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Abstract: Genistein is an isoflavone naturally present in numerous staple food crops, such as soybeans
and chickpeas. This study utilized the Gallus gallus intraamniotic administration procedure to assess
genistein administration effects on trace mineral status, brush border membrane (BBM) functionality,
intestinal morphology, and intestinal microbiome in vivo. Eggs were divided into five groups with
1 mL injection of the following treatments: no-injection, DI H2O, 5% inulin, and 1.25% and 2.5%
genistein (n = 8 per group). Upon hatch, blood, cecum, small intestine, and liver were collected for
assessment of hemoglobin, intestinal microflora alterations, intestinal morphometric assessment,
and mRNA gene expression of relevant iron and zinc transporter proteins, respectively. This study
demonstrated that intraamniotic administration of 2.5% genistein increased villus surface area,
number of acidic goblet cells, and hemoglobin. Additionally, genistein exposure downregulated
duodenal cytochrome B (DcytB) and upregulated hepcidin expression. Further, genistein exposure
positively altered the composition and function of the intestinal microbiota. Our results suggest
a physiological role for genistein administration in improving mineral status, favorably altering
BBM functionality and development, positively modulating the intestinal microbiome, as well as
improving physiological status.
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1. Introduction

Genistein is a polyphenolic isoflavone naturally found in numerous staple crops,
including soybeans and chickpeas. Many studies have reported genistein to possess various
beneficial and protective physiological properties, with effects observed in metabolic
syndrome, diabetes, and breast and prostate cancers in vivo [1,2]. The biological effects of
isoflavone consumption have been attributed to structural similarity and function with
human and animal estrogens. Specifically, due to structural similarity to 17b-estradiol,
genistein has been observed to possess weak estrogenic activity and exhibit preferential
binding to estrogen receptor ß [2,3].

The characterization of genistein metabolism and absorption is still ongoing, despite
the well-studied physiological effects of genistein and other isoflavones. Dietary isoflavones
exist as isoflavone-glycosides and are transformed by intestinal microbiota via bacterial
enzymatic action to more potent metabolites, such as equol and O-desmethylan- lensin [4].
Thus, individual differences in gut microbiota will consequently be expected to influence
the potential for physiological effects associated with isoflavone ingestion [5]. Current
research has shown genistein administration in mice fed a high-fat diet ameliorated harmful
effects associated with a high-fat diet through increasing populations of bacteria associated
with reduced pro-inflammatory lipopolysaccharide and lower serum triglyceride levels [1].
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Another recent study has shown that isoflavone administration in vitro promoted short-
chain fatty acid (SCFA) production due to increased proliferation of SCFA-producing
bacteria species from Clostridium cluster XIVa, Roseburia and E. hallii [4]. Additionally,
maternal genistein intake perinatally and throughout pregnancy in mice mitigated harmful
effects of a high-fat fed diet in dams and offspring and was associated with an increase
in butyrate-producing gut bacteria [6]. Increased SCFA production has been associated
with inhibiting harmful pathogen growth, decreased intestinal pH, and upregulated brush
border membrane (BBM) gene expression [7,8]. Taken together, these effects enhance
micronutrient bioavailability.

Emerging evidence suggests that genistein exposure could be implicated in the altered
expression of proteins involved in iron (Fe) transport. Genistein significantly increased Fe
export through estrogen receptor ß-dependent p38 MAPK up-regulation through cerulo-
plasmin and ferroportin-1 in glial cells [9]. However, another study found that genistein
treatment of human hepatocytes increased both hepcidin transcription levels and promoter
activity (hepcidin decreases intestinal Fe absorption by inhibiting ferroportin) [10].

Despite the investigation of specific health benefits attributed to dietary genistein
administration and subsequent knowledge of genistein ingestion on gut microbiota modu-
lation and Fe transport, there is a paucity of knowledge regarding how genistein affects
the brush border membrane (BBM) of the small intestine. As BBM functional capacity (i.e.,
digestive enzyme production) dictates the extent of food digestion and absorption, it is key
to investigate the interactions between bioactive compounds in the diet and the BBM. There
is also a lack of studies that specifically utilize the embryonic stage of the Gallus gallus for
elucidating the effects of genistein consumption on BBM development and functionality.
Due to similarities in intestinal morphology, microbiota, and gene homology of duodenal
mineral transporters between humans and Gallus gallus, the Gallus gallus has been used as a
novel and cost-effective animal model to elucidate the physiological effects of plant bioac-
tives and nutritional solutions relevant to human nutrition [11–15]. To study the impact of
bioactive on the embryonic stage, the intraamniotic administration approach can be utilized
for testing the effects of the solution administered into the amniotic fluid on the different
systems of interest in a closed system, where the amniotic fluid is naturally and orally
consumed by the embryo starting at day 17 and is entirely consumed by hatch [7,11,16–18].

