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Abstract

Background: Since early February 2021, the causative agent of COVID-19, SARS-CoV-2, has infected over 104 million
people with more than 2 million deaths according to official reports. The key to understanding the biology and
virus-host interactions of SARS-CoV-2 requires the knowledge of mutation and evolution of this virus at both inter-
and intra-host levels. However, despite quite a few polymorphic sites identified among SARS-CoV-2 populations,
intra-host variant spectra and their evolutionary dynamics remain mostly unknown.

Methods: Using high-throughput sequencing of metatranscriptomic and hybrid captured libraries, we characterized
consensus genomes and intra-host single nucleotide variations (iSNVs) of serial samples collected from eight
patients with COVID-19. The distribution of iSNVs along the SARS-CoV-2 genome was analyzed and co-occurring
iSNVs among COVID-19 patients were identified. We also compared the evolutionary dynamics of SARS-CoV-2
population in the respiratory tract (RT) and gastrointestinal tract (GIT).
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Results: The 32 consensus genomes revealed the co-existence of different genotypes within the same patient. We
further identified 40 intra-host single nucleotide variants (iSNVs). Most (30/40) iSNVs presented in a single patient,
while ten iSNVs were found in at least two patients or identical to consensus variants. Comparing allele frequencies
of the iSNVs revealed a clear genetic differentiation between intra-host populations from the respiratory tract (RT)
and gastrointestinal tract (GIT), mostly driven by bottleneck events during intra-host migrations. Compared to RT
populations, the GIT populations showed a better maintenance and rapid development of viral genetic diversity
following the suspected intra-host bottlenecks.

Conclusions: Our findings here illustrate the intra-host bottlenecks and evolutionary dynamics of SARS-CoV-2 in
different anatomic sites and may provide new insights to understand the virus-host interactions of coronaviruses
and other RNA viruses.
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Background
In December 2019, a new coronavirus, severe acute re-

spiratory syndrome coronavirus 2 (SARS-CoV-2), started

an outbreak of pneumonia infections in Wuhan, Hubei

Province, China. SARS-CoV-2 represents efficient infect-

ivity and transmissibility. It transmits efficiently among

human beings, with an R0 estimated to be over 2 [1, 2].

Most symptomatic patients infected by SARS-CoV-2 dis-

play symptoms of fever, cough, fatigue, myalgia, dyspnea,

or pneumonia [3]. Moreover, infected individuals with-

out apparent clinical symptoms may be also able to

transmit the viruses to their contacts [4]. It is of great

concern to us all as to why such a newly emerging virus

could spread in human populations so rapidly, which

urges the investigation into the origin, virus-host inter-

actions, and evolutionary pathway of SARS-CoV-2.

The novel coronavirus is now causing a global pan-

demic which has severely impacted health care systems,

economies, and societies worldwide. Understanding of

mutation and evolution within the intra-host and inter-

host populations of SARS-CoV-2 provides important in-

formation on transmission and pathogenesis of this

virus. RNA virus replication typically has a high error

rate than DNA viruses due to the lack of sufficient

proofreading activities during genome replication [5, 6].

As the largest and most complex known RNA virus ge-

nomes, CoV genomes employ nsp14 to enhance the fi-

delity of RNA synthesis, which is highly conserved and

has the exonuclease proofreading function. Since the

outbreak of COVID-19, SARS-CoV-2 has rapidly spread

around the world with an estimated evolutionary rate of

(8–9) × 10−4 nucleotide substitutions per site per year [7,

8], which is similar with previously reported rates of

SARS-CoV (8.0–23.8 × 10−4) [9] and MERS-CoV (6.3–

11.2 × 10−4) [10, 11]. During the first several months of

the COVID-19 pandemic, multiple genotypes (S, L, V,

G, GH, GR, and O) [12–14] and hundreds of SNPs scat-

tered throughout the genome have been reported [15–

18]. Although plenty of polymorphic sites have been

identified among SARS-CoV-2 populations, the true

variant spectra of closely related viral genomes within

the same host are mostly disguised by the consensus se-

quence [19]. Intra-host variant spectra of closely related

viral genomes remain largely unknown.

