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The bottleneck for progress in many research areas within neuroscience has shifted

from the data acquisition to the data analysis stages. In the present article, we propose a

method named InTool Explorer that we have developed to perform interactive exploratory

data analysis, focusing on neuroanatomy as an example of its utility. This tool is freely-

available software that has been designed to facilitate the study of complex neuroscience

data. InTool Explorer requires no more than an internet connection and a web browser.

The main contribution of this tool is to provide a user-designed canvas for data

visualization and interaction, to perform specific exploratory tasks according to the user

needs. Moreover, InTool Explorer permits visualization of the datasets in a very dynamic

and versatile way using a linked-card approach. For this purpose, the tool allows the

user to select among different predefined card types. Each card type offers an abstract

data representation, a filtering tool or a set of statistical analysis methods. Additionally,

InTool Explorer makes it possible linking raw images to the data. These images can

be used by InTool Explorer to define new customized filtering cards. Another significant

contribution of this tool is that it allows fast visualization of the data, error finding, and

re-evaluation to establish new hypotheses or new lines of research. Thus, regarding its

practical application in the laboratory, InTool Explorer provides a new opportunity to study

and analyze neuroscience data prior to any statistical analysis being carried out.

Keywords: data visualization, dynamic analysis, interactive tool, multiscale, software

INTRODUCTION

The bottleneck for progress in many research areas within neuroscience has shifted from the
data acquisition to the data analysis stages. The availability of more powerful microscopes and
techniques to explore the brain has provided neuroscientists with a wealth of data that is difficult
to fully analyze, due to both its volume and complexity (Kandel et al., 2013; DeFelipe, 2017).

Exploratory Data Analysis refers to a set of techniques originally developed to display data
in such a way that those features that might be considered particularly relevant for a given
analysis will become apparent. This utility provides the user with a different viewpoint, which
could help either to decide the type of analysis to be performed, or to propose new hypotheses.
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The traditional methods require the hypothesis to be proposed
before acquiring the data. However, Exploratory Data Analysis
displays the data in a dynamic way which may give rise to new
questions to be answered. Thus, the main goal of exploratory
analysis techniques is helping users to better understand their
data by identifying patterns, trends and outliers, in order to
generate new hypotheses, formulate models and extract new
data (Tukey, 1977). Widely used analysis tools such as R (Ihaka
and Gentleman, 1996), SPSS (Arkkelin, 2014) and STATISTICA
(TIBCO Software Inc., 2018) provide a low-level interface
that hinders the use of such tools by non-expert users and
prevents rapid specification of interactive data analysis. Data
visualization and interaction are key components in Vega-Lite
(Satyanarayan et al., 2016), D3 (Bostock et al., 2011) and Protovis
(Bostock and Heer, 2009) declarative languages. In this context,
declarative languages and visualization grammars provide
powerful environments for engineers to design interactive
visualization systems. However, these environments require
programming skills, and are not meant to be used by final users,
preventing their use in dynamic exploratory analysis workflow.
Other applications, such as Tableau (based on Polaris Stolte
et al., 2002) and Visflow (Yu and Silva, 2017) offer a much
simpler interface, but they are closed platforms which are not
specifically adapted to the needs of neuroscience. Besides, most
of these tools do not support statistical analysis, which limits
their range of applications. Therefore, it is becoming necessary
to advance in the development of new methods and interactive
exploratory analysis tools for neuroscientists to improve their
data analysis results. In this work, we propose a tool to close the
gap between flexibility and user-friendliness. A recent, detailed
and exhaustive survey on visualization tools can be found in
Mei et al. (2018).

Different fields of neuroscience require different approaches
for visualization and data analysis. Here, we shall focus on
neuroanatomy as a proof of concept. Within this discipline of
neuroscience, numerous factors must be taken into account for
data analysis. Such factors that contribute to making this task
extremely challenging include:

– Age, species/cases, and conditions of the sample (healthy vs.
ill, type and extent of disease, post-mortem interval, type of
fixation, etc.).

– Brain region analyzed (neocortex, hippocampus, thalamus,
cerebellum, etc.).

– Number and variety of structures/components to be studied in
a particular experiment.

– Level of detail of the features analyzed: neuronal circuits,
neurons, dendritic arbors, synaptic microcircuits, synapses,
molecules, etc.

– Nature of the imaging technique (SPECT, PET, EEG/MEG,
fMRI, optical microscopy, electron microscopy).

– Spatial scale or temporal resolution of the sampled data.

