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Abstract

Most existing human mobility literature focuses on exterior characteristics of movements but neglects activities, the driving
force that underlies human movements. In this research, we combine activity-based analysis with a movement-based
approach to model the intra-urban human mobility observed from about 15 million check-in records during a yearlong
period in Shanghai, China. The proposed model is activity-based and includes two parts: the transition of travel demands
during a specific time period and the movement between locations. For the first part, we find the transition probability
between activities varies over time, and then we construct a temporal transition probability matrix to represent the
transition probability of travel demands during a time interval. For the second part, we suggest that the travel demands can
be divided into two classes, locationally mandatory activity (LMA) and locationally stochastic activity (LSA), according to
whether the demand is associated with fixed location or not. By judging the combination of predecessor activity type and
successor activity type we determine three trip patterns, each associated with a different decay parameter. To validate the
model, we adopt the mechanism of an agent-based model and compare the simulated results with the observed pattern
from the displacement distance distribution, the spatio-temporal distribution of activities, and the temporal distribution of
travel demand transitions. The results show that the simulated patterns fit the observed data well, indicating that these
findings open new directions for combining activity-based analysis with a movement-based approach using social media
check-in data.
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Introduction

The widespread use of location-aware devices, including smart

phones and GPS (Global Positioning System) enabled cars, has

provided powerful tools for collecting large volumes of time-

resolved locations of individuals [1]. By exploring and analyzing

the characteristics of huge amount of individual location data,

intra-urban human mobility could be potentially depicted. At

present, human mobility has received enhanced understanding

from a wide range of fields, such as urban planning [2,3], traffic

forecasting [4], epidemiological models of disease spread [5,6] and

location-based recommender systems [7,8].

Previous studies have concluded that intra-urban human

mobility shows a high degree of temporal and spatial regularity.

Far from being random, intra-urban mobility can be predicted by

a number of factors [9,10]. Furthermore, a number of analytical

models have been proposed to explain and model the intra-urban

human mobility patterns, including the gravity model [11], the

generalized potential model [12], the intervening opportunities

model [13], the rank-based movement model [14] and the

radiation model [15]. In practice, these models have been

operated from multiple perspectives such as geographical hetero-

geneity and distance decay [1], population density [15],

geographical and social distances [16], urban morphology [3]

and the spatial distribution of venues [14]. Such analyses can be

summarized as movement-based approaches, which do not take

into account the individual’s travel demand. Because intra-urban

mobility has not yet been closely inspected from an activity-based

perspective, the diversity of travel demands that spur movement

have been largely neglected [17]. In contrast, the activity-based

approach treats travel demand as the driving force for human

mobility, thus differentiating individuals from random walkers in

exploring physical space [15,18]. Moreover, since the sequence of

activities determines the mobility patterns [17], this approach has

brought about new perspectives on human movement in urban

areas and has been widely used in transportation planning, i.e., to

assess the impact of altered bus schedules [19] or to analyze the

scaling laws for the movement of people [20]. However, due to the

logistical restraints of recording activity information, much

research on activity-based analysis currently is conducted through

travel diary datasets collected by census and questionnaires on a

small scale, resulting in both tremendous time and financial cost

[21]. In order to capture the activities within an urban area, some

research has utilized land use data information [4,22], assuming

that every basic land parcel keeps the same service function all the

time. Of course, this assumption does not always conform to

reality. One unit may satisfy various travel demands at the same

time. Moreover, the major function of one cell may vary over time.
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For instance, one commercial cell could include restaurants,

shopping malls and office buildings. Most consumers are likely to

arrive at this zone for work in the morning and for shopping in the

evening. Additionally, the activity-based analysis seldom considers

the distance decay effect when exploring and evaluating the intra-

urban human mobility patterns [23]. Although Hammadou et al.

(2003) have measured the relationship between the distance decay

and the activity-chain, they do not establish a reasonable model to

explain the observed pattern [24]. Thus, a wide gap exists between

activity-based analysis and movement-based approach.