In our present study, the effects of genistein intraamniotic administration on brush
border membrane (BBM) functionality, intestinal morphology, and intestinal microbiome
were studied in vivo using the embryonic stage of the Gallus gallus. It was previously
demonstrated that daidzein, another major isoflavone found in soybeans with estrogenic
effects, altered BBM Fe transport proteins and cecal bacterial populations in the embryonic
stage of the Gallus gallus [19]. Therefore, the first objective of this study was to evaluate
genistein administration effects on BBM functionality through evaluating duodenal gene
expression of biomarkers of mineral status, BBM digestive and absorptive ability, and
inflammation. To accomplish this objective, we assessed the expression of duodenal cy-
tochrome B (DcytB, a Fe-specific cytochrome reductase on the luminal side of the enterocyte)
and divalent metal transporter 1 (DMT1, the primary transporter of Fe2+ from the luminal
side of the enterocyte), ferroportin (a basolateral exporter of dietary Fe2+), liver hepcidin
(decreases intestinal Fe absorption by inhibiting ferroportin), as well as duodenal ZnT7
(zinc transporter protein 7) and ZIP6 (zinc transporter) [10]. BBM digestive and absorp-
tive ability were evaluated by assessing duodenum morphology and gene expression of
biomarkers of BBM digestive and absorptive ability (AP—aminopeptidase, SI—sucrase-
isomaltase, and NaK/ATPase—sodium-potassium adenosine triphosphatase). In addition,
systemic inflammatory status was evaluated using the expression of immunoregulatory
cytokines (TNF-α, tumor necrosis factor-alpha; and NF-κB, nuclear factor kappa B subunit
1). The second objective was to utilize PCR quantification to analyze duodenal microbial
populations and next-generation sequencing to analyze the cecal microbiome to elucidate
potential alterations in gut microbiota composition and function resulting from genistein
administration. We hypothesize that when administered intraamniotically, genistein will
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alter mineral transport, cause favorable alterations in BBM functionality and development,
and positively modulate the gut microbiota.

2. Materials and Methods
2.1. Animals and Experimental Design

Fertile Cornish-cross broiler eggs (Gallus gallus) were acquired (Moyer’s chicks, Quak-
ertown, PA, USA) and incubated utilizing optimum conditions at the Cornell University
Animal Science Poultry Farm Incubator [20]. The protocol was approved by the Cornell
University Institutional Animal Care and Use Committee (IACUC #2020-0077). On incuba-
tion day 17, viable embryos were weighed, and eggs were randomly distributed by weight
into five groups (n = 8 per group, each group contained eggs of similar weight frequency
distribution). Treatments in powder form were prepared in DI H2O. The experimental
groups were as follows: two treatment groups (1.25, 2.5% genistein), two controls (H2O
injection and no-injection), and a positive control (5% inulin). After identification of the
injection site via candling, 1 mL of experimental solution was injected into the amniotic
fluid of each egg using a 21-gauge needle. After injection, the injection holes were sterilized
with 70% ethanol and sealed. Eggs were returned to the incubator with equal representation
at each incubator location to reduce allocation bias. Immediately upon hatch (day 21),
blood was collected, and all chicks were euthanized by CO2 exposure. The small intestine,
cecum, pectoral muscle, and liver were collected, placed in liquid nitrogen for immediate
freezing, and stored at −80 ◦C until analysis.

2.2. Blood Hemoglobin (Hb) Measurements

Blood was collected in sodium heparin tubes (ThermoFisher Scientific, Waltham, MA,
USA). The QuantiChromTM Hemoglobin Assay (BioAssay Systems, Hayward, CA, USA)
was utilized to quantify hemoglobin (Hb) concentrations spectrophotometrically following
the manufacturer’s instructions.

2.3. Total RNA Isolation from Duodenum and Liver Tissue Samples

Total RNA was extracted from 30 mg of duodenal (n = 6) or liver tissues (n = 6)
according to the manufacturer’s instructions under RNase-free conditions using the Qiagen
RNeasy Mini Kit (Qiagen Inc., Valencia, CA, USA). RNA was quantified by the ratio of
absorbance (260/280 nm) using a NanoDrop 2000 (ThermoFisher Scientific, Waltham, MA,
USA). RNA samples were stored at −80 ◦C until use.

2.4. Real-Time Polymerase Chain Reaction (RT-PCR)

As was previously described [12,16,17,21], cDNA was made using a 20uL reverse
transcriptase (RT) reaction in a BioRad C1000 Touch Thermal Cycler using the Improm-II
Reverse Transcriptase Kit (Promega, Madison, WI, USA). The reverse transcriptase reaction
consisted of the following: 1 µL total RNA template, 10 µM random hexanucleotide primers,
and 2 mM of oligo(dT) primers. Reactions were completed in conditions as indicated: 94 ◦C
for 5 min, 60 min at 42 ◦C, 70 ◦C for 15 min, and hold at 4 ◦C. cDNA concentration was
determined using a NanoDrop 2000 (ThermoFisher Scientific, Waltham, MA, USA) by
measuring the ratio of absorbance (260/280 nm).