Previous studies on Ebola [20], influenza virus [21],

and yellow fever virus (YFV) [22] have shown that iSNVs

that appeared during the course of the epidemic could

provide valuable information about the size of transmis-

sion bottleneck, human-to-human transmission chain,

and viral diversity. For instance, influenza A virus (IAV)

and influenza B virus (IBV) transmission bottlenecks are

both stringent [23], while IBV exhibits lower intra-host

diversity compared to IAV [21]. This pattern of intra-

host viral evolution is consistent with influenza B virus’

slower global evolutionary rate. Comparison of the YFV

evolutionary rates estimated by iSNV and SNP indicated

that the intra-host evolutionary rate was much higher

than that during the epidemic [22], which reflected puri-

fying selection occurred. As for the novel coronavirus

SARS-CoV-2, the latest research based on three

COVID-19 patients indicated that SARS-CoV-2 exhibits

intra-host genomic plasticity and low-frequency poly-

morphic quasispecies [24–26]. Understanding the full

underlying intra-host diversity is closely related to trans-

mission pattern and vaccine design. Of particular, the

main route of SARS-CoV-2 shedding is via both the re-

spiratory tract (RT: nose swab, sputum, throat swab)

[27] and gastrointestinal tract (GIT: anus-anal swab,

feces) samples [28, 29]; the intra-host diversity and char-

acteristics of SARS-CoV-2 in different anatomic sites

have not been addressed.

Here, using high-throughput sequencing of metatran-

scriptomic and hybrid captured libraries, we character-

ized consensus genomes and intra-host variations of

serial samples collected from eight patients with

COVID-19. The frequency of mutated allele frequencies

changes dramatically among either sample types or time

points. Specifically, we observed a remarkable
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differentiation between SARS-CoV-2 populations of fecal

samples and that of the respiratory tract samples within

the same patient. The genomic resources presented here

are of importance for the research community to esti-

mate human-to-human transmission and to understand

the intra-host evolutionary dynamics of SARS-CoV-2

population in patients with COVID-19. The findings of

the present study also shed light on the prevention and

control of SARS-CoV-2.

Methods
Patient enrolment

Eight pneumonia patients, referred as the GZMU cohort,

were confirmed with SARS-CoV-2 infection between

January 25 and February 10 in 2020 and hospitalized at

the first affiliated hospital of Guangzhou Medical Uni-

versity (six patients), the fifth affiliated hospital of Sun

Yat-sen University (one patient), and Yangjiang People’s

Hospital (one patient). Serial samples were collected, in-

cluding nasal swabs, throat swabs, sputum, gastric mu-

cosa, urine, plasma, anal swabs, and feces. All the

information regarding patients has been anonymized.

Real-time RT-qPCR and metatranscriptomic sequencing

A total of 62 serial clinical samples collected from eight

patients with COVID-19 (Additional file 1: Table S1)

were used for real-time RT-qPCR. Clinical samples were

subjected to RNA extraction using QIAamp Viral RNA

Mini Kit (Qiagen, Hilden, Germany). An in-house real-

time RT-qPCR was performed by targeting the SARS-

CoV-2 RdRp and N gene regions (Zybio Inc.). Human

DNA was removed using DNase I and RNA concentra-

tion was measured using Qubit RNA HS Assay Kit

(Thermo Fisher Scientific, Waltham, MA, USA). DNA-

depleted and purified RNA was used to construct

double-stranded (ds) cDNA library using MGIEasy RNA

Library preparation reagent set (MGI, Shenzhen, China)

following the protocol described in our previous study

[30]. Specifically, the ds cDNA was Unique Dual Indexed

to increase sequencing specificity. To track possible con-

tamination, human breast cell lines (Michigan Cancer

Foundation-7) were used as controls during library con-

struction. High-throughput sequencing of the con-

structed libraries was then carried out on the DNBSEQ-

T7 platform (MGI, Shenzhen, China) to generate meta-

transcriptomic data of 100-bp paired-end reads.

Hybrid capture-based enrichment and sequencing

For a subset of samples (Additional file 1: Table S1),

genomic content of SARS-CoV-2 was enriched from the

double-stranded cDNA libraries mentioned above using

the 2019-nCoVirus DNA/RNA Capture Panel (BOKE,

Jiangsu, China) as described in our previous study [30].

In detail, negative controls were prepared using the total

RNA from MCF-7 breast cancer cell and nuclease-free

water. According to the instruction of MGISEQ-2000

platform, the SARS-CoV-2 content-enriched samples

were used to construct DNA Nanoballs (DNBs)-based li-

braries and sequenced on the MGISEQ-2000 platform to

generate data of 100-bp paired-end reads. Data extrac-

tion and cleaning were performed prior to analysis.

Data filtering and genome assembly

Data filtering was performed following the procedures de-

scribed in previous research [30]. Briefly, for both meta-

transcriptomic and hybrid capture data, sequence data of

each sample were firstly mapped to a pre-defined database

comprising representative genomes of coronaviridae. The

mapped reads were then subject to the removal of low-

quality, duplications, adaptor contaminations, and low-

complexity to collect high-quality coronaviridae-like reads.