Fortunately, since social media, such as Foursquare, Facebook,

and Twitter, have been widely used, hundreds of millions of users

have an ability to share their location and activity information by

check-in data [25]. Different from cell phone data and car

trajectories data derived from GPS trackers, check-in data has two

unique features. First, check-in records not only contain the

location but also include information about the user’s motivation

(what he/she is doing at the location). Second, the temporal check-

in sequence of a specific person can be viewed as his/her

trajectory. Although both the existence of fake check-ins, which

occurs when users are not actually at or near the venues where

they have checked in, and the limitation of age group (http://

www.factbrowser.com/tags/foursquare/) would confine the scope

of check-ins research on human mobility, check-in data has the

ability to uncover human mobility according to some mechanisms

[8]. Focus on check-in behaviors, a number of recent studies have

been conducted. Scellato et al. analyzed the socio-spatial

properties of individuals using check-in records [26]. Gao et al.

integrated social-historical ties to model users’ check-in behavior

[27]. Pelechrinis et al. and Preo et al. studied the patterns across

activities transition for check-ins [28,29]. However, existing

research does not pay much attention to temporal activity

characteristics and their underlying geographical constraints.

Our paper emphasizes the fact that check-in data has the capacity

to bridge the gap between activity-based analysis and movement-

based approaches in modeling intra-urban human mobility.

In this paper, more than 15 million social media check-in users

are investigated during one year in Shanghai. We find that the

successor activity of an individual varies over time and is affected

by the predecessor activity purpose and time. Additionally, the

activity can be divided into two classes: locationally mandatory

activity (LMA) and locationally stochastic activity (LSA), according

to whether the demand is associated with a fixed location or not.

As a result, there are three kinds of trips depending on different

combination of activity types. After analyzing distance distribution

of the three trip patterns, we discover these patterns differ in their

distance decay exponents. To interpret the observed patterns, we

construct an activity-based model that integrates both activity-

based and movement-based approaches. Adopting the mechanism

of agent-based modeling, the result shows that the simulated

patterns fit the observed data well.

Materials

1. Dataset
Analysis on the intra-urban movement is extracted from

15,213,360 social media check-in records of 257,278 users across

97,324 venues collected during the yearlong period from

September 2011 to September 2012 in Shanghai. The data used

in this study can be shared with other researchers upon request.

These records are also part of the check-in data set that has been

previously applied in an analysis of inter-urban trip and spatial

interactions [30]. Because each check-in is not only associated with

a specific geo-tagged venue (e.g. restaurants, shopping malls,

airport terminals and schools) but also correlated with a precise

geographical coordinate attribute including latitude and longitude,

the user’s demand of movement can be identified. By considering

the heterogeneous distribution of check-ins, we choose the central

part (50635 km2) of the city for the study (Figure 1a) and visualize

the spatial distribution according to different activity types

(Figure 1b).

2. Filtering Check-in Records
Although most social media services provide some mechanism

to prevent the emergence of fake check-ins, invalid check-ins and

trips still exist. For some reason, a person staying home may post a

check-in record indicating that he (or she) is at a restaurant. These

instances hamper the usefulness of data for exploring intra-urban

human mobility patterns and must be eliminated because of the

discontinuous characteristic of their check-in sequence. We

proposed five criteria to filter out the fake check-ins and trips: (i)

the location of check-in is not in the study area; (ii) the distance

between the location of declared check-in venue and the location

of user’s cellphone GPS coordinates is greater than 500 m; (iii) the

user who has only one check-in. After extracting each individual

spatio-temporal trajectory (consecutive check-ins), we segment the

trajectories to trips datasets and remove the anomalous trips

according to the following criteria (Figure 2a): (iv) the length of

displacement is less than 100 m or the time interval is greater than

12 hours (Intuitively, if the time interval is greater than 12 hours,

these two activities are regarded as a low correlation and should be

segmented into different trips.); (v) the rate of speed is faster than

431 kilometers-per-hour (or faster than a maglev train). As

displayed in Figure 2b, the original individual’s check-in trajectory

is comprised of eleven check-in points. According to the above

criteria, only five trips are finally obtained.

3. Determining Lattice Size
When analyzing the check-in data, the urban area is divided

into square lattices, and a trip length can be approximated by the

distance between centers of cells that the predecessor and

successor points are placed in. The merit of this approach is that

we can construct a continuous representation for human

movements so that the interpretation model can be built.

Obviously, the deviation of the trips’ displacement will become

larger and larger with the increasing size of the lattice. However, if

the size is too small, it is inappropriate due to relatively increasing

computing costs and also because the patterns among different

regions are random and unclear [5]. As shown in Figure 3, if the

size of lattice is greater than 500 m, the deviation is obvious

comparing to the real distribution of trip displacements. So the

lattice cell size is fixed as 500 m in this paper.

4. Categorizing Travel Demands
The check-in data have the advantage over other GPS-enabled

data (such as taxi trajectory data or mobile call records) in

indicating the purpose of individual travel with the help of

demand-tags. However, some demand-tags signify a similar

purpose: for example, dining can be expressed as western food,

Chinese food, snacks, fast food and so on. Therefore, the

categorization of travel demand is indispensable for the emergence

of regular mobility patterns.

