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Background

Gait analysis is acknowledged as the main approach for quantitatively assessing the 

alteration of motor function in different contexts, such as in basic research and clin-

ics. Technological development is making available smart and wearable sensors (inertial 
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measurement units, IMUs) and robust artificial intelligence methods for handling large 

amount of data and signals (machine and deep learning). �is kind of innovation is start-

ing to allow a reduction of the complexity of experimental protocols for gait analysis 

and a cheaper, less-invasive, and more comfortable assessment of gait data. �is is par-

ticularly true for the problem of assessing gait temporal parameters and events, such 

as stride length and the timing of heel-strike (i.e., the instant when the foot touches 

the ground) and toe-off (i.e., the instant when the foot-toes clear the ground). In many 

instances, IMUs showed to be convenient and reliable for an ecological (out of the labo-

ratory) assessment of walking parameters [1]. However, it has been reported that EMG-

based approach seems to be preferable over different approaches (including IMU), for 

specific environments such as control of exoskeleton devices [2], where EMG signals 

could be used to identify segment motion in advance, thus limiting delays in control 

action. An example of this is reported by Wentink et al. [3] who showed that the analysis 

of EMG signals allows assessing gait initiation earlier (63–138 ms) than inertial sensors, 

in a population of transfemoral amputees. In this and other cases, EMG-based approach 

seems to be really valuable [4–6]. Moreover, in the analysis of the majority of neuromus-

cular diseases, such as for example spastic cerebral palsy, the acquisition of sEMG sig-

nals is essential. �us, the possibility of assessing HS and TO timing directly from sEMG 

signal, without using additional sensors such as foot-switch and IMUs, seems to be very 

useful in those cases.

Machine learning approaches were also satisfactorily implemented for the estimation 

of gait events from both kinematic data [2, 7–9] and electromyographic (EMG) signals 

[9–12] during walking. �e success of machine learning approaches has opened a novel 

perspective for reducing the complexity of experimental set-up. Predicting gait events 

from only EMG signals could remove the need of further sensors or systems (foot-switch 

sensors, pressure mats, IMUs, stereo-photogrammetry [1, 13–15]) for the direct meas-

urement of temporal data. �is would be particular suitable for specific fields where 

measuring myoelectric signals is strongly recommended, such as the analysis of neuro-

muscular diseases or for walking-aid devices [16, 17].

Only few efforts in this direction [11, 12] proved to be able in providing a reliable clas-

sification of swing and stance phases and an accurate prediction of heel-strike (HS) and 

toe-off (TO), with mean errors comparable to those reported for IMU-based studies 

[1]. Nazmi et al. [11] fed EMG-based features to a single hidden layer neural network, 

reporting for unseen subjects a mean classification accuracy of 77% and mean abso-

lute error of 35 and 49 ms in assessing HS and TO, respectively. �e present group of 

researchers interpreted EMG signals by means of a multi-layer perceptron classifier with 

the aim of predicting HS and TO [12]. Outcomes on unseen subjects were promising, 

showing a mean classification accuracy of 93.4% and a mean accuracy error of 21 ms for 

HS and 38 ms for TO. �ese studies are based on the so-called inter-subject approach for 

data preparation, which consists in training the neural network with EMG data acquired 

during different strides of a population of homogeneous subjects and then testing the 

network on a population of brand new subjects [11, 12]. Moreover, to measure classifica-

tion performances also for learned subjects (i.e., subject included only in training phase), 

the training phase was further split into two subsets: training set containing the first part 

of each subject signal and the test set including brand new strides (not used for training) 
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taken from the subjects involved in training. Both studies indicated that classification 

performances were better for learned subjects than for unseen ones, in terms of accu-

racy (+ 10% in [11] and + 1.5% in [12]) and standard deviations (SD). Larger variability 

reported for unseen subjects seems to indicate that walking patterns could be very dif-

ferent from subject to subject, making the classification harder in subjects never seen 

before.

All these results and considerations raise the issue if a totally intra-subject approach 

could drive to a better performance in gait-phase classification. With intra-subject 

approach, we mean training the neural network with EMG data acquired during dif-

ferent strides of a single subject and then testing the network on brand new strides of 

the same subject. �e few and preliminary studies reporting classification results based 

on the intra-subject approach, including our own, seem to support this hypothesis [10, 

18–22]. Meng et al. [10] applied hidden Markov models to EMG signal to identify stance 

and swing phases, reaching a classification accuracy of 91%. Ziegier et al. [19] reported a 

best-case accuracy of around 96% in the classification of gait phases by training a support 

vector classifier with EMG signals. To the same purpose, Joshi et al. [20] used Bayesian 

Information Criteria along with some standard feature extraction methods and Linear 

Discriminant Analysis classification algorithm. Best individual accuracies were around 

94%. Population involved in these three preliminary studies included two subjects at 

most. Also our preliminary reports showed encouraging results, characterized by mean 

intra-subject classification accuracy of 95.2 ± 1.6% [18]. None of the above-mentioned 

studies [10, 18–20] attempted to assess gait events.