We also compared the allele frequencies among the two

data types (metatranscriptomic sequencing and hybrid

capture-based sequencing methods) when available; sam-

ples with conflicted consensus alleles were removed. For

the samples with 60-fold of metatranscriptomic data,

coronaviridae-like metatranscriptomic reads were used to

generate consensus genomes and identify intra-host vari-

ants. Full-length consensus genomes were generated from

reads mapped to the reference genome (GISAID acces-

sion: EPI_ISL_402125) using Pilon (v. 1.23) [31]. To pre-

vent false discovery, base positions reporting an

alternative allele with the following conditions were

masked as N: (1) sequencing coverage less than 5-fold and

(2) sequencing coverage less than 10-fold and the propor-

tion of reads with the alternative allele less than 80%. The

collected coronaviridae-like reads were also de novo as-

sembled using SPAdes (v. 3.14.0) with default settings [32]

with a maximum of 100-fold coverage of read data. Struc-

tural variations between the de novo assemblies and con-

sensus genomes, if any, were manually checked and

resolved based on read alignments. Nucleotide differences

between the consensus sequences and the reference gen-

ome were summarized into artificial Variant Call Format

(VCF) files, which were annotated using SnpEff (v.2.0.5)

[33] with default settings.

Phylogenetic analysis

Available consensus sequences of SARS-CoV-2 (Add-

itional file 1: Table S2) were collected from GISAID

database (https://www.gisaid.org/) on 5 April 2020, after

the removal of highly homologous sequences, 122 repre-

sentative virus strains (Additional file 1: Table S2) were

used to infer evolutionary relationships with the assem-

bled genomes. Within the GZMU cohort, only one gen-

ome was selected when more than one identical genome

was achieved from the same patient. The assembled

SARS-CoV-2 and selected representative genomes were
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aligned using MAFFT with default settings. A maximum

likelihood (ML) tree was inferred using the software IQ-

TREE (v.1.6.12) [34], with the best fit nucleotide substi-

tution model selected by ModelFinder from the same

software. The inferred ML tree was then visualized using

the R package ggtree [35] (v.3.10). Major branches and

the defining nucleotide mutations were manually

labeled.

Summary of public consensus variants

All the consensus sequences of the public strains were

aligned with the reference genome (GISAID accession:

EPI_ISL_402125) using MAFFT (v.5.3) [36] with default

settings. Nucleotide differences between the consensus

sequences and the reference genome were summarized

into an artificial VCF file, which was then were anno-

tated using SnpEff (v.2.0.5) with default settings. The

linkage disequilibrium among the identified consensus

variants was estimated using VCFtools (v.0.1.16).

Calling of iSNVs

Here, an intra-host single nucleotide variant (iSNV) was

defined as the alternative allele co-existed with the refer-

ence allele at identical genomic position within the same

sample. To minimize false discovery, iSNVs were identi-

fied on samples with at least 60-fold mean metatran-

scriptomic sequencing coverage and then verified using

hybrid capture data when available.

First, paired-end metatranscriptomic reads were

mapped to the reference genome (GISAID accession:

EPI_ISL_402125) using BWA aln (v.0.7.16) with default

parameters [37]. Duplicated reads were marked using

Picard MarkDuplicates (v. 2.10.10) (http://broadinstitute.

github.io/picard) with default settings. Base composition

of each position was summarized from the mapped

reads using the software pysamstats (v. 1.1.2) (https://

github.com/alimanfoo/pysamstats), and then subject to

iSNV site identification with the following criteria: (1)

base quality larger than 20, (2) sequencing coverage of

paired-end mapped reads ≥ 10, (3) at least five reads

support the minor allele, (4) minor allele frequency ≥ 5%,

and (5) strand bias ratio of reads with the minor allele

and reads with major allele less than ten-fold. To

minimize false discoveries, sites with more than one al-

ternative allele were filtered out. Biological effects of the

identified iSNVs were annotated using the SnpEff

(v.2.0.5) with default settings. Alternative allele frequen-

cies (AAFs) at the identified iSNV sites were measured

by the proportion of paired-end mapped reads with al-

ternative alleles. To avoid the bias caused by the large

range of viral genome coverage, we only selected the

samples with sufficient metatranscriptomic data (>60X)

as described above. Most (26/32) of the 32 samples had

>200X average sequencing coverage, allowing iSNV site

to be confidently defined with a 5% allele frequency cut-

off (which means at least 10 supporting reads). Given

that most samples (27/32) were also hybrid capture se-

quenced, all the iSNVs of those samples were verified

and supported by at least two hybrid capture reads from

the same sample, showing that the iSNV identification is

robust and solid. For the 26 samples with at least 200X

data, most genomic regions were covered by at least

100X of read data, ensuring that the iSNVs with low fre-

quencies (2~5%) could be confidently identified. In fact,

all the iSNVs were identified with a depth > 50X (Add-

itional file 1: Table S3). Furthermore, the detection cut-

off of that iSNV was reduced to 2% for the rest of the

samples of the same patient, when an iSNV was detected

in one patient, only the AAFs more than 2% with at least

three reads were kept for the following analyses. The ac-

curacy of the iSNV detection is also reflected by the high

concordance between the two pairs of replicates (Add-

itional file 2: Fig. S1). The improved methodologies

should ensure a confident identification of iSNVs among

samples with a large range of coverage. All the iSNVs

were verified using hybrid capture data when applicable.