In general, the possible relationship between these different
data sets is difficult to realize or could go unnoticed unless
a particular hypothesis is proposed and then tested with the
appropriate tools. For example, the effects of age, post-mortem
intervals, and type of fixation may have an influence on the

quantitative determination of the number of neurons in a
particular region of the brain labeled with different techniques,
such as Nissl staining or immunocytochemistry using antibodies
against the neuronal nuclear antigen NeuN (e.g., Werner
et al., 2000; Montero, 2003; Gonzalez-Riano et al., 2017). This
article describes ‘‘InTool Explorer’’ (Interactive Tool Explorer),
a Web-based exploratory analysis tool that is freely available
software and has been designed to deal with the problems that
neuroscientists commonly face when analyzing complex data.
This tool was tailored to perform interactive exploratory analysis
on generic tabular data. In order to tackle this issue, InTool
Explorer was designed to allow a versatile configuration of
interaction, visualization and exploration, also making it possible
to make use of filters and different views of easily configurable
cards. The following list sums up the main contributions of the
tool presented here:

– Versatile, dynamic and user guided configuration of

the visualizations and interactions. One of the major
contributions of this work is to propose a new computational
solution for improving the workflow in neuroscience
that offers end users the possibility to dynamically adapt
visualization, analysis and filtering operations to their data
and current task.

– Coordinated views. In order to display data and interact with
them, the linked-card approach gives users the opportunity to
easily select among visual widgets (‘‘cards’’), which work in a
coordinated manner (cards are co-dependent).

– Extensibility. InTool Explorer was designed in such a way
that new features can be easily included. Considering the fast
development of the acquisition techniques, it is very difficult
to predict the future needs of the field. In this sense, the
technologies and the software architecture used were carefully
designed to allow the integration of new cards, which will work
in synchronization with the previously defined cards.

– Visual interaction. InTool Explorer allows the inclusion
of raw images—such as MRI, SPECT and/or histological
microphotographs—in the interactive exploratory analysis
task. Commonly, data can be extracted from images or, the
tabular data may have images attached. Thus, InTool Explorer
gives the user the opportunity to add these images to the data
analysis process and to use them for interaction with the data.

– Collaborative and portable. Standalone software tools are
currently the ones most commonly installed in neuroscience
laboratories. InTool Explorer has been designed to satisfy
standalone users, as well as local storage of their data.
Moreover, software architecture is flexible enough and fully
portable to allow a web-based multiuser installation where
data can be stored in remote servers, which are accessible from
any system, requiring no more than a web-browser and an
internet connection.

MATERIALS AND METHODS

The input data for testing the usefulness of InTool Explorer
consist of the data analysis of clinical-pathological information
obtained from Alzheimer’s disease (AD) patients.
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FIGURE 1 | Continued
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FIGURE 1 | InTool Explorer interface. (A) Tabular data and (B) Column

statistics card of the variable “Neuronal density per volume (NeuN).”

(C–E) Different filter cards for spatial, categorical and quantitative variables:

“Regions,” “Patients” and “Neuronal density per volume (NeuN),” respectively.

(F) Interactive parallel coordinates plot card showing some selected variables

[“Patients,” “Region” and “Neuronal density per volume (NeuN)”]. (G) Box plot

card of selected data [“Neuronal density per volume (NeuN)” per “Patient”]. All

visualized spatial objects are dynamically selected by users and updated

according to user’s interaction with filters (linked-cards). “DG, dentate gyrus;

CA1–CA3, hippocampal fields; SUB, subiculum.”

Histological data from AD patients were obtained via the
detailed histological analysis of labeled neurons (normal and
pathological) and amyloid-β (Aβ) plaques, in different areas
of the hippocampal formation, from a cohort of AD patients
previously examined (Furcila et al., 2018). Clinical data were
collected from the same hospitals and medical centers that
provided the AD patient brain tissue. These samples were
obtained from two sources: Banc de Teixits Neurològics from
Hospital Universitari Clinic de Barcelona (Spain) and Banco
de Tejidos Fundación CIEN (Madrid, Spain), following the
guidelines of the Helsinki Declaration and with the approval of
the local Ethical Committees.

DESCRIPTION OF InTool EXPLORER

Overall Design
The tool was drafted with the aim of providing users with tools
that facilitate the understanding of their data. In this regard, the
paradigm of visual data exploration (Shneiderman, 1996) proved
useful: ‘‘overview first, zoom and filter, then details on demand.’’
Nevertheless, facilitating the visualization data does not mean
putting aside traditional procedures that could improve the
analysis. InTool Explorer has been created using a User-Centered
Design (UCD) methodology, since it is the approach that best
suits the problem of applying visualization methods to a set
of users from a specific domain which has not been exposed
to this kind of technique. The implementation was performed
using an agile development method similar to scrum because the
principles proposed in this method (Rising and Janoff, 2000) are
in line with the UCD philosophy. The final proposed design was
based on incremental prototyping. This approach reinforces the
user role in the design, implementation and testing of the system
usability in each iteration.

