the FBN1 gene located in chromosome 15, which encodes fibrillin-1 [257].
Structural defects of this protein result in a violation of the stability of elastin fibres and
their disorganisation in the connective tissue of various organs [258,259]. In addition,
fibrillin-1 can bind TGF-β, so its dysfunctions result in increased levels of free TGF-β,
activating abnormal degradation mechanisms [260]. The greatest threat to the lives of
patients diagnosed with MFS is related to cardiovascular dysfunction. Progressive aortic
root dilatation associated with the disintegration of elastin fibres causes aortic dissection,
dangerous especially in the ascending part, i.e., closest to the heart. The formation of
aneurysms is also possible. If undiagnosed and untreated, such abnormalities can be
fatal at an early age [261–263]. Nevertheless, the most characteristic changes in the MFS
course are those in the osteoarticular system. These include disproportionately long
limbs and arachnodactyly (“spider fingers”), deformities of the thorax and spine (scoliosis,
pathological kyphosis), protrusion acetabula (medial displacement of the acetabulum into
the true pelvis), and overly flexible joints. These changes are often accompanied by ocular
abnormalities, such as ectopia lentis [261,264,265]. Due to medical advancement, especially
the possibility of preventive aortic aneurysm surgery, the life expectancy of people affected
by Marfan syndrome has nearly doubled over the years [261,265,266].

Disorders caused by mutations in genes encoding elements of the extracellular matrix
are, of course, far more numerous than those mentioned. They include several other
collagenopathies, such as Stickler syndrome [267,268], Bethlem myopathy [269,270], Ullrich
congenital muscular dystrophy [271,272], or the dystrophic epidermolysis bullosa [273,274].
Conditions may also result, for example, from abnormalities in the structure and function
of perlecan (Schwartz–Jampel syndrome [275,276]), laminin (Pierson syndrome [277,278]),
fibulin (age-related macular degeneration [279,280]). Many of those mentioned are rare
disorders, still poorly understood.

3. Interactions between Cells and Their Environment

Receiving signals from the surrounding environment is essential for normal cell
development and function. The environment includes other cells, the extracellular matrix
and various soluble factors. Information arriving from outside as a ligand (chemical
substance) or physical stimulus is received by a membrane receptor or intracellular receptor.
The information is transduced (carried and appropriately transformed) into the cell. It
initiates a series of reactions and changes the cell’s physiological behaviour or maintenance
of appropriate activity. A complex communication system is the basis for regulating cellular
processes and, as a result, the functioning of the whole organism [2,281,282].

3.1. Forms of Signalling

The basic type of communication between cells is the transfer of information in the
form of a chemical compound, i.e., a protein, peptide, amino acid, lipid or their derivatives.
These are various hormones, cytokines, growth factors, neurotransmitters, etc., synthesised
by signalling cells. Once released into the intercellular space, they can be bound as ligands
by receptors capable of recognising them [283–290]. Depending on the distance the ligand
must travel between the signalling and target cell, endocrine, paracrine and autocrine
signalling can be distinguished. A fourth type is signalling by direct contact [4,8] (see
Figure 2).
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Endocrine signalling occurs via hormones. Hormones are produced by specialised
cells, secreted into the bloodstream, and distributed throughout the body. With the blood-
stream, they reach distant target cells. It is, therefore, long-distance signalling, but it occurs
relatively slowly because it depends on the speed of blood flow [4,8,291]. The distance
covered by the signalling molecule is shorter in paracrine signalling. It acts as a local carrier
and affects cells in the immediate vicinity. A specific form of this type of communication
is synaptic signalling. Two nerve cells (or a nerve cell and a target cell) are bound by a
connection called a synapse, usually a chemical synapse. There are also electrical synapses,
which work by the direct flow of ions. Stimulated by a nerve impulse, the presynaptic
(transmitting) neuron releases a neurotransmitter, carrying the information to the postsy-
naptic (receiving) neuron [4,8,284,292–296]. In autocrine signalling, the cell responds to
substances secreted by itself, i.e., it both produces a ligand and has a receptor that binds
it. Such a mechanism is fundamental in the early stages of organism development or
inflammatory processes. It is also characteristic of cancer cells [4,8,293,297–299]. Direct
interaction between cells, i.e., juxtacrine signalling, does not use molecules secreted into
the extracellular space. Two cells connect via complementary surface proteins, one acting
as a signalling agent and the other as a receptor. An example is pathogen recognition by
immune cells. Cells can also form gap junctions, water-filled protein channels made up of
two connexons, hexameric assembly of connexin proteins. The gap junction is the contact
site between the cytoplasm of neighbouring cells. It allows substances, rather small in size,
such as calcium ions, to flow between them [4,284,300–305].

