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Abstract Transforming growth factor (TGF)-β regulates a wide variety of cellular responses, including cell
growth arrest, apoptosis, cell differentiation, motility, invasion, extracellular matrix production, tissue fibrosis,
angiogenesis, and immune function. Although tumor-suppressive roles of TGF-β have been extensively studied and
well-characterized in many cancers, especially at early stages, accumulating evidence has revealed the critical roles
of TGF-β as a pro-tumorigenic factor in various types of cancer. This review will focus on recent findings regarding
epithelial-mesenchymal transition (EMT) induced by TGF-β, in relation to crosstalk with some other signaling
pathways, and the roles of TGF-β in lung and pancreatic cancers, in which TGF-β has been shown to be involved in
cancer progression. Recent findings also strongly suggested that targeting TGF-β signaling using specific inhibitors
may be useful for the treatment of some cancers. TGF-β plays a pivotal role in the differentiation and function of
regulatory T cells (Tregs). TGF-β is produced as latent high molecular weight complexes, and the latent TGF-β
complex expressed on the surface of Tregs contains glycoprotein A repetitions predominant (GARP, also known as
leucine-rich repeat containing 32 or LRRC32). Inhibition of the TGF-β activities through regulation of the latent
TGF-β complex activation will be discussed.
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Introduction

Transforming growth factor-β (TGF-β) is a prototype of a
large family of structurally related growth regulatory
factors known as the TGF-β family (or TGF-β super-
family). The TGF-β family includes more than 30
members in mammals, including TGF-β1, -β2, and -β3,
activins and inhibins, bone morphogenetic proteins
(BMPs), and growth and differentiation factors (GDFs)
[1, 2]. TGF-β was originally isolated in 1981 as a factor
that induces transformation of some fibroblast cell lines,
and allows these cells to grow in an anchorage-indepen-
dent manner [3–5]. However, TGF-β was then found in
1984 to act as a potent growth inhibitor of epithelial cells,
and further studies revealed that TGF-β inhibits growth of
various types of cells, including endothelial cells and
lymphocytes. TGF-β was also found to induce the
accumulation of extracellular matrix (ECM) proteins and
tissue fibrosis. In 1994, TGF-β was discovered to induce

trans-differentiation of mammary epithelial cells to
mesenchymal cells, which is now widely known as
epithelial-mesenchymal transition (EMT) [6]. TGF-β
accelerates metastasis of various types of cancer, and
inhibition of TGF-β signaling results in prevention of
cancer metastasis in various animal models. TGF-β thus
regulates a variety of biological events, and abnormalities
in TGF-β signaling are critically involved in the pathogen-
esis of various diseases, including cancer [7–10].
Although the molecular mechanisms of the growth

inhibitory activity of TGF-β have been extensively studied
[11] and loss of the TGF-β signaling activity is linked to
pathogenesis in various cancers, TGF-β is now known to
be also involved in the progression of cancer, particularly
at advanced stages [12]. Roles of TGF-β signaling in
cancer have been reviewed by others [7–10]. In addition,
roles of other members of the TGF-β family in cancer have
been discussed in other review articles [13, 14]. Thus, we
focus this review on some recent topics on TGF-β. We first
describe the biological activities of TGF-β, including
EMT. We then discuss the roles of TGF-β in progression of
lung and pancreatic cancers, because some intriguing
findings have been reported in these cancers. Finally, we
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describe recent findings on latent forms of TGF-β and its
activation in vivo [15]. Latent TGF-β complexes contain
either latent TGF-β-binding proteins (LTBPs) or glyco-
protein A repetitions predominant (GARP, also known as
leucine-rich repeat containing 32 or LRRC32) [16, 17].
Because the latent TGF-β complex containing GARP is
expressed in regulatory T cells (Tregs) and suppresses
immune function in cancer, targeting latent TGF-β
complexes is a potentially interesting way to specifically
regulate the activity of TGF-β in some cancers.