�us, the purpose of the present study is (1) to propose an intra-subject approach for 

binary classification and gait-event prediction; (2) to test the hypothesis that an intra-

subject approach is able to achieve better performances in gait phase classification com-

pared to an inter-subject one and to extend this hypothesis to gait-event prediction. To 

this aim, an intra-subject approach was implemented for neural network interpretation 

of 10 surface electromyographic (sEMG) signals collected in 23 subjects. To test our 

hypothesis, a direct comparison was performed with classification and prediction per-

formances provided by the inter-subject approach in the same population.

Results

�e inter-subject approach was considered as the benchmarking approach, since it 

was validated in [12]. In the present study, it was applied to 10 sEMG signals (five per 

leg) acquired from 23 adults. �e inter-subject approach implemented here in unseen 

subjects improves the performances reported in [12] both in terms of classification 

accuracy, 94.7 ± 2.3% vs. 93.4 ± 2.3%, and prediction error, HS-MAE: 18.7 ± 7.8  ms vs. 

21.6 ± 7.0 ms; TO-MAE: 35.1 ± 20.0 ms vs. 38.1 ± 15.2 ms. Moreover, accuracy in each 

single subject does not fall below 90%, except for a single subject (subject 4, 88.9%). 

Best-case accuracy is 98.0% (subjects 18 and 23). Mean inter and intra-subject accura-

cies of gait-phase classification were compared in every subject in Table 1. Mean values 

over population (23 subjects) are shown in the last row of the table. �e direct com-

parison between mean values showed an improvement of 1.4 points of the classifica-

tion accuracy provided by the intra-subject approach (96.1 ± 1.9%), compared with the 

inter-subject approach (94.7 ± 2.3%). Besides gait-phase classification, the present study 
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also provides a prediction of foot–floor-contact signal and a consequent assessment of 

HS and TO events. An example of predictions of foot–floor-contact signal provided by 

both inter and intra-subject approaches is reported in Fig. 1. Detailed comparison of the 

performance achieved with inter and intra-subject approaches is reported in Tables  2 

and 3 for HS and TO prediction, respectively. A significant mean reduction of mean 

absolute error (MAE) was detected in the prediction of HS provided by the intra-subject 

approach, compared with the inter-subject approach (18.7 ± 7.8  ms vs. 14.4 ± 4.7  ms; 

23% reduction, p < 0.05). In the same way, a significant mean reduction of MAE was 

detected in the prediction of TO provided by the intra-subject approach, compared with 

the inter-subject approach (35.1 ± 20.9 ms vs. 23.7 ± 11.3 ms; 33% reduction, p < 0.05). 

No further significant differences were detected between groups.

Discussion

�e present study was designed to test the hypothesis that an intra-subject approach is 

able to achieve better performances in terms of stance vs. swing classification and HS 

and TO timing assessment, compared to an inter-subject one. A multi-layer perceptron 

(MLP) architecture with three hidden layers composed of 512, 256 and 128 neurons, 

Table 1 Stance vs. swing classi�cation accuracy provided by  inter and  intra-subject 

approach

Subject Classi�cation accuracy (%)

Inter-subject Intra-subject

Train Test Train Test

1 96.9 97.7 97.5 97.5

2 96.0 94.4 97.9 96.8

3 95.6 94.8 96.5 95.7

4 96.9 88.9 95.1 94.3

5 97.2 93.9 97.8 97.8

6 96.8 94.9 97.4 97.0

7 96.8 95.5 98.1 97.6

8 97.0 94.7 97.9 97.3

9 96.8 94.0 97.1 95.9

10 96.1 92.7 94.8 97.0

11 96.8 92.2 93.0 93.1

12 97.3 92.6 97.5 96.4

13 97.1 94.3 96.2 96.9

14 96.8 94.7 96.5 96.6

15 96.7 94.9 97.2 97.0

16 96.9 96.5 97.9 97.5

17 97.2 93.8 98.2 98.1

18 96.7 98.0 97.5 97.5

19 96.7 97.8 97.9 96.8

20 96.7 97.8 96.5 95.7

21 97.4 91.3 97.1 90.3

22 97.9 94.3 97.3 91.9

23 97.1 98.0 90.8 95.2

Mean ± SD 96.8 ± 0.5 94.7 ± 2.3 96.7 ± 1.8 96.1 ± 1.9
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respectively, and a one-dimensional output was implemented to this aim. �e intra-

subject approach is articulated as follows: training the neural network with sEMG data 

measured during around 450 strides of one single subject and then testing the network 

on around 50 brand new strides of the same subject. �e procedure was performed ten 

times, each time using a different slot as test set (tenfold cross-validation). Results were 

reported as average value over the tenfold. �e present approach was able to provide a 

very precise classification of gait phases (Table 1, column “intra”), represented by mean 

(± SD) accuracy over 23 subjects of 96.1 ± 1.9% and supported by the fact that accuracy 

in each single subject does not fall below 90.3% (subject 21). Best-case accuracy is 98.1% 

Fig. 1 Example of predictions of foot–floor-contact signal in the same six strides of a representative subject 

(subject 8), provided by intra (a) and inter (b) subject approaches
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(subject 17). Compared with literature [11, 12, 18–20], accuracy outcomes reported here 

are very encouraging.