The proximity and accessibility to final users fitted very
well with the methodology; getting them more involved in
the design process was an additional advantage. Moreover,
the characterization and problem abstraction stages were
performed using a mixture of methods including interviews and
observations, although contextual inquiries proved to be themost
effective approach.

Software Distribution Details
Currently, two versions of InTool Explorer are available at:
http://cajalbbp.es/intoolexplorer_web. Page links to the online
web-based version and to the Windows standalone version can
be found on this website.

The online version does not require a download or local
installation to start working with the tool. The system has
been fully tested with the most popular browsers, namely,
Google Chrome, Microsoft Edge and Mozilla Firefox. InTool
Explorer requires a very simple registration procedure where
users provide a login identifier and email. This registration
process allows neuroscientists to have access to their datasets
from any PC via an internet connection and makes sharing their
data possible. In addition, it allows ciphering of the data and the
communications to guarantee data protection and comply with
privacy laws.

Briefly, the application is designed to work with generic
tabular data (cvs and xls) and standard 2D image formats (png,
jpeg, tif, bmp, etc.). Tabular data have to be arranged in one
data sheet. The elements of the dataset must be sorted into
rows and ideally each column must contain all the values of
a given variable, but the system is robust enough to deal with
incomplete data.

After the login process, the first step is to load data using
the File menu. If users have already uploaded data, they can
open them from the server directly (‘‘Open from server’’), or
upload local data to the server using the order: ‘‘Import local files
to server.’’ The user can also append a new set to the current
one (‘‘Add to current’’), and save the current dataset in the
server (‘‘Save on server’’). In addition, variables of the dataset are
automatically categorized, which is a very helpful utility to save
time in operations that are necessary for the correct analysis of
the data, but that are generally beyond the scope of the study.
Moreover, the user can manually modify this categorization and
remove, shuffle and rename variables editing the dataset schema
(option Edit Schema). This also makes it possible to merge the
dataset coming from different sources during a working session.

Finally, the Analysis widget allows users to locally save the
state of the current exploratory analysis or load a previous saved
state (active cards, filters, etc.). This allows the user to start a
working session and finish it later working either on the same
computer or on a different one.

Linked-Card Views
One of InTool Explorer’s main contributions is to customize
visualizations, interactions and statistical analysis, and to adapt
them to the particularities of the data. In order to achieve this
goal, the tool employs a coordinated view system based on
linked-card views. The linked-card views are the main functional
units of the system, allowing interaction, visualization and
analysis operations. Users can select from different predefined
cards and arrange them freely in the main window (or interface)
of the application. Cards can be rearranged on the canvas and
resized at any time as required by users. All the selected cards
work in a coordinated manner; operations performed in a given
card propagate automatically along the other cards shown in
the main window layout. Figure 1 shows an example of the
user interface with several linked-cards. The linked cards can be
classified into four different groups:

1. Filtering cards: InTool Explorer classifies the tabular
dataset variables into three groups: categorical, ordinal and
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quantitative. The users can select any of these variables to
perform searching and filtering operations. Each new filter is
presented in a new card with interactive controls adapted to
the nature of the variable. Categorical values are selected with
checked-boxes, and quantitative and ordinal values with dual
knob range sliders.

2. Visualization cards: users can select a suitable view based
both on the task to perform, and on the data to manage.
Interaction with card filters is linked to all visualization cards,
and figures are updated when users change filter parameters.
In addition, some of the visualization tools provide selection
and/or filtering capabilities that are linked to the active cards

shown in the main window. Six popular views have been
selected to cover common tasks: parallel coordinates plot
(Inselberg and Dimsdale, 1990), parallel set (Kosara et al.,
2006), radar chart (also known as radial bar chart, spider chart,
polar chart, web chart, or star plot; Chambers et al., 1983),
scatter plot (Friendly andDenis, 2005), box plot (Tukey, 1977)
and raw tabular data.

3. Domain-specific data cards: accessing original raw data is
often required by users (original domain; e.g., Figures 1A,C)
while exploring the processed data (transformed domain;
e.g., Figures 1E–G). For example, in some situations, sample
preparation and the analysis process introduce errors or noise

FIGURE 2 | Use of parallel coordinates plots. (A) Parallel coordinates plot of selected variables, in columns. (B) Column statistics of the variable “Neuronal density

per volume (NeuN)” which facilitates the selection of specific values. (C) Parallel coordinates plot using ranged values for “Neuronal density per volume (NeuN)” to

visualize the regions or patients corresponding to a selected range (mean values showed in B). This selection facilitates the visualization of a possible relationship

with the variable “amyloid-β (Aβ)−ir plaques density per volume.” CA1–CA3, hippocampal fields; SUB, subiculum.
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FIGURE 3 | Continued
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FIGURE 3 | InTool Explorer interface showing several visualization cards.