Intracellular TGF-β signaling

TGF-β receptors contain protein kinase domains with dual
kinase activities, i.e., serine/threonine and tyrosine kinase
activities, which transduce unique intracellular signals. In
this section, we describe the mechanisms of intracellular
signaling of TGF-β, abnormalities of which play critical
roles in the development of cancer [18–20].

Activation of the intracellular TGF-β signaling
pathway

TGF-β ligands bind to specific type II (TβRII) and type I
receptors (TβRI, also known as activin receptor-like kinase
5 or ALK-5), which, by forming a hetero-tetrameric
complex, activate downstream signaling pathways (Fig. 1).
Betaglycan, also known as the TGF-β type III receptor,
facilitates binding of TGF-β ligands, particularly TGF-β2,
to TβRII, and in the absence of betaglycan, TGF-β2 is less
active than TGF-β1 or TGF-β3. The TβRII kinase
transphosphorylates the Gly-Ser-rich (GS) domain of
TβRI, and induces the activation of the TβRI kinase. The
TβRI kinase then transduces intracellular signals by
phosphorylating the C-terminal two serine residues of the
receptor-regulated class of Smads (R-Smads). TGF-βs and
activins induce phosphorylation of Smad2 and Smad3
(activin/TGF-β-specific R-Smads), whereas BMPs induce
phosphorylation of Smad1, Smad5, and Smad8 (BMP-
specific R-Smads). The activated R-Smads form oligo-

Fig. 1 Intracellular signal transduction by TGF-β. Upon binding of TGF-β ligands to the receptors, the Smad pathway involving Smad2 and/or 3
(Smad2/3) and Smad4 is activated (middle). The TGF-β-Smad pathway regulates the expression of various target genes, and EMT transcription
factors induced by TGF-β signaling are shown. TGF-β also activates non-Smad pathways, including the TRAF6 and/or 4 (TRAF6/4)-TAK1-JNK and/
or p38 pathway, PI3K-Akt-mTOR pathway, and Ras-Erk1 and/or 2 (Erk1/2) pathway (left). In addition, the growth factor-RTK pathway modulates the
TGF-β signaling pathway (right). Ub, ubiquitin; P, phosphorylation.
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meric complexes with the common-partner Smad (co-
Smad), Smad4. The Smad complexes then move into the
nucleus and regulate the expression of various target genes,
such as those encoding inhibitory Smads (I-Smads), i.e.,
Smad6 and Smad7. Smad7 inhibits TGF-β signaling
through multiple mechanisms, including inhibition of R-
Smad activation through competition for binding to the
TGF-β receptors [21].
In addition to the Smad pathway, TGF-β activates non-

Smad pathways, including extracellular signal-regulated
kinase (Erk) 1 and 2, c-Jun N-terminal kinase (JNK) and
p38 mitogen-activated protein (MAP) kinase pathways,
phosphoinositide 3'-kinase (PI3K)-Akt pathway, Src
tyrosine kinase pathway, and Rho GTPase pathway (Fig.
1) [22]. Notably, some of the non-Smad pathways play
critical roles in tumorigenesis: Erk activation is initiated by
recruitment of the adaptor protein Shc to phospho-Tyr
residues in TβRI. Shc then recruits Grb2-Sos1, and
activates Ras and the downstream Erk MAP kinase
pathway [23]. TβRI also contains a binding motif for the
E3 ubiquitin ligase tumor necrosis factor (TNF) receptor
activated factor 6 (TRAF6) and TRAF4 in its juxtamem-
brane region. Upon formation of the ligand-induced TβRII
and TβRI complexes, TRAF6 and/or 4 are recruited to
TβRI, and auto-ubiquitination of these molecules is
induced. TRAF6 and 4 subsequently cause the poly-
ubiquitination of TGF-β activated kinase 1 (TAK1),
leading to activation of its kinase activity. Activated
TAK1 then phosphorylates and activates MAP kinase
kinases, such as MKK3, 4 and 6, which in turn activate the
downstream p38 MAP kinase and JNK pathways, leading
to promotion of cell migration and apoptosis [24–26].
In addition to the Smad and non-Smad pathways, ligand

binding induces cleavage of the TβRI protein, resulting in
liberation of its intracellular domain (ICD) in the
cytoplasm. After translocation into the nucleus, the ICD
of TβRI regulates gene transcription and activates some
cellular programs, such as cell invasion [27, 28].