An important issue is the effect of the ligand binding to the receptor, as not every
ligand causes receptor stimulation. A signalling substance that, when bound, changes the
receptor’s conformation (i.e., has intrinsic activity) and causes a programmed change in
cellular activity is called an agonist. The opposite of an agonist is an antagonist, which
has no intrinsic activity despite its ability to bind to a receptor. An antagonist blocks the
receptor without eliciting a biological response from the cell and prevents activation by the
agonist [306,307].
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3.2. Receptors

The activity of receptors mainly involves converting one form of signal into another,
which usually initiates a multi-step chain of information transfer through several signalling
molecules. Often the signal is also amplified. In this way, signalling cascades are formed,
leading to an effector response, i.e., various changes in cell activity [308–313].

The vast majority of signalling molecules do not enter the cell. The classical model is
based on ligand binding by a specific receptor protein. Exceptions include small lipophilic
molecules that can cross the barrier formed by the cell membrane, the lipid bilayer. The
external signal is then received by intracellular receptors, located mainly in the cell nucleus
or cytoplasm [4,8]. Steroid hormones belong to this type of signalling molecules. For years,
it has been a common belief that they enter the cell by passive diffusion. However, they
may require the involvement of transporter proteins [314–318].

A cell is exposed to hundreds of signalling molecules, so it must respond selectively,
i.e., have the right set of receptors. It makes the cell capable of completely bypassing some
of the signals. Different cells may respond differently to the same signalling molecule
depending on the signalling pathway initiated [319–321].

Receptors can be divided into two main groups: intracellular and cell-surface (mem-
brane) receptors. Intracellular receptors have already been described as interacting with
steroid hormones. They also bind thyroid hormone, retinoic acid (a derivative of vitamin A)
and vitamin D. The receptors for these compounds belong to the nuclear hormone receptor
superfamily, formed by structurally homologous proteins. The name can be misleading,
as the subcellular location of the unliganded receptors varies. However, after binding to
a ligand, they are mainly translocated to the cell nucleus, where they act as transcription
factors, i.e., regulate gene transcription. A specific group of orphan intracellular receptors
is included in this superfamily. The existence of endogenous ligands binding to them has
not been confirmed [322–326].

Cell-surface receptors are anchored to the cell membrane. Depending on the type of
information transfer, three subtypes of cell-surface receptors are distinguished (see Figure 3).
The first is enzyme-linked receptors (catalytic receptors). The binding of a ligand from the
extracellular side causes conformational changes (phosphorylation/autophosphorylation)
of the receptor, stimulating enzymatic activity of its cytoplasmic domain. Most commonly,
the intracellular domain is responsible for a tyrosine kinase (insulin receptor, growth factor
receptors) or serine/threonine protein kinase (TGF-β superfamily receptors) activity. The
receptor’s conformation in an inactive form prevents the attachment to the active site
(enzymatic domain) of a substrate molecule, i.e., various types of cytosolic proteins that
modulate intracellular reactions [327–332].

The second group are ligand-gated ion channels, called ionotropic receptors. Ion
channels are protein structures that pierce the lipid bilayer and control the flow of ions into
or from the cell. A conformational change in the receptor protein caused by the binding of
a signalling molecule causes the channel to open. Flow occurs according to a concentration
gradient (by diffusion). Ion channels are selective, which means that they distinguish
between positive and negative ions. It is determined by the charge accumulated on the side
chains of the amino acids. Ion channels are permeable (mainly, but not exclusively) to ions
of a given type, e.g., sodium ions [333–337]. The function of channels can be stopped by
binding of so-called blockers [338]. In addition to ligand-gated ion channels, there are also
voltage-gated ion channels (activated by changes in electrical membrane potential) and
stretch-activated ion channels (responding to membrane stress) [339–341].