(A) Parallel set plot showing the variables “Region,” “Braak Scale” and

“Neuronal density per volume (NeuN).” Each horizontal bar represents

possible categories associated to each variable, and bar width indicates the

proportional fraction of the total category. (B) Radar chart illustrating the

relation between three variables: “Age at diagnosis,” “Neuronal density per

volume (NeuN)” and “Disease progression (years).” All patients are visualized

on the left side of the plot. This visualization card allows multiple comparisons

in order to visualize similar or extreme values. Note patient Az11 (highlighted

in blue), expressing distinctive values. (C) Scatter plot showing the

relationship between the variables “Age at diagnosis” and “Neuronal density

per volume (NeuN)” per patient. Note the extreme value highlighted with

tooltip balloon (blue). This identification offers additional information about the

selected value. Braak Stages (Braak and Braak, 1991): I-II (neurofibrillary

tangles in entorhinal cortex and closely related areas); III-IV (neurofibrillary

tangles abundant in amygdala and hippocampus and extending slightly into

the association cortex); V-VI (neurofibrillary tangles widely distributed

throughout the neocortex and ultimately involving primary motor and sensory

areas). CA1–CA3, hippocampal fields; SUB, subiculum.

in the transformed domain. These problemsmay be translated
into different patterns in the visualization cards. The original
data cards allow the user to check the original data at any point
during the analysis. InTool Explorer provides a mechanism to
associate this data to the tabular data. In addition, these cards
can be used to create new spatial interaction cards (see Section
‘‘Visualization Cards’’ for further detail).

4. Statistics cards: as mentioned above, InTool Explorer was
mainly designed to perform exploratory visual analysis in
order to generate new hypotheses and models, as well
as to drive the extraction of new data. In this regard,
InTool Explorer is focused on providing an extensible set of
visualizations. With the aim of enhancing the visualization
capabilities with statistical analysis functionalities, we have
integrated our system with R. Our server runs scripts in R in
order to support statistical cards, such as Correlation test and
Comparison of means.

It should be noted that the system architecture was designed
to include additional visualization cards relatively easy (see
section ‘‘Analysis of Quantitative Variables’’).

Visualization Cards
As previously mentioned, most visualization cards allow
interactive operations with the data shown. Users may modify
the current view using interactive controls. For example, the
parallel coordinates plot is ideal for representing and comparing
multidimensional data. Users can define, on each parallel axis,
a filter implemented with dual knob range sliders. By defining
simultaneous filters over several parallel axes, users can combine
several selection criteria, using the parallel coordinates card. This
functionality replaces the need to add new filter cards for each
variable and partly alleviates the issue of parallel coordinates
not scaling as well as other visual representations (Nguyen
and Rosen, 2017). In the same way, the performance of the
parallel coordinates plot, while studying the correlation between
variables, has been improved by allowing the user to reorder
(shuffle) the parallel axis’ coordinates. Currently, users can also
include new axes or remove them using a tab that can be

displayed listing all the variables from the study. Moreover, when
including a new variable in the plot, the variables already shown
are highlighted in a different color. Finally, this card highlights
data elements or groups at the request of the user. Figure 2

shows a parallel coordinates plot card, for which data below the
mean (given by Statistics card in Figure 2B) were selected, and a
range filter was defined over the quantitative variable ‘‘Neuronal
density per volume (NeuN)’’ (Figure 2C).

Other representations also allow user interaction. For
example, parallel set plots can automatically rearrange the
data shown when users shuffle each category according to
their criteria (Figure 3). Similarly, data tables, radar charts
and parallel sets can add and remove axes interactively at
the request of the user. Scatter plots allow particular data
elements to be selected and highlighted. When these interactions
involve shared variables among different cards, the local changes
performed on one card are propagated through the other
cards. Additionally, scatter plots, radar charts and parallel sets
display tooltip balloons with additional information on the
selected variable.

Domain-Specific Data Cards
As previously explained, the original data cards provide
mechanisms to associate the original input to the data in the
transformed domain. The other cards provide several tools to
visualize tabular data. Tabular data is the most common type of
data in the transformed domain, but it is rarely available in the
original domain. Besides, in neuroscience, images are frequently
the input data from which the tabular data is computed. In
order to support data in the original domain, InTool Explorer
allows 2D images to be included within the dataset. These
images can be associated to the available tabular data and
they can be connected to a particular value of an ordinal
or a categorical variable (e.g., one image can be associated
to a particular patient). In addition, images can be labeled
using arbitrary tags defined by the user. Using an ordinal or
categorical value and/or a tag, an image can be retrieved from
the database (Figure 4).

