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In molecular J-aggregates one often observes an increase of the fluorescence decay time when
increasing the temperature from O K. This phenomenon is usually attributed to the thermal
population of the dark Frenkel exciton states that lie above the superradiant bottom state of the
exciton band. In this paper, we study this effect for a homogeneous one-dimensional aggregate in a
host medium and we model the scattering between different exciton states as arising from their
coupling to the host vibrations. A Pauli master equation is used to describe the redistribution of
excitons over the band. The rates entering this equation are calculated within the framework of
first-order perturbation theory, assuming a linear on-site interaction between excitons and acoustic
phonons. Solving the master equation numerically for aggregates of up to 100 molecules, we
calculate the temperature dependence of the fluorescence kinetics in general and the decay time
scale in particular. The proper definition of the fluorescence decay time is discussed in detail. We
demonstrate that, even at a quantum yield of unity, the possibility to directly interpret fluorescence
experiments in terms of a simple radiative time scale depends crucially on the initial excitation
conditions in combination with the competition between spontaneous emission and intraband
phonon-assisted relaxation. @002 American Institute of Physic§DOI: 10.1063/1.1499483

I. INTRODUCTION carbocyanine (BIC),Y” and 3,3-bigsulfopropy)-5,5'-

. _O. . . 18
The concept of one-dimensiondlD) Frenkel exciton’? g:;?lt%fs s.ttf;):]lt:;?;.rbgﬁ;%r(gHrl(;A‘T:)’ . thh'arlw \é?eraes\,/'iakte:m—
has proven to be very useful in explaining the low- xcl lative fifetime grows with | N9

temperature optical properties of molecular aggregates antqerature. Typically, the temperature dependence consists of a
conjugated polymeréor reviews, see Refs. 3-5, and refer- plateau that extends to several tens of Kelvin, followed by a

ences therein One of the remarkable features of 1D FrenkelPOWerlike growth of the lifetime ,"“t higher temperatures. This
exciton systems is that only a few states accumulate the eflOWing down of the aggregate’s radiative dynamics is usu-
tire oscillator strength. As long as the chain length is smalP!ly attributed to the thermal population of higher exciton
compared to the emission wavelength, this leads to an erstates, which in J-aggregates have o.scnlator.strengths that
hancement of the corresponding spontaneous emission raf@& Small compared to those of t2h1e3 optically active states near
by approximately a factor okl over the radiative rate of a the bottom of the exciton barfd*
single molecule. Herdl denotes the number of molecules in ~ The first attempt to fit the experimental data on PIC re-
the chain or, in the case of a disordered chain, the number ¢forted in Ref. 11 was based on a microscopic model of Fren-
molecules within a localization domain of the excit6n8. kel excitons coupled to the vibrations of the aggregate
For a perfectly ordered aggregate whose length exceeds tigelf."® An integrodifferential equation of motion for the
emission wavelength, the enhancement factor saturates at tRepulations of the exciton states, derived by eliminating the
number of molecules within this wavelengt’ phonon variables through a factorization, was used to de-
Experiments on various types of cyanine J-aggregates iacribe the exciton dynamics. Assuming this dynamics to be
(glassy solution, in particular 1,1'-diethyl-2,2’-cyanine dominated by an optical phonon of suitable frequency, the
(PIC),11-15 5,5',6,6'-tetrachloro-1,1"-diethyl-3,3-d4-  experimental data were fitted reasonably well over the entire
sulfobuty)-benzimidazolo carbocyanind TDBC),!® 1,1’-  temperature range. However, after correction of the experi-
diethyl-3,3'-bigsulfopropy)-5,5',6,6'-tetrachlorobenzimida- mental data for the temperature dependence of the quantum
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yield,*® it turned out impossible to fit the experiments by the The goal of this paper, motivated by the above observa-
theory developed in Ref. 19, unless PIC J-aggregates wet®ns, is a systematic analysis of the temperature dependence
assumed to be two-dimensiorfIThe issue of structure and of the fluorescence decay time of 1D Frenkel excitons under
dimensionality of cyanine J-aggregates in solution is a diffi-various excitation conditions, taking into account the effects
cult and intriguing one. While usually assumed to be 1D, theof intraband exciton relaxation. As the physics of the above
nearly linear temperature dependence of the exciton radiativeoted effects does not depend strongly on whether the sys-
lifetime measured in BIC aggregates has led to the conclutem is disordered or nét we will restrict our study to the
sion that these aggregates would be really two-dimensionaimplest case of an ordered aggregate, where these effects
as well*’ The rationale for this conclusion was the similarity can be demonstrated in their purest form. A study of the
of this (linean dependence to the behavior observed in quasiadditional effects of disorder will be deferred to a later pub-
two-dimensional semiconductor nanostructiffeOn the lication. We will assume that the relaxation dynamics of the
other hand, the exciton radiative lifetime of THIATS aggre- excitons in the aggregate is governed by their coupling to
gates can be understood in terms of a one-dimensionaibrations in the host mediuif,; ' rather than to vibrations
model, provided that the Davydov splittihis correctly ac-  of the aggregate itsetf. The exciton dynamics will be de-
counted for'® Moreover, recent cryogenic transmission elec-scribed at the level of a Pauli master equation for the popu-
tron microscopy images have revealed that PIC aggregates iations of the exciton states. The vibration-assisted popula-
solution do in fact assume a one-dimensional structure, iion transfer rates governing this equation are obtained
which a few molecular chains bundle up to form onewithin a first-order perturbation expansion in a linear
aggregaté? exciton—phonon interaction. As we mainly aim to study the
The state of affairs described above calls for a renewedPw-temperature behavior of the exciton fluorescence, we fo-
critical discussion of the temperature dependent radiativ€Us on a coupling to acoustic phonons. The thus obtained
lifetime of J-aggregates. The present paper contributes sefaster equation is solved numerically to describe the fluo-
eral new elements to this discussion. In particular, we willr'escence kinetics both as a function of time and temperature.
point out the important role of the experimental excitationAs the case of fast relaxation is rather uninterestierause
conditions in relation to the competition between spontanethe excitons reach thermal equilibrium before emiskiore

ous emission and vibration-assisted intraband exciton relaxill throughout this paper mostly focus on the case of slow
ation. relaxation. By this we mean that at least the zero-temperature

It is important to realize that in all the above quoted intraband relaxation rates are small compared to the superra-
measurements of the exciton radiative lifetifiel®the sys- ~ diant emission rate.
tem was excited in the blue tail of the absorption band, while ~ This paper is organized as follows: In Sec. II, we present
the fluorescence was observed either within the entire bani@e model Hamiltonian of Frenkel excitons interacting with
or at a particular energy close to the absorption maximumhost vibrations. The Pauli master equation for the exciton
Thus, between the absorption and emission events an addpopulations is introduced in Sec. Ill. Section IV deals with
tional step existed: the vibration-assisted relaxation from th&alculating the exciton scattering rates that enter this equa-
initially excited states to the radiating ones. From this it istion- In Sec. V, we demonstrate that the proper definition of a
immediately clear that the ratio between the rates of twdluorescence decay time is a subtle problem and is in fact

processes, namely vibration-assisted intraband exciton relagifécted by the competition between radiative decay and in-
ation and exciton spontaneous emission, determines the Kiraband relaxation. Our numerical results for the temperature

netics of the fluorescence decay. Two limiting cases can beependence of the exciton fluorescence decay time in differ-
distinguished. If the intraband relaxation is faster than the®t limits of this competition and for different initial excita-
spontaneous emission, the population of the excited state f{oN conditions are given and discussed in Sec. VI. Finally,
rapidly transferred to the radiating state, whereupon this staff€ conclude in Sec. VII.

will slowly (on the scale of the intraband relaxatioadiate.

