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Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit
sensorimotor rhythms (SMR) in the electroencephalogram (EEG). However, the
neurophysiological processes underpinning the SMR often vary over time and
across subjects. Inherent intra- and inter-subject variability causes covariate shift
in data distributions that impede the transferability of model parameters amongst
sessions/subjects. Transfer learning includes machine learning-based methods to
compensate for inter-subject and inter-session (intra-subject) variability manifested
in EEG-derived feature distributions as a covariate shift for BCI. Besides transfer
learning approaches, recent studies have explored psychological and neurophysiological
predictors as well as inter-subject associativity assessment, which may augment
transfer learning in EEG-based BCI. Here, we highlight the importance of measuring
inter-session/subject performance predictors for generalized BCI frameworks for both
normal and motor-impaired people, reducing the necessity for tedious and annoying
calibration sessions and BCI training.

Keywords: electroencephalography, brain computer interface, sensorimotor rhythms, transfer learning, inter-

subject associativity

1. INTRODUCTION

Brain computer interfaces (BCI) exploiting sensorimotor rhythms (SMR) have shown promise for
both the improvement of motor performance in normal subjects and the rehabilitation of motor
function in patients (Dobkin, 2007; Wang and Jung, 2011). The SMR can be elicited by motor
imagery (MI) that shares common neurophysiological mechanisms with overt motor execution
(ME), the former being more convenient for BCI users who cannot perform an overt ME task due
to some degree of motor disability (Jeannerod, 1995; Lotze and Halsband, 2006; Zich et al., 2015;
Vyas et al., 2018). ME supplements the MI-based motor learning process for people with intact
cognitive functions (Allami et al., 2008; Ruffino et al., 2017).

Since the motor learning processes differ across individuals (Herzfeld and Shadmehr, 2014; Wu
et al., 2014), significant inter-subject variability in motor behavior is anticipated that manifests in
the task-specific electrical activities in the cortico-subcortical networks (Seghier and Price, 2018).
Consequently, the cortical activity observed in electroencephalogram (EEG) varies across subjects
during MI, impeding its utility for BCI applications (Saha et al., 2017b). A study has suggested that
time-variant brain functions cause unreliable EEG signatures with poor reproducibility even within
a particular subject (Meyer et al., 2013). Such inter-session, intra-subject variability together with
even larger inter-subject variability confounds BCI using SMR. This review discusses how inter-
session and inter-subject performance predictors could potentially augment transfer learning to
improve SMR-based BCI performance while reducing calibration efforts significantly.
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2. SENSORIMOTOR DYNAMICS AND BCI

2.1. Motor Learning Process and Brain
Function
Motor variability due to variability in human kinematic
parameters, e.g., force field adaptation, speed and trajectory, and
motivational factors such as level of user engagement, arousal
and feelings of competence, necessary for performing a motor
task is an integral part of the motor learning process (Duarte and
Reinkensmeyer, 2015; Úbeda et al., 2015; Edelman et al., 2019;
Faller et al., 2019). Such variability does not necessarily represent
noise contents only, but may potentially be a manifestation
of motor and perceptual learning processes. Motor variability
may augment reinforcement-based motor learning (Herzfeld
and Shadmehr, 2014; Wu et al., 2014; Singh et al., 2016).
Individuals with higher motor variability may learn a skill
faster than individuals with lower motor variability (Wu et al.,
2014; Singh et al., 2016). The EEG patterns associated with
motor variability could therefore partly explain intra-individual
variability in SMR-based BCI (Bradberry et al., 2010; Úbeda
et al., 2015; Ostry and Gribble, 2016). Furthermore, structural
and functional differences between subjects are associated with
motor learning process, which might explain the motor learning
variability (Tomassini et al., 2011). On the other hand, motor
variability could be leveraged to augment the motor learning and
rehabilitation (Krakauer, 2006; Singh et al., 2016). A study has
demonstrated that alterations in EEG signatures due to motor
training are dependent on intra- and inter-subject variability
(Jochumsen et al., 2017).