Image cards can be used for filtering and selecting. In the
simplest interaction mode, scientists can use the values of the
variable associated to an image to select or filter data. InTool
Explorer is a sophisticated tool that allows neuroscientists to
develop their own spatial filtering tools. Frequently, general
visualization techniques for tabular data fail to represent the
spatial structure of the data. In this work, we propose using
the original input images to create user defined spatial filter
cards. The original data card can be used to add categorical
data values to specific parts of the image, and the user can then
click on those areas to perform filtering operations. This spatial
filtering tool allows InTool Explorer to be adapted to a specific
dataset (Figure 5).

Analysis of Quantitative Variables
In neuroanatomy, the quantitative analysis of variables is
particularly relevant; for example, InTool enables the analysis
of quantitative variables such as ‘‘Neuronal density per
volume (NeuN)’’ which shows huge inter-individual variability.
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FIGURE 4 | Domain-specific cards created in InTool Explorer from histological images of human brain samples from Alzheimer’s disease patients. (A) Uploaded

images can be visualized all together. (B) As images can be filtered by tags, all images displayed correspond to the selected marker “NeuN.” (C) The created card

shows information regarding the selected image: title, variables associated to the image, tags and notes, as well as “spatial association” (details in D). (D) This

feature provides the facility to add visual filters of categorical variables to the selected image (see Figure 5 for more details).

Frontiers in Neuroanatomy | www.frontiersin.org 8 March 2019 | Volume 13 | Article 28

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Furcila et al. Data Visualization in Neuroscience

FIGURE 5 | Domain-specific cards for spatial filtering. (A) Image card of a hippocampal section immunostained for anti-NeuN from an AD patient (Patient Az1). The

variable “Region” was added to the image card with the function “Spatial association,” as a filter for any kind of simultaneous visualization. On the right, a parallel

coordinates plot was created to show the dynamic of the user interaction. (B) In the same image card displayed in (A), a particular region has been selected (CA1,

highlighted in blue). On the right, only filtered data appear in the parallel coordinates plot. CA1–CA3, hippocampal fields; SUB, subiculum.

Regarding this variable, the filter function in a parallel
coordinates plot can be applied and variable values can be
associated to each patient and to certain hippocampal regions
(Figure 6), which facilitates visualization and exploration. In
addition, a value selection of any quantitative variable can
be carried out (Figure 6C), to examine a particular range of
data, which can be denoted in a different color. Moreover,
with InTool Explorer, it is possible to add any variable to a
given plot enhancing the interaction of the user. For example,
if a user wishes to investigate patients showing a particular
value, the variable ‘‘Patient’’ can be added to the parallel
coordinates plot (Figure 6D). Particular patients and their
particular characteristics can then be further explored to examine
inter-individual variability as well as possible relationships with
the histopathological characteristics. Thus, InTool Explorer
provides a quick visualization of atypical cases within a
dataset. Regarding qualitative variables, like clinical-pathological
data of patients, InTool Explorer may combine any of them
with quantitative data, producing an integrated analysis. To
illustrate this utility, the relation between the histopathological
variable—‘‘Neuronal density per volume (NeuN)’’—and the
clinical features—‘‘Disease progression’’ and ‘‘Braak stage’’—was
explored (Figure 7).

In summary, data from AD patients are very complex and
diverse, and multidimensional visualization greatly facilitates the

integration of any type of data as well as exploration of individual
values within each variable. As has been shown, InTool
Explorer allows users to dynamically configure visualizations and
interactions in a very flexible and personalized way, selecting
the techniques that best fit their data. The linked-card based
approach lends support to this goal, by adjusting the layout of
the filters and views according to the particular requirements of
the task at hand.

Statistics Cards
As previously mentioned, InTool Explorer was designed to
simplify the visual exploratory analysis task of neuroscientists.
Furthermore, the tool was intended to be extensible to face
forthcoming challenges. Moreover, the tool needed to be flexible
enough to solve the peculiarities of the different problems in this
specific research area.

In this first version, we have implemented the most
common statistical tests performed during a preliminary
exploratory analysis.

These tests were implemented in three card types: (i) a column
statistics card; (ii) a correlation test card; and (iii) a comparison
of means card:
(i) Column statistics: this card provides a brief description of data

distribution, providing the mean, standard deviation, size
(n), as well as minimum and maximum values (Figure 2B).
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FIGURE 6 | Parallel coordinates plots from AD patients. This type of plot has some particular characteristics, such as the selection of a certain range of data in the

axis of any quantitative variable (A,B), as well as the highlighting of concrete relationships between variables (C,D; see CA1 region selected) and the possibility of

adding new variables in the same visualization card (“Patient” was added in D). DG, dentate gyrus; CA1–CA3, hippocampal fields; SUB, subiculum.
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FIGURE 7 | Parallel coordinates plots with quantitative and categorical variables from AD patients. (A) Relations can be made between quantitative variables such

as “Neuronal density per volume (NeuN)” and “Disease progression (years),” and categorical variables such as “Braak Scale.” (B) Note that a range of data can be

selected in the variable “Disease progression (years),” to examine possible relationships. Braak Scale (Braak and Braak, 1991): I-II (neurofibrillary tangles in entorhinal

cortex and closely related areas); III-IV (neurofibrillary tangles abundant in amygdala and hippocampus and extending slightly into the association cortex); V-VI

(neurofibrillary tangles widely distributed throughout the neocortex and ultimately involving primary motor and sensory areas).