In this limit, it is the spontaneous emissiaate that deter- ||, MODEL HAMILTONIAN

mines the rate of the exciton fluorescence decay. Analyzing

this decay properlyquantum yield correction, el¢.one may
extract from such measurements the actual exciton radiati
decay time. In the opposite limit, it is the slowtraband
relaxationthat acts as bottleneck in the exciton fluorescence’™ " Lo
decay and thus governs the measured lifetime. It is then yrExciton Hamiltoniar,

likely that one obtains accurate information about the exciton N N

radiative lifetime from such experiments. Rather, it seems He= >, eolny(n|+ >, Iy ny(m|. D

that then the only way to properly measure the exciton ra- =t .

diative lifetime is to resonantly excite the exciton fluores-Here,|n) is the state with molecule of the aggregate ex-
cence. This may be done using accumulated photon echdted and all other molecules in their ground state. This basis
experiments. However, as we will show in this paper, everstate has energy’=e,+U?, with ¢, the energy of the ex-
under resonant excitation, it is not always easy to extractited state of an isolated molecule add= .U, the shift
information about the exciton radiative lifetime from spec-due to the interactiond ,5 of the nth excited molecule with
troscopic data. all other aggregate and host molecules in their ground states

We model an aggregate & (N>1) optically active
Vg_(vo-level molecules forming a regular 1D lattice with spac-
ing a. If the aggregate is considered fixed in its equilibrium
geometry, its optical excitations are described by the Frenkel
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(the superscript “0” indicates that these interactions areon-site part of the exciton-vibration coupling and neglect the

taken for the molecular equilibrium position®As we will intermolecular part. Assuming linear coupling, the relevant
not consider effects of electronic disorder, all energieare  interaction Hamiltonian reads

assumed identical and from now on will be set to zero. Like- N

wise, dlsprder in the excr.[atlon h_opplng integrayls, will not b= 2 E an|n)(n|aq+ h.c., (6)

be considered. These interactions are assumed to be of n=1"q

dipole—dipole origin, J,m=—J/|n—m|3(J,,=0), where
—J is the nearest-neighbor coupling. We will taego be
positive, as is appropriate for J-aggregdtes® Then, the
optically allowed states are those in the vicinity of the bot-
tom of the exciton band.

Accounting for all dipole—dipole interactions, the
Hamiltonian Eq.(1) can be diagonalized with a precision of
the order ofN~ ! (see Ref. 28

Here,V is the on-site coupling constant of the normal vi-
bration modeg to the moleculen and theg-summation runs
over all normal modes of the entire systefaggregate
+hos}). Furthermorea, and ag are the usual creation and
annihilation operators. As our main interest lies in the low-
temperature €100 K) behavior of the exciton radiative life-
time, we will focus on the interaction of excitons with acous-
tic phonons of relatively long wavelengths. We then have
(see Ref. 2 and Appendix)A

Hex= 2 Ex[K)(KI, 2
§ [, o an

Vo=l 59— g9 Fn, 7

with the new basis "=\ 2Mo, ) A "
o 12N wkn where the mode label now stands fpr (q,a), q being the
|k):(m > sin NT1 [n), (38  wave vector of the acoustic modeanda labeling two trans-
n=1 verse @=1,2) and one longitudinal=3) polarizations.

and FurthermoreM denotes the mass of the entire systemis

the velocity of sound waves with polarizatian andR,, is
the position vector of thenth molecule in the aggregate.
Finally, xnq [defined in Eq.(A7)] does not depend on the
o . ) magnitude ofg, while its dependence on the orientationgof
Here,k=1,2,... ,N. For future use it is convenient to intro- s smooth. The~ Jlq[ scaling ofV,q expresses the fact that

duce the compact notatiofwavenumber K=mk/(N+1).  the coupling of excitons to acoustic phonons diminishes in
The statek=1 lies at the bottom of the exciton band. Near the |ong wavelength limit.

N
1 kn
Ey=—2J> —cos( . (3b)

n=1n3 N+1

' imi 28 e ) , o
the _bottor_n ((<N or K<.l) and in the limit of largeN,™ the Within the exciton representation, the Hamiltonian Eg.
exciton dispersion relation reads (6) takes the form

Ev=—2.400+3(3~1In K)K2. (4) N
. o . L Hex—vib= 2 2 VEkr|k><k,|aq+ h.c., (8)
For comparison, within the nearest-neighbor approximation kk'=1 d

one obtainE, = —2J+ JK?2.

. . where the exciton—phonon ling,, is given
The oscillator strengths of the exciton states near the ere the exciton—phonon coup Mﬁk s given by

bottom of the band are given by q |q )1/2
TV
Nl e M TTNF L K ® 2 & S .
X“NF1 n}_:l Xng€' @ Frsin(Kn)sin(K'n). (9)

Here, the oscillator strength of a single molecule is set to

unity. According to Eq(5), the bottom stat&=1 (with en- In this paper, we distinguish two models for the
ergy E;= —2.404)) accumulates almost the entire oscillator R.-dependence of,q. In the first one, we assume no de-
strength,F{=0.81(N+1); it is referred to as the superradi- pendenceyx,,=xq- This corresponds to the situation of an
ant state. The oscillator strengths of the other odd stdtes (aggregate placed in a crystalline host. In the second model,
=35,...) aremuch smaller,F, =F;/k? while the even Xnq IS regarded a stochastic function of the molecular posi-

states k=2,4,...) carry no oscillator strength at alF tion, having the correlation properties,
=0. We note that the small corrections to the sine wave

functions in Eq.(3a due to the long-range dipole—dipole  {Xng)=0, (108
interactions, lead to a small change in the superradiant pref- ( )= 25 (10b)
actor, which for aggregates of 100 molecules reads 0l84( XngXn'a/ = Xqnn’ -
+1) instead of 0.8MN+1).” This may serve as a model to describe exciton—phonon cou-
Thermal motion of the surrounding molecules as well aspling for an aggregate placed inside a disordered host. The
the molecules of the aggregate itself, result in fluctuations oKronecker symbol in Eq(10b) implies that the surroundings
both the on-site energies, (due to the fluctuations iy,  of different molecules in the aggregate are not correlated.
=>.U,9 and the dipole—dipole interactiond,,,. This Throughout this paper, we assume that the exciton—
causes scattering of the excitons from one sfiateto other  phonon coupling is too weak to renormalize the exciton band
states|k’). In this paper, we only deal explicitly with the structure and wave functiori®o polaron effectsand, thus,
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can be treated as a perturbation. This allows us, first, to calV. INTRABAND EXCITON SCATTERING RATES
culate the rates of the intraband exciton scatterikg: k') i i
using first-order perturbation theory, and second, to exploit W& now turn to evaluating the scattering raté
the Pauli master equation for describing the kinetics of th@'ve” by Eq.(12). To this end, we first replace the summa-
intraband exciton relaxation. As we will see, both models forlion Over the acoustic modes by an integration according to
Xnq introduced above, lead to analytical expressions for thdhe standard rule,
exciton scattering rates.
2 E > -