2.2. Motor Imagery vs. Motor Execution
Motor imagery is the kinesthetic anticipation of corresponding
overt ME without producing an actual motor output.
Jeannerod stated that MI is functionally equivalent to its
ME counterpart (Jeannerod, 1995). More specifically, MI is
related to the preparation of ME and represents meaningful
neurophysiological dynamics of human motor functions
(Zich et al., 2015). Consequently, both MI and ME share
common sensorimotor areas such as primary motor area
(M1), supplementary motor area (SMA) and premotor cortex
(PMC) (Jeannerod, 1995; Lotze and Halsband, 2006; Zich et al.,
2015).

The neurophysiology underlying MI may differ in healthy
people and patients with motor-impairing conditions (Lotze
et al., 2001). MI-based BCI may augment the motor learning
process in healthy subjects (Ruffino et al., 2017). In patients
with impaired motor functions, MI is often the only viable
option to drive rehabilitative BCI due to users’ inability to
perform overt ME (Jackson et al., 2001; Lotze and Halsband,
2006). The individuality and severity of motor impairments
impact the underlying neurophysiology, for example, post-stroke
neurophysiology relies on the lesion locations (Niazi et al., 2013).
Studies are essential to further delineate the roles of MI and ME
in motor learning or relearning for both healthy and impaired
subjects to refine the design of BCI for supplementing the motor
learning process.

2.3. Neuroplasticity and BCI-Driven Motor
Rehabilitation
Rehabilitative BCI designs either attach neural prostheses to
the impaired upper/lower limb or restimulate the damaged
synaptic networks. In either case, the idea is to exploit and
promote neural plasticity (Dobkin, 2007; Wang et al., 2010).
The plastic characteristics of the brain are created by the
time-variant behavior of the synapses within complex neural
networks, first illustrated by Hebb, 1949 (Brown and Milner,
2003). The motor learning process and associated variability
promote plasticity in the sensorimotor networks and adjust both
motor and perceptual skills (Ostry and Gribble, 2016). This
inherent plasticity is exploited by BCI systems to rehabilitate
impaired motor functions (Dobkin, 2007). Ruffino et al.
demonstrated that MI-based mental training can contribute
to corticospinal plasticity (Ruffino et al., 2017). This might
lead to BCI-driven rehabilitation systems for stroke and spinal
cord injury patients (Niazi et al., 2013; Müller-Putz et al.,
2014). Recent studies showed that BCI skill acquisition and
associated physiological changes may improve BCI performance
in both patients and healthy users (Perdikis et al., 2018;
Edelman et al., 2019). Complex or cognitively entertaining
tasks that require greater user engagement or motivation can
compensate for intra- and inter-subject variability, leading to
enhanced BCI learning in adverse operating conditions (Perdikis
et al., 2018; Edelman et al., 2019; Faller et al., 2019; Li et al.,
2019).

BCI-driven prostheses can extend the degree of freedom of
users with motor impairments. The success of BCI control and
rehabilitation depends on the user’s capacity to modulate the
intact neural ensembles (Dobkin, 2007). Substantial changes
in neural substrates that were observed following closed-loop
BCI-driven motor learning of prosthesis control provide
evidence of neuroplasticity (Orsborn et al., 2014). In stroke
patients, post-rehabilitation electromyographic recordings
showed increased activity in the paretic finger following
BCI-driven rehabilitation using an orthosis, which exhibits
improvement in neuromuscular coherence for movement
control (Ramos-Murguialday et al., 2013). Furthermore, BCI-
driven proprioceptive feedback-based and functional electrical
stimulation-based rehabilitation strategies could reinforce motor
control (Zhao et al., 2016; Darvishi et al., 2017; Selfslagh et al.,
2019).

The structural and functional changes in neural substrates
induced by MI-based training with transcranial direct current
stimulation or transcranial magnetic stimulation provide
further evidence for the induction of neuroplasticity that is
essential for motor recovery (Hong et al., 2017; Johnson et al.,
2018). Because the induction of plasticity by rehabilitation
varies across subjects (Leamy et al., 2014; Vallence et al.,
2015), subject-specific training sessions may be required.
Since the neurophysiology associated with SMR dynamics
varies between individuals, quantification of variability
in healthy user groups could be beneficial first step that
may guide the interpretation of altered neurophysiology in
diverse conditions of motor-impairment (Müller-Putz et al.,
2014).
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3. BRAIN TOPOGRAPHY AND BCI
PERFORMANCE PREDICTORS

