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Intracavity electromagnetically induced transparency
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The effect of intracavity electromagnetically induced transparency (EIT) on the properties of optical resonators
and active laser devices is discussed theoretically. Pronounced frequency pulling and cavity-linewidth
narrowing are predicted. The EIT effect can be used to reduce classical and quantum-phase noise of the
beat note of an optical oscillator substantially. Fundamental limits of this stabilization mechanism as well as
its potential application to high-resolution spectroscopy are discussed.  1998 Optical Society of America
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Electromagnetically induced transparency1 (EIT) is a
dense-media analog of dark resonances,2 which occur in
three-level L systems driven by coherent optical f ields.
In recent years a number of potential applications of
EIT have been described. These include, in particu-
lar, enhancement of nonlinear optical processes,3 high-
resolution spectroscopy, and optical magnetometry.4,5

In this Letter we describe theoretically the effect of
an intracavity-induced transparency. When a dense
ensemble of coherently prepared L atoms is placed
inside an optical resonator, the resonator response is
drastically modif ied, resulting in frequency pulling6

and a substantial narrowing of spectral features. This
effect can be used for frequency-difference stabiliza-
tion of lasers7 or other two-mode light sources such
as broadband parametric oscillators. Here intracav-
ity EIT results in locking of the beat note to the
resonance frequency of a two-photon transition be-
tween metastable atomic levels and causes a substan-
tial reduction of quantum and classical noise in the
beat signal. Possible applications of intracavity EIT
include sensitivity intracavity spectroscopy, novel fre-
quency standards, and optical magnetometry.

The profound effects of intracavity EIT are due to
large dispersion close to the point of almost-vanishing
absorption,8 which can easily exceed the empty-cavity
dispersion in the case of an optically thick L medium.
To illustrate the locking and narrowing mechanism let
us consider a ring cavity containing a cell of length
l with a linear dispersive medium. The medium re-
sponse is characterized by the real sx 0d and the imag-
inary sx 00d parts of the susceptibility, for which we
assume x 0  bsn 2 n0d and constant x 00 for frequen-
cies n that are suff iciently close to some resonance fre-
quency n0. b and x 00 are proportional to the atomic
density NyV . The cavity-response function, i.e., the
ratio of circulating to input intensity, is given by9
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and k  exps2klx 00d describes the medium absorption
per round trip, L. On inspection of the round-trip
phase shift one f inds that the resonance frequency of
the combined cavity 1 medium system fFsnrd  2mpg
is governed by a pulling equation:
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Here h  scky2d slyLdb defines a frequency-locking or
-stabilization coefficient and nc is the resonance fre-
quency of the empty cavity. Similarly, by expanding
the cosine in Eq. (1) around nr, one also finds that the
width of cavity resonances Dn is changed by the intra-
cavity medium:
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where C is the empty-cavity linewidth. The first fac-
tor describes an enhancement of the effective cavity
1 medium width owing to additional losses, and the
second one describes the reduction owing to the linear
dispersion. When EIT is established in an intracav-
ity medium, the absorption can be negligible sx 00 ! 0d,
whereas the dispersion is large, resulting in substan-
tial line narrowing.

To quantify this conclusion we consider the response
of the typical L system [Fig. 1(a)] driven by a strong
laser f ield of Rabi frequency V2 to the weak test f ield
V1. The corresponding linear susceptibility near the
two-photon resonance10 is
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Here j  s3y4p2d sNl3yV d; n0  n2 2 vb1b2 , where n2
is the drive frequency; and vb1b2 is the frequency of the
b1 ! b2 transition. In a situation typical for EIT, i.e.,
when the lower levels are metastable, g0 can be very
small compared with g1, and thus the absorption can
be made small sk ø 1d even for a large density–length
product in the atomic-vapor cell. Under these condi-
tions, the phase shifts are large even for a g1, small
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detuning, resulting in a large stabilization coeff icient.
The ultimate limit of stabilization can be obtained by
imposition of the condition that the residual absorption
losses in the cell should not exceed the empty-cavity
losses. One finds that for the maximum stabilization
coeff icient

h # Cy2g0 . (5)
We note that for a long-lived ground-state coherence
the ratio Cyg0 can become very large. In this case
the effective resonance frequency of the cavity coincides
with n2 2 vb1b2 and the cavity width can be reduced by
several orders of magnitude, whereas the photon losses
are practically unaffected. The above conclusion is il-
lustrated in Fig. 1(b), in which the cavity transmission
function is shown for different atomic densities.