�e accurate classification ability and the efficient post-processing of model output 

guaranteed mean prediction, recall, and F1-score values in gait-event assessment very 

close to 1. Moreover, an average MAE over population of 14.4 ± 4.7  ms (Table  2) and 

23.7 ± 11.3  ms (Table  3) was detected in the prediction of HS and TO, respectively. 

To appreciate the quality of these predictions, it is helpful highlighting that associated 

MAEs correspond approximately to 1% and 2% of a gait cycle duration, respectively. 

Since large variability of the signal to predict (foot–floor contact) is expected to affect 

the performance of a classifier, an added value is that present results have been achieved 

in condition of high variability of foot-switch signals. In fact, the eight-shaped path fol-

lowed by subjects during the experimental procedure is acknowledged to introduce fur-

ther gait variability, due to curves, reversing, deceleration, and acceleration, with respect 

to straight or treadmill walking. To the best of our knowledge, only two studies on this 

issue are available and neither reported such a small prediction error [11, 12]. Moreover, 

these outcomes are at least comparable with those reported by analogous IMU studies. 

Very meaningful from this point of view is the study where 17 IMU-based approaches 

Table 2 MAE (mean absolute error), precision, recall, and  F1-score provided by  inter 

and intra-subject approach for Heel-Strike (HS) prediction

* p < 0.05 between inter and intra‑subject approach

HS MAE (ms) Precision Recall F1-score

Subject Inter Intra Inter Intra Inter Intra Inter Intra

1 14.7 11.5 1.00 1.00 1.00 1.00 1.00 1.00

2 29.7 17.3 0.99 1.00 0.99 0.99 0.99 1.00

3 19.6 17.4 0.97 1.00 0.99 1.00 0.98 1.00

4 12.8 10.3 1.00 1.00 1.00 0.99 1.00 1.00

5 26.4 8.5 1.00 1.00 1.00 0.99 1.00 0.99

6 11.5 7.4 1.00 1.00 1.00 0.99 1.00 0.99

7 19.0 16.6 1.00 1.00 1.00 0.99 1.00 1.00

8 25.6 16.2 0.99 1.00 1.00 0.99 1.00 1.00

9 19.9 15.5 1.00 1.00 1.00 1.00 1.00 1.00

10 27.5 16.1 0.99 1.00 0.99 0.99 0.99 0.99

11 9.3 9.2 1.00 1.00 0.98 0.98 0.99 0.99

12 8.0 6.8 1.00 1.00 1.00 0.99 1.00 0.99

13 22.0 16.3 1.00 1.00 0.98 0.99 0.99 0.99

14 20.3 15.0 1.00 1.00 1.00 1.00 1.00 1.00

15 19.3 13.1 1.00 1.00 1.00 1.00 1.00 1.00

16 15.3 10.6 1.00 1.00 1.00 1.00 1.00 1.00

17 36.5 9.2 1.00 1.00 1.00 1.00 1.00 1.00

18 10.8 11.5 1.00 1.00 1.00 1.00 1.00 1.00

19 10.8 17.3 1.00 1.00 1.00 0.99 1.00 1.00

20 11.7 17.4 1.00 1.00 1.00 1.00 1.00 1.00

21 21.3 23.1 0.98 0.95 0.97 0.96 0.97 0.96

22 29.3 20.2 1.00 0.99 1.00 0.96 1.00 0.98

23 9.9 24.0 1.00 0.99 1.00 0.99 1.00 0.99

Mean 18.7* 14.4 0.997 0.996 0.996 0.991 0.996 0.993

SD 7.8 4.7 0.008 0.010 0.009 0.011 0.008 0.010



Page 7 of 20Di Nardo et al. BioMed Eng OnLine           (2020) 19:58  

were tested on 35 healthy subjects [1], showing a media time error ranging from 60 to 

65 ms and from −25 to 6 ms for HS and TO prediction, respectively, and a 25th–75th 

percentile error ranging from 40 to 111 ms and from 68 to 120 ms for HS and TO pre-

diction, respectively. A very recent study remarks the same perspective [23], reporting 

a 17.83-ms HS-MAE and a 26.96-ms TO-MAE during indoor walking. �us, we may 

argue that in specific environments, EMG-based approach may be very useful and as 

much accurate as other techniques.

�ese promising performances are supposed to be likely due to the peculiarities of 

the experimental protocol which provides a great amount of data per subject: numerous 

strides (about 500) and ten different sEMG signals (five muscles per leg). �e choice of 

the model was made based on the analysis we carried out in [12, 18]. �e first study [12] 

compared the classification accuracy on inter-subject data of five different MLP models 

of increasing complexity in terms of classification. �e second study [18] compared the 

classification accuracy on intra-subject data of the first three MLP models introduced in 

[12]. In both studies, the neural network with three hidden layers composed of 512, 256 

and 128 units was identified as the model achieving the best accuracy on unlearned sub-

jects. �at is the model used in the present study. Trying to reduce the complexity of the 