2.4.1. Primer Design

As was previously described [12,16,17,21], primers were designed using the PrimerQuest
Tool (IDT DNA, Coralvilla, IA, USA) based on 13 genetic sequences publicly available on
the GenBank database. DNA sequences of primers utilized in this study are summarized
in Table 1.
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Table 1. Sequences of primers used in this study.

Analyte Forward Primer (5′–3′) Reverse Primer (3′–5′) Base Pair GI Identifier

Iron Metabolism

DcytB CATGTGCATTCTCTTCCAAAGTC CTCCTTGGTGACCGCATTAT 103 20380692
DMT1 TTGATTCAGAGCCTCCCATTAG GCGAGGAGTAGGCTTGTATTT 101 206597489
Ferroportin CTCAGCAATCACTGGCATCA ACTGGGCAACTCCAGAAATAAG 98 423984
Hepcidin AGACGACAATGCAGACTAACC CTGCAGCAATCCCACATTTC 132 SAMN08056490

Zinc Metabolism

∆-6-desaturase GGCGAAAGTCAGCCTATTGA AGGTGGGAAGATGAGGAAGA 93 261865208
ZIP6 GCTACTGGGTAATGGTGAAGAA GCTGTGCCAGAACTGTAGAA 380 66735072
ZnT7 GGAAGATGTCAGGATGGTTCA CGAAGGACAAATTGAGGCAAAG 87 56555152

BBM Functionality

AP CGTCAGCCAGTTTGACTATGTA CTCTCAAAGAAGCTGAGGATGG 138 45382360
SI CCAGCAATGCCAGCATATTG CGGTTTCTCCTTACCACTTCTT 95 2246388
NaK/ATPase CCTTGGAGGTTTCTTCACCTATT GGTCATCCCACTGAAGTCTAATC 92 14330321

Inflammatory Response

NF-κβ CACAGCTGGAGGGAAGTAAAT TTGAGTAAGGAAGTGAGGTTGAG 100 2130627
TNF-α GACAGCCTATGCCAACAAGTA TTACAGGAAGGGCAACTCATC 109 53854909

18S GCAAGACGAACTAAAGCGAAAG TCGGAACTACGACGGTATCT 100 7262899

DcytB, duodenal cytochrome b; DMT1, divalent metal transporter 1; ZIP6, zinc transport protein 6; ZnT7, Zinc
transporter 7; AP, amino peptidase; SI, Sucrose isomaltase; NaK/ATPase, Sodium, Potassium and adenosine
triphosphate; NF-κβ, nuclear factor kappa β subunit 1; TNF-α, tumor necrosis factor-α.

2.4.2. Real-Time qPCR Design

RT-qPCR was performed as was previously described [12,16,17,21]. Briefly, 10 µL
RT-qPCR reactions comprised cDNA, SYBR Green Supermix (2X BioRad SSO Advanced
Universal, Cat #1725274, Hercules, CA, USA), forward and reverse primers (as shown in
Table 1), and nuclease-free H2O. DNA amplification was performed under the following
conditions: first denaturation at 95 ◦C for 30 s, 40 cycles of denaturation at 95 ◦C for 15 s,
various annealing temperatures based on the primers utilized (PrimerQuest Tool, IDT DNA,
Coralvilla, IA, USA) for 30 s and elongation at 60 ◦C for 30 s using a Bio-Rad CFX96 Touch
(Hercules, CA, USA). Cp values were calculated using the automated “second derivative
maximum” method (Bio-Rad CFX Maestro Software Version 4.1.2433.1219, Hercules, CA,
USA). Gene expression was normalized to 18S gene expression [22]. RT-qPCR efficiency
values for the 13 genes were as follows: DcytB, 1.046; DMT 1, 0.998; Ferroportin, 1.109;
Hepcidin, 0.976; ∆-6-Desaturase, 0.925; ZIP6, 0.961; ZnT7, 0.916; NK-κβ, 1.113; TNF-α,
1.046; AP, 1.015; SI, 1.032; NaK/ATPase, 1.024; and 18S rRNA, 0.994.

2.5. Collection of Microbial Samples and Intestinal Contents DNA Isolation

As was previously described [16,21], intestinal contents were placed into a sterile 15 mL
tube (Corning, Corning, NY, USA), 9 mL 1X phosphate buffered saline (PBS) was added, and
the contents were vortexed with silicone beads (3 mm) for 3 min and centrifuged at 1000× g
for 5 min. The supernatant was collected and centrifuged at 4000× g for 20 min, and the
resulting pellet was washed twice with PBS. The pellet was dissolved in 50 mM EDTA and
incubated with 10 mg/mL lysozyme (Sigma Aldrich CO., St. Louis, MO, USA) for 45 min
at 37 ◦C. A Wizard Genomic DNA purification kit (Promega Corp., Madison, WI, USA)
was used to isolate bacterial genomic DNA according to the manufacturer’s instructions.