3.1. Intra- and Inter-subject Variability in
Brain Topography
The functional relevance of brain topographical variability
with the anatomical boundaries is still not fully understood;
however, significant structure-function correspondences may
be derived at the aggregate level (Honey et al., 2009, 2010).
Smith et al. delineated structural differences, suggesting that the
number of folds and thickness of the cortex could be associated
with whole-brain functional networks (Smith et al., 2019).
Furthermore, inter-subject variability in topography occurs due
to subject-specific cognitive style and strategy to perform a
task over time (Seghier and Price, 2018), which could augment
the underlying learning processes, e.g., motor and perceptual
learning (Krakauer, 2006; Baldassarre et al., 2012; Herzfeld and
Shadmehr, 2014; Wu et al., 2014; Singh et al., 2016).

Intra- and inter-subject variability can be explained by scale-
dependent brain networks in spatial, temporal and topological
domains (Betzel and Bassett, 2017; Betzel et al., 2019). For
example, diversity in spatial organization of the brain networks
can be investigated either at cellular or system level. The sources
of intra- and inter-subject variability in brain dynamics may be
identifiable using multi-scale analysis tools (Betzel et al., 2019)
although the interpretation of brain connectivity networks at
different scales may not be straightforward (Raichle, 2009).

Integrating intrinsic brain activities (i.e., resting state
activities) into BCI design could offer experimental and
methodological advantages for scrutinizing task-specific brain
dynamics (Northoff et al., 2010). While it has been argued that
the brain is primarily reflexive, responding according to external
stimuli/environmental demand, the brain also performs many
intrinsic functions including signal acquisition, maintenance,
and interpretation (Raichle, 2009, 2010). Supporting the critical
role of intrinsic brain activity, it consumes 20% of the body’s
energy (Clarke, 1999). Thus, understanding the role of resting
EEG might supplement BCI performance (Northoff et al., 2010;
Suk et al., 2014; Morioka et al., 2015).

3.2. BCI Performance Predictors
Around 15–30% users are inherently unable to produce task-
specific signature robust enough to control a BCI (Blankertz
et al., 2009; Vidaurre and Blankertz, 2010). The underlying causes
of this BCI illiteracy are not well-understood; however, diverse
psychological and neurophysiological predictors appear to be
associated with BCI performance (Blankertz et al., 2009; Vidaurre
and Blankertz, 2010; Jensen et al., 2011; Hammer et al., 2012; Ahn
and Jun, 2015; Jeunet et al., 2015; Reichert et al., 2015; Zhang
et al., 2015; Acqualagna et al., 2016; Vasilyev et al., 2017; Sannelli
et al., 2019).

Cognitive and neurological factors including functions and
anatomy along with emotional and mental processes give rise
to intra- and inter-subject variability affecting the performance
of SMR-based BCI (Wens et al., 2014; Reichert et al., 2015;
Zhang et al., 2015; Acqualagna et al., 2016; Betzel and Bassett,
2017; Vasilyev et al., 2017; Seghier and Price, 2018; Betzel et al.,

2019; Smith et al., 2019). Time-variant cognitive factors such
as fatigue, memory load, attention and reaction time modulate
instantaneous brain activity, and can cause inconsistent SMR-
based BCI performance (Hammer et al., 2012; Ahn and Jun,
2015; Fox et al., 2015; Jeunet et al., 2015; Darvishi et al., 2018;
Sannelli et al., 2019). Furthermore, users’ characteristics such as
lifestyle, gender, and age can influence BCI performance (Ahn
and Jun, 2015). Kasahara et al. illustrated that a neuroanatomical
feature i.e., graymatter volume is associated with SMR-based BCI
performance (Kasahara et al., 2015).

The structural and functional differences may characterize
dynamic baseline activities manifested in resting-state network
(RSN) dynamics. RSNs represent large-scale spatiotemporal
structures exhibiting intrinsic brain activities that are thought
to be functionally relevant (Deco et al., 2011). Studies have
shown intra- and inter-subject variability in sensorimotor RSN,
which may have implications for BCI performance variability
(Jensen et al., 2011; Wens et al., 2014; Reichert et al., 2015;
Zhang et al., 2015; Acqualagna et al., 2016; Vasilyev et al., 2017).
It has been hypothesized that SMR-based BCI performance
predictor is reliable for people who display strong resting EEG
amplitudes (Blankertz et al., 2010; Suk et al., 2014; Sannelli
et al., 2019). Table 1 shows a list of intra- and inter-subject BCI
performance predictors.