No previous statistical knowledge is needed to use any of
the cards. All of them automatically select the test to be
performed, taking into account the nature and size of the
analyzed sample. The cards provide a detailed explanation
of the process followed, allowing users to communicate
their results.

(ii) Correlation test: this card performs a correlation analysis
of quantitative random variables. First, we check data
normality, using a Kolmogorov-Smirnov Goodness-of-Fit
test. If normality holds, two tests can be computed: Pearson’s
correlation coefficient and Spearman’s rank correlation
coefficient test. If not, we only calculate the Spearman’s rank
correlation coefficient (Figure 8) Pearson’s coefficient offers
a measure of linear correlation between two variables, while
Spearman’s rank coefficient assesses if two variables can be
described by monotonic function (linear or non-linear).

(iii) Comparison of means: this card compares two or more
unpaired variable distributions (Figure 9). Depending
on the number of variables and whether normality and
homoscedasticity holds, several tests can be performed:
Student’s t-test, Welch’s t-test, Kolmogorov-Smirnov,
One-way ANOVA or Kruskal Wallis. In addition, to test
prove the utility of this card with a larger data set, as

a proof of concept, we selected data from 8,900 human
dendritic spines (Benavides-Piccione et al., 2012). In
the present study, we compared the dendritic spine
length between the apical and basal dendrites obtaining
significant differences, in agreement with the findings of
Benavides-Piccione et al. (2012).

Finally, in order to guarantee the extensibility of this module,
InTool Explorer is fully integrated with R to support statistical
analysis cards.

System Architecture and Technologies
Used
In order to make the tool portable and to facilitate cooperation
among different neuroscientists, a multi-user Web platform
was implemented. Furthermore, since InTool Explorer will be
released with a policy of it being freely available and given
that it is expected to be widely used within the neuroscience
community, a set of robust and widely tested free tools
were selected.

The tool follows a client-server model and is divided into two
layers: a backend and a frontend. Each of the components of
these two layers was developed using the appropriate technology
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FIGURE 8 | Correlation test card. This card displays an example of a correlation analysis of the quantitative variables “Neuronal density per volume (Nissl)” and

“TauPHF1 neuronal density per volume.” As normality was not met, InTool Explorer estimates the Spearman’s rank correlation coefficient and its associated p-value.

according to its required features. The frontend and backend
exchange information through WebSockets (Wang et al., 2012).

The backend is in charge of accessing and processing the
data and is made up of three modules (the Main Server, the
Statistical Server and the Database). To improve the system
portability, these three components run in a Docker virtual
container (Docker Inc., 2018). Docker has implementations for
MacOS, Linux and Windows making it possible to deploy the
server in any of these systems. Furthermore, the use of this virtual
container enabled the development of a standalone version of the
system, developed for those users unwilling to upload their data
to a remote server. With this goal in mind, a portable application
called WeCo (Web Container) was implemented for Linux, Mac
OS and Windows.

The Main Server is one of the centerpieces of the system.
It receives and processes the frontend requests. Among other
tasks, it is responsible for the synchronization of the other
components; data management operations; filtering operations;
and user authentication. It is implemented using a Python
Simple Http Server and uses MongoDB for data manipulation
(MongoDB Inc., 2018) and ZeroMQ sockets to communicate
with the Statistical Server. InTool Explorer is designed to
be used in the visual exploration of the data, prior to the
statistical analysis. This component provides support to the basic
Statistical Analysis cards included in the frontend. Although
currently the tool offers limited capabilities, this module was
implemented using R to increase the application functionality
in the near future. It should be noted that R is a powerful
environment for statistical computing that offers a wide variety
of statistical techniques.

The frontend provides different visual data representations
and data interaction tools. It was developed in a single module
and it implements the linked-card model proposed in this
article. As previously mentioned, each card contains a data
representation and/or filtering tool. User interactions in one card

are designed to affect other cards to address the need for all
the data visualizations to be coordinated. In order to accomplish
this requirement and to allow the functionality of the available
cards to be extended, a publish/subscribe pattern was followed
to send and receive events. When the user performs an action,
the card broadcasts an event of a given type. The cards that
should react to a given event must explicitly subscribe to this
event. The senders do not know which cards will receives the
event and the receivers do not need to know which card triggers
the event. Motivated by the need to also ensure that the system
is suitable for a wide range of potential future applications, the
visual representations were rendered using D3 (Bostock et al.,
2011), a powerful library of interactive visualizations. React-
Bootstrap (MIT, 2018) is a library of frontend components
that was used to allow the users to configure the visualization
layout easily.