2.6. PCR Amplification of Bacterial 16S rDNA

Bifidobacterium, Clostridium, Lactobacillus, E. coli, and L. plantarum primers were de-
signed as previously described [23,24]. Universal primers for the invariant region of
bacterial 16S rRNA were utilized for results normalization. PCR products were separated
using electrophoresis on 2% agarose gel, stained with ethidium bromide, and quantified
with Quantity One 1D software (BioRad, Hercules, CA, USA).
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2.7. 16S rRNA Gene Amplification, Sequencing and Analysis

Performed as previously described [25]. Briefly, cecal bacterial DNA was extracted
as defined by the manufacturer (PowerSoil DNA isolation kit, MoBio Laboratories Ltd.,
Carlsbad, CA, USA). Bacterial 16S rRNA gene sequences were PCR-amplified using the
515F-806R primers for the V4 hypervariable region of the 16S rRNA gene [7,25–34]. Detailed
methodology is provided in the supplementary materials.

2.8. Glycogen Analysis

Glycogen content quantification in the pectoralis muscle and liver was performed
as previously described [7,35]. Briefly, the frozen pectoralis muscle or liver samples were
homogenized for 1 min in perchloric acid (8% v/v) on ice, centrifuged at 12,000× g for
15 min at room temperature, and the resulting supernatant was discarded. A measurement
of 1 mL of petroleum ether was added, the petroleum ether fraction was discarded, and
the lower layer of each sample was transferred to a 96-well plate containing iodine reagent
(300 µL). Samples were read at 450 nm in a plate reader (Epoch, BioTek, VT, USA). The
glycogen content was calculated using a standard curve.

2.9. Tissue Morphology Examination

Intestinal tissue morphometric assessment was performed as was previously de-
scribed on duodenal sections [7,17,21]. Duodenum sections were fixed in 4% (v/v) buffered
formaldehyde, dehydrated, cleared, and embedded in paraffin. Sections were cut (5 µm
thickness) and positioned on glass slides, deparaffinized in xylene, rehydrated in ethanol,
and stained with Alcian Blue/Periodic acid-Schiff. Villus height, villus width, crypt depth,
Paneth cell number per crypt, Paneth cell width, goblet cell number, goblet cell diameter,
goblet cell type within the villi, and goblet cell type within the crypts were assessed using
a light microscope (CellSens Standard software, Olympus, Waltham, MA, USA). Five bio-
logical samples per treatment group (n = 5) and four segments for each biological sample
were analyzed. Ten randomly selected villi and crypts were analyzed per segment and cell
size measurements and counts were counted in ten randomly selected villi and/or crypts
per segment (40 replicates per biological sample). Villus surface area was calculated using
the following equation:

Villus sur f ace area = 2π × VW
2
×VL (1)

where VW is the average of three measurements of villus width, and VL is the villus length.

2.10. Statistical Analysis

Results are shown as mean ± standard error, n = 6–12, in tables and heatmaps.
Heatmaps were created in Microsoft Excel (Microsoft Corporation, Redmond, WA, USA)
based on conditional formatting using color scales based on result means. Gene expression
was normalized to 18S gene expression [22] and presented in arbitrary units (AU). To assess
distribution normality, the Shapiro–Wilk test was used. Normally distributed results were
analyzed by one-way ANOVA and Duncan post-hoc test. The Kruskal–Wallis test was uti-
lized for non-parametric data. Differences were considered significant at p < 0.05. Statistical
analyses were carried out using SPSS software (version 20.0, IBM, Armonk, NY, USA).

3. Results
3.1. Body Weight and Cecum Weight

The body weight of the 2.5% genistein group is significantly higher than the no-
injection group (p < 0.05, Table 2). For cecum weights, the no-injection and H2O groups
demonstrate significantly greater values when compared to the 5% inulin and 2.5% genis-
tein groups (p < 0.05).
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Table 2. Effect of genistein exposure on body weight and cecum weight 1.

Treatment Group Average Body Weight (g) Average Cecum Weight (g)

No Injection 43.23 ± 1.44 b 0.60 ± 0.05 a

H2O 44.62 ± 1.43 ab 0.59 ± 0.05 a

5% Inulin 46.04 ± 1.18 ab 0.43 ± 0.05 b

1.25% Genistein 45.83 ± 0.99 ab 0.50 ± 0.04 ab

2.5% Genistein 47.69 ± 1.30 a 0.44 ± 0.03 b

1 Values are means ± SEM, n = 6. a,b Treatment groups not indicated by the same letter in the same column are
significantly different (p < 0.05) according to one-way ANOVA with post-hoc Duncan test.