Much research on the categorization of travel demand (or the

type of venue) for intra-urban human mobility has been

conducted. Bagrow and Lin classified the travel destinations as

residential subdivision, government office, hospital, school, park,

shopping place (including shopping malls, super markets, etc.),

hotel, restaurant, and factory [6]. Similarly, the travel demands
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may be regarded as one of the following types: residential areas,

workplaces, commercial areas, recreational areas, educational

places and transportation [2]. Ben-Akiva et al. simplified the

categorization to be residences, workplaces and others [31].

Moreover, Ye et al. analyzed the temporal-sematic interaction for

each travel demand [32]. In this research, considering the

temporal characteristic of travel demand [6], we group the travel

purpose into six categories: home (H), transportation (Tr), work

(W), dining (D), entertainment (E) and other (O).

Methods

1. Model Framework
Let M={m1, m2, ...} denote the domain of travel demands, and

T={t1, t2, ...} denote the collection of time intervals. As the study

area has been assumed to be divided into squares (the locations),

Figure 1. Spatial distribution of check-ins and the study area. (a) The study area in Shanghai. The red lattices represent the study area, and
covers two airports, Pudong airport and Hongqiao airport. (b) Spatial distribution of check-ins by activities in the study. One check-in record is geo-
referenced as one point according to its location. Different colors of the points denote different activities.
doi:10.1371/journal.pone.0097010.g001

Figure 2. Criteria for extracting trips. (a) Two steps for extracting trips from one individual check-in trajectory. A1A2A3A4A5A6… is one individual
trajectory sequence. (b) The demonstration of applying the criterions into the anonymous individuals’ trajectories. The blue line is the original check-
in trajectory. When segmenting this trajectory to trips, we filter the successive check-in pairs that the speed is faster than 431 km/h, such as A3-.A4

and A7-.A8; or time interval is greater than 12 hours, such as A2-.A3 and A9-.A10; or the displacement is less than 100 m, such as A4-.A5.
doi:10.1371/journal.pone.0097010.g002
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each square could be marked with a certain number ranging from

left to right and from bottom to top, represented as L.

Hence, one activity A is defined as a triple (m, l, t), where m[M,

l[L and t[T , so that an individual trajectory could be represented

as a sequence of activities {A1, A2, ...}. In general, the trajectory is

also regarded as the collection of trips [1,30]. Similarly, in our

model, we also segment the trajectories into trips datasets R={R1,

R2, ...}.

One trip Rk is defined as a vector including two activities ,

Akp(mkp, lkp, tkp), Aks(mks, lks, tks)., where Akp is the predecessor

activity, and Aks is the successor activity, k[½1,K �, mkp,mks[M,

tkp,tks[T , tkpƒtks and lkp,lks[L; K is the number of trips. If not

taking into account location, a trip Rk could be viewed as a

transition between two travel demands with temporal information,

for which use the term time-dependent travel demand (TTD). A

typical example of TTD is ‘‘shopping in the afternoon’’. The

transition between two TTDs is defined as R0
k~vA0

kp(mkp,tkp),

A0
ks(mks,tks)w.

In order to interpret the observed movement patterns, a model

that integrates both the activity-based and movement-based

approaches is proposed. We assume that the probability of the

transition between TTDs (A0
kp and A0

ks) is location independent,

thus the transition probability between two activities Akp and Aks,

denoted by P(TpA), could be decoupled into two parts, the

transition probability TpM between TTDs during the specific time

period and the transition probability TpL between locations. When

the successor travel demand mks and successor time tks have been

identified (or A0
ks has been identified), the individuals then will

determine the successor location lks. Hence, the probability of the

transition between two activities Akp and Aks is denoted by:

P(TpA)~P(TpM )P(TpLjTpM ) ð1Þ

or

P(Akp?Aks)~P(A
0

kp?A
0

ks)P((lkp?lks)jA
0

ks) ð2Þ

First we focus the P(A
0

kp?A
0

ks). Transitions between travel

demands have been previously studied in human movement

[29,33] and assumed that transition probability from one travel

demand to another was not influenced by time. However, this

proposition does not always match with reality. Both the demands

for breakfast and supper can be regarded as dining. However, a

person is likely to go to the workplace after breakfast but look for

entertainment after supper. Hence, we have to take into account

the time dimension and use the TTDs instead of time-independent

travel demands. We defined the frequency of a TTD transition R0
k

in the collection R0 as the variable n(R0
k) or n(A

0
kp?A0

ks), thus, the

transition probability between two TTDs during a specific period

is denoted as,

P(A
0

kp(mkp,tkp)?A
0

ks(mks,tks))~

n(A
0

kp?A
0

ks)
P

j[½1,N�,vA
0
kp

,A
0
js
w[R

0 n(A
0
kp?A

0
js)

ð3Þ

indicating that the probability of occurrence for successor TTD mks

at successor time tks is conditioned by mkp at time tkp.

