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Abstract

Camera motion introduces motion blur, degrading the

quality of video. A video deblurring method is proposed

based on two observations: (�) camera motion within

capture of each individual frame leads to motion blur;

(��) camera motion between frames yields inter-frame mis-

alignment that can be exploited for blur removal. The

proposed method effectively leverages the information dis-

tributed across multiple video frames due to camera motion,

jointly estimating the motion between consecutive frames

and blur within each frame. This joint analysis is crucial

for achieving effective restoration by leveraging temporal

information. Extensive experiments are carried out on

synthetic data as well as real-world blurry videos. Com-

parisons with several state-of-the-art methods verify the

effectiveness of the proposed method.

1. Introduction

Camera shake is a typical problem encountered during

video capture, especially when using light-weight hand-

held devices, such as cell-phones. Conventional video

stabilization techniques compensate for the irregular inter-

frame motion caused by camera shake, but such techniques

do not help with camera-shake-induced intra-frame blur.

Even worse, the problem of intra-frame motion blur often

becomes more pronounced after stabilization, because of

inconsistencies with the modified stabilization-induced mo-

tion path [16]. Blurry frames often cause a flickering effect

when viewed in real time, leading to degraded quality in

terms of visual perception. In this work, we aim to present

a video deblurring method to handle this problem.

The task of video deblurring is constrained by several

challenges. The blur introduced by the camera shake is

typically spatially varying, and therefore estimating the blur

from a single frame is challenging. Also, recovering a

deblurred frame from only a single frame typically intro-

duces ringing artifacts. Therefore, to achieve robust video

deblurring, it is desirable to go beyond a single frame and

exploit information contained in multiple frames. Because
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Figure 1. Illustration of the proposed approach. (a-b) two blurry

video frames (c) optical flow estimated directly on the blurry

images (d-f) the output of the proposed method: (d-e) deblurred

video frames and blur kernels (f) optical flow (with color encod-

ing [22]) jointly estimated with blur using the proposed method

(for comparison, the ground-truth flow estimated on the original

sharp images is shown on the top-right of (f)).

of blur variation due to camera motion, different frames

may contain complementary information about the latent

scene, which can be exploited for robust restoration, as

show in Figure 1. However, direct application of multi-

image-based deblurring methods typically does not always

produce desirable results, mainly due to artifacts caused by

inter-frame camera and/or object motion [5]. While this

often requires accurate motion estimation to better exploit

complementary information across frames, establishing the

correspondence between different frames is challenging due

to the inherent matching ambiguity caused by the motion

blur.

We argue that camera motion is both an enemy and a

friend for restoration, particularly in the context of video.

On the one hand, camera motion occurring during the ex-

posure period (within capture of a single frame) introduces

blur, which smears detailed structures. On the other hand,

due to inter-frame motion, different observations (frames)

typically have different blurs, thus containing complemen-

tary information. This therefore provides more constraints

for the ill-posed inverse problem, and hence is beneficial

both in blur-kernel estimation and sharp-video-frame recov-
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ery. The main contributions of this paper are as follows:

1. An approach for removing the camera-shake-induced

blur in video is proposed, which can handle non-

uniform blur with non-rigid inter-frame motions.

2. The complementary information distributed across

frames is harnessed for blur removal, by estimating

motion and blur jointly.

3. An effective algorithm is developed, taking advantage

of recent progress in both blur estimation and flow

estimation.

The remainder of the paper is organized as follows. We

first briefly review related work in Section 2. We then

present our video deblurring method in Section 3. Extensive

experiments are conducted in Section 4 and results are

compared with state-of-the-art methods. A discussion on

the limitations of the proposed method is also provided in

this section. We conclude the paper in Section 5.

2. Related Work

Single-/Multi-Image Blind Deblurring Blind deblurring

techniques using a single image can be classified into max-

imum a posterior (MAP) estimators with different pri-

or/penalty terms [20, 4, 28], and variational Bayesian (VB)

based techniques, which attempt to make more thorough

use of the underlying posterior distribution of the latent

image [6, 13]. While initial emphasis has been on uniform

deblurring [6, 20, 4, 28, 13], more recent efforts are on

robust non-uniform deblurring [27, 8, 29, 32, 34], for which

the blur kernel can vary across the image.