Table 3 MAE (mean absolute error), precision, recall, and  F1-score provided by  inter 

and intra-subject approach for Toe-O� (TO) prediction

* p < 0.05 between inter and intra‑subject approach

TO MAE (ms) Precision Recall F1-score

Subject Inter Intra Inter Intra Inter Intra Inter Intra

1 12.3 14.1 1.00 0.99 1.00 1.00 1.00 1.00

2 25.8 21.8 0.97 1.00 0.98 0.98 0.97 0.99

3 27.6 27.6 0.98 0.98 1.00 0.98 0.99 0.98

4 104.2 49.7 1.00 1.00 0.99 0.98 0.99 0.99

5 36.0 16.4 1.00 1.00 1.00 0.99 1.00 0.99

6 44.7 25.3 1.00 1.00 1.00 0.98 1.00 0.99

7 37.6 13.3 1.00 1.00 1.00 0.98 1.00 0.99

8 27.9 12.0 1.00 1.00 1.00 0.99 1.00 0.99

9 45.1 28.4 1.00 1.00 1.00 0.99 1.00 0.99

10 53.4 13.3 1.00 1.00 1.00 0.98 1.00 0.99

11 55.6 52.9 0.94 0.96 0.93 0.93 0.93 0.95

12 65.8 29.6 1.00 0.99 1.00 0.98 1.00 0.98

13 24.1 15.5 0.98 1.00 0.96 1.00 0.97 1.00

14 29.4 19.6 1.00 1.00 1.00 1.00 1.00 1.00

15 40.3 21.1 1.00 1.00 1.00 1.00 1.00 1.00

16 22.7 17.2 1.00 1.00 1.00 1.00 1.00 1.00

17 28.9 11.9 1.00 1.00 1.00 1.00 1.00 1.00

18 12.4 14.1 1.00 0.99 1.00 1.00 1.00 1.00

19 15.7 21.8 1.00 1.00 1.00 0.98 1.00 0.99

20 15.9 27.6 1.00 0.98 1.00 0.98 1.00 0.98

21 38.1 39.7 0.97 0.92 0.96 0.92 0.96 0.92

22 32.6 30.0 0.98 0.99 0.98 0.96 0.98 0.98

23 12.1 23.0 1.00 0.99 1.00 0.98 1.00 0.98

Mean 35.1* 23.7 0.991 0.990 0.990 0.980 0.991 0.985

SD 20.9 11.3 0.008 0.018 0.019 0.020 0.017 0.018
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neural network, an MLP model with a single hidden layer was tested on the intra-subject 

data. �e number of nodes was set at a value (128) lower than the number of inputs 

(200). Results show that the single-layer model achieves a mean classification accuracy 

on test set of 95.7 ± 1.6% vs. 96.1 ± 1.9% reported by the chosen model, confirming that 

also in the present population the 3-hidden-layer model allows obtaining (slightly) better 

performances.

�e robustness of MLP models for gait-phase classification has been previously vali-

dated for the inter-subject approach [12]. �us, the present intra-subject approach was 

tested by a direct comparison with the performances achieved by the inter-subject one 

with the same model in the same population. It is worth noticing that, even if in the pre-

sent study the neural network is the same used in [12], results in both intra-subject and 

inter-subject are completely new because (1) the training phase was performed includ-

ing ten sEMG signals (i.e., 5 muscles per leg) vs. the eight sEMG signal used in [12], 

where RFs were not included; (2) to our knowledge this is the first attempt to provide HS 

and TO estimation by means of an intra-subject approach. Moreover, the inter-subject 

approach implemented in the present study improves already the performances reported 

in [12]. Comparison between intra-subject and the inter-subject approaches (Tables  2 

and 3) highlights two main points: the intra-subject approach allows to achieve (1) an 

improvement of 1.4% of mean classification accuracy (96.1% vs. 94.7%); and (2) a sig-

nificant (p < 0.05) decrease of mean MAE in the prediction of both HS (23% reduction) 

and TO (33% reduction) timing. Despite this, on average also the inter-subject approach 

appears to work adequately, especially for HS. However, mean value over population 

often disguises what really happen in a single specific subject. �e reason why a different 

way was tried, introducing the intra-subject approach, is that sometimes HS and, above 

all, TO predictions in a single subject are not so accurate with the inter-subject approach. 

To stress this fact, Fig. 2 has been introduced, comparing the prediction in each single 

subject provided by the two approaches (inter-subject in red and intra-subject in cyan). 