At the iSNV sites, the allele with higher frequency was

defined as a major allele, while one with less frequency

was defined as a minor allele, regardless whether it is

different from the reference allele. A heatmap was gen-

erated to visualize the AAFs for all samples using the

pheatmap package in R (v.3.6.1). A subset of the identi-

fied iSNVs were validated by Sanger sequencing using

the protocol described in the previous study [30].

Statistics of iSNVs

The distribution of iSNVs among genetic components

and patients were summarized and visualized using the

Python package matplotlib (v.3.2.1). Alternative allele

frequencies on all the detected iSNV sites were com-

pared among patients. To avoid oversampling, for the

patients with more than one sample, only the median

AAF among all samples of that patient was used for

comparison. Alternative allele frequencies among syn-

onymous and non-synonymous variants and among

codon positions were compared using the Wilcoxon

rank-sum test and visualized through box plot using the

R package ggplot (v.3.3.0). For the iSNVs detected in pa-

tient P01 and P08, the dynamics of AAFs was visualized

across time points using the R package ggplot (v.3.3.0).

Genetic diversity

The genetic diversity of each sample was estimated

using Shannon entropy based on the AAF of each

iSNV, assuming that all iSNVs are independent from

each other.
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H xð Þ ¼ −

Xn

i

P ið Þ log2P ið Þ

where P(i) is the AAF at variable site i. The comparison

of genetic diversities between RT and GIT samples was

performed using the Wilcoxon rank-sum test.

Genetic distance

The genetic distance among samples was estimated

using L1-norm distance in a pairwise manner.

D ¼
XN

k¼1

Xn

i¼1

j pi − qi j

The L1-norm distance (D) between a pair of samples

is the sum of the distance across all the variable sites

(N). For each variable site, the distance is calculated be-

tween vectors (p and q for each sample) comprising fre-

quencies of all the four possible nucleotide bases (n = 4).

The comparison of genetic distances among different

categories of sample pairs was performed using the Wil-

coxon rank-sum test.

Haplotype reconstruction

Haplotypes of neighbor iSNV sites were reconstructed

using mapped paired-end reads.

Results
Clinical characteristics of the patients with COVID-19

From January 25 to February 10 in 2020, we collected a

total of 62 serial clinical samples from eight hospitalized

patients (GZMU cohort) confirmed with SARS-CoV-2

infection using real-time RT-qPCR (Additional file 1:

Table S1). All patients had direct contacts with con-

firmed cases during the early stage of the outbreak. Most

patients, except P15 and P62, had severe symptoms and

received mechanical ventilation in ICU, including patient

P01 who passed away eventually. Patient P01 also

showed much lower antibody (IgG and IgM) responses

(Additional file 1: Table S1) compared to other patients.

We then deep sequenced the 62 clinical samples using

metatranscriptomic and/or hybrid capture methods

(Additional file 1: Table S1). The numbers of SARS-

CoV-2 reads per million (SARS-CoV-2 RPM) among the

metatranscriptomic data correlated well with the corre-

sponding RT-qPCR cycle threshold (Ct) of SARS-CoV-2,

reflecting a robust estimation of viral load (R = 0.71, P =

6.7e−11) (Fig. 1a). The respiratory tract (RT: nose swab,

sputum, throat swab) and gastrointestinal tract (GIT:

anus-anal swab, feces) samples showed higher SARS-

CoV-2 RPMs compared to gastric mucosa and urine

samples (Fig. 1b). The data here may reflect an active

replication of SARS-CoV-2 in RT and GIT, especially in

patients with severe symptoms [38, 39].