Figure 3. Distribution comparison between distances approximated in different lattice sizes and actual distances. The 1000 m
resolution has more serious deviation than other two resolutions when comparing to the real distances, and the deviation of 500 m is nearly the
same as the 100 m’s.
doi:10.1371/journal.pone.0097010.g003
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In terms of the transition probability P((lkp?lksjA
0

ks)) between

locations, intuitively, activities could be divided into two classes,

LMAs and LSAs, according to whether the travel demand

associates with fixed location or not. For example, home and

workplace are always attributed with the fixed location for an

individual in his/her daily movements. On the contrary, dining

and entertainment sites are always attributed with multiple

alternatives for an individual to choose.

Thus the type of demand of an activity is defined as

y(m)~
0, if demandmassociates with fixed location

1, if demandmassociates with unfixed location

�

ð4Þ

Moreover, LMA and LSA trips would be affected by different

factors when one person chooses his/her successor activities. For

example, when one goes for lunch, he/she is likely to choose a

closer restaurant from a number of candidates. However, when

the person goes home, the destination is determinate, no matter

how far it is. Hence, we assume that LMAs would consider the

locational transition probability. On the contrary, we suggest that

the transition probability of locations is not only affected by

distance decay but also geographical heterogeneity for the LSAs.

Previous research has indicated these effects for analyzing of

human mobility patterns. Liu et al. introduced the population

density data to represent geographical heterogeneity in mobility

demand, and used this data set to simulate mobility patterns within

Shanghai [1]. Similarly, Liang et al. utilized the distribution of

origins and destinations instead of population distribution in

another mobility simulation [5]. But both of them did not take into

consideration the time dimension and the travel demands and only

focused on predicting traffic flows from one grid to another at the

collective level. Differently, we want to explore these effects at the

individual level and factor the temporal spatial intensity distribu-

tion of each LSA into the overall model of geographical

heterogeneity. When the successor temporal demand A0
ks is

known, the spatial distribution of locations, where travel demand

mks would be satisfied at time tks, can be obtained. However, these

candidate locations will differ in the intensity of travel demand and

the distance from the user’s current location. For example, given a

travel demand such as shopping, a number of places, including

supermarkets, shopping malls, and stores, are available. They are

with different sizes and locations, both of which influence the

individual’s choice of next trip. For the sake of computation, the

study area can be discretized in to square pixels. In each squares

lks, the capacity for satisfying successor TTDA0
ks is denoted as

nlks (A
0
ks), where lks[L. After this, the distance between the

location of predecessor activity lkp and the location of candidate

activity l
0

ks can be identified as d
lkp?l

0
ks

and the distance decay is

represented by g(d
lkp?l

0
ks

). Thus, the transition probability of

locations is represented as

P((lkp?lksDA
0
ks))~

1, y(mks)~0

nlks (A
0
ks)

�

P

lkj[L
0 nlkj (A

0
ks)

g(dlkp?lks
)

�

P

lkj[L
0 g(d

lkp?l
0
kj

)

, y(mks)~1

8

>

>

>

>

>

<

>

>

>

>

>

:

ð5Þ

where
P

lkj[L
0 nlkj (A

0

ks) represents the total number of A0
ks in L9

and
P

lkj[L
0 g(dlkp?lkj

) is the sum of distances from lkp to all

locations in L9.

As a result, the probability of the transition between two

activities Akp and Aks is finally denoted by

P(Akp?Aks)~

n(A0
kp

?A0
ks

)
P

j[½1,N�,vA0
kp

,A0
js
w[R0

n(A0
kp

?A0
js
)
, y(mks)~0

n(A0
kp

?A0
ks
)

P

j[½1,N�,vA0
kp

,A0
js
w[R0

n(A0
kp

?A0
js
)
:

nlks
(A0

ks
)

�

P

lkj[L
0 nlkj

(A0
ks
)

g(dlkp?lks
)

�

P

lkj[L
0 g(dlkp?lkj

)

,y(mks)~1

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð6Þ

In sum, Equation 6 indicates that LMA trips only take into

account the transition probability between TTDs while LSAs

allow for not only the transition probability between TTDs, but

also the capacities for satisfying the successor TTDs of all sites and

the distance decay effect.