3.2. Hemoglobin and Glycogen Concentrations

Blood hemoglobin (Hb) levels in the 1.25% genistein group are significantly elevated
compared to the no-injection, H2O, and 5% inulin groups (p < 0.05, Table 3). The blood
hemoglobin of the 2.5% genistein group is higher than the no-injection group and signifi-
cantly higher versus the H2O and 5% inulin groups. Among average glycogen, there were
no significant differences between the genistein-treated and no-injection groups (p > 0.05).

Table 3. Blood hemoglobin (Hb) concentrations (g/dL) and pectoral muscle glycogen concentrations
(mg/g) following genistein exposure 1.

Treatment Group Average Hb (g/dL) Average Glycogen (mg/g)

No Injection 10.10 ± 2.40 bc 0.019 ± 0.005 a

H2O 9.68 ± 2.50 c 0.014 ± 0.003 a

5% Inulin 9.56 ± 0.92 c 0.002 ± 0.001 b

1.25% Genistein 14.98 ± 0.45 a 0.008 ± 0.003 ab

2.5% Genistein 14.23 ± 0.79 ab 0.015 ± 0.004 a

1 Values are the means ± SEM, n = 6–12. a–c Treatment groups not indicated by the same letter in the same column
are significantly different (p < 0.05) according to one-way ANOVA with post-hoc Duncan test.

3.3. Gene Expression of Fe, Zn, BBM Functionality, and Inflammation Related Proteins
3.3.1. Fe-Related Proteins

As depicted in Figure 1, gene expression of DMT1 is downregulated in the 2.5% genis-
tein when compared to all other experimental groups (p < 0.05). DcytB was significantly
downregulated (p < 0.05) in the genistein treatment groups compared to the no-injection,
H2O, and inulin groups. Hepcidin was significantly upregulated (p < 0.05) with genistein
exposure compared to the no-injection group. There were no significant differences in
ferroportin expression between groups.
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Figure 1. Effect of intraamniotic administration of genistein and controls on duodenal and liver
(hepcidin) mRNA gene expression. Gene expression has been normalized to the 18S housekeeping
gene and is in arbitrary units (AU). Values are presented as mean ± SEM, n = 6. a–c Per gene (in the
same column), treatments groups not indicated by the same letter are significantly different (p < 0.05)
according to one-way ANOVA with post-hoc Duncan test. DcytB, duodenal cytochrome b; DMT1,
divalent metal transporter 1; ZIP6, zinc transport protein 6; ZnT7, zinc transporter 7; AP, amino
peptidase; SI, sucrose isomaltase; NaK/ATPase, sodium, potassium and adenosine triphosphate;
NF-κβ, nuclear factor kappa β subunit 1; TNF-α, tumor necrosis factor-α.
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3.3.2. Zn-Related Proteins

ZIP6 was significantly downregulated (p < 0.05) in the 2.5% genistein group compared
to all other treatment groups (Figure 1). There were no significant differences in ZnT7 or
∆-6-desaturase expression between groups.

3.3.3. Inflammatory Cytokines and BBM Functionality

No significant differences in gene expression of aminopeptidase (AP), sucrose iso-
maltase (SI), sodium, potassium, and adenosine triphosphate (NaK/ATPase) were found
when comparing the treatment groups to the no-injection group (Figure 1). No significant
differences in gene expression of nuclear transcription factor (NF-κβ) and tumor necrosis
factor-α (TNF-α) between groups were found.

3.4. Morphometric Analysis of Duodenal Villi, Depth of Crypts, Goblet Cells, and Paneth Cells

The villus height, width, and surface area of the 2.5% genistein were significantly
increased (p < 0.05) compared to the no-injection and H2O groups (Table 4). The 1.25%
genistein group had significantly (p < 0.05) greater villus width than the no-injection and
H2O groups. The 2.5% genistein group had significantly higher (p < 0.05) villus height,
width and surface area compared to the 1.25% genistein.

Table 4. Effects of genistein intraamniotic administration on duodenal small intestinal villus 1.

Treatment Group Villus Height (µm) Villus Width (µm) Villus Surface Area (µm2)

No Injection 201.18 ± 4.94 b 33.73 ± 0.67 e 112.51 ± 4.28 d

H2O 204.74 ± 4.52 b 41.92 ± 1.01 d 143.33 ± 5.27 c

5% Inulin 246.64 ± 5.14 a 50.98 ± 1.03 a 206.92 ± 6.37 a

1.25% Genistein 204.18 ± 3.73 b 44.51 ± 0.86 c 146.97 ± 4.55 c

2.5% Genistein 238.22 ± 3.17 a 48.27 ± 0.87 b 184.13 ± 4.66 b

1 Values are presented as mean ± SEM, n = 5. a–e Treatment groups not indicated by the same letter in the same
column are significantly different (p < 0.05) according to one-way ANOVA with post-hoc Duncan test.