DISCUSSION

The complexity of the brain, together with the shortcomings of
the instruments and techniques available to date, still hampers
progress of the specific research carried out in the field of
neuroscience (Kandel et al., 2013; Martone and Ascoli, 2013).
Nevertheless, despite these technical difficulties, research in
neuroscience is acquiring new tools for study and analysis, as
well as improving those that already existed, with the aim of
unraveling the complexities of brain organization (DeFelipe,
2010, 2017; Hagmann et al., 2010).

Visualization has proved to be a powerful tool in exploratory
analysis (Tukey, 1977). Interactive visualization methods help
users to reach unexpected conclusions beyond the insight
provided by standard statistics software. In this regard, the
declarative languages mentioned above, such as D3 (Bostock
et al., 2011), Polaris (Stolte et al., 2002), Vega (Satyanarayan
et al., 2016), Protovis (Bostock and Heer, 2009) and ggplot2
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FIGURE 9 | Continued
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FIGURE 9 | Comparison of means card. This card shows an example of the

comparison of the qualitative variable “Neuronal density per volume (NeuN)”

grouped by the categorical variable “Condition.” Number of cases, normality

and homoscedasticity were evaluated to perform an appropriated test; in this

example, Student’s t-test was applied. (A–C) Analysis is shown in three

different tabs corresponding to the results of comparing whether: (A) the

means are equal (µ16=µ2); (B) one sample is less than the other µ1>µ2; and

(C) one sample is greater than the other (µ1<µ2). In this example, p-values
revealed significant mean differences: means were not equal (A) and, in

particular, the mean of AD group was smaller than the mean of the Control

group (C).

(Wickham, 2009) are becoming popular environments to
develop customized exploratory data applications. These
languages offer a flexible methodology for rapid prototyping,
which is essential for investigating new approaches in the context
of exploratory analysis. Unfortunately, these environments
require coding skills and prevent the final user from defining
their own visualization workflow.

Currently, there are high-level visual analysis tools that allow
the users to customize their visualizations. One very well-known
system is ‘‘Tableau,’’ which provides a graphical user interface
to Polaris (Stolte et al., 2002), and supports statistical analysis
with R. However, writing scripts in R is beyond the capabilities
of most final users. ‘‘Autodiscovery’’ is another exploratory
analysis tool that performs a predefined set of statistical tests to
find correlations (Butler Scientifics SL, Barcelona, Spain). The
results of these tests are then shown using several visualization
techniques. This system allows very little interaction and the
users have no control over the data analysis process. Dataflow
architectures are common in scientific visualization and in data
mining (Abram and Treinish, 1995). In general, they are closed
platforms that cannot be extended to include new functionalities
or specific customized options.

There are already some exploratory data analysis tools
available for studying genomics or proteomics (Gentleman et al.,
2004; Zeeberg et al., 2005; Lawrence et al., 2006; Buske et al.,
2011), or even for exploring the brain anatomy at different levels
of detail (for example, displaying fiber tracts or dendrograms
Jianu et al., 2009 or brain atlases Sunkin et al., 2013). Similar
techniques are being applied for the exploratory analysis of
neuronal circuit simulation data (Nowke et al., 2013). In
addition, Angulo et al. (2016) have developed BRAVIZ, which is
software for exploratory analysis implemented for MRI datasets
as well as transcranial magnetic stimulation (TMS) and clinical
data. Although BRAVIZ is a very useful tool, it does not support
a web interface which allows multiple experts from different
laboratories to share data in the way that InTool Explorer does.
In the context of neuroscience, Yeatman et al. (2018) described
a web-based visualization tool for diffusion MRI data. Although
this tool supports simple data analysis, it was not designed for
data exploration but rather for story-telling (to understand and
reproduce published findings). All of the previously mentioned
tools lack the flexibility that InTool Explorer offers. One of
the main advantages of our proposed tool is its capacity to
dynamically adapt to specific requirements of the task and/or
the dataset being studied. Moreover, these tools do not allow the

creation of new spatial filters while the tool is being used—again,
a task that is possible with InTool Explorer.

InTool Explorer provides interaction techniques with
different data representations, which make use of the power
of combining these simultaneous representations to facilitate
the task at hand. InTool Explorer has been shown to improve
the study of complex data obtained from the analysis of
multifactorial neurological conditions, such as AD, the research
of which generates a huge volume of data which are both
difficult to analyze with simple statistical tools and challenging
to interpret. Since data from multidisciplinary sources can be
visualized altogether with InTool Explorer, a more detailed
analysis can be achieved, opening up the possibility of a more
accurate definition of the neurological disease.