Yellow arrows in Fig. 2 indicate inter-subject predictions which diverge more evidently 

from the mean values (18.7 ms for HS and 35.1 for TO). Some of these outliers present 

very bad prediction (S17 for HS and S4 for TO above all). �is problem does not occur 

for intra-subject predictions, which spread out around the mean value showing a small 

dispersion of MAE values. �is consideration becomes clearer if the single case is dis-

cussed. As clearly highlighted in Fig.  2, subject 4 (S4 yellow arrow in panel B) shows 

very bad inter-subject TO prediction, where an MAE of 104.2 ms is detected. From the 

clinical point of view such an error is not acceptable because 104.2 ms is about 10% of 

gait cycle. �us, we can say that intra-subject approach fails in the prediction of TO in 

subject 4. Also for intra-subject approach, TO in subject 4 is one of the hardest to pre-

dict, but the MAE remains < 50 ms. In this case, there is 54.5 ms difference between the 

two approaches (nearly 50% reduction of absolute error). �e intra-subject approach has 

been introduced just to fix situation like this. Similar condition has been detected also in 

subject 12 (S12 yellow arrow in panel B, TO-MAE = 65.8 ms for inter-subject approach 

and TO-MAE = 29.6 ms for intra-subject approach, difference = 36.2 ms, 45% reduction 

of absolute error). Inter-subject HS prediction reports the same problem. Subject 17 (S17 

yellow arrow in panel A) shows the worst HS prediction (HS-MAE = 36.5 ms) for inter-

subject approach. Intra-subject approach reduces MAE to 9.2 ms (difference = 27.3 ms, 
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75% reduction of absolute error). �e same goes for S2, S5, S10, and S22. In all these 

cases (at least 7 out of 23), the inter-subject approach seems not to work adequately and 

the contribution of the intra-subject approach appears to be very valuable.

Cited reports [11, 12] identified more difficulties in detecting toe-offs rather than heel-

strikes. Accelerometer-based studies provided the same indication [21]. �e inter-sub-

ject approach computed in the present study confirms this trend, showing MAE value 

in TO prediction up to 104  ms. �e proposed intra-subject approach also shows bet-

ter performance in detecting heel-strikes rather than toe-offs, but with the advantage of 

limiting the worst-case MAE (subject 11) below 53 ms. Ultimately, all these outcomes 

Fig. 2 Prediction of HS-MAE (a) and TO-MAE (b) in each single subject provided by inter-subject (red bars) 

and intra-subject approaches (cyan bars). Yellow arrows indicate inter-subject predictions which diverge 

more evidently from the mean values
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work together to argue that intra-subject approach outperforms the inter-subject one for 

this specific task. Proving this is the actual added value of the present study.

In Tables 2 and 3, a time tolerance T of 600 ms is employed to predict HS and TO (as 

discussed in “Gait-event identification” section). To provide an indirect comparison with 

previous studies where different approaches based on kinematic data were presented, 

an additional evaluation is provided. Following the evaluation approach adopted in [22] 

for IMU-based prediction, the time tolerance T was set to 50 ms (100 samples), which 

corresponds to the typical error reported in literature [24]. Average results over the 23 

subjects are reported in Table 4, for both HS and TO predictions. As expected, reducing 

T to 50 ms implies a worsening of precision and recall, but concomitantly it improves 

MAE values, for both HS and TO estimation. However, such results confirm that perfor-

mances provided by the intra-subject approach are sensibly better than those achieved 

with the inter-subject approach, both in F1-score and in MAE. Furthermore, the per-

centage of HS detected within 50  ms is still relatively large (95% and 93% for intra-

subject and inter-subject approaches, respectively), with an average MAE of 13.2  ms 

(inter-subject) and 10.9 ms (intra-subject). TO predictions are, in general, less accurate. 

However, when using the intra-subject approach, around 90% are detected within 50 ms 

with an average MAE of 14.6 ms. �ese results are comparable with those reported for 

IMU studies [22]. In the present paper, signal windows of 10 ms are considered to feed 

the neural network in both intra- and inter-subject approaches, according to [12]. Fur-

ther investigation of parameter tuning (involving signal segmentation and windowing) 

could be an interesting future direction.

As introduced above, the clinically useful purpose of the study is the attempt at reduc-

ing the complexity of the experimental gait analysis set-up, predicting the foot–floor-

contact data from neural network interpretation of EMG signal in a single specific 

subject. �e fewer sensors are used, the easier is to safeguard patient comfort. �is is true 

for both inter-subject and intra-subject approaches. To run the inter-subject approach, 

a large dataset of EMG and foot–floor-contact signals from many different subjects is 

needed to train the neural network [12]. When such a dataset is available, classification 

of a new subject does not require further training (and the use of further sensors, such as 

IMUs or foot-switch sensors) and the inter-subject approach is preferable. However, this 

is true for those populations where large amounts of data are available. On the contrary, 

recruiting an adequate number of subjects to build up the dataset for specific condition, 

pathology, or dysfunction could be a challenging task. �is is particularly true for those 

disorders which are uncommon or rare. �e intra-subject approach has been introduced 