4. TRANSFER LEARNING

4.1. Covariate Shift and Transfer Learning
Transfer learning techniques originating from the field of
machine learning have been adopted to compensate BCI systems
for inter-subject and inter-session variability of EEG feature
distributions (Fazli et al., 2015; Jayaram et al., 2016). A key
idea is to regularize BCI model parameters for covariate shift
adaptation. Covariate shift occurs when distributions of training
and test data differ significantly although their conditional
distributions may remain unchanged (Krusienski et al., 2011).
Figure 1 schematically illustrates the idea of covariate shift
when the training and test data distributions are different.
The underlying time-variant and subject-specific brain dynamics
depends on associated psychological and neurophysiological
factors (Blankertz et al., 2009; Vidaurre and Blankertz, 2010;
Jensen et al., 2011; Hammer et al., 2012; Ahn and Jun, 2015;
Jeunet et al., 2015; Reichert et al., 2015; Zhang et al., 2015;
Acqualagna et al., 2016; Vasilyev et al., 2017; Sannelli et al., 2019)
and cause covariate shift in EEG-derived feature distributions
(Krusienski et al., 2011; Fazli et al., 2015; Jayaram et al., 2016).

The earliest attempts to overcome inter-session variability
include preliminary training sessions to enhance the user’s ability
to modulate brain signals robust enough to control BCI (Wolpaw
et al., 1991; Wolpaw and McFarland, 1994; Birbaumer et al.,
1999). The training sessions required for users are tedious and
inconvenient. Therefore, machine learning-based BCI models
were introduced to reduce individual training session for each
BCI use, in which a model has to be calibrated based on the data
at the beginning of each session (Ramoser et al., 2000; Blankertz
et al., 2002). Recent studies have proposed SMR-based BCI
without any session- and subject-specific calibration utilizing the
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TABLE 1 | Intra- and inter-subject BCI performance predictors.

Study Subject* Task type Task description Predictor

Edelman et al. (2019) 68 MI, Rest

LH, RH, LH+RH

User engagement(Continuous cursor or

robotic arm control)

Faller et al. (2019) 40 Visuo-motor
Virtual reality-based

Arousal
plane control

Sannelli et al. (2019) 80 MO, ME, MI

MO: LH, RH, Foot Tiredness, imagination

ME: LH, RH, RF strength, motivation,

MI: LH, RH, RF uneasiness

Saha et al. (2019) 5 MI RH, RF
Cortical regions

of interest

Perdikis et al. (2018) 2 (SCI) MI

Mutual learning

(parameters derived

LH, RH, LH+RH, from interface-

LF+RF, Rest application, BCI output,

and EEG)

Darvishi et al. (2018) 10 MI LH, RH Reaction time

Jochumsen et al. (2017) 47 ME Palmar grasp

Motor training

(laparoscopic surgery

training using a

simulator)

Saha et al. (2017a) 5 MI RH, RF

Optimal Channels

Saha et al. (2017b) 9 MI
LH, RH, LF+RF,

Tongue

Úbeda et al. (2015) 5 ME Continuous Cursor Kinematic parameters,

control i.e., speed, trajectory

Jeunet et al. (2015) 18

Personality and

Motor: LH Cognitive Profile;

Mental Non-motor: mental Neurophysiological

Imagery rotation and markers, including

mental subtraction parietal θ-power

and frontal and

occipital α-power

Kasahara et al. (2015) 30 MI
LH, RH (Finger- Gray matter

thumb opposition) volume

Morioka et al. (2015) 51

Visuo-spatial Attend-left

Resting EEG

attention or

task Attend-right

Suk et al. (2014) 83
Attention LH, RH,

task Foot

Hammer et al. (2012) 83 MI

Visuo-motor

LH, RH, coordination,

RF ability to concentrate

*Subjects were healthy unless specified otherwise; SCI, spinal cord injury; MI, motor imagery; ME, motor execution; MO, motor observation; LH, left hand, RH, right hand; LF, Left Foot;

RF, right foot.
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FIGURE 1 | A schematic illustration of covariate shift in the feature space and application of transfer learning methods for covariate shift adaptation.

concept of transfer learning (Kang et al., 2009; Li et al., 2010; Lu
et al., 2010; Niazi et al., 2013; Kang and Choi, 2014; Fazli et al.,
2015; Lotte, 2015; Jayaram et al., 2016; Saha et al., 2017a,b, 2019;
Fahimi et al., 2018; He and Wu, 2019).