2. Simulation and Evaluation
In order to verify our model, it is suggested that agent-based

modeling (or individual-based modeling) [34] be adopted to

reproduce the observed human mobility patterns. Agent-based

modeling has been widely applied to simulate transportation patterns

[20,35], emergency evacuation [36] and urban sprawl [37], because

this approach can simulate the individual actions in time series and

measure the outcome for the analysis of mobility patterns[38]. In the

simulations, each individual is considered as one agent with an initial

status, and that agent will determine the next activity according to

Equation 6, when its current activity has been completed. Note that

Equations 6 yields probabilities and we introduce the Monte Carlo

method to deal with randomness. The output is a dataset including

each agent’s simulated activity trajectory. After segmenting the

simulated activity trajectories into trips, we can compare the

simulated mobility patterns with the observed ones.

To evaluate the similarity between the simulated data and the

observed data, the Hellinger coefficient is adopted [39]. The

probability density functions of two continuous distributions are

supposed to be p(x) and q(x) within the same domain X. Then the

Hellinger coefficient is given as follows:

RH~

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p(x)q(x)
p

dx ð7Þ

For discrete distributions, the equation is denoted as:

RH~

X

x[X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p(x)q(x)
p

ð8Þ

Results

In this work, the number of demand categories is |M|= 6, and

the number of time intervals is |T|= 24 since one hour intervals
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are adopted as the temporal unit for analysis. The study area has

been divided into 5006500 m2 squares, and the total number of

squares is |L|=5836 after filtering out water areas. By removing

noise check-ins, 2,230,366 trips are extracted from the entire

dataset, meaning |R|=K=2,230,366. With regard to LMAs and

LSAs, the demands for Tr, H and W are regarded as the LMA,

and the demands for D, E and O are considered as the LSA. Note

that each individual in general has a fixed mode for transportation

in daily life, and thus Tr is assumed to be a LMA.

1. Spatio-Temporal Distribution of Different Activities
The travel purposes are grouped into six categories, as shown in

Figures 4 and 5, each travel purpose has unique temporal and

spatial distribution characteristics, which are consistent with

common knowledge. We observe that the Tr, D and W each

have two peaks that emerge during different periods throughout

the day. The first peaks for both Tr and W appear in the period

from 7 am to 9 am; at lunchtime, the D reaches its first peak. The

W’s second peak is earlier than the other two’s, suggesting that

most of residents are likely to go back to the office after lunch. The

trend lines for both E and H remain at a low level during the

daytime and rise after 5 pm, showing that the majority of users will

return home or participate in entertainment after work. In our

method, the travel purpose for school, public library, and the

attraction sites are merged into O, which looks the same as the W.

From the perspective of spatial distribution, the demands for W,

D, E and O are mainly accumulated in the central area. But we

observe that the O is more discrete than the other three, which is

probably because the places for O are generally scattered.

Particularly, Tr has two special hot spots, which are the Pudong

airport and the Hongqiao airport. In summary, these six categories

are proved to be good qualitative and descriptive explanations for

intra-urban human mobility demands.

2. Transition Probability Matrix between Travel Demands
According to Equation 3, we construct a transition probability

matrix Md between TTDs. The size of Md is N6N with

N=|M|6|T|. The value of each cell in matrix Md is represented

as

Md (ij ,qp)~ x,yð Þjx~m
tj
i , y~m

tp
q

n o

ð9Þ

Figure 4. Diurnal temporal distribution of different activities. a) Transportation. b) Dining. c) Work. d) Entertainment. e) Home. f) Other. The
frequency curves of Tr, D, and W each have two peaks that emerge during different periods throughout the day. The first peaks for both Tr and W
appear in the period from 7 am to 9 am; at lunchtime, the D reaches its first peak. The W’s second peak is earlier than the other two’s. The trend lines
for both E and H remain at a low level during the daytime and rise after 5 pm. The curve of O is almost same as the W’s.
doi:10.1371/journal.pone.0097010.g004
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The column unit of Md is the predecessor activity mi at time tj and