Regulation of gene expression

Smads directly bind regulatory gene sequences and
activate or repress gene expression in cooperation with
other DNA-binding transcription factors, such as AP-1 and
2, ETS, and hepatocyte nuclear factor (HNF)-4α, and
transcriptional co-activators (p300 and CBP) or co-
repressors (Ski and SnoN). c-Ski and the related SnoN
protein (Ski-like) directly interact with Smad2 and 3 and
Smad4 and repress transcription by recruiting histone
deacetylases. c-Ski also interferes with the formation of the
R-Smad-co-Smad complex to repress TGF-β signaling
[29]. The functions of Smads are regulated by other
signaling pathways, including non-Smad pathways acti-
vated by the TGF-β receptors. They are also regulated by

post-transcriptional regulation, such as phosphorylation,
ubiquitination, sumoylation, and acetylation [30]. Ana-
lyses using next-generation sequencers, such as chromatin
immunoprecipitation (ChIP) followed by sequencing
(ChIP-seq) demonstrate genome-wide DNA-binding land-
scapes of Smad proteins in various types of cells under
different conditions [31]. TGF-β also regulates the
expression of noncoding RNAs, such as microRNAs
(miRNAs) and long noncoding RNAs (lncRNAs) [32, 33],
and regulates various cell responses, including EMT.

Multiple functions of TGF-β

Regulation of cell proliferation and apoptosis

TGF-β exhibits potent growth inhibitory activity in various
types of cells [34, 35]. The cytostatic effects by TGF-β are
mediated mainly through induction of cyclin-dependent
kinase inhibitors, including p15INK4B and p21CIP1/WAF1, and
inhibition of the expression of proliferation factors, such as
c-Myc, Cdc25A, and Id proteins. Cancer cells often
acquire resistance to the growth inhibitory activity of
TGF-β. In contrast, TGF-β can also induce cell prolifera-
tion in some cell types, including fibroblasts, smooth
muscle cells, chondrocytes, osteoblasts, and mesenchymal
stem cells. The growth promoting effects of TGF-β are
mediated by induction of some growth factors, such as
platelet-derived growth factors (PDGFs) and fibroblast
growth factors (FGFs).
In addition to induction of growth arrest, TGF-β also

induces apoptosis [1, 35, 36]. TGF-β increases the
expression of death-associated protein kinase (DAPK)
and growth arrest and DNA damage-inducible 45β
(GADD45β) in hepatocytes or hepatoma cells, and
activates the Bcl-2 family pro-apoptotic effector Bim in
some epithelial cells, and B lymphocytes. Moreover, TGF-
β inhibits the expression of the pro-survival protein
survivin, leading to apoptosis in colon cancer and prostate
epithelial cells. TGF-β also induces apoptosis by activation
of JNK and/or p38 MAP kinases through the TRAF6-
TAK1-MKK3/4/6 pathway in some cell types. Thus, TGF-
β induces apoptosis of various epithelial cells and
lymphocytes; however, mechanisms of the TGF-β-induced
apoptosis appear to be dependent on cell type and culture
conditions. In contrast to pro-apoptotic effects, TGF-β also
stimulates survival of certain types of cells in a context-
dependent manner through activation of the PI3K-Akt
signaling pathway or induction of certain pro-survival
proteins, such as Bim.