Consensus genomic variations

Here, using metatranscriptomic data, we obtained 32

consensus complete genomes from the clinical samples

with at least 60-fold sequence coverage (Additional file

1: Table S1 and Table S4). Comparing the assemblies to

the reference sequence (GISAID accession: EPI_ISL_

402125) revealed 14 consensus variants (6 synonymous

and 8 non-synonymous) located mostly in ORF1ab, S,

ORF8, and N genes (Additional file 1: Table S4). Most of

the consensus variants were also detected among public

sequences, including the widespread associated variants

(C8782T and T28144C) detected in four patients (P10,

P13, P14, and P62). The novel consensus variant causes

a frameshift at the end of ORF8 in patient P14, showing

the phenotypic plasticity during the evolution and adap-

tation of SARS-CoV-2. Evolutionary relationships

showed that the consensus SARS-CoV-2 genomes of the

GZMU cohort belonged to distinct clades, including

clades defined by T28144C and A23403G, respectively

(Fig. 1c). Remarkably, we observed distinct SARS-CoV-2

genotypes co-existed in the GIT samples of patient (P08)

with three nucleotide differences (Fig. 1d and Additional

file 1: Table S4), suggesting independent replications of

different SARS-CoV-2 genotypes within the same host

[40]. The existences of different genotypes could be ex-

plained by co-transmission, recurring mutation, or alter-

native quasispecies developed from adaptive immune

response; a similar phenomenon was reported in hepa-

titis C virus (HCV) [41] and human polyomavirus JC

(JCV) [42].

Detection and characteristics of iSNVs

Although plenty of polymorphic sites were identified

among SARS-CoV-2 populations, intra-host variant

spectra of closely related viral genomes are mostly dis-

guised by the consensus sequences. We firstly examined

the reproducibility of our experimental procedures for

allele frequency estimation. Only a minor difference of

alternative allele frequencies (AAFs) was observed

among biological replicates of two selected samples

(Additional file 2: Fig. S2), showing that the estimated

population composition was marginally affected by inde-

pendent experimental procedures. To control false dis-

covery rate, we applied a stringent approach to detect

iSNVs. The iSNVs were identified from the 32 samples

using metatranscriptomic data and then verified using

hybrid capture-based data, which are available for most

(27/32) samples (Additional file 1: Table S5 and Table

S3). Overall, we observed 1 to 23 iSNVs in six patients

with a cut-off of 5% minor allele frequency (Fig. 2a, b).

When an iSNV was discovered in one patient, we re-

duced the cut-off to 2% to detect that iSNV from the

rest of the samples of the same patient (see the

“Methods” section). The AAFs of iSNVs detected from
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Fig. 1 (See legend on next page.)
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the metatranscriptomic data correlated well with those

of the hybrid capture-based data (Spearman’s ρ = 0.99,

P < 2.2e−16; Additional file 2: Fig. S1). Furthermore, the

numbers of the observed iSNVs did not correlate with

the sequencing coverage (Additional file 2: Fig. S3), sug-

gesting that the coverage of metatranscriptomic and hy-

brid capture-based data was sufficient to estimate intra-

host variation in most samples.

We further analyzed intra-host variation across genes

for evidence of purifying selection or neutral selection. If

SARS-CoV-2 evolves under neutral selection, the ratio

of non-synonymous substitution to synonymous substi-

tution tends to be similar for all ORFs, and the iSNVs

are likely to distribute equally at each codon position. In

this research, the 40 identified iSNV sites (10 synonym-

ous iSNVs and 30 non-synonymous iSNVs) distributed

evenly across genomic regions (Fig. 2c; Additional file 1:

Table S5). A similar number of iSNVs among codon po-

sitions (position 1: n = 15; position 2: n = 12; position 3:

n = 13; chi-square test: P = 0.84) suggests that most

iSNVs were under neutral selection or insufficient puri-

fying selection. Meanwhile, we did not observe a signifi-

cant difference in AAFs either between non-synonymous

and synonymous iSNVs (Fig. 2d) or among codon posi-

tions (Additional file 2: Fig. S4), which also reflects the

neutral selection of iSNVs.