In many scenarios, we have access to multiple related

observations, and it is advantageous to leverage the multiple

observations for robust recovery. Most multi-image deblur-

ring methods incorporate a two-observation-based ‘cross-

blur’ penalty function, in addition to other standard reg-

ularizers [18, 3, 19, 35]. Although computationally effi-

cient, inclusion of such a quadratic energy term does not

always produce better kernel estimation [3, 35], leading

to kernel estimates that are themselves blurry, producing

ringing artifacts or loss of details in the deblurred image

[35]. To mitigate some of these problems, a sparseness-

promoting penalty on the blur kernel [3, 19, 35], or a strong

sparseness-promoting prior on the latent image has been

exploited [33, 31]. These methods assume a shared latent

sharp image for all the observations, and therefore are only

applicable to images of a static scene with small global rigid

displacements. Image deblurring with the aid of a sharp

reference image of the same scene in the presence of non-

rigid displacements has been investigated recently in [7].

Video-Enhancement via Transferring Complementary

information contained in a video clip has also been exploit-

ed for removing blur from video [16, 30, 9, 5, 23, 10].
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Figure 2. Blurry video observation model. For video deblur-

ring, to estimate a high-quality video frame x (indicated with

red rectangle), we can exploit information from two sources: (�)

direct observation y, which is linked to x via the blur operator H

(��) consecutive frames (y−1 and y1), which are connected to x

via a motion based transformation and blurring. Both sources of

information can be described by the observation model (1).

Matsushita et al. [16] proposed to increase the sharp-

ness of the blurry frame by transferring sharper image

pixels from nearby frames, using interpolation. Another

information-transfer-based video enhancement method is

presented in [9], using projection onto convex sets (POC-

S). These two methods do not involve deconvolution, and

enhance the blurry frame by information transfer only, re-

lying heavily on the existence of sharp adjacent frames as

the source of high-frequency information. Cho et al. [5]

proposed a video deblurring method by transferring high-

frequency information from sharp frames/regions by patch

matching, which also relies on the existence of sharp frames

(regions). Another related approach for extracting a snap-

shot from a video clip is proposed in [23].

Video-Enhancement based on Deblurring All of the

aforementioned video-enhancement methods do not include

an explicit deblurring process. Liu et al. [15] recently

proposed a video supperresolution method, estimating the

blur kernel and optical flow jointly. However, the blur

kernel is assumed to be an isometric and invariant Gaussian

kernel, and no motion blur is modeled. Lee et al. [10] take

advantage of an accurate blur kernel estimation technique

using blurry-sharp frame pairs. While this method tries

to incorporate a deblurring process explicitly, it uses a

uniform-blur assumption that is often inaccurate for real-

world camera motion blur [27]. It also relies on the presence

of a corresponding sharp frame for each blurry frame. An

approach for generating a sharp panorama from a motion-

blurred video is proposed in [14], with however a static-

scene assumption.

3. Exploiting Inter-Frame Motion for Intra-

Frame Deblurring

The task of video deblurring is challenging mainly due

to the coupled nature of motion and blur. On the one

hand, accurate estimation of the blur using multiple frames



requires reliable motion estimation, to compensate for the

inter-frame camera motion as well as object motion. On

the other hand, reliable motion estimation requires robust

blur removal for avoiding matching ambiguities caused by

smeared structures due to blur [18]. We aim to tackle the

problem of motion and blur estimation jointly, for removing

camera-motion blur in video, in the presence of non-rigid

inter-frame motion. Without loss of generality, we omit the

specific temporal location of the frame under consideration

and assume it is at the canonical position � = 0 in the sequel,

i.e., denoting the latent high quality frame at a specified

location as x and the set of low quality observations around

that location as {y�}
�
�=−� (� frames before, and � frames

after).