G protein-coupled receptors (GPCRs) are the most numerous and highly diverse
cell-surface receptors. All GPCRs are composed of a single polypeptide chain, piercing
the cell membrane seven times; hence, they are also called seven-transmembrane recep-
tors (7TM). The hydrophobic transmembrane domains are α-helical regions of the chain,
connected by hydrophilic intracellular and extracellular loops. The carboxyl end of the
polypeptide (C-terminus) is located on the cytosolic side of the cell membrane, while the
amino end (N-terminus) is located in the extracellular region. Together with the extracellu-
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lar and intracellular loops, they are involved in ligand binding and G-protein interactions,
respectively [342–344]. G-proteins are proteins binding GTP/GDP likewise. They have a
heterotrimeric structure and belong to one of four distinguished families depending on the
amino acid sequence in the α subunit [345]. In the inactive state, the α subunit binds GDP
and forms a complex with the Gβγ dimer. Activation induced by ligand attachment to the
extracellular domain of the GPCR receptor results in the release of GDP, the binding of GTP
in its place and the dissociation of Gα-GTP from the βγ subunits. Both structures (Gα-GTP
and Gβγ) can participate in further signal transduction to effector proteins. Hydrolysis of
GTP to GDP due to the intrinsic GTPase activity of the Gα subunit leads to the re-formation
of a Gα-GTP complex with Gβγ, ready for subsequent activation [345–349].

Cells 2022, 11, x FOR PEER REVIEW 12 of 34 
 

 

 

Figure 3. Cell surface receptors embedded in the cell membrane. They act by ligand binding to the 

extracellular domain of the receptor. The intracellular (cytoplasmic) domain of the receptor com-

municates via interactions with effector proteins. 

The second group are ligand-gated ion channels, called ionotropic receptors. Ion 

channels are protein structures that pierce the lipid bilayer and control the flow of ions 

into or from the cell. A conformational change in the receptor protein caused by the bind-

ing of a signalling molecule causes the channel to open. Flow occurs according to a con-

centration gradient (by diffusion). Ion channels are selective, which means that they dis-

tinguish between positive and negative ions. It is determined by the charge accumulated 

on the side chains of the amino acids. Ion channels are permeable (mainly, but not exclu-

sively) to ions of a given type, e.g., sodium ions [333–337]. The function of channels can 

be stopped by binding of so-called blockers [338]. In addition to ligand-gated ion channels, 

there are also voltage-gated ion channels (activated by changes in electrical membrane 

potential) and stretch-activated ion channels (responding to membrane stress) [339–341]. 

Figure 3. Cell surface receptors embedded in the cell membrane. They act by ligand binding to
the extracellular domain of the receptor. The intracellular (cytoplasmic) domain of the receptor
communicates via interactions with effector proteins.



Cells 2022, 11, 914 13 of 33

Cell Adhesion Molecules (CAMs)

A specific group of proteins are molecules involved in cell–matrix and cell–cell adhe-
sion. The known representatives of this group are classified into four families: integrins,
selectins, cadherins, and immunoglobulin superfamily (IgSF) (see Figure 4). This division
is due to differences in molecular structure and is strongly related to the heterogeneity of
the types of cellular connections formed by these cell-surface receptors [350].
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Figure 4. Four families of cell adhesion molecules (CAMs). They are involved in the binding of cells
with other cells or with the extracellular matrix in a process called cell adhesion.

Many CAMs are integrins, heterodimers composed of non-covalently linked α and
β units. The large extracellular domain provides the binding site for their ligands, while
the much shorter cytoplasmic domain binds to cytoskeletal proteins. Integrins mediate
bidirectional signal transmission (environment-cell and cell-environment) as they can
be activated by proteins that bind to extracellular and intracellular domains [351–353].
Cell-to-cell adhesion is enabled by the formation of connections between integrins and
the ECM components: collagens, fibronectin, vitronectin, laminin et al. [354]. In the focal
adhesion type connection, the cytoplasmic domain of the integrin is bound to actin filaments
through adapter proteins, such as vinculin, paxillin, or talin [355–359]. Focal adhesion
kinase, a cytoplasmic tyrosine kinase that, when activated, initiates signalling pathways that
regulate various cellular functions, plays an important role in the transmission of the signal
received by integrin receptors from the ECM [355,360,361]. Another type of integrin adhesion
junction are hemidesmosomes. These specialised multiprotein complexes are responsible for
anchoring epithelial cells to the basement membrane by binding to cytoskeletal filaments
(keratin intermediate filaments) via plectin. The stability of such connections is vital in
maintaining the integrity of the skin, where integrins are involved in the formation of the
structure: basal keratinocytes—basement membrane—dermis [354,362,363].