The villi goblet cell diameter and total goblet cell number were significantly higher
(p < 0.05) in the genistein-exposed groups than in the no-injection, H2O, and inulin groups
(Table 5). More specifically, the acidic villi goblet cell count was significantly increased
(p < 0.05) in the 1.25% genistein and 2.5% genistein groups relative to the 5% inulin, no-
injection, and H2O control groups. The neutral villi goblet cell count of 1.25% genistein,
2.5% genistein, and 5% inulin groups were significantly higher (p < 0.05) compared with the
no-injection and H2O injection controls, and the mixture villi goblet cells were significantly
reduced (p < 0.05) with genistein exposure when compared with no-injection, H2O, and 5%
inulin control groups.

Table 5. Effects of genistein intraamniotic administration on villi goblet cells 1.

Treatment Group Villi Goblet Cell
Diameter (µm)

Villi Goblet Cell Number (Unit)

Acidic Neutral Mixture Total

No Injection 2.86 ± 0.02 d 13.59 ± 0.39 d 0.01 ± 0.01 c* 3.50 ± 0.23 c 17.09 ± 0.49 d

H2O 3.11 ± 0.03 c 15.03 ± 0.39 c 0.01 ± 0.01 c* 5.76 ± 0.30 b 20.80 ± 0.47 c

5% Inulin 2.74 ± 0.03 e 16.39 ± 0.54 c 0.10 ± 0.02 b* 6.53 ± 0.30 a 23.02 ± 0.60 b

1.25% Genistein 3.41 ± 0.03 b 23.49 ± 0.67 a 0.09 ± 0.03 b* 1.69 ± 0.13 e 25.26 ± 0.67 a

2.5% Genistein 3.50 ± 0.03 a 22.01 ± 0.51 b 0.19 ± 0.04 a* 2.70 ± 0.16 d 24.89 ± 0.54 a

1 Values are presented as mean ± SEM, n = 5. a–e Treatment groups not indicated by the same letter in the
same column are significantly different (p < 0.05) according to one-way ANOVA with post-hoc Duncan test.
a*–c* Treatment groups indicated are significantly different (p < 0.05) based on Kruskal–Wallis.

As shown in Table 6, the crypt goblet cell diameter of the 1.25% genistein group
was significantly larger (p < 0.05) than all control groups. The 2.5% genistein group had
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a significantly higher diameter than the 5% inulin group. Genistein exposure resulted
in a significantly higher (p < 0.05) total crypt goblet cell count when compared with the
no-injection and H2O groups. More specifically, the acidic crypt goblet cell count of both
genistein treatment groups was significantly higher (p < 0.05) when compared with the
no-injection, H2O, and inulin groups. Genistein exposure significantly reduced mixed crypt
goblet cells (p < 0.05) compared with the no-injection, H2O, and inulin groups.

Table 6. Effects of genistein intraamniotic administration on crypt goblet cells 1.

Treatment Group Crypt Goblet Cell
Diameter (µm)

Crypt Goblet Cell Number (Unit)

Acidic Neutral Mixture Total

No Injection 2.68 ± 0.02 b 5.46 ± 0.18 d 0.00 ± 0.00 a 1.49 ± 0.09 b 6.95 ± 0.21 d

H2O 2.65 ± 0.02 b 6.07 ± 0.18 c 0.00 ± 0.00 a 1.76 ± 0.08 a 7.83 ± 0.19 c

5% Inulin 2.51 ± 0.02 c 7.97 ± 0.16 b 0.00 ± 0.00 a 1.19 ± 0.08 c 9.15 ± 0.16 b

1.25% Genistein 2.89 ± 0.02 a 8.51 ± 0.14 a 0.00 ± 0.00 a 0.74 ± 0.06 d 9.25 ± 0.14 ab

2.5% Genistein 2.63 ± 0.02 b 8.81 ± 0.19 a 0.00 ± 0.00 a 0.88 ± 0.06 d 9.68 ± 0.19 a

1 Values are presented as mean ± SEM, n = 5. a–d treatment groups not indicated by the same letter in the same
column are significantly different (p < 0.05) according to one-way ANOVA with post-hoc Duncan test.

The number of crypt Paneth cells was significantly greater (p < 0.05) for the genistein
treatment groups compared to the no-injection, H2O, and inulin groups (Table 7). The crypt
depth for the genistein treatment groups was significantly lower (p < 0.05) compared to the
H2O-injection group. The 1.25% genistein group had a significantly (p < 0.05) higher crypt
Paneth cell diameter than the no-injection and 5% inulin groups.

Table 7. Effects of genistein intraamniotic administration on crypt depth and Paneth cells 1.

Treatment Group Crypt Depth (µm) # Crypt Paneth Cells Crypt Paneth cell
Diameter (µm)

No Injection 22.45 ± 0.39 d 1.48 ± 0.05 d 1.67 ± 0.03 b

H2O 39.07 ± 0.80 a 2.46 ± 0.11 c 1.82 ± 0.04 a

5% Inulin 35.00 ± 0.43 b 2.56 ± 0.09 c 1.68 ± 0.03 b

1.25% Genistein 26.36 ± 0.46 c 2.92 ± 0.10 b 1.78 ± 0.04 a

2.5% Genistein 23.65 ± 0.46 d 3.24 ± 0.11 a 1.65 ± 0.03 b

1 Values are the means ± SEM, n = 5. a–d treatment groups not indicated by the same letter in the same column
are significantly different (p < 0.05) according to one-way ANOVA with post-hoc Duncan test. The # symbol refers
to the number of Paneth cells.