3.1. The Model

Video records a spatial-temporal volume of a time-

varying scene, with each video frame a sample along the

temporal axis. In the presence of camera shake, the captured

video frame is blurred due to the integration of motion over

time (see Figure 2), leading to the following observation

model for the �-th frame (� ∈ {−�, ⋅ ⋅ ⋅ , 0, ⋅ ⋅ ⋅ , �})

y� = H�x� + n�, (1)

where x� is the latent sharp frame corresponding to the

blurry video frame y�, H� is the blurring operator, and n�

is an additive noise term (or model mis-match residual).

Constructing H� as the convolution matrix of a spatially

invariant blur kernel is too restrictive for modeling camera

motion blur [10]. To model the general camera-motion-

induced blur, we adopt the recent Projective Motion Path

(PMP) model [25], i.e., representing the blurring operator as

H� ≜
∑�

�=1
���P� , where {P�} denotes a set of projection

operators induced by discretizing the motion space (e.g., a

certain range of translation and rotation) [25], and ��� ≥ 0
denotes the contribution of P� to H�.

A straightforward approach for recovering x (� = 0) is

based on the observed frame y and (1) directly, by solving

a standard single-image-based blind deblurring problem:

min
w≥0,x

1

�
∥y −Hx∥2

2
+	(x,w, �), (2)

where 	(⋅) is a regularization term, employed to alleviate
the ill-posedness of the inverse problem; the regularizer
is either separable [20, 29] or coupled over the unknown
variables [33].1 This approach, however, relies purely on
a single observed frame, not exploiting the complementary
information distributed in the observed video cube due to
motion (across multiple frames). To exploit this comple-
mentary information for improved estimation, we connect

1Here the � in �(⋅) can either be regarded as a parameter [13] or a joint

variable [33].

two latent sharp frames as x� ≈ F�x, where F� is the non-
rigid spatial transformation operator induced by the flow
field that relates two video frames. While it is possible
to establish this connection for each pair of frames, and
recover all the latent sharp frames jointly, we concentrate
on a specified frame x without loss of generality. We
solve the following problem incorporating the temporally
relevant frames

min
x,{w�,��}≥0,{F�}

1

�
∥y −

∑

�

��P�x∥
2
2

︸ ︷︷ ︸

data˘term

+
∑

� ∕=0

1

��

∥y� −
∑

�

���P�F�x∥
2
2

︸ ︷︷ ︸

temporal˘term

+�(x, {w�, ��,F�})
(3)

where w� = [�1�, �2�, ⋅ ⋅ ⋅ ]
� . Each term in (3) is as follows:

∙ The first term in (3) is a standard data-fidelity term,

based directly on the observation model, and is re-

ferred to as data term in the sequel.

∙ The second term is a motion-aware regularizer, which

exploits the motion-induced complementary informa-

tion across multiple temporal frames, by relating x to

x� via F�, for further improving the estimation; it is

referred to as a temporal term.

∙ The temporal term is helpful only if y� contains ad-

ditional information compared to y in the data ter-

m, meaning
∑

� ���P�F� is different from H ≜
∑

� ��P� , which is satisfied in general due to the

random nature of camera shake.

∙ The choice of the generic regularization term 	(⋅) is

detailed later.

The proposed joint approach (3) has several advantages:

∙ This method can estimate non-uniform blur, non-

rigid motion, and sharp video frames from the blurry

video itself, without introducing simplified assump-

tions (e.g., uniform blur [19, 33, 10], rigid motion [16])

or hardware assistance [2, 24].

∙ The proposed method can effectively fuse information

from multiple frames, and does not rely on the exis-

tence of sharp video frames to achieve enhancement.

It is applicable to the scenario where all the video

frames are blurred, which is a significant difference

from most previous methods [5, 9, 10]. However, the

existence of sharp frames will help to further improve

the restoration quality.

∙ While using video deblurring as a motivational exam-

ple, the proposed method is generic and applicable

to other scenarios involving multiple non-uniformly

blurred observations with possibly non-rigid inter-

frame motions.