Cell differentiation, EMT, and maintenance of
stemness by TGF-β

TGF-β regulates cell differentiation to a variety of cell
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lineages [1, 2], e.g., immune, blood, and neural cells. TGF-
β inhibits differentiation of mesenchymal cells towards
adipocytes and skeletal myocytes, while it stimulates their
differentiation toward chondrocytes.
EMT is a crucial step in which epithelial cells

differentiate into mesenchymal cells, and TGF-β induces
EMT in various epithelial cells [37–39]. EMT is important
in embryonic development and tissue morphogenesis,
wound healing, and cancer. During the process of EMT,
reduced expression of epithelial markers, including E-
cadherin and epithelial splicing regulatory proteins
(ESRPs), and increased expression of mesenchymal
markers, including N-cadherin, fibronectin, vimentin, and
α-smooth muscle actin (α-SMA), are observed. Cells that
have undergone EMT display disruption of tight junctions
connecting epithelial cells, loss of cell polarity, increased
cell motility, and induction of a spindle-shaped morphol-
ogy with actin stress fiber formation. E-cadherin is critical
for cell-cell attachment of epithelial cells at the adherens
junction, and loss of E-cadherin is an essential event for
EMT. The roles of EMT induced by TGF-β in cancer will
be further discussed below.
TGF-β plays essential roles in the acquisition and

maintenance of stem cell-like properties of some cancer
cells [40, 41], e.g., glioma-initiating cells, breast cancer
stem cells, pancreatic cancer-initiating cells, and leukemia-
initiating cells in chronic myeloid leukemia. On the other
hand, TGF-β has also been shown to reduce the cancer-
initiating cell (CIC) populations in certain cancers,
including breast cancer, pancreatic cancer, and diffuse-
type gastric cancer. These findings suggest that the effects
of TGF-β on CICs may be regulated in context-dependent
manners [42, 43], possibly reflecting the properties of the
original tissue stem cells. EMT mediated by TGF-β can
induce a stem cell-like phenotype in cancer cells.
Inhibition of TGF-β signaling thus decreases the expres-
sion of stemness markers and induces the differentiation of
cells to less aggressive phenotypes [44].

Tissue fibrosis and angiogenesis

Increased expression of TGF-β, especially TGF-β1 and
-β2, are observed in tumor tissues compared to normal
surrounding tissues, and high expression of TGF-βs
correlates with poorer prognosis of cancer patients. Roles
of TGF-β in tumor microenvironment have been discussed
by others [7, 45, 46].
TGF-β promotes tissue fibrosis through induction of the

migration of fibroblasts and monocytes at the sites of injury
[45–47]. TGF-β is also a potent inducer of the production
of ECM proteins, such as fibronectin and collagens.
Fibrotic response to TGF-β is relevant to its roles in cancer
progression, because desmoplastic response is observed in
some types of cancer, especially in pancreatic cancer and
diffuse-type gastric cancer.

TGF-β potently inhibits the growth of vascular and
lymphatic endothelial cells in vitro; however, it functions
as a pro-angiogenic factor and stimulates angiogenesis in
vivo under certain conditions [48]. High expression of
TGF-β is correlated with increased vascularity in some
types of tumors. For induction of angiogenesis, TGF-β
induces the expression of angiogenic factors, such as
vascular endothelial growth factors (VEGFs). Moreover,
TGF-β has been reported to stimulate the production of
matrix metalloproteinases (MMPs), such as MMP-2 and
MMP-9, and repress that of tissue inhibitor of metallopro-
teinases (TIMPs) in vivo. Migration and invasion of
vascular endothelial cells are induced by increased MMP
activity, leading to induction of angiogenesis. It should be
noted that TGF-β suppresses angiogenesis in a context-
dependent manner through regulation of the expression of
some angiogenic factors and inhibitors. In diffuse-type
gastric carcinoma, TGF-β induces the synthesis of
thrombospondin-1 and suppresses angiogenesis in vivo
[49].
In addition to regulation of cell growth, TGF-β disrupts

cell-cell junctions of vascular endothelial cells through
repression of the expression of claudin-5 [50]. TGF-β also
induces differentiation of some endothelial cells into
mesenchymal cells, known as endothelial-mesenchymal
transition (EndMT) [51]. Furthermore, TGF-β disrupts
endothelial cell-cell junctions by inducing the expression
of angiopoietin-like 4 (Angptl4), and stimulates the trans-
endothelial movement of cancer cells. TGF-β may thus
accelerate the colonization of tumor cells to establish
metastatic foci [52].