4.2. The Concept of Inter-subject
Associativity
Most of the existing transfer learning approaches are based
on regularization or inter-session/subject transfer of model
parameters, indirectly transferring knowledge pertaining to the
sources of intra- and inter-subject variability (Samek et al.,
2013; Lotte, 2015). Many works on transfer learning for SMR-
based BCI proposed the use of a very few training samples
from the target subject (Kang et al., 2009; Lu et al., 2010;
Kang and Choi, 2014; Fahimi et al., 2018; He and Wu, 2019).
Recent studies have utilized resting EEG from the target subject
incorporated into transfer learning model before proceeding to
the actual experiment (Suk et al., 2014; Morioka et al., 2015).
While time and effort for building those models could be
significantly reduced, they still require training session. Others
have recently demonstrated the feasibility of inter-subject BCI
models without any training trial from the target subject (Saha

et al., 2017a,b, 2019). However, the performance requires to be
improved significantly prior to real-life use of such BCI systems.

A transfer learning method is worthwhile if the subjects
share non-stationarities that can be modeled in an inter-
subject context, but ineffective if the subjects exhibit unlike
non-stationarities (Samek et al., 2013). The term inter-subject
associativity refers to potential inter-subject BCI performance
predictors, which could be incorporated into BCI design to
augment transfer learning (Kang and Choi, 2014; Wronkiewicz
et al., 2015; Saha et al., 2017a,b, 2019). Source-space analysis
for detecting inter-subject associative EEG channels can improve
SMR-based BCI performance (Wronkiewicz et al., 2015; Saha
et al., 2017a, 2019). For example, the classification accuracies for
two different subject pairs are 90.36± 5.59% and 63.21± 8.43%,
respectively, suggesting not both subject pairs can be used to
achieve a good performance (Saha et al., 2019).

A set of generalized BCI frameworks would be more feasible
to implement as compared to a common BCI framework for
all users. Because, it is evident to observe significant inter-
subject variability in EEG signals (Saha et al., 2017b). Successful
quantification of inter-subject associativitymay suggest clustering
of subjects, each cluster having subjects with EEG signal
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characteristics that are similar or can be interpreted in an inter-
subject context. Considering the increasing volume of EEG-
BCI databases, it may become feasible to quantify the exact
sources of inter-subject/session variability as well as indicators
of inter-subject associativity allowing to reduce training sessions
to a minimum (Lotte, 2015). Recent advances in deep learning
methods demonstrate a potential application that alleviates intra-
and inter-subject variability in BCI settings (Chiarelli et al.,
2018; Fahimi et al., 2018). Meanwhile, recent studies suggest
that the quantification of inter-subject associativity could be
equally important to increase the efficacy of exclusively machine
learning-based transfer learning strategies for covariate shift
adaptation (Kang et al., 2009; Kang and Choi, 2014;Wronkiewicz
et al., 2015; Saha et al., 2017b, 2019; Perdikis et al., 2018).

5. CONCLUSION

Intra- and inter-subject variability is undeniable due to
time-variant factors related to the experimental setting and
underlying psychological and neurophysiological parameters.
Besides the extensive use of transfer learning methods for

the covariate shift adaptation, many recent works sought to
find suitable psychological and neurological predictors for
BCI performance. The assimilation of such predictors into
a subject independent context may reduce or eliminate the
tedious session or subject-specific training by supplementing
the performance of existing transfer learning methods.
However, collecting a priori information related to BCI
performance predictors could be challenging. Inter-subject
topographical associativity characterized by resting EEG
could provide a viable alternative solution to reduce the
calibration time to a minimum (Northoff et al., 2010; Suk
et al., 2014; Morioka et al., 2015) assuming we understand
the significance of intrinsic brain activities, i.e., resting EEG
signals, and the role of RSN topographies on SMR-related
brain functions.
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