a=1 q 11')3

2 da, (14)
IIl. THE PAULI MASTER EQUATION

In order to describe the kinetics of intraband excitonwhereV is the quantization volume. Next, to simplify the
relaxation, we employ the Pauli master equation for thedlgebra, we will restrict ourselves to an isotropic model for

populationsP,(t) of the exciton states, the acoustic phonons, implying equal speed for transverse
and longitudinal sound waves;;=v,=vz=v. Then o,
Pr=— %Pt 2 (Wi Prr — Wi Py 11  =vlal, so that Eq(14) becomes
kV
Here, the dot denotes the time derivativg= y,F is the da f do- w2 (15
spontaneous emission rate of tkid exciton state, which is ; 2 ;1 - 2770)3 2 a 1% 9

enhanced relative to the single-molecule emission ygtay

a factor of F, given by Eq.(5), and W, is the rate of where the first integration is over the orientationsjoDue

phonon-assisted scattering of excitons from skdtéo state  to the 5-functions in Eq.(12), the integration ovew, can be

k. Within first-order perturbation theory, the latter reads performed explicitly. This leads to the substitutifiy}=|E,
—Ey/|/v in any function that depends dqg|.

Wy = 2772 Vi |ANg8(Ex—Ex — ) A. Glassy host

For an aggregate embedded in a glassy hpgt,is a
stochastic function with correlation properties given by Eq.
whereV},, is given by Eq.(9) andng=[exp(@,/T)—1] *is  (10). This allows us to find an analytical expression for the
the thermal occupation of thgth acoustic mode, which has average oWy, . Namely, using the equality
energywg, (Ai=kg=1). In the next section, we will use Eq. )

(12) to determine the scattering rates for crystalline and >
N 1
= |Xq|2nZ1 Sin?(Kn)sin’(K'n) = 2| xql*(N+1)

+(1+ nq)5(Ek— Ek/+(,()q)], (12)

N

. i iq-Rp, of P ’
glassy hosts. At this moment, we restrict ourselves to th ngl Xng€" T sin(Kn)sin(K'n)
general observation that E(L2) implies these rates to obey

the principle of detailed balance,

Ek/ - Ek
Wkk’ Wk/keX T

, 13

in Eqg. (12) and performing the integrations ovey, and(},,
which guarantees that eventually the excitons will arrive atwve obtain
the proper equilibrium state, characterized by the Boltzmann

distribution over energy. vvg' Ex—Ewl®
The initial conditions to Eq(11) depend on the excita- Wio =NT1 10(Ex—Ex)n(Ec—Ew)
tion conditions. In the experiments on J-aggregates reported
in Refs. 11—18, the fluorescence was observed after exciting +O(Ew —En[1+n(Ex —EW ]}, (16)

weakly allowed excitons in the high-energy tail of the

J-bands. In our numerical calculations, we will consider inWit

addition to such blue-tail excitation, also the case of resonant

excitation, where only the superradiant bottom stéte 1) W= E j dQq|xol?

is initially excited. The numerical procedure for solving Eg. o 817205M arrar

(12) with the proper initial conditions is described in Appen-

dix B. Here,®(x)=1 for x>0 and®(x) =0 otherwise. As is seen,
The presence of two types of rates in the Master equam the glassy-host modél, . scales inversely proportional

tion (11), namely, for spontaneous emission and intrabando N+ 1, which is similar to the scaling obtained within the

relaxation, makes the competition between both types of prostochastic fluctuation model of exciton—phonon coupling

cesses explicit. Throughout this paper, we will define thesee, e.g., Ref. 29 The cubic dependence &f/,, in Eq.

limit of slow relaxation through the relatioW,,(T=0) (17 on |Ex—Ey/|, however, sharply contrasts with the

<4, Which implies that at zero temperature, the phonon-Lorentzian dependence obtained within the stochastic fluc-

induced transfer between the two bottom states of the excitotuation model, and causes the hopping process to slow down

band is small compared to the superradiant emission rate afith decreasing energy mismatch, i.e., towards the bottom of

the bottom state. the exciton band.

(17
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B. Crystalline host and does not yield a further suppression of the scattering
Late. To see this, we first estima¥ which is obviously
smallest for the two bottom statels=1 andk’=2. Using

Eq. (4), one thus obtains a minimal value f given by
Xmin=(97%12N)(aJ/v). We have estimated before that

For an aggregate embedded in a crystalline host, w
have x,q= x4, Which can be taken out of the summation in
Eq. (9). The remaining geometrical series yields

Vi = 1 lq] \Y? alJlv~4; moreover, in practice aggregatécoherencg
Kk = N+1|2Mp/ Xd lengths are limited to a few hundred molecules or less. We
. thus find thatX,,;=1, which from Eq.(200 is seen to give
XsinQ [1—(—1)k+K QN1 values forf that are indeed of the order of unity.
y sinK sinK'’
[cosK' — cog K +Q)][cosK’ —cosK—Q)] ) V. DEFINING THE FLUORESCENCE DECAY TIME

(18) To characterize the fluorescence decay that follows a
short-pulse excitation @t=0, it is most convenient to have a
whereQ=|gla cos, ¢ being the angle between the phonon single decay time. The definition of such a time is straight-
wave vectorg and the aggregate axis. forward only for monoexponential decay, which, as we will
Let us now estimate the value @f which can be done see in Sec. VI does generally not take place. In addition, we
using |q|=|Ex—Ew|/v (see above Then, for the exciton || see that, even if a decay time seems straightforward to
states near the bottom of the bafttie region of primary define, it may not always relate to a time scale of radiative
interesj, where K,K'<1, we have Q~(aJ/v)|(3/2  emission. In this section, we address the two most obvious
—InK)K?—(3/2-InK')K'?. Typical parameter values are definitions of a fluorescence decay time and, by applying
a=10""cm,J=600 cm * (2x10”s™!), andv=5x10°  these definitions to the analytically solvable example of an
cm/s. Thus, the factoaJ/v~4, i.e., of the order of unity. exciton “band” consisting of two states only, we explain the

This fact and the quadratic scaling Qfwith bothK andK’  nature of the problems that may arise and how they are af-
allows us to neglecQ as compared t& and K’ in the  fected by the experimental conditions.
denominator of Eq(18) as well as to substitute s by Q. The quantity observed in a fluorescence experiment is

We also recall tha is a smooth function ob (see Appen-  the radiative intensity (t), which is the number of emitted
dix A), and thus can be replaced by a constant when integraghotons per unit time. Obviously, this equals the rate of loss
ing over the orientations af in Eq. (12). With these simpli- of total exciton population, i(t)=—P(t), with P(t)
fications, the latter integration can be performed anaIyticaIIy,ZEkPk(t)_ As in multilevel systems(t) generally does not

leading to show a monoexponential decay, it is mostly impossible to
WE' |Ex—Ep|® obtain a lifetime from a simple exponential fit. The simplest
W =—025in2 K sif K'— Kk — solution is to define a decay time,, as the time it takes the
(N+1) J>(cosK —cosK’) intensity to decay to #/of its peak valud (tpea),
XF[X(|Ex—Ew])] | (tpeact 7o) = (tpead €. (22)
X{O(Ex—Ex)n(Ex—Eyw)+O(E—Ey) We note that for blue-tail excitation generatly,# 0. Alter-
natively, and maybe mathematically somewhat better-
X[1+n(Ew—EI ]} (19) founded, one may define a lifetime, as the expectation
where we introduced value of the photon emission time, given by
a2y 2 = f ) = f i