can be denoted as m
tj
i , where i[½1,jMj� and j[½1,jT j�. Similarity,

the row unit of Md is the successor activity mq at successor time tp

and is denoted as m
tp
q , where q[½1,jMj� and p[½1,jT j�. Thus, the

cell of Md with index (ij,qp) records the frequency of occurrence for

successor activity mq at successor time tp conditioned on

predecessor activity mi at predecessor time tj., and the Md is

visualized as shown in the Figure 6. The value of cell, for example,

(E19, D20) equals to 0.08, indicating that the transition probability

from the predecessor activity E in the 19th time interval (i.e. from

19:00 to 20:00) to the successor activity D in the 20th time interval

is 0.08. Since the maximum time interval of a trip is set to twelve

hours, the transition probability is negligible if the successor time is

twelve hours greater than the predecessor time (the dark blue

parts). From the vertical view (from the bottom to the top), the

percentage of successor demands in the same time intervals can be

obtained. For instance, the probabilities for treating entertainment

and dining as the successor demands are relatively higher than

other demands during the evening and at night. Likewise, from the

horizontal view (from left to right), we can compare the percentage

of their predecessor demands in the same time intervals. For

example, although the transition probabilities for all the prede-

cessor demands to the successor demand for dining are high

during the evening and at night, the entertainment exposes much

higher percentage than other demands.

3. Displacement Distributions of Different Trip Types
To verify the hypothesis that LMA and LSA would be affected

by different factors when one person chooses his/her successor

activity, the displacement distribution P(Dd) is investigated. P(Dd)

plays a basic statistical role in characterizing human mobility and

is considered to be affected by not only the distance decay, but also

other factors, such as geographical environments [1] and

population heterogeneity [40]. We assume that the spatial

distributions of both LSAs and LMAs are influenced by the same

geographical and demographic factors at the macro scale. Hence,

LSAs and LMAs will illustrate different characteristics when

comparing their displacement distributions. Currently, two models

Figure 5. Spatial distributions of different activities. In order to make the spatial distribution more clear, the kernel density estimation (KDE)
method is adopted. a) Transportation. b) Dining. c) Work. d) Entertainment. e) Home. f) Other. The demands for W, D, E and O are mainly accumulated
in the central area, but the demand O is more discrete than the other three. Tr has two special hot spots, which are the Pudong airport and the
Hongqiao airport.
doi:10.1371/journal.pone.0097010.g005
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Figure 6. Temporal transition probability matrix of activities. The horizontal axis is the predecessor demand and time, m
tj
i and the vertical axis

is the successor demand and time, m
tp
q . The transition probability is negligible if the successor time is twelve hours greater than the predecessor time.

Obviously, the values for both the dining and entertainment demands during the 7 pm to 9pm from other demands are high. Especially, a high
transition probability exists if the successor activity is entertainment at time from 7pm to 9pm on the condition that the predecessor activity is dining
at time from 6pm to 7pm.
doi:10.1371/journal.pone.0097010.g006

Figure 7. Distribution of trip distances. A) The distance distribution of all trips. B) The distance distribution of three trip patterns. The exponent
of pure LMA trips is 0.134 km21 (R2= 0.713) whereas the pure LSA’s is 0.264 km21 (R2= 0.9312). The exponent for hybrid pattern is 0.191 km21

(R2=0.814).
doi:10.1371/journal.pone.0097010.g007
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are often used to fit P(Dd): a power-law P(Dd) ,Dd-b and an

exponential law P(Dd),exp(-lDd). In terms of urban areas, recent

research has demonstrated that the displacement distribution

obeys exponential law rather than power-law according to mobile

phone records [30], individual vehicle data [41] and taxi data [42].

Similarly, as Figure 7a shows, the distribution of individuals’

movement in check-ins also follows roughly a straight line on a log-

linear plot and reveals an exponential law with l=0.179 km21

(R2=0.922).

However, a small peak exists between 30 km and 40 km, which

corresponds with the result observed from taxi trajectories in a

previous study of the Shanghai urban area. This phenomenon

could be ascribed to the location of the Pudong International

Airport [1]. Owing to more than 30 km away from the center of

Shanghai, the airport makes residents travel long distances without

other choices. With the respect to the distance decay, this peak also

reflects that some activities are not affected by the distance decay

to some extent. Therefore, it is necessary to divide the activity into

two classes according to whether the demand associates with fixed

location or not, thereby there are three trip patterns based on the

types of the predecessor activity and the successor activity. If both

the activities are classified as LMAs, the trip pattern is regarded as

a pure LMA trip. Likewise, the trip pattern is considered to be

pure LSA if both predecessor and successor activities can be

Figure 8. Comparison between distance distributions of observed and simulated trips. The Hellinger coefficients is 0.8829, and a peak
also exists between 30 km and 40 km in the simulated trips.
doi:10.1371/journal.pone.0097010.g008