However, (3) is difficult to solve, as we want to infer the

set of blur operators, flow operators as well as the latent



sharp frame from only a set of blurry frames. To reduce the

complexity of the problem and increase the robustness of

the algorithm, we approach the problem in two phases: in

the blind phase, we recover the spatially-variant blur kernels

and motion fields jointly, using an image penalty that has

a strong ability to promote sparsity, for enhancing kernel

estimation and reduce the ambiguity in flow estimation. In

the second, non-blind phase, sharpened video frames are

recovered using the estimated blur kernels and motion fields

from the first phase, with a natural-image prior [11]. A

similar strategy has proven to be effective for blind image

deblurring [6, 29, 33]. We outline our optimization in the

following section. More complete details can be found in

supplementary material.

3.2. Blind Phase

In this phase, we work in the derivative domain of im-

ages, for simplicity of modeling and effectiveness of blur

kernel estimation [13]. We use x̄ and ȳ to denote the (vec-

torized) derivatives of x and y respectively.2 Flow is still es-

timated in the pixel domain. The blur kernel is estimated by

solving a regularized regression problem based on (3). An

additional advantage of working in the derivative domain is

that the simple quadratic fidelity term can be used, without

resorting to more-advanced robust functions, simplifying

the optimization process.3 We therefore derive from (3)

two subproblems as follows, and solve them iteratively to

estimate blur and flow:

Blur min
{w�,��}≥0,x̄

∑

�

1

��

∥ȳ� −H�F�x̄∥
2

2
+	1(x̄, {w�, ��})(4)

Flow min
F�

1

��

∥y� −H�F�x∥
2

2
+	2(F�), ∀� ∈ {−�, ⋅ ⋅ ⋅ , �}(5)

	1 is a penalty function coupled over x̄, w� and �� [33],

employing a sparsity-promoting ability with respect to 
̄�,

modulated by w� and ��
4

	1(x̄, {w�, ��}) ≜ min
�≥0

∑

�,�

[


̄2

�

��
+ log(�� + ��∥h��∥

2

2
)

]

,

where h�� = B��w� is the local blur kernel at site �, B�� =
[P1, ⋅ ⋅ ⋅ ,P�, ⋅ ⋅ ⋅ ]F�e�, and e� denotes the vectorized delta

image with all zero except at site �. 	2 is a penalty term for

F� that promotes sparseness as detailed in the flow update.

Blur Update From (4), H� ≜
∑�

�=1
���P� and the defi-

nition of 	, we derive the following cost function for blur

(w�) update of each frame � [32]:

min
w�≥0

∥ȳ� −D�w�∥
2

2
+	1(x̄, {w�, ��}) (6)

2Filter set {q1 = [−1, 1],q2 = q�
1 } is used in our implementation.

3However, robustness term is preferred in the non-blind phase, as

detailed in Section 3.3.
4This property is presented in Theorem 2 from [33].

with D� = [P1, ⋅ ⋅ ⋅ ,P� , ⋅ ⋅ ⋅ ]F�x̄ denoting the dictionary

constructed by projectively transforming F�x̄ using a set of

transformation operators. (7) can be solved by bounding the

non-convex 	1 with the introduction of laten variables ���
5

min
w�≥0

∥ȳ� −D�w�∥
2

2
+w�

� (
∑

�

���B
�
��B��)w� (7)

reducing (6) to alternating between solving standard non-

negative quadratic programming problem (7), and updating

the latent variables in closed-forms [32]:

��� ← (�−1

� ∥h��∥
2

2
+ �−1

� )−1, �� ← 
̄2

� +
∑

�

���/(2� +1).