Selectins have a multi-domain structure and are characterised by a lectin domain in
their extracellular (N-terminal) part. It allows them to mediate cell–cell interactions by
recognising and binding carbohydrates present on cell surfaces. The mechanism is calcium
ion-dependent [364,365]. Due to differences in structure and pattern of cell-type expression,
three types of selectins are distinguished: leukocyte (L)-selectin, platelet (P)-selectin, and
endothelial (E)-selectin. L-selectin is found on the surface of leukocytes. P-selectin is stored
in membranes of α granules of platelets and Weibel–Palade bodies of endothelial cells.
After activation, P-selectin is incorporated into the membrane of these cells. E-selectin
resides in vascular endothelial cells, but a noticeable increase in its surface expression
occurs only after stimulation with the appropriate cytokines. Therefore, E-selectins act as a
sensitive indicator of the inflammatory process [366–368]. The basic function of selectins is
to mediate heterotypic interactions between leukocytes and endothelial cells in the initial
stages of the inflammatory reaction. The effect of such binding is the so-called leukocyte
rolling along the endothelium and their migration to the site of damage/inflammation.
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It also contributes to the activation of relevant combinations of signalling factors. In the
inflammatory process, selectins interact with integrins [367,369–373].

Cadherins are a significant group of calcium ion-dependent CAMs. Primarily, they
are mediators of homotypic adhesion, i.e., interaction of two cadherins of the same type.
An increase in calcium ion concentration causes a stiffening of the cadherin molecule,
which can bind to the cadherin of a neighbouring cell [374,375]. The cadherin family
includes several subfamilies. The best known are classical or type I cadherins and atypical
or type II cadherins. Representatives of each subfamily differ in the structure of the
extracellular part, i.e., in the number of ectodomain (EC) modules with a repetitive amino
acid sequence [375–378]. Classical cadherins are bound to actin filaments of the cytoskeleton
via -β-catenin-α-catenin- linkage [379]. It is a dynamic rather than a stable structure, where
α-catenin additionally acts as a regulator of the organisation of actin filaments [378,380].
Desmosomal cadherins (desmoglein and desmocollin) have a similar extracellular domain
structure to classical cadherins. They participate in cell-to-cell adhesion through structures
called desmosomes. The cytoplasmic domain of these cadherins binds to other intracellular
anchor proteins (desmoplakin, plakoglobin, plakophilin) and, consequently, to intermediate
filaments. One of the hallmarks of the desmosome is the outer dense plaque, consisting
of mediatory proteins. Desmosomes provide strong intercellular adhesion. Thus, they
are particularly abundant in tissues such as the epidermis and myocardium continually
assailed by mechanical forces [378,381,382].

The immunoglobulin superfamily (IgSF) is one of the most numerous and diverse
proteins described in the body. The structural feature that determines membership of this
superfamily is the presence of one or more characteristic immunoglobulin folds. It is a
sandwich structure composed of two opposing antiparallel β-pleated sheets, stabilised by a
disulphide bridge [383–385]. Ig domains can interact with many types of ligands (integrins,
carbohydrates). They readily bind to other Ig domains of the same kind [386]. Due to their
properties, many IgSF molecules act as surface receptors (e.g., antigen receptors found on
the surface of T cells) or as CAMs [384,386–388]. IgSF adhesion molecules often contain
some extracellular domains other than Ig, e.g., fibronectin (Fn) type II or III. These are
thought to act as ‘fillers’ of the structure, elongating the chain and shifting the position
of the Ig-binding domain. Size exclusion mechanism determines the selectivity of the
interactions. Fn domains may also be involved in cis interactions (between ligand and
receptor of the same cell) of Ig molecules, the formation of their clusters on the cell surface
and the stabilisation of adhesion [389–391]. An important issue related to IgSF molecules is
their role in the development and function of the nervous system, where they are involved,
among other things, in the processes of axon growth and guidance [392–394].