Figure 9. Comparison between spatial distributions of observed and simulated trips. The KDE method is adopted, and the output cell size
is 250,000 square meters. a) The observed successor activities. b) The simulated successor activities. The vast majority part of the observed data can
be illustrated by the simulated one, and the Hellinger coefficient is 0.8430.
doi:10.1371/journal.pone.0097010.g009
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classified as LSA. Last, if the two kinds of activities are different,

the pattern can be deemed as a hybrid trip. As displayed in

Figure 7b, the distribution of the pure LSA trip distance is more

sharply decayed than the other two and have a very good fit for

the exponential law with exponent l=0.264 km21. Both the pure

LMA and pure LSA patterns have hardly any peak, and more

importantly, the plot reveals that the human mobility with

different trip patterns will be affected by different distance decay

effect.

Hence, the hypothesis that LMA activity would not be affected

by the distance delay is proved to be correct for interpreting the

intra-urban human mobility when one person chooses his/her

next activity. Therefore, if the successor demand is locationally

mandatory, the person will get in a specific location directly

without the transition probability of locations’ issue.

4. Simulation Results
After considering the computing cost, we initialize 120,000

virtual agents and randomly place each of them into a

5006500 m2 square designated as the agent’s home, according

to the population distribution of Shanghai, for which we use the

LandScan 2008 High Resolution Global Population Data Set

(http://www.ornl.gov/sci/landscan/). Then each of the agents’

activity is assigned from the collectionM at random. Finally, we set

the beginning time to 6 o’clock and make each agent individually

assess their respective situations and move according to the

proposed model. For LSA, we adopt the frequency of check-in

which can fit the successor TTD to represent the capacity of

satisfying successor TTD in each square. During the simulation,

given the user’s current location, some trivial but close places may

exist. Since we use a power-law distance decay function, d2b is

rather high when d is small and thus overestimates the impacts of

such places. Therefore, we adopt a threshold m to filter squares

that have lower frequencies of TTD than m when an individual

chooses the next stop. In this research, m is set to 10 by trial and

error. Additionally, we simplify the relationship between the

distance decay versus the activity transition and utilize the same

distance decay function g(d), since Liang et al. suggested that the

power law functions are more in accord with the reality than the

exponential functions in the simulation [5]. Likewise, Liu et al.

pointed out that the observed displacement distribution of intra-

urban trips can been well interpreted using a power law distance

decay function [1]. Hence, we set g(d) to be d2b in the simulation,

where b is the distance decay parameter. Different exponent

values between 1.0 and 2.0 were tried, and about 2,100,000 trips

were generated for each exponent. We found the observed pattern

could be best fitted when b=1.62. Finally, we segmented the

agents’ simulated activity trajectories into trips and compared

them with the observed ones from displacement distribution,

spatial and temporal distribution and TAD distribution.

As shown in the Figure 8, the Hellinger coefficients for distance

distributions are 0.8829, and a peak also exists between 30 km and

40 km indicating that the proposed model interprets the observed

distance distributions well. However, the distance distribution

cannot ensure the location of activity is correct, therefore, the

spatial cluster is brought in to examine this issue. As Figure 9

shows, the spatial distribution of the simulated successor activities

is largely similar to the observed one when the Hellinger

coefficient is 0.8430. However, it does not fit well in some areas.

We conjecture that the reason is the individuals will choose some

activities according to their own preferences, which will not be

influenced by the geographical impacts or the distance decay

effects. Besides, Figure 10 illustrates that the simulated data’s trend

Figure 10. Comparison between temporal distributions of observed and simulated trips. The Hellinger coefficient is 0.9803. In evening
time, we can find a one-hour lag exists between two peaks. The lag should be attributed to the one-hour temporal resolution in simulations.
doi:10.1371/journal.pone.0097010.g010
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line matches well with the observed one, and the Hellinger

coefficient is 0.9803. Although the simulated data’s trend line well

matches the observed one, a deviation (about one hour) still exists

between two peaks. We conjecture the reason is that the proposed

model uses a one-hour time interval. In evening, the check-in

activities are more frequent so that a person may check in several

times at different places during one hour. According to the

proposed model, however, the successor activities are assumed to

occur in the next hour, leading to a delayed peak. Lastly, to verify

the travel demands intensity distribution in time dimension, we

compare the simulated results with the observed ones (Figure 11).

All of the simulated curves have high Hellinger coefficients (.0.95)

comparing with the actual ones, indicating the proposed model

can simulated the travel demands intensity in time dimension well.