The latent image (derivatives) x̄ is used for constructing the

dictionary D� and plays the role of an auxiliary variable for

kernel estimation in (7). With other variables fixed, x̄ is

updated by solving the following regularized-least-square

problem derived from (4):

min
x̄

1

�
∥ȳ−Hx̄∥2

2
+
∑

� ∕=0

1

��

∥ȳ�−H�F�x̄∥
2

2
+x̄�Γ−1x̄, (8)

which has closed-form solution

x̄ =
(

∑

�

1

��

F�
� H

�
� H�F�+Γ−1

)−1
∑

�

1

��

F�
� H

�
� ȳ�, (9)

where Γ = diag(�). In practice, (9) is calculated via the

conjugate gradient (CG) method.

Flow Update After updating the blur (w�), we get a de-

blurred image x̂� of y� using a standard non-blind deblur-

ring method adapted to non-uniform deblurring [11]. The

operator F	 is then updated by solving (5) via

min
u,v

1

��

∥x̂� − F�x∥
2

2
+	2(F�). (10)

We implement F� with an optical-flow-driven motion field,

represented locally in terms of the horizontal and vertical

motion vectors as F�x = x + ∂x
∂�

u� +
∂x
∂�

v�. Substituting

this into (10) and using the Charbonnier-penalty (	
(x) =
∑

�

√


2

� + �2) for the motion vectors, we have

min
u,v

∥x̂�−x−
∂x

∂�
u�−

∂x

∂�
v�∥

2

2
+�	
(u)+�	
(v), (11)

which can be solved effectively using the iteratively

reweighted least squares (IRLS) method [22]. Note that ��

in (10) has been absorbed into � in (11).

Noise Level Update The effective noise level reflects the

accuracy of the model estimation. By retaining only the

terms relevant to �� in (4), we obtain the cost function:

min
��≥0

1

��

∥ȳ� −H�F�x̄∥
2

2
+
∑

�

log(�� + ��∥h��∥
2

2
) (12)

5Please refer to the supplementary file for the derivation.
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Figure 3. Synthetic blurry video generation. (a) Translation

parameters plot. (b) Rotation parameter plot. (c) A blurry video

frame generated from the house image driven by the motion

parameters in (a), with uniform-blur. (d) A blurry frame with non-

uniform blur, i.e., both the translation and rotation are used for

producing the video. The corresponding blur kernels are shown

on the top-left of (c) and (d) respectively.

which leads to the following update rule for � by using the

conjugate bounding [32]:

�� ← (∥ȳ� −H�F�x̄∥
2

2
+ ��)/�, (13)

where � is the dimensionality of ȳ� and �� ←
∑

� ���∥h��∥
2

2
.

3.3. Non-Blind Phase

There are several reasons for requiring a robust non-

blind video deblurring approach. First, different frames

capture different observations of the scene, due to a change

of viewpoint caused by camera motion. Therefore, some

parts of the scene that may be visible in one frame might

become invisible in another, due to occlusion. Secondly, the

scene may contain dynamic (time-varying) objects, which

will have a different appearance in different frames. Naive

application of multi-image non-blind deblurring might pro-

duce results with severe ringing artifacts due to these factors

(see Figure 4). Here we enhance the original model in (3)

with a robust function and a natural image prior [11]:

min
x

�(y −Hx)

�
+
∑

� ∕=0

�(M�(y� −H�F�x))

��

+�
∑

�

∥q�∗x∥
0.8

(14)
where �(x) =

∑

� log(1 + 0.5(
�/�)
2) is the robust

Lorentzian function and {q�} is a set of derivative filter-
s. The expression in (14) can be solved again with the
iteratively reweighted least squares method, by iteratively
updating the following two steps:

x =
(∑

�

F�
� H

�
� W�H�F�

��

+ �
∑

�

Q
�
� V�Q�

)−1
∑

�

F�
� H

�
� W�y�

��

W� = M�diag
(
(e2

� + 2�2)−0.5
)
, V� = diag

(
∣Q�x∣

−1.2
)
,

where Q�x = q� ∗ x and e� = y� − H�F�x. M� =

diag
(

exp(−
∣Hy�−F�

�
H�y∣

2

0.012
)
)

is a diagonal matrix with di-

agonal elements indicating the visibility of the correspond-

ing observation with respect to the current frame. We fix

the number of iterations to 3 for IRLS in our experiments.