4. Artificial Substitutes of the Extracellular Matrix

Cells may be deprived of the necessary connection with the matrix as a result of
various types of mechanical or pathological damage. The reconstruction of the structure
and restoration of the tissue’s ability to function properly requires replacing the natural
extracellular matrix with an artificial substitute. The substitute should support biological
regeneration processes. The search for suitable materials and the manufacture of cellular
scaffolds for tissue reconstruction is a fundamental goal of tissue engineering. The process
is demanding because of the need to match the scaffold’s properties to the tissue’s charac-
teristics. It is essential to confirm that the material is safe for the body and does not cause
adverse acute or long-term reactions. Similar requirements are placed on various other
implants, not only artificial cellular scaffolds [395–402].

4.1. Host Response to Implantation

The body’s first biological reaction to an implant is forming a layer of water on its
surface. This happens in just a few nanoseconds. Water molecules form a mono- or bilayer,
and the way they are ordered is strongly dependent on surface properties at the atomic level.
Water molecules can dissociate on a highly reactive substrate, resulting in the hydroxylation
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of the implant surface, i.e., it becomes covered with -OH groups. Water molecules can
also be strongly bound but not dissociate. Both of these cases occur as a result of contact
with a hydrophilic surface. If the surface is hydrophobic, its interactions with water are
much weaker. Therefore, the strength of water-binding determines hydrophobicity or
hydrophilicity to the surface. It influences the value of the wetting angle formed between
the solid and the plane tangent to the droplet deposited on it. Hydrated ions, such as Cl−,
Na+, Ca2+, enter the formed water layer [403,404].

Once the aqueous layer covers the material’s surface, proteins from body fluids
(extravasated blood/tissue fluid) reach it. In the first stage, mainly smaller proteins with the
highest mobility are adsorbed, resulting from faster diffusion of small than large molecules.
It is a transient state. A dynamic adsorption–desorption equilibrium is established at
the contact surface, as proteins with larger size and a stronger affinity for the implanted
material, arriving late, can force the desorption of smaller, weak-bound molecules. This
phenomenon is called the Vroman effect. It should be kept in mind that fluids in contact
with the implant, such as plasma, contain hundreds of different proteins competing for
access to the surface. Therefore, the adsorption–desorption process is much more complex
and depends on factors, such as the protein concentration in the fluid. The higher the
concentration, the greater the primary surface dominance [404,405].

Proteins usually have an asymmetric structure in which domains of different chemical
nature can be distinguished. They have a more or less ellipsoidal shape (globular pro-
teins) [406]. As a result of adsorption, conformational changes of the molecule can occur
if it is sufficiently susceptible. It is the effect of binding to the substrate with a privileged
side in a given case. As a result, the molecule adopts a certain orientation where part of
it invariably contacts the body fluid [407–409]. Structurally stable proteins do not read-
ily undergo conformational changes. Their adsorption may occur along the longest axis
(“side-on”). Otherwise, this axis is perpendicular to the implant surface (“end-on”) [407].
The issue is not insignificant in the context of establishing a dynamic adsorption–desorption
equilibrium, as the ability to structurally reorient increases the possibility of contact with
the substrate [407,410].

A major problem with implantation is the foreign body response (FBR), a complex
process involving different cell types. Neutrophils are the first to reach the implant site and
adhere (via proteins) to the protein-coated surface of the material. Activated neutrophils
attempt to degrade the implant by secreting factors, such as proteolytic enzymes or reactive
oxygen species. They release chemokines that attract other immune cells, mainly mono-
cytes [411–413]. These, in turn, reaching their target, differentiate into macrophages [414].
The number of macrophages at the implantation site increases due to their progressive prolif-
eration. They replace the initial wave of nucleophiles and release further pro-inflammatory
factors. It may lead to implant damage and/or the release of toxic substances into the
surrounding tissue environment [415,416]. Macrophages may fuse into foreign body gi-
ant cells (FBGCs) due to chronic cytokine activity. FGBCs can adhere to the material’s
surface for an extended time, leading to collagen deposition and fibrous encapsulation
(approximately 3–4 weeks after implantation). As a result, the implant is isolated from
the surrounding tissues. It prevents integration and vascularisation and ultimately leads
to implant loss [412,417]. The fibrous layer is usually thinner on porous than on solid
materials [418,419]. The presence of mast cells, degranulating upon activation, is also char-
acteristic at the implant site. Among other things, histamine is released from the granules.
Histamine dilates blood vessels, improves their permeability and facilitates the arrival of
other immune cells. Pro- and anti-inflammatory cytokines and angiogenic or profibrotic
factors are also secreted [420,421].