Table 4 MAE (mean absolute error), precision, recall, and  F1-score provided by  inter 

and intra-subject approach using a time tolerance T = 50 ms

Subject MAE (ms) Precision Recall F1-score

Inter Intra Inter Intra Inter Intra Inter Intra

HS mean 13.2 10.9 0.93 0.95 0.92 0.95 0.93 0.95

SD 5.6 2.5 0.06 0.04 0.06 0.04 0.06 0.04

TO mean 21.8 14.6 0.79 0.89 0.78 0.88 0.78 0.89

SD 8.2 4.0 0.20 0.10 0.20 0.11 0.20 0.10
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also to provide an alternative way to face this experimental issue. In this approach, only 

data from the single subject under examination are necessary. It is true that the neural 

network should be trained with EMG and basographic data for each new subject, but 

only once. For all the successive tests, no further training is required and further sen-

sors are not necessary. It is acknowledged that for monitoring their rehabilitation pro-

cess, different kind of patients (neurological disorders, injuries, aging) should undergo 

periodical tests. �e intra-subject approach appears to be very suitable for these cases, 

since after a first session where EMG and basographic data have to be acquired and the 

model has to be trained, all the following tests do not need neither the basographic sig-

nal acquisition nor the training of the model, but only the acquisition of EMG signals 

of the single patient under examination. Moreover, the higher precision in gait-event 

prediction provided by the intra-subject approach allows to correctly detect the small 

improvements of the patient performances in temporal parameters during rehabilita-

tion and to handle data where duration of gait phases could be strongly altered (aging, 

Parkinson’s disease) [25, 26]. In these conditions, the intra-subject approach is probably 

preferable. In conclusion, intra-subject approach has its pros and cons, but its real added 

value is that it works just when the inter-subject approach seems to fail, because of bad 

individual performances or the lack of a large dataset of EMG and foot–floor-contact 

signals to train the neural network.

�e present intra-subject approach could also play a relevant role in the so-called 

Statistical Gait Analysis (SGA). SGA is a recently developed technique, based on the 

cycle-dependency of muscular activation, which has already provided promising results 

published in many studies of the present [13, 27] and other groups of researchers [28, 

29]. SGA allows to characterize human walking by means of average sEMG features and 

spatial–temporal parameters extracted from hundreds of consecutive strides per trial 

that are recorded and classified according to the sequence of foot–floor contact. Intra-

subject approach could contribute in reducing the number of instrumentation worn by 

the subject and necessary for SGA, removing the need of foot-switches. Further fields of 

application could be exoskeletons [30], smart prostheses, [31] and functional electronic 

simulation [32].

From the methodological point of view, future developments of the present study 

could focus on testing the classification/prediction performance provided by a mixed 

approach. It could consist in testing the neural network in brand new strides of a subject, 

after training the neural network with EMG data measured in a population of homoge-

neous subjects (i.e., with similar characteristics, such as age, weight, and height) which 

includes also the subject under investigation. For example, the neural network could be 

trained with the 100% of the signals acquired in 22 subjects and the 90% of the signal 

acquired in a 23rd subject. �en, the neural network could be tested in the remaining 

10% of the signal acquired in the 23rd subject.

For clinical and research purposes, stance phase is typically split in three main sub-

phases: heel-strike, flat foot contact, and push off. A further advancement could involve 

the attempt of classifying stance sub-phases and predicting transition timing between 

them. Moreover, present results are achieved from data acquired during walking at self-

selected speed. �e potential effect of gait speed could be also considered, as reported 
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in [22]. �is would also be an interesting future direction for the present work, as EMG 

envelopes show adaptations to different gait speeds.

Conclusions

�e present study proposes an accurate methodology for classifying stance vs. swing and 

predicting the timing of gait events, based on neural network interpretation of intra-

subject sEMG data during walking. �e clinically useful contribution of the study con-

sists in predicting gait events from only EMG signals, contributing to remove the need 

of further sensors for the direct measurement of temporal data. A direct comparison 

in the same population showed that results of the present approach outperform the 

outcomes provided by the same network with an inter-subject approach. However, the 

choice of the suitable approach should be driven not only by network performance but 

also (mainly) by patient comfort and clinical needs.

Methodology

Subjects

�e dataset included signals recorded from 23 healthy adults (12 females and 11 

males). Mean (± SD) characteristics were age = 23.8 ± 1.9  years; height = 173 ± 10  cm; 

mass = 63.3 ± 12.4 kg. None of the subjects presented any pathological condition or had 

undergone orthopedic surgery that might have affected lower limb mechanics. �ere-

fore, subjects with joint pain, neurological pathologies, orthopedic surgery, and abnor-

mal gait were not recruited. Overweight and obese subjects (body mass index > 25) were 

not recruited because obesity is acknowledged to affect muscle function during walking 

[33].

Signal acquisition

�e multichannel recording system Step32 (Medical Technology, Italy, Version PCI-32 

ch2.0.1. DV; resolution: 12 bit; sampling rate: 2 kHz) was employed for the acquisition 

of all signals. �e use of a single system guaranteed the synchronization of all signals. 

Participants have been instrumented with five sEMG probes and three foot-switches for 

each leg. �en, they walked with bare feet at self-selected pace (i.e., their own usual, 

comfortable pace) following an eight-shaped path (Fig.  3), which includes natural 

deceleration, reversing, curve and acceleration, in the Motion Analysis Lab (Università 

Politecnica delle Marche, Ancona, Italy), for around 5  min. sEMG signals were regis-

tered by means of three single-differential probes with fixed geometry (fixed inter-elec-

trode distance of 8 mm) placed over tibialis anterior (TA), gastrocnemius lateralis (GL), 

and medial hamstrings (MH) and two single-differential probes with variable geom-

etry (variable inter-electrode distance, starting from a minimum of 12 mm) placed over 

vastus lateralis (VL) and rectus femoris (RF). Electrode location and orientation were 

performed under the supervision of a skilled licensed physical therapist, following the 

SENIAM recommendations [34]. Foot-switches were attached under the heel, the first 

and the fifth metatarsal heads of each foot for measuring foot–floor-contact signal [27]. 