3m’'M a=1
Clearly, for monoexponential decaf(t)=exp(-t/7), Eq.
X(|Ex—E|)= |Ek—Ek’|a(N+ 1), (20b) (22) gives the appropriate decay time However, also for
v nonexponential fluorescence kinetics, the thus defined decay
3 > > time seems to make sense. This indeed turns out to be cor-
f(X)=1—(—1)k*¥ _{( — —z)sinx+ —cosX|. rect, unless the total population kinetics consists of a large-
X X X weight component that rapidly decays and a much smaller-
(209 weight very slow component, comparable in integrated area
We first note that the sine-functions in E49) reflect a  to the fast component. Then, the tail contribution may mask
strong suppression of scattering for the exciton states nedine decay time of the fast component, which for all practical
the bottom of the band as compared to those in the center giurposes should be considered the proper decay time. It ap-
the band. Second, the scattering between energetically clopears that such a peculiar situation may easily occur in the
exciton states is less probable than between well separatedse of J-aggregate fluorescence, in particular in the limit
ones(independent of their location within the banbdecause where the intraband relaxation is slow compared to the spon-
the factor |E,—E|%/(cosK—cosK’)* is roughly propor- taneous emission from the superradiant bottom state.
tional to |E,—E,/|. Finally, it turns out that in practice the To demonstrate this, we consider a model of two exciton
energy dependent facté(X) is always of the order of unity levels, labeleck=1 andk=2. Level 1 is lowest in energy
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and has a radiative emission rage, while level 2 is dark. In the opposite limit of fast relaxationy> y,, we have
We will assume that level 1 is initially excited. The Pauli y y
master equatioill) now reduces to = L a—2wt _ et
’ quatioll) P()=Zwe "+l 1 4W>e : (28)
P1=—(y1+Wa)P1+Wy,P5, (239

The first term, having a small weight, describes the fast
P,=—Wy,Pyt WyyPy, (23b) the scale of 1y,) equilibration of th_e population over both
levels. After that, the total population decays with the rate
with initial conditions P,(0)=1, P»(0)=0. Solving Eq. /2. We now arrive at-=2y; !, which meets our physical
(23) through Laplace transformation, yields for the total expectation. Thus, in the fast-relaxation limit the definition
population,P(t) =P (t) + P(t), the result Eq. (22) as fluorescence decay time seems to work properly.

To end this section, we reconsider the slow- and fast-
Y1 Wi, Mot Wi, Mt . L . -
P(t)= VY 1+ ~ &% 1+ ~ /& (24)  relaxation limits, but now using, for the decay time. In the
ron2 2 ! slow-relaxation limit, W<1y,, the intensity analog of Eq.
where (27) reads
_ 1 2
No=— 2 (1t Wit Way) I(t)=y,8” it ﬂe7Wt_ (29)
Y1
+ 3V (y1+ Wipt Wo) 2 =4y, Wi, (25

o . ] Obviously, the secon@slowen exponential has a negligible
Substituting Eq.(24) into Eqg. (22), we arrive at the exact weight compared to the firgfasy one and we arrive at,

result =y, *, which is the physically expected value and does not
1 W, suffer from the long-time tail.
T= y_( + W_z) (26) In the fast-relaxation limit the intensity analog to Eq.
1 1

(28) is given by
From this it follows that at high temperature$stE,—E;
and thusW,,;=W,,=W), one will get ¢=2y1_1, indepen- I(t)= et e 2Wiy e—gt)_ (30)
dently of the relation betweeW and y;. In the fast- 2
relaxation limit [defined asW;(T=0)>y;, implying W Here, the fast and slow components have equal weights, so
>, as well, this result is not surprising, because the popu+hat the intensity will decay rapidigwithin t~W~1) to half
lation is then distributed uniformly over the two levels before of jts initial value, 1(0)=1y,. This reflects the already en-
the emission occurs. As only the lower level is radiating, thiscountered fact that due to the fast transfer of population to
naturally leads to the effective division of the decay rate ofieye| 2, the effective radiative constant is reduced frpnto
level 1 by a factor of 2. However, in the limit of slow relax- . /2 |t is straightforward to generalize this to the situation
ation at the temperature considergice., not onlyWi(T  wherel nonradiating levels are rapidly populated due to in-
=0)<y, but alsoW< 4], the above result seems physi- {rapand relaxation from the superradiant level. At time zero,
cally counterintuitive, because in this limit only a small part only the lowest state is populated, and the intensity is given
of the population can be transferred to the up(ulark) level  py jts decay ratey;. However, the population of that state is
before the lower level radiates, so that the upper level revery rapidly (within a time ~ 1W< 1/y,) redistributed over
mains almost unpopulated. One thus expects to find a fluog) | states, which will cause the effective rate to drop by a
rescence decay time=1y; *, which obviously contradicts factor|+1 and thus also give an intensity drop frop to
the exact result. y1/(1+1) over a time scale W. This results in a value for

In order to discover the nature of the above contradicz_ in the order of the inverse relaxation rate\if), which

tion, let us analyze in more detail the high-temperature Kiyas nothing to do with the actual radiative emission time
netics of the total population in the slow-relaxation limit scale in the system.

(W<7y1), In conclusion, both most obvious definitions of the fluo-
W W rescence decay time,and r., may lead to counterintuitive
P(t)=<1—y— e it y—e*"‘“. (270 results when trying to interpret them as exciton radiative
1 1

lifetimes. This is unavoidable, due to the role of intraband
This kinetics contains a fast exponentiéitst term and a relaxation, and simply means that all such measures should
much slower onésecond term The fast component has the be considered with care and in relation to the experimental
dominant weight, +W/y,~1>W/vy,; this reflects the fact conditions. In the next section, we will see the above pecu-
that state 1 carries nearly all population, which decays rapharities show up for actual aggregates as well.

idly with the decay timey; *. The much slower second term

of the kinetics describes the decay of tkemal) part of the

total population that is transferred to level 2. Substituting Eq.VI' NUMERICAL RESULTS

(27) into Eq. (22) yields T:2’)/Il, i.e., twice as large as We now turn to our numerical study of the temperature
expected from the physical arguments. This originates frondependence of the exciton fluorescence decay time in 1D
the long-time tail in the second term, which gives, despite itanolecular aggregates, described by the model presented in
small weight, a contribution te that is exactly equal to the Sec. Il. In all calculations, we have considered an aggregate
one from the fast component. of 100 molecules, which is a typical exciton coherence
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FIG. 1. Temperature dependence of the fluorescence decay tineasured ~ FIG. 2. Kinetics of the total populatidrP(t), solid line] and the population
in units of 14, after bottom excitation of an aggregate of lengtk 100 of the bottom exciton stateP(t), dotted ling following bottom excitation
with =600 cni L. The glassy host exciton scattering model was used withof the same aggregate as in Fig. 1 wit§'=10J at three different tempera-
scattering strengthvg/J=10 (solid), 10? (dashed| and 16 (dotted. The tures,T=17 K _(a_), 42 K (b), and 84 K(c). Clearly seen is the occurrence of
thicker dots indicate the data points generated in our numerical simulationg long-time tail inP(t) at T=42 K, caused by transferring a small amount
while the curves provide a smooth guide to the eye. Dafa)iwere calcu-  ©of the population from the state=1 to the stat&=2, and its disappearance
lated using the definition E422), while in (b), the long-time tail of the total ~ again atT =84 K.

population kinetics was neglected by truncating the integral in(E#). at

tmax for which P(t,,,0=0.1.