Discussion

Current human mobility studies have paid less attention to

activities, due to the lack of explicit large scale activity information

data. Fortunately, as social media services have become increas-

ingly used in the past few years, they have also become an

indispensable part of many people’s lives to record life footprints,

including both locations and travel demands. Therefore, social

media check-in records have provided a unique opportunity to

combine activity-based analysis with movement-based approach in

order to study intra-urban human mobility patterns on a large

scale. In this study, we utilized these two approaches in

combination to reproduce the intra-urban human mobility

patterns using the social media check-in data collected from

Shanghai, China. By the mechanism of agent-based modeling, the

results show that the simulated patterns fit the actual distribution

of observed movements well. Hence, our model has illustrated the

Figure 11. Comparison between temporal distributions of observed and simulated categories. a) Transportation, the Hellinger
coefficient is 0.976. b) Dining, the Hellinger coefficient is 0.950. c) Work, the Hellinger coefficient is 0.969. d) Entertainment, the Hellinger coefficient is
0.956. e) Home, the Hellinger coefficient is 0.960. f) Other, the Hellinger coefficient is 0.973. Although deviations still exist in the simulated ones, the
deviation values are only a few percent. Besides, all simulated results have similar peak shapes to the observed ones.
doi:10.1371/journal.pone.0097010.g011
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following three aspects. First, the transition probability between

two activities could be regarded as two parts, the transition

probability between TTDs and the movement between locations.

Second, the travel demand varies over time and is affected by the

predecessor activity purpose and the predecessor time. Last, the

travel demands could be divided into two categories: LMA and

LSA, according to whether the demand is associated with fixed

location or not. When one person chooses his/her next stop, the

LSA would be affected by not only the distance decay but also the

geographical impacts. On the contrary, the LMA has no need to

consider the transition probability between locations. As a

consequence, there are three trip patterns, judged by the

combination of predecessor activity type and the successor activity

motivation.

Some limitations still exist in this study. The first is the

discontinuous characteristic check-in sequence of an individual.

Since the life footprints are only recorded when the individual

chooses to upload data, we can only obtain a subset of all the

activities of an individual during a day. To overcome this, we

introduce a mechanism to judge whether two consecutive check-

ins recorded by an individual constitute an activity sequence or

not. The second issue is the time uncertainty of check-ins, because

the time information of one check-in event cannot indicate the

exact time when the user arrives at the venue. In order to avoid

this shortcoming, we explore the temporal transition relationship

between two types of demands rather than simply considering the

time of check-ins as the start time, the duration time or the end

time. We assume that the time information of one check-in will

have a significant impact on the attributes of a successive check-in.

Last, we should be aware of the representativeness of check-in

data, that is, the check-in users are not well-designed samples of

the population. Young people are more likely to post check-in

records on social media, suggesting that check-ins do not have the

capability to reflect accurate mobility patterns for all age groups.

Although these limitations will confine the representativeness of

check-ins records on human mobility research, the check-in data

has illustrated the potential abilities to bridge the gap between

activity and mobility patterns analysis, and to create models that

incorporate both types of analysis to predict human mobility

patterns.

There is some literature on mobility patterns at city level based

on activity data (e.g. [20,35]). However, most such studies suffer

from a lack of support from empirical movement data and do not

pay much attention to the nature of activities. In the proposed

model, human activities are divided into LMAs and LSAs, which

play different roles in shaping human mobility patterns. The

model is well validated by a check-in data set. Compared to

existing studies, this research opens up a new avenue for

combining the movement-based approach with the activity-based

approach using check-ins, and enriches the theory of activity-based

models to travel demand analysis with a quantification of

transition matrix of activity. More importantly, this approach

may positively impact practical systems and applications in urban

planning, traffic management, and mobile location-based services

from the perspective of activities.

Author Contributions

Conceived and designed the experiments: LW YL. Performed the

experiments: YZ ZS. Analyzed the data: YZ YL. Contributed reagents/

materials/analysis tools: ZS. Wrote the paper: LW YZ YL.

References

1. Liu Y, Kang C, Gao S, Xiao Y, Tian Y (2012) Understanding intra-urban trip
patterns from taxi trajectory data. Journal of Geographical Systems 14: 463–483.

2. Liu Y, Wang F, Xiao Y, Gao S (2012) Urban land uses and traffic ’source-sink
areas’: Evidence from GPS-enabled taxi data in Shanghai. Landscape and
Urban Planning 106: 73–87.

3. Kang C, Ma X, Tong D, Liu Y (2012) Intra-urban human mobility patterns: An
urban morphology perspective. Physica A: Statistical Mechanics and its
Applications 391: 1702–1717.
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