It is instructive to estimate the lower limit to the cav-
ity linewidth. For a good cavity and the maximum sta-
bilization coeff icient, as in inequality (5), we f ind that
Dn ! 4g0, i.e., a linewidth that can be orders of magni-
tude smaller than both the empty-cavity linewidth and
the single-atom transparency window (width of L res-
onance). In the strong-field limit the latter is power
broadened and scales as V2. Hence the effect of power
broadening on the combined cavity 1 atom system is
completely eliminated here in the high-density regime.

Let us now discuss the effect of the L medium on
the phase-difference noise of two optical modes that are
independently oscillating inside the cavity. A three-
level intracavity medium displaying EIT can be used to
lock the beat note to the resonance frequency of the two-
photon transition vb1b2 . In particular, we focus here
on the spectral properties of a two-mode laser. We em-
phasize, however, that the two-mode laser serves only
as a generic example. Alternatively, one can consider
locking the beat note of two independent single-mode
lasers or of a broadband nondegenerate parametric os-
cillator. The two-mode lasers considered here are es-
pecially convenient when frequency differences are to
be measured, since the beat note of the two modes can
be intrinsically narrow, provided that the optical paths
are similar. The evolution of the coherent amplitudes
a1 and a2 of the oscillating (laser) f ields can be de-
scribed by stochastic c-number equations sn  1, 2d:
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Here A1,2 are the effective gain coeff icients for the two
modes, which have the generic structure A1,2  a1,2 2

b1,2ja1,2j2 2 b̃1,2ja2,1j2. The linear gain coefficients an
as well as the self-saturation and cross-saturation coef-
ficients, bn and b̃n, respectively, depend on the specific
laser model.9 The exact form of the saturation coef-
ficients is unimportant for the present discussion as
long as b̃1b̃2 , b1b2. Fn are noise operators associ-
ated with the gain processes. The correlation function
of the operators is given by9 kFnstdpFnst0dl  Cdst 2 t0d.
g1,2 describe the coupling to the L medium. D

c
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of the two modes and n
c
1,2 are the corresponding eigen-

frequencies of the empty cavity. Absorption, disper-
sion, and noise properties of the L atomic system are
also described by a set of c-number Langevin equations
for the polarizations si.10 Below we restrict ourselves
to a symmetric configuration and assume equal gain,
cavity losses, coupling constants, etc.

One can study the semiclassical behavior of the
laser modes by disregarding all noise contributions and
eliminating the atomic variables. Laser equations (6)
have a solution with equal amplitudes of the modes
a1  a2. In this case of equal strength of both f ields
we have, close to the resonance, x

0
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V  ga1  ga2, and D1,2  vab1,2 2 n1,2.
It is convenient to write the f ield equations in terms

of square amplitudes (photon numbers) n1,2 and phases
f1,2. The steady-state solution of the laser phase
equations immediately leads to the frequency-pulling
equation
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with h̄  hy2. For h .. 1 the beat-note frequency
is locked to vb1b2 , i.e., to the L-resonance frequency.
The additional absorption in the cavity increases the
effective decay rate for the laser modes by h̄g0. This
absorption is, however, unimportant, provided that
inequality (5) is fulf illed.