1. Bottom excitation

Figure 1 shows thél dependence of the fluorescence
length for cyanine aggregates at low temperature. The mondlecay timer for three different values of the exciton scatter-
mer radiative rate was set tg,=2x 105, which yields for ing strength W§'=103,10°J, and 18J), calculated after di-
the radiative rate of the Superradia{ﬁ: 1 exciton State-yl rect initial excitation of the Superradiant stte 1. The data
=0.84(N+1)y,=1.68<1073J. In order to obtain actual Presented in Fig.(® were obtained using the definition Eqg.
time, frequency, and temperature scales, we have used in 482, where the time-integration was carried out until the
our graphs the valud=600 cn* (1.8x 1013s%), which is  total population had decayed to the valBty,)=0.005
appropriate for PIC ‘]_aggregateS. This trans'ate,$0tg 3.6 (Wh|Ch for all practical purposes agrees with integrating until
x108s ! and y,=3.0x10%s !, which are indeed typical t=2=), while in Fig. b) we used a relaxed definition, with
of monomer and aggregate radiative decay rates. Finally, it i§(tma)=0.1, thus ignoring any long-time tailsf. Sec. \J.
useful to note that for an aggregate of 100 molecules, th&or further discussion of this figure, it is convenient to also
separation between the two lowest exciton states from EdRlot the time dependence of the total populatitft) and the
(4) is found to beA=E,— E;~0.01J. partial populationsP,(t) of the lowest four exciton states

We will present results for four types of situations. First, (k=1,...,4),which is done in Figs. 2 and 3 for three dif-
we will consider a glassy host, where we distinguish betweeferent temperatures, in the caé'=100.
initial excitation of the superradiant bottork£ 1) state and Analyzing Fig. 1, we first note that all curves yieldTa
blue-tail initial excitation. Next, we reconsider both cases for=0 decay time that equals the superradiant lifetimg;, of
a crystalline host. statek=1 [the small deviation fron%_1 in Fig. 1(b) is due
to the truncation of the integral in Eq22)]. This is the
natural result, because at zero temperature, the exciton cre-
ated in the lowestsuperradiantstate cannot be scattered to
the higher(weakly radiating states, due to the absence of
First of all, let us estimate the value of the param&#r  phonons. Being stuck in the bottom state, the exciton emits a
that distinguishes between the limits of fast and slow relaxphoton on the average after a tin)@1 has passed, meaning
ation. To this end, we equai®/;,(T=0) to y,. Substituting that the fluorescence decay time actually reflects the emis-
E,—E;~0.01] into Eq. (16), one obtaing/vg'cw 10°J. For  sion process itself. The fact that at low temperatures, hardly
wid>wd'. (Wg'<Wg,), we are in the fastslow) relaxation  any excitation is transferred to the higher exciton states be-
limit. As argued in the Introduction, we will mostly be inter- fore emission takes place, is clearly visible in Fig&) zand
ested in the slow limit. 3(a).

A. Glassy host
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FIG. 3. As Fig. 2, but now are shown the populations of the exciton state
k=2 (solid), k=3 (dashed, andk=4 (dotted.

Next, increasing the temperature frdme 0, we observe
a well-pronounced plateau in the value of(if W'<Wg'
=10°J). The plateau is seen to widen with decreas)'m@.
The physics of this phenomenon is cleawill only increase
if the presence of the higher lying dark exciton states be-
comes noticeable, i.e.,
lated through exciton—phonon scattering before the energy
spontaneously emitted from the bottom state. Estimatin
such effects to become visible if 10% of the excitons un-
dergo such scattering before emission, we may calculate the
extent, T, of the plateau by requiring thaf W (Ty)
=0.1y,;. The left-hand side in this criterion is the total scat-
tering rate out of the bottom stake=1 atT=T.

To obtain an analytical estimate @f,, we first replace
the summation ovek by an integration according to the
standard rule€,—[(N+1)/a]f§dK. This step implies that
many exciton levels fall within the energy intery&@,T]. In
view of the nearly quadratic dispersion near the bottom o
the exciton band, the values &f that mainly contribute to
the integral, are of the order cb(p,=(Tp|/J)1’2. As by as-
sumptionK,>K,=7/(N+1), we thus also typically have
K>K;, which allows us to approximateE(—E)/|J|
~(3/2—InK)K? Finally, we substitute I by InKy, be-
cause this function is changing slowly in the interval close to
Kol»
frgm. Now, the integral may be performed, to yield

if those states actually become popJ

qﬂlg

where the dominant contribution to the integral comes’
from the slow-tail problem. However, beyond the plateau,

Fluorescence decay time of Frenkel excitons 6207
-
I‘<|0I 8\/; Y1
72 75 \wal° (32
(3/2-InK) wWe

If we apply this estimate taVd'=10?J and Wd'=10J, we
find T, =28 K andT, =52 K, respectively. These values are
in a good agreement with the data presented in Rig). d&nd
approximately twice as large as those presented in Faj. 1
We conclude that the long tail of the total population kinet-
ics, which exists at elevated temperatures due to population
of the higher exciton stat¢sf. Figs. 2b) and 3b)] decreases
the extent of the plateau by a factor of 2. This is due to the
overestimating effect which such tails have on the radiative
lifetime defined through Eq22) (see discussion in Sec.,)V

We note that the estimate E(B2) is not applicable to
the casenVd'=10%J, as it yieldsT,~7.5 K, which is smaller
than the energy differena® between the two lowest exciton
states. Thus, replacing thesummation by an integration is
not allowed for this scattering strength. The small plateau
that can still be observed favg'=10%J, originates from the
discreteness of the exciton levels.

For temperatures beyoni,, all curves in Fig. 1 show
an increase of, due to the population of dark states. As is
observed, at higher temperatures all curves approach one
asymptotic curve that has an approximat& behavior. The
latter reflects two facts(i) the excitons reach thermal equi-
librium before the emission occufsee Figs. &) and 3c),
where the lowest few exciton states are seen to quickly ac-
quire equal populatiofsand (i) the number of states that
become populated is approximately proportionallt§ due
to the approximate E—E;) %2 behavior of the density of
exciton states near the bottom of the band. A small deviation
from the TY%~dependence is expected, because the exact
r§pectrum Eq. (4), differs logarithmically from the

2_dependence characteristic for the nearest-neighbor ap-

roximation.

We finally note that at higher temperatures afud)
her scattering strength, the curves in Fig®) and 1b)
approach each other. This is due to the fact that a large part
of the population is then transferred from the initially excited
bottom state to the dark states before emission occurs. As a
result, there is no special long-time tail in the kinetics of the
total population anymore. To illustrate this, consider Figs.
2(b) and Zc). In the former, a separate long-time tail is still

peen to follow the fast initial decay, while in the latter the

overall kinetics time scale has become longer.