Immunosuppressive drugs are used to weaken the body’s immune response and
prevent implant rejection. A more recent solution is to incorporate anti-inflammatory
agents into the implanted material. They must be released in a controlled manner and at
an appropriate rate. An additional requirement is to promote angiogenesis [422,423]. For
years, biomaterials engineering has been focused on obtaining biologically inert materials,



Cells 2022, 11, 914 16 of 33

i.e., minimising the interaction with the organism and reducing the immune response. The
contemporary trend is the generation of biomimetic materials, i.e., mimicking the natural
solutions of the organism and stimulating the desired responses. These include enhancing
or inhibiting the normal functioning of immune cells [424–426].

4.2. Influence of Material Properties on Cell Adhesion

Cells do not experience direct contact with the implanted material but are only ‘in-
formed’ of its physicochemical properties via proteins deposited on the surface. One of the
more important characteristics of the material is the wettability of its surface, which, in the
case of an aqueous environment, can be equated with hydrophilicity. It is assumed that the
ability of cells to adhere increases on hydrophilic surfaces and decreases on hydrophobic
surfaces, even though it is hydrophobic surfaces that are generally considered to be more
protein-adsorbent [427].

The surface protein layer that forms shortly after implantation consists mainly of
albumin, fibrinogen, immunoglobulin G, fibronectin, vitronectin et al. The first inter-
actions are usually dominated by albumin due to its relatively small size (66 kDa) and
high-concentration in plasma [411,428,429]. It binds much more readily to hydrophobic
than hydrophilic surfaces but does not promote cell adhesion. The strong adsorption
of albumin reduces the likelihood of being replaced by larger adhesion-promoting pro-
teins, such as fibronectin and vitronectin [430–432]. The ability of fibronectin to displace
surface-bound albumin is limited on hydrophobic surfaces. As a result of the strong bind-
ing of albumin molecules, changes in their secondary structure occur and the degree of
denaturation increases [433]. Proteins tend to denature as the contact time with the material
increases, which occurs when albumin adsorbs onto a hydrophobic material. The binding
energy of the adsorbed phase then increases, and, as a result, the probability of desorption
decreases [406].

Adsorption occurs more readily if there is a charge difference between the protein
molecules and the material surface [434]. Furthermore, the affinity of the protein for
the material may show greater specificity than the distinction between hydrophobic-
ity/hydrophilicity and be based on the recognition of specific functional groups [429,433].
Additionally, the cells themselves, depending on the type, show a different preference for
the functionality of the surface groups [435–438].

Adhesion of cells to the implant surface is made possible by integrins recognising and
binding to specific amino acid sequences in the polypeptide chain of the adsorbed protein.
It mimics the formation of integrin connections with the ECM proteins under natural
conditions. The best known among the pro-adhesive sequences is the tripeptide RGD
(arginine-glycine-aspartic acid), present, e.g., in the structure of fibronectin [439,440]. One
way to modify the material to increase biocompatibility is the coating of tripeptide RGD on
its surface in the form of immobilised proteins or short synthetic polypeptide ligands. In
addition to RGD, the collagen peptide GFOGER (glycine-phenylalanine-hydroxyproline-
glycine-glutamate-arginine) and the laminin-specific sequences IKVAV (isoleucine-lysine-
valine-alanine-valine) and YIGSR (tyrosine-isoleucine-glycine-serine-arginine), among
others, have been identified [441–445].

Functionalisation of the implant surface with peptides containing the RGD sequence
has drawbacks. Integrins that recognise RGD may require the presence of other peptides
(synergistic effect) to form a bond. The biological activity of short synthetic peptides is
less than that of a whole protein. In turn, modification of these peptides (e.g., by chain
elongation) can also result in an undesirable change (increase/reduction) in their activity.
Another problem is that cells adhere too strongly to the surface, reducing their movement
ability [446–448].