3.5. Intestinal Content Bacterial Expression

Figure 2 shows the duodenal genera and species-level bacterial populations. The
relative abundance of Bifidobacterium spp., considered a probiotic bacteria, was significantly
increased (p < 0.05) with 2.5% genistein exposure compared with all other treatment groups.
Lactobacillus spp. relative abundance was significantly increased (p < 0.05) with genistein
exposure compared to the no-injection control. L. plantarum, a probiotic bacteria associated
with increased Fe absorption, was significantly increased (p < 0.05) in the genistein-exposed
groups and 5% inulin control compared with the H2O-injected control. Genistein exposure
significantly decreased (p < 0.05) the relative abundance of E. coli compared with all
other experimental groups. Clostridium spp. relative abundance was significantly increased
(p < 0.05) in the genistein-treated groups and 5% inulin control compared to the no-injection
and H2O injection controls.
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Figure 2. Effects of intraamniotic injections of genistein and the controls on duodenal genera and
species-level bacterial populations. Values are presented as mean ± SEM, n = 5, as relative intensity
of bands per mm2 of gel. a,b per bacterial category (in the same column), treatment groups that do
not share any letters are significantly different (p < 0.05) according to one-way ANOVA with post-hoc
Duncan test.

4. Discussion

In the current study, we have evaluated the effect of intraamniotic genistein adminis-
tration on mineral transport, duodenal brush border membrane development and function-
ality, and intestinal microbiota. Although the ingestion of genistein has been associated
with marked physiological changes associated with cancer and metabolic syndrome, further
understanding of tissue-level effects associated with genistein exposure is needed [6,36,37].
Presently, there is a paucity of studies in the literature that directly measure the effects of
genistein on the combination of mineral transport, BBM morphology or functionality, and
intestinal microbiota.

The intraamniotic administration of genistein positively affected intestinal develop-
ment, as demonstrated by increased enterocyte proliferation. The duodenal morphometric
analysis demonstrated a significant (p < 0.05) dose-responsive effect of genistein treatment
on increasing villus surface area versus the no-injection control (Table 4), indicative of
improved digestive enzyme and absorptive capacity [7]. A significantly (p < 0.05) reduced
crypt depth was observed with genistein administration when compared to the H2O in-
jection control group (Table 7), which has been shown to be a marker of efficient tissue
turnover and good condition of the gut [38]. The increase in villus surface area and reduc-
tion in crypt depth are in accordance with other genistein administration trials using the
in vivo Gallus gallus model [39,40]. Additionally, increased proliferation in total villi and
crypt goblet cells and an increase in the proportion of villi acidic and crypt acidic (p < 0.05)
goblet cells were observed with genistein exposure compared to the no-injection and H2O
injection controls (Tables 5 and 6). This indicates increased synthesis and secretion of acidic
luminal mucin by duodenal goblet cells [11,12]. The major goblet cell mucins in the small
intestine are mucin 2 proteins, gel-forming secretory mucins that facilitate hydrolysis and
absorption of nutrients [18,41–43]. In addition to serving as a protective intestinal epithelial
barrier, this mucin (mucin 2) also functions as a habitat that supports probiotic populations
and promotes epithelial cell function [44,45]. Taken as a whole, this demonstrates that
the intraamniotic administration of genistein can positively modulate BBM development
and functionality.