Let us now turn to the phase-noise properties of
the two-mode laser. The noise contribution owing to
the interaction with the L medium is negligible.10 We
model the effect of technical noise by a f luctuation of
the spacing between the cavity-resonance frequencies
dvc  v

c
1 2 v

c
2. dvc is assumed to obey a linear sto-

chastic equation with a Markovian noise force and a
phenomenological damping rate gc, d Ùvc  2gcdvc 1
Fc, with kFcstdFcst0dl  gckdv2

c ldst 2 t0d, where kdv2
c l

characterizes the strength of technical f luctuations.
The stochastic equations can be solved by linearization,
and the beat-note phase-noise spectrum can be cal-
culated. In the low- (f luctuation-) frequency regime
sv ,, Vd we find that
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The two terms in Eq. (8) represent the inf luence of
technical f luctuations and the beat-note phase diffu-
sion of the laser (Shawlow–Townes) linewidth.9 Thus,

Fig. 1. Generic L system for EIT. The frequencies of two
fields are close to the resonant frequencies of transitions
a ! b1 and a ! b2. b1,2 are metastable states. (b)
Cavity response as a function of test-f ield frequency for
different values of atomic density. The dotted, dashed,
and solid curves correspond to h  0, h  10, and h  100,
respectively. The parameters are V2  10g, r  0.98, and
nc 2 n0  5g.
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owing to the intracavity medium the (Markovian) tech-
nical as well as the quantum f luctuations are reduced
by a factor of 1ys1 1 h̄d2. Slow technical f luctuations,
such as temperature drifts of the cavity resonances,
are reduced by only 1ys1 1 h̄d [see Eq. (7)]. Note that
for strong stabilization sh̄  Cyg0 ,, 1d the phase dif-
fusion is proportional to g

2
0 instead of C2. Such a

suppression of quantum-phase noise in the laser beat
note11 is a consequence of the cavity line-narrowing ef-
fect described above.

We note here that in addition to the increased intra-
cavity losses there exists another important limitation
on the maximal h value that is due to the dynamic
instabilities that often arise in different stabilization
schemes.12,13 For the present system the frequency-
pulling regime described above is stable as long as
h̄ , 2gyg0 for a homogeneously broadened system and
h̄ , 2DD yg0 for a medium that is Doppler broadened
(one photon Doppler width DD ).

It is interesting to consider a particular example
of the beat-note laser stabilization. A variety of gas
and dye lasers as well as certain types of extended-
cavity diode laser can operate on two modes (possibly of
orthogonal polarizations) with frequency separation of
the order of a few gigahertz. In this case the frequency
difference of the modes can be locked to the transition
between hyperf ine components of alkali atomic vapors.
The natural linewidth of such two-photon transitions
can be made as low as 10–100 Hz by use of buffer-gas
or wall-coating techniques. Taking the empty-cavity
width of ,107 Hz, we find that atomic densities that
correspond to the stabilization factor h . 105 can be
used without affecting the output power of the laser.
The frequency locking of can be achieved in an alkali-
vapor cell by use of transitions of the D absorption
lines at moderate atomic densities of ,1012 cm23 and
laser intensities above optical saturation. Depending
on the initial degree of technical-noise correlation, the
resulting beat-note linewidths can be in or below the
millihertz region.

The potentially interesting feature of the present
approach is that it allows one to combine strong
locking of two laser modes and narrow linewidths with
intense laser fields. It was already demonstrated5

that dispersive effects in a dense coherent medium
can be used to reduce power broadening of two-photon
resonances significantly and thus can lead to a poten-
tially attractive regime of laser spectroscopy in which
narrow resonances coexist with strong fields. An
interferometric measurement in a dispersive medium
typically leads to several narrow interferometric
fringes. In practice it is therefore often difficult to
distinguish and determine the position of the central
fringe. This determination is no longer a problem if
intracavity EIT is used, since in the regime of strong
frequency pulling the beat note automatically locks
to the two-photon resonance, whereas the effective
width is equivalent to the width of the interferometric
fringes. These features make various applications
of the technique proposed above for improvement of
atomic-frequency standards and optical magnetome-
ters feasible.
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