To complete the discussion for bottom excitation, we
briefly consider the alternative definitior, for the fluores-
cence decay time. The corresponding results are plotted in
Fig. 4. As in Fig. 1, we observe a plateau, whose extent

correlates well with that in Fig. (b). This confirms our ob-
servation below Eq(29) that the measure, does not suffer

the curves in Fig. 4 differ drastically from those in Fig. 1 and

15w K}

2 WiealT) = 16y (3/2-InK )2’

(31

are counterintuitive, as they go down instead of up. This is
due to a rapid decrease of the emission intensity, not because
of radiation from the bottom state, but because population is

rapidly transferred from this state to the higher lying dark

Thus, we arrive at a transcendental equation
_(Tpll‘])llz
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FIG. 4. Temperature dependence of the fluorescence decay{iefined £\ 6. Temperature dependence of the fluorescence decay fif (22)]
g:]ulrzvqe.s(lzalk))’elce?ilcsﬁtr??:i;or 1the same system and conditions as in Fig. Lo an aggregate of lengti =100 with J=600 cm L after initial excitation
C of the k=7 state. The glassy-host exciton scattering model was used with
scattering strengtwg'= 10*). The dots indicate the data points generated in
our numerical simulations, while the curve provides a smooth guide to the
WJ'=10"J. With increasing temperature, the initial decay of ¥
the intensity becomes faster, while its tareached after
equilibration slows down. The latter is the intuitive effect on ]
the radiative decay time, but this is not captured by the decay ~DUe to the cubic dependence by, on |E,—Ey | [Eq.
time 7. (16)], the transitions from the initial exciton stake to the
ones with quantum numbeks=1 and 2 are the most prob-
able; moreover, the corresponding rates are almost equal to
each other. This is becaugs — E; andE;—E, both are of
We now turn to the case where the initial excitation takesghe order of 0.1, while they differ from each other by
place above the bottom of the exciton band. Then spontanex0.01). For estimates, we will us&,= —2.3J, which for
ous emission can only occur after the exciton has relaxed tbl=100 leads to th&V;,;~W,,~10 *W{'". Thus, for our ex-
the bottom state. Obviously, in the slow-relaxation limit this ample case 0W8'=104J, we arrive atW;,~0.11~10%y,.
may cause a bottleneck for the emission process. This reFhis means that the population from the initially excited state
flects itself in a particular temperature dependence of thés transferred rapidiyon the scale ofy; %) to the statek
fluorescence decay time. In Fig. 6 we depi€T), calculated =1 andk=2.Thek=1 state decays radiatively with the rate
using Eq.(22), for initial excitation of thek;=7 exciton state 71, While thek=2 state only decays via relaxation to tke
for Wd'=10%J. Clearly, the observed behavior differs drasti- =1 state. The rate of the latter process is given\y,
cally from the one found for bottom state excitation, in par-~0.1y;. This relationship between the dominant rates leads
ticular at low temperatures. First of all, @&=0, 7 deviates to a biexponential kinetics of the total population; a fast de-
from y; ¥, which for bottom excitation was always found to cay with a time constant-y; *, followed by a slow decay
be the zero-temperature decay rate. Furthermore, the curwéth time constant-Wy,". This analysis is nicely confirmed
shows a region where decreases upon increasiig The by Fig. 7, in which the kinetics of the total populati®{t)
noted peculiarities originate from the interplay between in-as well as the partial populatior; (t) andP,(t) states are
traband relaxation and spontaneous emission. We will clarifighown. Both exponentials are seen to have comparable
this further by estimating the scattering rati¥g; that feature ~ weight, as was to be expected, because the relaxation rates

2. Blue-tail excitation

in this interplay forT=0. from the excited statl, =7 into the statek=1 andk=2 are
1 T T T l 1 T T T

i 08 .

g Olr g o6t .
2 i g
= . E;

E T \\\\ i Gg-: 04 ’-\\ n

E 02 F N\ e S

0.001 1 1 1 1 0 1 e i i Eo TR +
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FIG. 5. Fluorescence intensity as a function of time for the same system a8IG. 7. Zero-temperature kinetics of the total populatk®(t) (solid line)

in Fig. 1, using bottom excitation and a scattering strengi=10"J. and the population®,(t) (dashedl and P,(t) (dotted of the two lowest
Curves correspond f6=0 K (solid), 8 K (dashegl 17 K (dotted, and 84 K exciton states for the same system and conditions as considered in Fig. 6.
(dashed—dotted The figure clearly shows a biexponential behavioPgf).
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FIG. 8. As Fig. 7, but now foWg'=10Q0. FIG. 10. Fluorescence intensity as a function of time for an aggregate of

lengthN=100 with J=600 cnT* after initial excitation of thek=7 state.
The glassy-host exciton scattering model was used with scattering strength

) . Wg7J=10 (solid), 1¢* (dashed} and 1d (dotted.
roughly equal. As a consequence, the integrated contribution

of the slow component dominates over the one deriving from

the fast component, which explains why the valuerfT  the intensity is very small, as the emission rateis small
=0) in Fig. 6 is larger thany; *. The same arguments ex- [Eq. (5)]. The intensity then grows due to population of the
plain why at low temperature goes down upon increasing hottom statés) through intraband relaxation and, after reach-
T; this is simply due to the fact that/;, increases with  jng a maximum, it finally decays again with a rate that may
increasing the temperature, so that the contribution of thge interpreted as the relaxed exciton’s radiative rate. This
slower Component to- diminishes. If temperature increases resu'ts in a temperature dependence-é)fhat is again Char-
further, Wy, becomes larger thary; and we approach the acterized by a low-temperature plateau. This plateau only
limit of fast (on the time scale of emissiprequilibration.  occurs atr,= y;  if the relaxation is sufficiently fast to
Then (T) should not strongly depend on the initial condi- pring all population down to the bottom state before emis-
tion anymore, which is why Fig. 6 at higher temperatures ission from it starts. For the small scattering strenyg
very similar to Fig. 1. =10J, this is seen not to be the case. In contrast to the case
At small W§', the decay scenario differs from the one of hottom excitation(Fig. 4), the plateau is generally fol-
described above. Let us, for instance, ta=10J, so that  |owed by an increasing decay time. The reason is that now
Wy7~10"*J~0.1y;. Now, the intraband relaxation is so the populations of all exciton levels have indeed equilibrated
slow that it completely governs the total population decaypy the time the spontaneous decay from the bottom state
Again, a biexponential behavior is found in the populationstarts. This is not the case fvd'= 100, which explains the

kinetiCS, with the fast Component now being limited by themore Complicated' dependence observed in F|g 9.
rate W,,, while the slow one is again characterized by the

(now very slow rate W;,. This limit of extremely slow re-
laxation is illustrated in Fig. 8. Similar to the case of the glassy-host model of exciton—

Finally, we address th&-dependence of the decay time phonon scattering, we have carried out a series of numerical
defined byre [Eq. (21)]. The results are presented in Fig. 9 calculations for the crystalline-host model. In many respects,
for three scattering strengths and, for further clarification, thehe essential physics within both models is the same and we
corresponding kinetics at=0 is shown in Fig. 10. At short  will therefore discuss in detail only the new features, dealing
times, before the excitation is scattered to the band bottonyjith the already discussed phenomena only in passing.

As before, we first estimate the value \W§' that distin-
guishes between the limits of fast and slow relaxation. Recall
that this implies equatingV,,(T=0) to v,. Using in Eq.