Co-occurring iSNVs

One central task when estimating intra-host variation is

to identify the source of iSNVs. Overall, the distribution

of the iSNVs among samples does not correlate well

with the consensus SNPs (Fig. 2a). Samples carrying the

same consensus SNPs generally had different iSNVs,

particularly in P01, P10, and P13. Here, we classified the

iSNVs into (i) rare iSNVs (30/40) detected in a single pa-

tient and (ii) common or shared iSNVs (10/40) detected

in at least two patients and/or identical to consensus

variants. The common iSNV could be used to estimate

human-to-human transmission and the transmission

bottleneck. Here, the ten common iSNVs did not show

linkage with other consensus variants. Furthermore,

their AAFs could not be discriminated from those of the

rare iSNVs (Fig. 2e), reflecting a tight genetic bottleneck

transmission. The comparison of SNPs and iSNVs also

implies that most of the non-synonymous iSNVs could

not be transmitted efficiently or the non-synonymous

iSNVs might have disappeared, as most of them are

deleterious. Notably, the common iSNVs include two

iSNVs (G11083T and C21711T) exclusively detected in

the GIT populations of P01, P08, and P10 (Additional

file 1: Table S5). Among the common iSNVs, G11083T

is the most widespread consensus variant distributed in

multiple lineages of SARS-CoV-2, suggesting that it

might be derived from recurring mutations on distinct

strains rather than the mutation on a single ancestral

strain. Furthermore, although G11083T was detected as

an intra-host variant in the GIT samples of three pa-

tients, it was not detected in the corresponding RT sam-

ples, supporting that those loci might recurrently

mutate. Interestingly, G11083T located in a region en-

coding a predicted T-cell epitope [43], suggesting that

this suspected recurrent mutation may provide genetic

plasticity to better adapt against host defenses. In

addition, to exclude the possibility of potential sequen-

cing errors influencing the accuracy of analysis, multiple

sequencing methods, including metatranscriptomic and

hybrid capture sequencing, were both performed with

similar results obtained.

Genetic diversity within the GIT and RT samples

Using Shannon entropy, we observed a significantly

higher genetic diversity within the GIT samples than

that of RT samples (Wilcoxon rank-sum test, P = 1.4e

−05; Fig. 3a and Additional file 1: Table S6), reflect-

ing a larger viral population size within the GIT pop-

ulations or under relaxed selective pressures. We

further investigated the genetic differences between

the two intra-host populations. Notably, no iSNV was

shared between RT and GIT samples from the same

patients, suggesting a frequent genetic differentiation

among intra-host viral populations of different ana-

tomic sites. Here, we used L1-norm distance to esti-

mate genetic dissimilarity between sample pairs based

on iSNVs and their AAFs (Fig. 3b and Additional file

1: Table S7). As expected, genetic distances among

samples from the same host were smaller than those

among inter-host samples (Fig. 3b and Additional file

1: Table S7). Within each host, the greatest genetic

distance was observed among GIT samples and be-

tween GIT and RT samples, while the distances

among RT samples were relatively small. For example,

seven iSNVs were shared among the GIT samples of

(See figure on previous page.)
Fig. 1 Sequence data from various sample types of patients with COVID-19. a SARS-CoV-2 RPM of metatranscriptomic data plotted against RT-
qPCR cycle threshold (Ct) value for the clinical samples. b Frequency distribution of samples based on SARS-CoV-2 reads per million (SARS-CoV-2
RPM). c Maximum likelihood tree of consensus SARS-CoV-2 genomes using IQ-TREE. Colors of dotted tips represent the geographic locations of
samples. Nucleotide mutations that define the branch were labeled outside the tree. d Distribution of consensus variants (in round circles)
detected in the GZMU cohort across the SARS-CoV-2 genome. Colors represent the biological effect of mutations. Non-synonymous variants are
denoted by green, synonymous variants by red, and frameshift by blue. EPI_ISL_402125 was used as the reference sequence
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P01, while none of them was observed in RT samples

(Fig. 2a). It seems that the clear genetic differentiation

between GIT and RT populations is mostly driven by

distant intra-host bottlenecks. However, the exact

viral migration mechanisms among intra-host popula-

tions require further investigation.

Fig. 2 Characteristics of iSNVs. a Heatmap showing the alternative allele frequencies (AAFs) of intra-host single nucleotide variants (iSNVs) and
consensus variants among samples. The sample (e.g., P01N0129) name indicates patient number P01, sample type (N nasal swab, T throat swab,
A anal swab, F feces, S sputum) and collection date (January 29). Common iSNVs were marked by star symbols. Variant type and sample type
were marked in different colors, and consensus variants were indicated in red. b The number of detected iSNVs per patient. c Number of iSNV
sites among protein-encoding genes. d Box plot showing the distribution of alternative allele frequencies (AAFs) of non-synonymous and
synonymous iSNVs. Each dot indicates the median AAF among all the detected iSNVs of samples from the same patient. e Box plot showing the
distribution of AAFs of common and rare iSNVs. Each dot indicates the median AAF among all the detected iSNVs of samples from the
same patient
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Allele frequency dynamics of iSNVs