From the software point of view, InTool Explorer’s
architecture allows new functionalities to be integrated very
easily. The current filter and visualization linked-cards are just
an example of those that could be implemented. As mentioned
above, all the possibilities offered by R packages are available,
because this module is already integrated in our tool. However,
we have focused our efforts on providing more flexibility to set
up linked filters and visualizations in the interactive exploratory
analysis stage instead of developing more automatized statistical
computations. As has been described above, users are able to
create new linked-cards such as the example used in this case
study—the Regions filter. In this way, the spatial data present
in raw images (e.g., of brain regions) can be linked to tabular
data (such as the clinical dataset), with no additional demands
in terms of the level of user expertise. No software dependencies
or specific hardware requirements are needed to work with
InTool Explorer. Only a web browser is required, and the user’s
work can be shared with any laboratory around the world via

the internet.
Regarding task abstraction, InTool Explorer covers all the

tasks proposed by Munzner (2014)—except Enjoy—although we
hope users will implicitly gain enjoyment from performing this
task. Below are several examples that cover all of the categories of
this taxonomy:

• Analyze:

– Consume:

∗ Discover: new knowledge has been gained from the use of
InTool Explorer.

∗ Present: figures extracted from the tool have been used
to show and explain new insights to neuroscientists in
several forums.

– Produce:

∗ Annotate: for example, additional user-specific images
can be included as new spatial filters.

∗ Record: screenshots or new subsets of data can be
recorded from a working session.

∗ Derive: statistics can be easily extracted from populations.

• Search:

– Lookup: sometimes users know what they are looking for
and where it is.
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– Locate: sometimes they know what they are looking for
without knowing where it is.

– Browse: users often do not know what they are looking for,
but they have a specific location in mind for reviewing a
range of data.

– Explore: looking for outliers is a typical case when users are
not exactly sure how to start the study (Shneiderman, 1996).

• Query:

– Identify: specific references to single individuals can be
obtained from filtering.

– Compare: comparisons among different patients can be
achieved from several visualization methods.

– Summarize: finally, a comprehensive view of all patients
can be shown, and the statistics card can summarize some
specific variables of the population being studied.

CONCLUSIONS

InTool Explorer has proved to be very useful for its intended
purpose, providing new insights into the raw data extracted from
a variety of analyses performed in different patients and brain
areas in AD. The application provides new interactive support
(including other tools previously developed by the authors, e.g.,
Morales et al., 2011, 2012; Brito et al., 2013; Toharia et al., 2014,
2016), which improves and facilitates neuroscientists’ research.

Common tools used for analyzing raw data of the dataset
presented here are basic spreadsheets and isolated visualization
tools, which do not offer the same level of insight. InTool
Explorer allows data to be compared quickly and easily, which
was not possible with other tools. In clinical practice, a lot of
information is obtained from each patient (diverse medical tests,
cognitive-behavioral evaluations, etc.), which produces a huge
volume of data. Applying exploratory tools, such as InTool,
provides the opportunity to visualize all the information as well
as manipulate it, filter variables, and explore new hypotheses. It is
expected that further experiments with other datasets, similar to
the ones presented in this article, will allow new hypotheses about
AD and other neurological conditions to be established, thereby
leading to a better understanding of these conditions.

Another significant contribution of this tool is its
functional design, which makes it possible to easily combine
multidimensional variables and to explore their possible
relations by multiple plots. Since a large volume of data is
generated, errors often appear at late stages of the research.
InTool Explorer allows fast visualization of the data, detection
of errors, and re-evaluation to establish new hypotheses or new
lines of research. Thus, in the laboratory, this tool provides a new
opportunity to study and analyze neuroscience data prior to any
statistical analysis.

Finally, as mentioned above, the system was designed to
facilitate the integration of new tools for visualization and
analysis. According to the users’ needs, we have identified a set
of statistical tests and visualizations to be implemented:

– Multi-factor ANOVA: the currently available test only
considers one quantitative variable to be compared by

Student’s t-test or U-Mann Whitney. Multi-factor ANOVA
compares the means of quantitative variables analyzing their
variances and allows determination of the effect of multiple
factors (qualitative variables).

– Treemaps: this visualization represents data as rectangles in a
hierarchical structure of the data, while displaying quantities
for each category via area and/or color.

– Heatmaps: in combination with the correlation test (already
implemented), these maps represent a fast tool for cross-
examining multivariate data.

– Chord diagrams: these diagrams can be used to show
relationships among categorical data.

– Force-based diagrams: allow interaction with interconnected
data items in a simple way.

We plan to include these new features in the next version
of the platform. Additionally, since the platform is publicly
available, in order to receive feedback from users, we have
implemented an e-mailbox. This option is now available under
the user’s mainmenu as ‘‘Contact development team.’’ Regarding
new interactions, our main efforts will focus on improving the
usability of the tool.
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