(19) with k=1, k'=2 the approximations dim/(N+1)]
~ml(N+1), sif2m/(N+1)]~2m/(N+1), E,—E,~0.01J],
andf(X)=1, we arrive aMW§ .~ 10°J, which happens to be
equal to the critical scattering strength for the glassy-host

B. Crystalline host

model.
' 1. Bottom excitation
2r i In Fig. 11 we depictr(T), calculated after direct initial
0 40 %0 120 60 excitation of the bottom exciton state, for three different scat-

tering strengthsW§'=10?J, 10°J, and 16J. Figure 11a)
shows the results using the definition E82) by integrating
FIG. 9. As Fig. 6, except that now;, [Eq. (21)] has been used as measure up to the timety,,, where the total exciton population has

of the fluorescence decay time. Curves correspond to the scattering strengdcayed taP (t,,)=0.005(i.e., up tot=ce for all practical
Wg7J=10 (solid), 1¢? (dasheg} and 10 (dotted. purposey while in Fig. 1Xb) the slow-tail contribution tar
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FIG. 12. Zero-temperature kinetics of the total populati®{m) (solid line)

and the population$,(t) (dashegl P,(t) (dotted, and P5(t) (dashed—
dotted of the three lowest exciton states for an aggregatisfL00 mol-
ecules withJ=600 cm! after initial excitation of thek=7 state. The
crystalline-host exciton scattering model was used with scattering strength
W§'=104J.

glassy-host model. While in the latter we found that relax-
ation from the excitation window directly to the bottom of

FIG. 11. As Fig. 1, but now using the crystalline-host model for exciton the band has the highest probability, in the present case, the

scattering. Curves correspond to scattering strengs) = 10? (solid), 10°
(dashed and 10 (dotted.

is discarded by integrating only until the time at which
P(tmay=0.1. As in the case of the glassy hdbkig. 1), all
curves start from the same poi@orresponding to the radia-
tive lifetime yl’l of the superradiant state=1), then show
a plateau, and finally go up with increasing temperature.
As in Sec. VIA 1, we estimate the extefit, of the
plateau by equatin@ W,.(T,) to 0.1y;. Substituting Ey
—E;)/(cosK—cosK;)=~2J(3/2—InK) [typically K>K;
=x/(N+1)] and performing the summation ovérin a
manner similar to the glassy-host model, one obtains

(N+1)° v
6072 WG

where Ky=(Tn/J)Y2 Solving this equation for W§'
=1073,10%J, and 10J, we find as estimateF,= 100 K, 34

Ko(3/2—InKy)%2= (33

K, and 11 K, respectively, in good agreement with the nu-

merical data in Fig. 1b). We note thatT,, is larger than

obtained within the glassy-host model at the same scattering,

strength Wy. This results from the fact that within the
crystalline-host modelW,,, increases more slowly with
|Ex— Ey/| than within the glassy-host model.

2. Blue-tail excitation

relaxation occurs preferably through several intermediate
states, which may, in fact, act as a bottleneck. We will show
this below.

Let us analyze the zero-temperature relaxation rate from
an initially excited exciton statk, to a low-lying statek. For
the sake of simplicity, we will use several approximatioins:
the nearest-neighbor approximation for the exciton energy
spectrum E,= —2J+JK?, (ii) f(X)=1, and(iii) k; ,k<N.
Then, the scattering rate EGL9) takes the form,

oK1
Wi = ———— kZk2(k?—k?), 34
kk; (N+1)2 i ( i ) ( )
which reaches its maximum at®=k?/2: Wi, 12k,

=[Wo/4(N+1)?]KSk®. This scattering rate is to be com-
pared with the one to the superradiant state Withl. Ne-
glecting 1 as compared kf in the last factor of Eq(34) for
k=1, one obtains

W 16\/\/3K$k4 4 39
1ki_(N+1)2 i—kiz ki V2 k;?

s Wy <Wy 2k, From this we conclude that jumping
directly to the bottom state is unlikely, so that after excitation
in a high-lying state, the exciton has to make several relax-
ation steps to reach the superradikrtl state. In the limit

of fast relaxation\W;,> vy4, this will certainly occur and it
will do so before the exciton decays through spontaneous

Without showing figures, we mention that the tempera-emission. By contrast, in the slow-relaxation limity;,

ture dependence of for blue-side excitation exhibits the
same general behavior as in the case of a glassy host.
particular, we again find thdt) the zero-temperature value
of  [calculated through Eq22)] deviates fromy; * and(ii)
a region exists where decreases with increasiig As in

<4, the stepwise relaxation may be stopped at some inter-
mediate band statik’ and the exciton may never reach the
bottom state. The reason is that each step downhill decreases
the relaxation rate by a factor of[8f. Eq. (34)], so that at
some point the rate for making the next st&pW,,, may

Sec. VI A 2, the physical interpretation of these peculiaritiesbecome comparable to or smaller than the spontaneous emis-
is based on the interplay of intraband relaxation and emissiosion rate from the corresponding statg, . Then, vy, will
processes. However, the scenario of the intraband relaxatiatetermine the exciton fluorescence decay time.