Previous studies have revealed longitudinal evolution of

intra-host populations in some important RNA viruses

[44–48]. We firstly compared the detected iSNVs among

serial samples. All the iSNVs of early GIT samples also

presented in later GIT samples, while most iSNVs de-

tected in RT samples disappeared in at least one follow-

ing sample, suggesting that the intra-host variants were

better maintained in GIT. We further focused on the al-

lele frequency dynamics of iSNVs observed in the GIT

populations. Notably, most GIT iSNVs were remarkably

stable and showed continuous trends of AAFs across

sampling dates. For example, within the GIT population

of P01, seven iSNVs showed continuous trends of allele

frequency dynamics, including four iSNVs with in-

creased AAFs and two iSNVs with decreased AAFs

Fig. 3 Genetic diversity and genetic distance. a Box plot showing the distribution of genetic diversity among samples from the gastrointestinal
tract (GIT) and respiratory tract (RT). For the patients with more than one GIT/RT samples, only the median value was selected to represent the
genetic diversity in GIT/RT. b Box plot showing the distribution of L1-norm distances among samples from the gastrointestinal tract (GIT) and
respiratory tract (RT). Each dot represents the genetic distance between a unique pair

Fig. 4 Temporal dynamics of intra-host populations in patients P01 and P08. a, b Alternative allele frequencies (AAFs) among sampling dates in
patients P01 and P08. Days post the first symptom date are shown in the bracket. The sample (e.g., P01A0129) name indicates patient number
P01, sample type (N nasal swab, T throat swab, A anal swab, F feces, S sputum), and collection date (January 29, 2020). Combined iSNVs are the
average frequency of four similar iSNVs (A391T, A2275G, C25163A, and T27817G). Colors represent different iSNVs. Underlines represent
common iSNVs
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across the three sampling dates (Fig. 4a). Given their

similar growth rates but distinct allele frequencies, it is

likely that more than two genetically related haplotypes

co-existed within the GIT population of P01. Similar

patterns were also observed in the GIT population of

P08 (Fig. 4b). Notably, the dynamics of intra-host vari-

ation simultaneously changed the consensus alleles (>

50%) of three viral genetic loci (3160, 21711, and 28854)

in P08 (Fig. 2a), suggesting that polymorphisms on the

three loci might correlate with each other. Despite those

changes, GIT populations seemed to be relatively stable

while developing towards a high genetic diversity. None-

theless, in both P01 and P08, we observed increased

AAFs of the GIT-specific variants (C21711T and

G11083T). However, more evidence is required to exam-

ine whether tissue-specific adaptation actively involves

in the divergence among distant intra-host populations.

Development of intra-host diversity within the GIT

population

We further phased proximal iSNVs into local haplotypes

using paired-end mapped reads (Additional file 1: Table

S8). Most minor haplotypes had one nucleotide differ-

ence from the dominant haplotype of the same sample,

suggesting that they might be mutated from the main

strain of the corresponding population. Nonetheless, we

observed one exception in the GIT population of P01.

On the variable loci of C21707T, C21711T, and

A21717G, the GIT population of P01 showed one dom-

inant haplotype (T-C-A) and two minor haplotypes (T-

T-A and T-T-G) (Additional file 2: Fig. S5). Despite that

one minor haplotype (T-T-A) was relatively stable (8–

10%), the proportion of the dominant haplotype (T-C-A)

decreased from 89 to 67%, while that of the other minor

haplotype (T-T-G) increased from 2 to 22%. Based on

the haplotype dynamics and their nucleotide differences,

we hypothesized that the minor haplotype (T-T-G) may

be derived from the dominant haplotype (T-C-A) via the

intermediate minor haplotype (T-T-A), which was con-

sistent with the recent report of widespread occurrence

of C→U hypermutation in the genomes of SARS-CoV-

2 [49]. Importantly, our observation supports that the

mutated viruses further replicate and accumulate vari-

ants in the GIT population, and finally, evolve towards a

distinct viral lineage in the specific environment.

Discussion
Intra-host variants were identified in many RNA viruses

[22, 44, 45, 50–52]. Here, using deep sequencing data of

serial samples, we revealed the existence of intra-host

variation within COVID-19 patients. Given the observa-

tions in other RNA viruses [44, 46, 51], population

bottleneck and purifying selection are the dominant fac-

tors driving the genetic differentiation during intra- and

inter-evolutionary dynamics. Population bottlenecks

could lead to a drastic reduction of viral population size

during the early and middle stages of the epidemic [53–

55]. Purifying selection becomes increasingly effective as

the epidemic prolonged, because it has more opportun-

ity to remove deleterious alleles [20, 56]. For SARS-

CoV-2, one possible intra-host migration route is from

the respiratory tract to the gastrointestinal epithelia.

During the intra-host population bottlenecks, population

composition may change dramatically through random

sampling when a novel sub-population was established

from a small group of viruses of a larger population [57].

This is supported by the clear genetic differentiation be-

tween RT and GIT populations. The stochastic process

under neutral pressure plays an important role in intra-

host population diversity during the early epidemic, as

shown by the even distribution of AAFs among syn-

onymous and non-synonymous iSNVs. Under this as-

sumption, novel founder populations are expected to

have a low genetic variation due to the subsampling

from the original population. Following the bottleneck

events, the viral genetic diversity of GIT populations

might recover rapidly. This is also consistent with the

high viral load in GIT. During viral replication, both RT

and GIT populations generate intra-host variants.