3.4. Implementation Details

For the blind phase, we used a standard multi-scale

estimation technique, first performing estimation on a low-

resolution image, and using the solution to initialize the

solution at the next higher resolution level using bilinear

interpolation [6, 22]. For each level of resolution, we

iteratively update blur, flow and noise level for 5 times. The

length of the temporal window is typically set as 3, meaning

the two frames closest to the specified one are used jointly

with the current frame for restoration. Local convolutional

approximation is used for reducing the computational ex-

pense of evaluating H�x [8]. We set � = 0.001, � = 3
for flow estimation in (11) and � = 0.001, � = 0.2 for

robust non-blind deblurring in (14). Pixel values are scaled

to [0, 1].

4. Experimental Results

We conduct several experiments using both synthetic

data and real-world blurry videos. Experimental results are

compared with several state-of-the-art methods, including

the single-image-based uniform deblurring method by X-

u et al. [28], the non-uniform deblurring algorithm [29],6

the multi-image-based deblurring method by Sroubek et

al. [19] (with motion correction using the optical-flow from

the blurry frames),7 and the recent video deblurring method

by Cho et al. [5].

4.1. Blurry Video of Static Scenes

The synthetic blurry video is generated based on the ob-

servation model (1), by transforming a sharp image accord-

ing to the time-varying motion parameter and integrating

over certain time period. Additive Gaussian noise with

standard derivation of 2 (pixel intensity range [0, 255]) is

added to each video frame. The evolution curves of the

used motion parameters are shown in Figure 3(a)-(c). We

generate two types of blurry videos driven by the motion

parameters: (�) Uniform Blur: the video is generated

using the translational motion only (Figure 3(a)); (��) Non-

Uniform Blur: the video is generated using both translation

and rotation (Figure 3(a) + (b)). We average over every

9 consecutive frames to simulate the accumulation process

during the exposure period. Example blur kernels are also

shown in Figure 3 (d)-(e). The method of Cho et al. [5] is

not compared for this experiment, as it is only applicable to

videos with some sharp frames.

The experimental results are shown in Figure 5 in terms

of Peak Signal to Noise Ratio (PSNR) and Structural Sim-

ilarity Index (SSIM) measured with the same scheme as

in [13]. As observed, for the uniform-blur case, the single-

frame-based method [28] can improve the video quality.

6http://www.cse.cuhk.edu.hk/~leojia/research.html
7http://zoi.utia.cas.cz/files/fastMBD.zip

http://www.cse.cuhk.edu.hk/~leojia/research.html
http://zoi.utia.cas.cz/files/fastMBD.zip


(a) (b) (c) (d) (e) (f) (g)

Figure 4. Robust non-blind phase. (a) A blurry frame to be deblurred. Deblurred frame via (b) non-robust method (without using M� and

set 	(⋅) as ℓ2-norm), and (c) proposed robust method. (c)-(d) Two frames around the specified frame in (a), which are themselves blurry.

(f)-(g) Robust masks (M�) for (d) and (e).
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Figure 5. Video deblurring results on house sequence. PSNR

and SSIM plots for uniform (top) and non-uniform (bottom) cases.

However, in the presence of non-uniform blur, the single-

frame-based non-uniform deblurring method [29] does not

always possible to improve the quality of the video. The

multi-image-based method, with pre-motion correction,

does not perform well, mainly due to the inaccuracy in

motion estimation using the blurry frames.

4.2. Blurry Video of Non-Static Scenes

In the second experiment, we use a standard video se-

quence containing object motion (Foreman) for evaluating

the effectiveness of the proposed method on video deblur-

ring in the presence of both camera motion and object mo-

tion. The camera-motion blur is produced using a spatially

and temporally invariant blur kernel (motion blur kernel

with size 7 and motion direction 45∘). As the kernel is

stationary across all the frames, it is easier to observe the

gain from inter-frame motion under this setting.