Experimental set-up is depicted in Fig. 4. Further details about signal acquisition proce-

dure can be found in [13].
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Signal pre-processing

sEMG signals were amplified, high-pass filtered (linear-phase FIR filter, cut-off fre-

quency: 20 Hz) and low-pass filtered (linear-phase FIR filter, cut-off frequency: 450 Hz) 

for removing motion artifact and high-frequency noise, respectively. �en, the envelope 

of signal was extracted after a full-wave rectification, applying second-order Butterworth 

low-pass filter following the classic indication provided by acknowledged studies by 

Winter et al. [35, 36] and Hermens et al. [34]. Winter proposed a cut-off frequency of 

3 Hz [35, 36], while Hermens suggested a cut-off frequency of 10 Hz [34]. In the present 

paper, a cut-off frequency of 5 Hz was adopted, as a good compromise between the two 

approaches. Zero-phase digital filtering was performed to avoid phase shift. Eventually, 

each sEMG signal was min–max normalized within each subject and for each muscle, 

thus mapping the values in the [0–1] interval. An example of normalized envelopes in a 

representative stride is reported in Fig. 5. Foot-switch signals were processed for identi-

fying the different gait cycles and phases (stance and swing), according to the approach 

discussed in [37]. �e study [37] describes and validates an algorithm for the segmen-

tation into separate gait cycles of the basographic signal, measured by means of three 

foot-switches during walking. �e algorithm is able to provide also the four main gait 

sub-phases: heel contact (H), flat foot contact (F), push off or heel off (P), swing (S). 

Based on this segmentation, the algorithm classifies the different gait cycles character-

ized by a specific sequence of gait phases (HFPS, PFPS, FPS and so on).

Fig. 3 Eight-shaped trajectory followed by each subject during walking

Fig. 4 Experimental set-up. sEMG probes are applied over rectus femoris (RF), vastus lateralis (VL), medial 

hamstrings (MH) tibialis anterior (TA), and gastrocnemius lateralis (GL). Foot-switches are attached under the 

heel, the first (1st Head) and the fifth (5th Head) metatarsal heads
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Data preparation

In our experiments, the neural network classifier is fed with the envelope of the EMG 

signals, thus the classification is based on hidden features automatically learned from 

the network. As demonstrated in [12], this approach provides better performances than 

using hand-crafted time-dependent features. For suitably training the classifier, each 

sEMG signal was split into 20-sample windows (corresponding to 10 ms). Examples of 

20-sample windows taken from two consecutive steps of a representative subject are 

depicted in Fig. 6. A chronological sequence of 200-sample vectors was created, where 

each vector included the ten synchronized 20-sample windows from the sEMG signals 

of the ten muscles (five for each leg). In details, the first sample of the first 200-sample 

vector of the sequence was the first sample of the EMG signal from the muscle 1 (TA, 

right leg), the second sample of the first 200-sample vector was the first sample of the 

EMG signal from the muscle 2 (GL, right leg), and so on up to the tenth muscle (RF, left 

leg). �en, a specific label was assigned to each 200-sample vector as follows: if the value 

of all the samples of the basographic signal corresponding to the 200-sample vector was 

0 (or 1), a global label 0 (or 1) was assigned to the 200-sample vector. 200-sample vectors 

including swing-to-stance or stance-to-swing transitions were not considered during 

phase classification, as the goal was to train the network to distinguish between stance 

and swing phases. On the contrary, all the windows, including those corresponding to a 

phase transition, were used to predict the timing of gait events (see “Gait-event identifi-

cation” section).

Training the classi�er

Two different approaches for training the classifier were tested and compared: the intra-

subject (Fig. 7) and the inter-subject approach (Fig. 8).

Fig. 5 The envelope in a representative stride resulting from the pre-processing of the raw sEMG signals 

recorded from the five muscles of the right leg
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Intra-subject approach

�e approach is based on the attempt at training the Neural Network classifier by means 

of sEMG data from a single subject and then classifying gait phases in unseen stride 

sequences of the same subject. To this aim, the signal composed by the chronological 

sequence of 200-sample vectors characterizing the walking of a single subject was pro-

cessed as follows: it was split into 10 equal slots of approximately 60,000 samples long 

each (Fig. 7). Nine out of ten slots were used to train the classifier. All the 200-sample 

vectors picked up from the nine training slots were provided to the neural network for 

the training phase. �e 200-sample vectors from the remaining single slot were used for 

the testing phase, considering the corresponding foot-switch signal as ground truth. �e 

procedure was performed ten times, each time using a different slot as test set (tenfold 

cross-validation). Classification results in each subject were provided as mean value 

(± standard deviation, SD) over the tenfold. Population (global) results were provided as 

mean value (± SD) over the 23 subjects.