Sharing of iSNVs usually could be derived from recur-

rent mutation, transmission, or contamination. We can

rule out contamination, as seldom iSNVs are located at

common SNP position. Observation of iSNV distribu-

tions among codon positions and genes suggests that the

process of iSNV generation is probably site-independent.

From the comparison of SNPs and iSNVs, SARS-CoV-2

genes have similar synonymous and non-synonymous

patterns; most of the non-synonymous iSNVs could not

be transmitted efficiently, suggesting selection is not the

primary cause of shared iSNVs. Theoretically, selective

pressures are inclined to be different for synonymous

and non-synonymous mutations since most of non-

synonymous mutations are deleterious. Besides we ob-

served the possible fixation process, two iSNVs

(G11083T and C21711T) were exclusively detected in

the GIT populations of P01, P08, and P10. The fast fix-

ation suggests that the resulting substitution might pro-

vide the virus certain selective advantages. Recently,

similar research indicated that SARS-CoV-2 exhibits

intra-host genomic plasticity and low-frequency poly-

morphic quasispecies [25, 26, 58]; the recurrent SARS-

CoV-2 mutations currently in circulation appear to be

evolutionary neutral [59]. Besides, the intra-host diver-

sity of SARS-CoV-2 is frequently shared among infected

individuals with patterns consistent with geographical

structure [60, 61], which reflected the co-transmission of

mixed population including shared SNP and iSNV, as

the rapid geographic spread of SARS-CoV-2 in some
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countries. To assess the iSNVs detected in this study

against other published data [26, 61], iSNV comparison

was performed and interesting finding showed that sel-

dom shared iSNVs were detected from different cohorts,

which may be due to the geospatial constraints and indi-

vidual discrepancy. However, most of iSNVs show a

similar distribution pattern among genome, which were

mainly scattered over ORF1ab, S, ORF3a, ORF6, ORF7,

and N genes. Besides, seldom iSNV variants seem to

arise many times along the phylogenetic tree, which may

be derived from recurrent sequencing biases, hypermu-

tability, or artifact [61–63]; the most remarkable ex-

ample is G11083T, which is the most frequent and

appears in both consensus sequences and iSNVs gener-

ated by multiple technologies. One hypothesis is that it

appears to be due to a variable truncation of a long

stretch of poly(T) at this position, which may present as

a gap or one position immediately afterward depending

on the analysis method [61]. On the other hand, the

variant G11083T shows a strong phylogenetic signal,

suggesting that they originated [63]. Related analyses or

results should be caveated for the observation about the

possible artifact.

In addition, our findings also demonstrated that those

novel and/or recurrent variants are better accumulated

and maintained within GIT, and hence, leading to a

higher level of genetic diversity and potentially larger ef-

fective population size. In contrast, the intra-host vari-

ants are less stable in RT, probably associated with a

more dramatic genetic drift in RT populations. In

addition, viral adaptation against tissue-specific environ-

ment may also drive the divergence among intra-host

populations, given the two GIT-specific non-

synonymous iSNVs (G11083T and C21711T) observed

in our study. SARS-CoV-2 needs to hijack the transcrip-

tion and translational machinery of the host cell for a

productive infection to happen. However, given the dif-

ferent susceptible cells, mechanisms of immune escape

and microenvironment in RT and GIT, SARS-CoV-2 in-

fecting different tissues may have adapted the viral vari-

ation and deleterious mutation removal towards their

tropism. One plausible hypothesis is that the stronger

selection pressure or immune response in the respiratory

tract may restrict the population diversity of SARS-CoV-

2, compared with the viral population in GIT. However,

it is still challenging to fully disentangle the influences of

stochastic processes and natural selection, considering

the frequent confounding genetic signals of these two

processes.

Conclusions
Our results demonstrated a clear genetic differentiation

between GIT and RT populations, mostly driven by

bottleneck events among intra-host migrations.

Compared to RT populations, the GIT populations

showed a rapid accumulation and better maintenance of

intra-host variants, reflecting a rapidly recovered genetic

diversity following the intra-host migration. Nonetheless,

given the presence of two GIT-specific non-synonymous

iSNVs, tissue-specific adaptation may also drive the ob-

served intra-host differentiation. Exact biological mecha-

nisms of the intra-host population dynamics remain to

be explored. Taken together, our data presented here il-

lustrate the intra-host bottlenecks and evolution of

SARS-CoV-2 and may provide new insights to under-

stand the virus-host interactions of coronaviruses and

other RNA viruses.
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