The PSNR and SSIM plots of several methods on this

test sequence are shown in Figure 6. As observed, the

proposed method performs better than other methods in

terms of both PSNR and SSIM. We also present deblur-

ring results of different methods in Figure 6. As the blur

kernel is a simple one, the single-image-based method [28]

achieves fairly good restoration quality. The multi-image

method [19] introduces some artifacts mainly because of

the object motion, performing worse both visually and

quantitatively. The proposed method, by exploiting com-

plementary information introduced by the inter-frame cam-

era motion, produces high-quality deblurred frames with

more fine details than other methods. Moreover, the flow

estimation from the proposed method is also more faithful

to the ground-truth flow than that estimated from the sharp

frames directly (see Figure 1 for an illustration). This result

indicates the benefits of exploiting information contained

in multiple frames, and the effectiveness of the proposed

method in handling both inter-frame camera motion and

objet motion.

4.3. Video Deblurring on Real-World Videos

Experiments on real-world videos from the literature are

conducted in this section. We first use the bridge se-

quence from Cho et al. [5], and compare our results with the

results from the state-of-the-art video deblurring method by

Cho et al. [29, 5], as shown in Figure 7. Deblurring results

using a single-image-based deblurring method [29] are also

presented in Figure 7 for comparison. The single-image-

based method [29] does not produce good image restoration

on this video frame, and the deblurred image has severe

ringing artifacts. The method of Cho et al. [5] produces

visually sharp results and avoids ringing artifacts, by using a

patch-based synthesis technique (and shock filtering) rather

than deconvolution. However, note that the result of Cho

et al. [5] has a different type of artifact, manifested as

structure distortion, which is most apparent in structured

regions (for example, the person in the frame and the light

pole on the right part of the frame). One possible reason for

this is that the local patch-matching strategy might intro-

duce erroneous matches in the presence of severe blur and

thus cause artifacts in the subsequent patch-based synthesis

step. Therefore, while the individual deblurred frame is

sharp, it might not be consistent with the observed image, as

the reconstruction constraint is not enforced explicitly. For

our approach, in contrast, the matching between frames is

established using a global optimization framework, with the

data fidelity term explicitly incorporated, and thus it does

not suffer from the structure distortion problem of Cho et

al. [5], as seen from Figure 7. Moreover, it can recover more
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Figure 6. Video deblurring results on the Foreman sequence. Top: PSNR and SSIM plots. Bottom: blurry and deblurred frames.

Blurry Xu [28] Cho [5] Proposed

Figure 7. Video deblurring results on the bridge sequence from Cho et al. [5]. The result of Cho et al. [5] has fewer ringing artifacts

than the single image-based method [28], but has some structure distortions (e.g., the light pole). The proposed method does not have this

problem while can recover more fine details than other compared methods. Please see the supplementary file for more comparisons.

fine details than the other methods considered (e.g., see the

enlarged window region), which validates the effectiveness

of the proposed approach in exploiting motion for motion

deblurring. We also show the blur kernel patterns estimated

by our method for the blurry frame in Figure 7. It is

observed that the recovered kernel pattern resembles the

blurry light sticks in the frame, implying the plausibility of

the recovered blur kernels.

Results on two additional video clips [5, 23] are shown

in Figure 8. On the car sequence, the proposed method

produces deblurred video frames better than that of the

single-frame method using [29], and is comparable to that

from the video deblurring method of Cho et al. [5]. On

the mural sequence, the proposed method outperforms all

other compared methods, demonstrating the effectiveness

of the proposed method.

4.4. Blur-Aware Motion Estimation

Although not the main focus of this paper, the pro-

posed method can obtain blur-aware flow estimation while

performing video deblurring. A recent method for flow

estimation in the presence of motion blur is proposed by

Travis et al. [17].8 While relevant to our approach, the

method of Travis et al. [17] focuses on flow estimation only

but not on the task of deblurring, thus it is complementary

to our approach. Furthermore, although it might be possi-

ble to integrate this method into an alternating estimation

framework similar to ours, the fact that it requires two

extra frames for parameterizing the blur in order to estimate

8http://pages.cs.wisc.edu/~lizhang/projects/blurflow

the blur-aware flow between any two frames makes this

method less general. The proposed method, in contrast, can

obtain the flow directly from two blurry frames, requiring

no additional auxiliary frames.