Inter-subject approach

�e approach is based on the attempt at training the Neural Network classifier by means 

of sEMG data from 22 subjects (out of 23 subjects of the present population) and then 

classifying gait phases in the remaining unseen subject (leave-one-out cross-validation 

procedure). To this aim, all the 200-sample vectors were picked up from the signals of 

the 22 subjects and then provided as input to the neural network for the training phase. 

�e 200-sample vectors from the remaining single subject were used for the testing 

phase, considering the corresponding foot-switch signal as ground truth. �e procedure 

was performed 23 times, each time using a different subject as test set (23-fold cross-

validation). Results in each subject were provided as the classification results in a single 

Fig. 6 a Example of a normalized full-wave rectified and enveloped signal from left (blue line) and right 

(green line) tibialis anterior and left (orange line) and right (brown line) gastrocnemius lateralis, superimposed 

to left basographic signal (violet line), in two strides of a representative subject. b, d Two representative 

20-sample windows taken from the swing phases of the signal depicted in a. c, e Two representative 

20-sample windows taken from the stance phases of the signal depicted in panel a)
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fold. Population (global) results were provided as mean value (± SD) over the 23-fold. 

Further details about this approach can be found in [12].

The neural network

Multi-layer perceptron (MLP) architecture was implemented in the present study. �e 

model was a neural network with one input layer composed of 200 units (corresponding 

to the 200 signal values forming each window), three hidden layers composed of 512, 

256 and 128 neurons, and a one-dimensional output. �e output was fed to a sigmoid 

function and a 0.5 threshold was used to achieve a binary output: when the output of 

the sigmoid was > 0.5 the label 1 was assigned, otherwise the label 0 was assigned. Recti-

fied linear units (ReLU) were implemented to provide non-linearity between two con-

secutive hidden layers. In the experiments, stochastic gradient descent was employed as 

the optimization algorithm and binary cross-entropy as the loss function. Learning rate 

was experimentally set to 0.01. Eventually, MLP model was trained adopting an early 

stop technique: the network was trained for a maximum of 100 epochs, stopping when 

Fig. 7 Illustration of the experimental setting used in the intra-subject approach. 90% of the EMG signal of 

the subject K is used to train the neural network classifier, while the remaining 10% of the trail of the same 

subject is used for testing phase. For each subject, a 10-fold cross-validation is performed, using, at each fold, 

a different portion of the subject’s trial for testing. The experiment is performed for all the subjects (K = [1, 

2,…, N])
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the accuracy on the validation set (composed of the last 10% of subject strides) did not 

increase for 10 consecutive epochs. We stored the network weights learned at the epoch 

providing the best accuracy on the validation set and then used such a trained model to 

evaluate performances on the test sets.

Gait-event identi�cation

�e foot–floor-contact signal was predicted by chronologically arranging the binary 

output of MLP network. A vector was provided as output, where sequences of 1 

(swing phase) alternate with sequences of 0 (stance phase). Literature reported that 

stance and swing phase during healthy walking at typical speed last on average 60% 

and 40% of gait cycle [38]. Starting from this observation, all the transitions in the 

foot–floor-contact signal lasting less than 175 ms were rejected (≈ 16% of gait cycle). 

During the post-processing of the predicted basographic signal, 180 spikes (false 

phases) per subject were removed on average. Average spike duration was 7.8 ± 32.8 

samples, corresponding to 3.9 ± 16.4  ms. �en, gait events were identified in the 

Fig. 8 Illustration of the experimental setting used in the inter-subject approach. The EMG signals of N-1 

subjects (where N is the total number of subjects) are used to train the neural network classifier. The trained 

classifier is then used to predict phases from the EMG signal of the remaining (unlearned) subject. The 

experiment is repeated N times, each time using a different subject for testing
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cleaned signal. Swing-to-stance transitions (heel-strike, HS) were assessed as the 

sample when the sample value switched from 1 to 0. In the same way, stance-to-swing 

transitions (toe-off, TO) were assessed as the sample when the sample value switched 

from 0 to 1. Performance of predictions was provided in terms of precision, recall, 

and F1-score. Precision is defined as

where TPs are true positives and FPs are false positives. Recall is defined as

where FNs are false negatives. F1-score is defined as

A predicted HS or TO at time tp was acknowledged as true positive (TP) if an event 

of the same type occurs in the ground truth signal at time tg such that 
∣

∣tg − tp
∣

∣ < T. T is a 

temporal tolerance, set to 600 ms. Otherwise, the predicted event was acknowledged as 

a false positive (FP). For all the true positives, mean absolute error (MAE) was computed 

as the average time distance between the predicted event and the corresponding one in 

ground truth signal.

Statistics

To test the significance of the difference of data distributions (MAE, precision, recall, 

F1-score) between intra-subject and inter-subject approaches, statistical tests were per-

formed. First of all, the normality of each data distribution was evaluated by means of 

Shapiro–Wilk test. �en, two-tailed, non-paired Student’s t test was performed to evalu-

ate the significance of the difference between normally distributed samples. In the same 

way, Kruskal–Wallis test was performed to evaluate the significance of the difference 

between non-normally distributed samples. Statistical significance for each test was set 

at 5%.
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