in the present model differs considerably from that in the

Figure 12 nicely illustrates the above described scenario
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of relaxation. Here, we plotted the numerically calculatedating statel crucially affects the physics of the fluorescence
zero-temperature kinetics of the total populati®ft) as well  kinetics. For bottom excitation and at zero temperature, the
as the partial populationB(t) for k=1, 2, and 3 using a exciton remains in the superradiant state until the radiative
scattering strengthVg'=10%J andk; =7 for the initially ex-  relaxation occurs. Upon increasing the temperature, popula-
cited exciton state. Indeed it is seen that at the early stage ¢ibn is transferred to the higher-energy weakly radiating
the kinetics only a small part of the initial population is states, giving rise to a slowing down of the radiative decay.
transferred to the bottom stake=1, while the higher states This process only starts when the vibration-assisted scatter-
k=2 and 3 accumulate almost all population. After this earlying rate from the bottom exciton state to the higher ones
population transfer, thi&=3 state first relaxes to the states approaches the superradiant emission rate. As a result, the
k=2 andk=1. This becomes clear from the valuesWfi; temperature dependence of the fluorescence decay time
andW,3, which from Eq.(19) with the present parameters shows a plateau that extends further for slower intraband
(Wg=10"J and N=100 are found to beW,3=1.24  scattering strength. In the plateau region, the superradiant
X 1073 and W,3=0.62< 10 3J. At the same time, the ra- damping rate determines the fluorescence decay. Beyond the
diative decay rate of th&k=3 state equals/;=1vy,/9=0.19  plateau, the fluorescence decay time goes up with increasing
x103J, which is an order of magnitude smaller than thetemperature and eventually approache$*4-scaling. The
total radiationless relaxation rate of this staW;s+W,; latter reflects the fact that the excitons arrive at thermal equi-
~1.86x10 3] (0.034 ps’ in frequency units Thus, the Jibrium within the time scale of photon emission. Under
rate W3+ W,3 is expected to govern the decay of tke3  these conditions, the fluorescence lifetimeeflects the ex-
state, which is in perfect agreement with the numerical dataiton radiative lifetime while the decay timer, at higher
in Fig. 12. Finally, thek=2 state slowly relaxes to the  temperatures measures the upward scattering rate from the
=1 state Wi, ~10y; '~300 p$, determining the long-tail pottom state, rather than the radiative decay time.
decay of the total population. Also this time scale shows In the case of initial excitation of high-lying exciton
excellent agreement with the numerical data. states, the physical picture of the exciton emission process
strongly depends on the ratio of the rates for intraband scat-
tering and exciton superradiance. If the former is faster than
the latter, the excitons created initially in the weakly radiat-
In this paper, we numerically studied the temperaturéng states are rapidlyon the scale of the exciton super-
dependence of the fluorescence decay time of 1D Frenkehdiant emissiontransferred to the superradiant state. The
excitons in J-aggregates resulting from their vibration-subsequent dynamics of emission is similar to the one found
assisted redistribution over the exciton band after pulsed eXor direct excitation of the bottom state. By contrast, if the
citation of a subset of states. The redistribution was modelethtraband scattering is slower than the superradiant emission,
using a Pauli master equation that accounts for the scatterirthe former represents the bottleneck for radiative decay and
between exciton levels. We considered two models for the&etermines the exciton fluorescence decay time. In particular,
scattering rates in this equation. In one we assumed the hoite zero-temperature value of the fluorescence decay time
medium to have a glasgdisorderegl character, while in the may then considerably deviate from the superradiant value.
other it was assumed to be crystalline. It appeared that thEurthermore, under these conditions, the fluorescence decay
exciton scattering rates, corresponding to these two modelsime may actually go down with increasing temperature at
differ considerably from each other. small temperatures, because the fluorescence kinetics at low
We have paid particular attention to the definition of thetemperatures then simply reflects the slow intraband relax-
fluorescencelecay time and its relation to thradiative de-  ation, rather than the exciton radiative rate. At higher tem-
cay time. We have considered two definitions. The fiedti6  peratures the fluorescence decay time eventually approaches
the expectation time of photon emission, which equals thegain theT¥?behavior, because the vibration-assisted relax-
time-integrated kinetics of the total exciton populatie(t), ation rates increase and the excitons arrive at thermal equi-
while the second £.) uses the ¥ time of the fluorescence Iibrium before emission.
intensity | (t) = — P(t), as is often done in experiments. We The above conclusions lead to the general important ob-
have shown that for an exciton system in the presence dfervation that was anticipated in the Introduction already,
intraband relaxation, it is sometimes difficult to extract infor- namely that time-resolved fluorescence experiments do not
mation on the radiative decay time on the basis of measuraiecessarily measure the exciton radiative lifetime. Whether
ments of the fluorescence kinetics. The potential pitfalls thaor not they do, apparently depends on the excitation condi-
may mask the real radiative decay time have been elucidatetn and the rate of intraband relaxation as compared to the
using a simple model that contains only two exciton states asate of exciton radiative emission. In particular, for excitation
well as by analyzing numerical results for linear J-aggregatehigh in the exciton band under conditions of slow relaxation
for various initial conditions and exciton—phonon scattering[which seems to be relevant to PIRef. 23], the fluores-
strengths. cence experiment measures the intraband relaxation rate.
We have found that, independently of the intraband scatThis conclusion is of special importance at low temperatures,
tering model, the interplay between the intraband relaxationvhen the exciton subsystem after excitation is far from ther-
and the superradiant decay in combination with the type ofnal equilibrium. This also has obvious implications for the
fluorescence excitatiofdirect excitation of the superradiant possibility to extract the low-temperature exciton coherence
bottom state or initial excitation of higher-lying weakly radi- length from radiative lifetime measurements. If the intraband

VII. SUMMARY AND CONCLUDING REMARKS
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relaxation is slow, this cannot be done using blue-tail excitais the mass of the total system, ang is the polarization
tion. Rather, only resonant excitation of the fluorescence williector of the acoustic modg Note that, in contrast to the
then give the desired information, as this directly probes thease of optical phononaq does not depend on the molecular
optically active states characterized by the exciton coherengsosition. The dispersion relation in the long-wavelength limit
length. Alternatively, resonant pump-probe spectroscopys given by quva|Q|, vi=v,=v, andvz=v, being the
may be used to obtain this informatid?.** speed of transverse and longitudinal sound, respectively.

Substituting Eq(A4) into Eq. (A3b), we obtain
1o\ Ugqp
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Ving=

sn decreases fast with increasing distanBg,|, only
the nearest surroundings contribute to the sum in(B§).
As a result, we may expand the exponential inside this sum,
keeping only the first two terms. Doing so and using the

APPENDIX A: DERIVATION OF THE dispersion re|ati0mq:va|q|, we get
EXCITON-VIBRATION COUPLING q 2
We start with the Hamiltonian in the forfn, an=i(%> Xng €9 R, (AB)
N . “
Hevaib:zl ES: SUn)(nl, (Ala) where we introduced
_2 aUsn q'(Rs_Rn) (A7)
sy T VR, Tl
oUgn= -(6Rs— ORy). (Alb) 0
aRSﬂ 0

In a crystalline host mediumy,q does not depend on the
Here, U, is the interaction of the excited aggregate mol-position of the molecule in the aggregate, while it is a sto-
eculen with a surrounding moleculs (either a host mol- chastic function of this position in the case of a disordered
ecule or another aggregate molecule, the latter being in itgost medium. It should be noted thgt, depends only on
ground state Furthermore Uy, is the variation of this en- the orientation of the phonon wave vectprMoreover, due
ergy resulting from the displacementsR, and SR,, of  tothe summation over many surrounding molecules, this de-
these molecules from their equilibrium positions. The sub{endence is expected to be rather smooth.

script “0” denotes that the derivative must be taken at the

equilibrium value ofRgj,.

We express the displacement operators in terms of OPAPPENDIX B: NUMERICAL ALGORITHM EOR

erators of the normal vibration modes, Iabetﬁuh the stan- SOLVING THE PAULI MASTER EQUATION
dard way =1)

1 |12 To solve the Pauli master equation Efl), we use the
5Rn:2 (_> Qng@q+h.C. (A2) numerical procedure proposed in Ref. 24, based on passing
q |2wq from the equation’s differential form to its integral version,

Here, 0w, andQ, are, respectively, the eigenfrequencies and t .
eigenvectors of the vibration Hamiltonian of the entire sys-  Pi(t)=Py(0)e” W+ > Wkk’f dt’e” Wt=1Ipy, (1),
tem (host-aggregates anda, (a;) is the annihilation(cre- K’ 0 (B1)
ation) operator of this mode. Within the normal mode repre-

sentation, the HamiltoniatA1a) takes the form, Here, W= ¥+ = Wy is the total rate of population loss

N from statek, both due to scattering and due to spontaneous

B emission. The equivalence of E@1) to Eq.(11) is proved
HeHib‘ngl Eq Vngn)(nlag+h.c., (A3a) by straightforward differentiation of the former. Next, using
Eqg. (B1), one related (t+dt) to P,(t) through
Vi S [ )M( ﬁUS”) (Qsq~ Qng) (A3b) 1
S 20q) R/, T T Pi(t+8t)=Py(t)e Wi+ oo (1—e )
k

As motivated in the main text, we focus on the coupling
of excitons to acoustic phonons, in which case @ are XD Wi P (t). (B2)
represented by plane waves, <

12 R Finally, to avoid divergencies at smal, in Eq. (B2), we
Qng=| | Y€ (A4)  expand

where the mode indeg=(q,«) specifies the wave number

1 1
(1 AWty — =
(q) and polarization ¢=1,2,3) of the acoustic phononis| Wk(l € ) &( ! Wk&t)' (B3)

2
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