An interesting conclusion is provided by the study of cell adhesion on materials
exhibiting extreme wettability types. Superhydrophobic surfaces are characterised by a
water contact angle value higher than 150◦, while superhydrophilic surfaces are around 0◦.
Although the type of cell determines the contact behaviour, only a few show good adhesion
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to a surface if the material is superhydrophobic. If the surface has highly hydrophilic
and hydrophobic regions, cells will usually selectively attach to the superhydrophilic
areas [449].

A significant feature of an implant is the topography of its surface, which, like the
chemical composition, influences the interactions with integrins and ultimately stimulates
the cellular response [450]. The shape of the natural matrix at the micro- and nanoscale is
understood to be the structure formed by the ECM proteins and the neighbouring cells. For
synthetic materials, it is the degree of roughness, the type and size of patterns on the surface.
Modifications of these features at the nanoscale affect the activity of the adsorbing proteins
by forcing specific changes in their conformation. However, the detailed investigation
of such relationships is complicated because the cellular response is always a resultant
of the influence of different stimuli. In addition, modifications of topography may be
accompanied by changes in surface chemistry [451–455].

Techniques to create micropatterns on substrates can be divided into two main types:
(1) coating portions of the material with an agent that promotes selective adhesion or
(2) applying a layer that blocks adhesion and subsequently removing it without harming the
cells embedded around it [456]. The resulting pattern geometry influences the subsequent
formation of cells, e.g., it promotes cell elongation. Furthermore, it supports/inhibits the
spreading of cells on the surface. It is related to facilitating/hindering their movement,
respectively, depending on the continuity of the pattern [457]. The size of the contact area
between cells can influence their differentiation, i.e., result in different types of daughter
cells [458]. Discontinuities in topography are the cause of local differences in surface free
energy. If the cell can detect it, it will modify the contact orientation by reorganising its
cytoskeleton. Mechanical signals transmitted to the cell nucleus affect changes at the level of
gene transcription and consequently determine cell behaviour. However, the mechanisms
underlying the cellular response are still poorly understood [459,460].

In addition to patterns characterised by uniformity of shape and size, cell adhesion
is influenced by the surface roughness, understood as the overall three-dimensional to-
pography of the substrate, regardless of its regularity. The surfaces of the used materials
are rarely smooth at the molecular level, while roughness is not uniformly describable in
this case. Cells must be able to recognise a rough surface to react in a certain way, which
is dependent on the cell type, as the primary determining factor is the size of the cell. It
means that a cell will recognise a surface as smooth if the peak-to-peak distance is greater
than the size of the cell [461–463].

Experimental results on the relationship between material roughness and cell be-
haviour are often contradictory because of different cell types and materials, making it
difficult to compare results. However, it is generally accepted that rough surfaces materials
promote cell adhesion because they have a larger specific surface area than smooth surface
materials. On a smooth surface, the cell needs more connection points to hold on [464–469].

5. Conclusions

The extracellular matrix is a complex dynamic network structure. Its components are
synthesised, secreted, and degraded in a manner controlled by the cells. The matrix fills
the spaces between cells, provides structural support, and binds tissues together, providing
them with proper mechanical properties. It is an essential component of connective tissues.
The intercellular matrix controls cells’ behaviour and vital functions, thus regulating the
normal development of tissues and maintaining their homeostasis. Mutations in the genes
encoding matrix components cause many serious diseases.

Cells can receive, process, and respond to signals from the external environment
because they are equipped with a set of appropriate receptors. The information reaching
the receptor, usually in the form of a chemical carrier, may come from the immediate
vicinity of the cell and distant parts of the body. The binding of the ligand to the receptor
initiates the signalling pathway. The effector response depends on the cell type and the
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receptor type. A specific group of receptors are adhesion molecules involved in forming
cell–cell and cell–matrix connections.

Controlled processes of degradation and secretion of intercellular matrix components
mean that tissues are constantly remodelled. However, the body cannot repair certain
structural defects on its own. It then needs support in the form of an artificial scaffold on
which the cells can settle, multiply and differentiate, and begin to produce the building
blocks of the matrix. Over time, the implanted substitute degrades and gives way to a re-
constituted protein–polysaccharide network. When designing materials for such implants,
the influence of hydrophilicity, topography, roughness, and surface functional groups on
cell growth processes must be considered. The results of studies on biomaterials do not
give conclusive results, but it should be kept in mind that they are highly dependent on the
cell type.
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