The intestinal microbiota of the Gallus gallus model is significantly and directly in-
fluenced by host genetics, environment, and diet [23,46]. At the phylum level, there is a
significant resemblance between the gut microbiota of Gallus gallus and humans, with Bac-
teroidetes, Firmicutes, Proteobacteria, and Actinobacteria representing the dominant bacterial
phyla [47]. Soy isoflavone treatment has been shown to alter intestinal bacterial popu-
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lations in vivo, including increases in populations of SCFA-producing bacteria [1,36,48].
In the duodenum, the relative abundance of Bifidobacterium spp. considered a probiotic
bacteria species, significantly increased with 2.5% genistein exposure compared with all
other treatment groups (Figure 2). Lactobacillus spp. relative abundance was significantly
increased with genistein exposure compared to the no-injection control. Further, linear
discriminant analysis effect size (LefSe) analysis found that genistein treatment enriched
bacterial pathways associated with de novo synthesis of vitamin B12 (Figure S1), where
bacteria from the Lactobacillus genus represent a small number of bacteria known to encode
the complete de novo biosynthetic pathway of vitamin B12 [49,50]. L. plantarum, a probi-
otic bacteria species associated with increased Fe absorption, was significantly increased
in the genistein exposed-groups and 5% inulin control compared with the H2O-injected
control [51]. L. plantarum produces glucosidases that can hydrolyze isoflavones (glycosides)
into metabolites (aglycones) with increased antioxidant activity [52]. Increased popula-
tions of health-promoting bacteria, Bifidobacterium spp., Lactobacillus spp., and L. plantarum,
resulting from genistein exposure, can be attributed to increased acidic mucin produc-
tion [45,53,54]. Increased acidic mucin synthesis provides an environment conducive to
the proliferation of these probiotic bacterial populations, which can be associated with
an increased Paneth cell number per crypt and number of villi and crypt acidic goblet
cells associated with genistein administration [45,53]. Clostridium spp. was significantly
increased in the genistein-treated groups, and butyrate-producing (SCFA) bacteria, such as
Roseburia spp. and E. hallii from Clostridium cluster XIVa, have previously been observed to
be increased with genistein exposure in vitro [4]. The increase in Lactobacillus spp., Bifidobac-
terium spp., and Clostridium spp. abundance may further contribute to increased mineral
bioavailability as these genera house SCFA-producing species, where SCFAs reduce the
intestinal pH and thus may increase mineral (Fe and Zn) solubility and absorption [7,18,55].

Our previous research suggested soy isoflavone (daidzein) intraamniotic adminis-
tration has the potential to improve dietary Fe bioavailability [19]. In our current study,
BBM gene expression analysis (Figure 1) demonstrated that genistein downregulated
DMT1 (transports Fe2+ into duodenal enterocyte) and DcytB (reduces Fe3+ to Fe2+) and
upregulated ferroportin (transports Fe2+ into blood) and hepcidin (binds to ferroportin,
causes ferroportin internalization and degradation), relative to the control group, though
these results were not necessarily dose-dependent or significant [56–59]. Based on protein
functionalities in Fe sufficient or excess scenarios, it is expected that DcytB, DMT1, and fer-
roportin would be downregulated, whereas hepcidin would be upregulated [57,58,60–63].
Though upregulation of ferroportin has previously been associated with Fe deficiency,
genistein treatment was found to upregulate ferroportin expression in glial cells through
estrogen receptor ß-dependent p38 MAPK activation, independent of Fe status [9,63].
Genistein administration has been shown to upregulate hepcidin expression, directly in-
fluencing ferroportin expression in in vivo and in vitro liver cell models [10]. Blood Hb
levels were increased with genistein administration compared with the controls, which,
taken together with Fe gene expression analysis, may indicate Fe status was improved
by genistein administration. Genistein exposure resulted in ZIP6 (imports zinc across
cell membrane) downregulation in comparison with the no-injection control, potentially
indicative of improved zinc status with genistein administration [64,65], or could be asso-
ciated with estrogenic effects of soy isoflavones, where ZIP6 expression was found to be
modulated with anti-estrogen treatment in breast cells [66,67]. Although Zn absorption
occurs in the duodenum, it has been suggested that the ileum is the leading site of Zn
absorption in Gallus gallus [68], where future studies should focus on the Zn-transporter
gene expression in the ileum to further understand the effects of genistein administration
on Zn transport and absorption. Overall, alterations in mineral transport and hemoglobin
concentration associated with improvements in mineral status can potentially be attributed
to the combination of increased bacterial production of SCFA and increased proportion of
acidic goblet cells associated with genistein exposure, resulting in a lowered intestinal pH
and increased mineral solubility, thus improving mineral absorption [12,18,69].
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Increases in body weight were observed in a dose-dependent manner compared with
the controls, with the 2.5% genistein treatment group being significantly higher (p < 0.05)
than the no-injection control (Table 2). Given the short exposure time, a significant increase
in body weight is unexpected, but when taken with improved Fe status and BBM devel-
opment, and given that the in vivo Gallus gallus model is sensitive to dietary Fe and Zn
deficiencies [55,70], a significant increase in body weight confirms the positive develop-
mental effects related to genistein exposure [71]. Additional studies are warranted to assess
shifts in mineral status, intestinal functionality and development, and intestinal microbiota
post-hatch and during a long-term feeding trial associated with genistein consumption.

5. Conclusions

This present study demonstrates intraamniotic administration of genistein improved
brush border membrane functionality through improvements in villus architecture, goblet
cell expansion, and related mucin production. Additionally, increases in the relative abun-
dance of bacterial populations associated with SCFA production were found. Consequently,
the combination of these factors contributed to alterations in the relative expression of
various duodenal and hepatic proteins responsible for mineral absorption and transport
associated with improved Fe status. Given these findings, genistein represents a promising
plant bioactive and should be further evaluated in long-term animal and controlled human
efficacy trials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14173473/s1, Figure S1: Bacterial pathways identified by the
LEfSe method with the greatest differences in the control, 5% inulin, and genistein treated groups.
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