To make a comparison, we use a dataset from Travis et

al. [17] and construct a two-step approach by using the flow

estimated from the method of Travis et al. [17] followed

with a standard multi-image deblurring method [19]. The

results are shown in Figure 9. It is noted that the two-

step approach using the blur-aware flow estimation [17]

can generate improved results compared to the baseline

method using the flow estimated from the blurry frames

directly. However, the result from this two-step method

still has some ringing artifacts, as well as some distort-

ed structures (e.g., the character ‘J’). While these results

may be improved by iteratively performing the two steps

multiple times, the distorted structures are not corrected.

This indicates that sequentially concatenating two existing

approaches cannot achieve high-quality deblurring results,

compared to the proposed joint estimation approach. In

terms of flow estimation, both the method from Travis et

al. [17] and the proposed method provide improvements

over the baseline method, as indicated by the improved

restoration results.

4.5. Discussions and Limitations

For the proposed method, although no special treatment

is incorporated, the temporal consistency is implicitly main-

tained due to the sharing of the latent image through the

motion-aware temporal term. For smooth regions, as there

http://pages.cs.wisc.edu/~lizhang/projects/blurflow


Blurry Xu [29] Cho [5] Proposed

Blurry Xu [29] Zhang [32] Proposed

Figure 8. Video deblurring results on the car (top) and mural (bottom) sequences. The deblurred frame from the proposed method has

more fine details and fewer ringing artifacts compared to the results from single frame image based deblurring method such as [29] and

[32], and is sharper than the result from [5].

Blurry Baseline Two-Step Proposed

Figure 9. Flow estimation in presence of motion blur. Left to right: a blurry frame, deblurred image using standard optical flow method

followed with the multi-image deblurring method of [19] (baseline), deblurred image by using [17] for optical flow estimation followed

with the multi-image deblurring method of [19] (two-step), deblurred image by the proposed method. Flow estimations are shown on the

top right of each deblurred image.

is no salient structural information for robustly establish-

ing the correspondence, the flow estimation might not be

accurate. This, however, will not cause problems for sharp-

frame recovery, as most patches within the smooth region

are similar to each other, and the inaccurate matches are

still valid for restoration.

There are several limitations for the proposed method.

First, our approach for flow estimation is based on the

deblurred frames using the current blur estimation. While

simplifying the optimization, a better approach would be to

solve (5) directly by embedding the blur operator into the

IRLS-based flow updating process, similar to [15]. Second-

ly, the proposed model can only remove the blur caused by

camera motion and does not handle blur caused by object-

motion. However, this can be achieved by temporal decon-

volution after temporal interpolation using our flow estima-

tion [21, 26]. Thirdly, the current model does not model

the scene depth explicitly, and thus cannot handle scenes

with large depth variations. Another scenario challenging

to all video deblurring methods, including ours, is when

all the frames are severely blurred. In this case, it might

be advantageous to combine our method with an example-

based approach [5, 7].

5. Conclusion

We have proposed a new approach for removing camera-

shake-induced motion blur in video, taking advantage of

complementary information distributed across frames due

to camera motion. The proposed method jointly es-

timates the camera-motion-induced intra-frame blur and

inter-frame motion, producing high-quality video deblur-

ring results. The inter-frame motion allows a given region

in the scene to be viewed from the perspective of different

intra-frame blurring, providing important complementary

information. Future work includes investigating the ‘op-

timal’ camera motion for high quality imaging in certain

scenarios (i.e., purposely introducing inter-frame camera

motion), in a similar spirit to designing patterns for cod-

ed aperture [12] and coded exposure [1]. Moreover, the

recovered inter-frame motion can be leveraged to achieve

temporal super-resolution and object motion deblurring.

Extending the proposed method for achieving joint video

stablization and deblurring is another interesting research

direction.
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