Immune responses

TGF-β functions as a potent immunosuppressive cytokine
[53–56] and therefore, inhibition of TGF-β signaling in the
immune system may lead to an enhancement of tumor
immunity. TGF-β suppresses the proliferation of T and B
cells and the functions of cytotoxic CD8+ T cells and
helper CD4+ T cells. TGF-β1-deficient mice show rapid
development of lethal inflammation after birth [57, 58].
Moreover, T cell-specific deletion of TβRII or TβRI results
in neonatal lethal inflammatory disease. In contrast, TGF-β
induces the differentiation of Tregs in the presence of
interleukin-2 (IL-2) [59, 60] and stimulates the generation
of IL-17-positive pro-inflammatory helper T cells (Th17)
in the presence of IL-6 or IL-21 [61, 62]. TGF-β can thus
induce both regulatory and pro-inflammatory T lympho-
cytes, depending on the presence of pro-inflammatory
cytokines. In addition, TGF-β suppresses the generation of
natural killer (NK) cells in the presence of interferon-γ
[63]. TGF-β also acts on macrophages and neutrophils and
polarizes them towards immunosuppressive phenotypes
[55]. The roles of TGF-β in immune responses will be
further discussed below.
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TGF-β-induced EMT in cancer progression

Carcinoma cells activate the EMT program to drive cancer
progression. EMT is a reversible process in which
epithelial cells acquire a mesenchymal phenotype and
enhanced motility and invasion. EMT contributes to
initiation and progression of cancer through induction of
cell dissemination, stromal formation, cancer stem cell
generation, and chemoresistance [37–39, 64, 65].

Smad pathway and non-Smad pathways in the
regulation of EMT

Epithelial plasticity of cancer cells is controlled by signals
from the tumor microenvironment. Multiple signaling
pathways need to be activated and coordinated to induce
EMT. TGF-β in the tumor microenvironment regulates the
plasticity of cancer cells and stromal cells in cooperation
with other signaling pathways [37]. TGF-β signaling
induces EMT through both Smad and non-Smad signaling
pathways. The TGF-β-Smad signaling pathway directly
activates the expression of the EMT transcription factors,
including the zinc-finger transcription factors Snail and
Slug, two-handed zinc-finger factors ZEB1 (zinc finger E-
box binding homeobox 1, also known as δEF1) and ZEB2
(also known as Smad-interacting protein 1 or SIP1), and
the basic helix-loop-helix (bHLH) factors Twist and E12/
E47 (Fig. 1). The expression of EMT transcription factors
and signal components of the TGF-β signaling pathways is
controlled by miRNAs [66, 67]. During TGF-β-induced
EMT, ZEB1 and ZEB2 repress the expression of the miR-
200 family (miR-200a, miR-200b, miR-200c, miR-141,
and miR-429), which inhibit the expression of ZEB
proteins and TGF-β2 [68–71]. Snail binds to the promoter
regions of the miR-34 family and represses their expres-
sion. Snail is targeted by the miR-34 family, and the
expression of the gene encoding Snail is repressed by miR-
34 [72]. Thus, double-negative feedback loops between
transcription factors and miRNAs regulate TGF-β-induced
EMT. Mathematical predictions and experimental con-
firmation suggest that feedback loops between transcrip-
tion factors and miRNAs function as reversible switches to
promote TGF-β-induced EMT in a stepwise manner [73–
75]. lncRNAs also contribute to TGF-β-induced EMT [76–
78]. TGF-β-induced lncRNA-ATB (activated by TGF-β)
enhances ZEB1 and ZEB2 expression by binding to the
miR-200 family in hepatocellular carcinoma [76]. TGF-β-
induced EndMT is also regulated by multiple miRNAs.
Activation of some miRNAs, such as miR-31, is required
for TGF-β-induced EndMT in MS-1 mouse pancreatic
microvascular endothelial cells [79].
TGF-β also promotes EMT through activation of non-

Smad pathways. Activation of the PI3K-Akt-mammalian
target of rapamycin (mTOR) pathway by TGF-β is
required for the transition to the mesenchymal phenotype

and the induction of cell motility and invasion (Fig. 1) [80–
83]. TGF-β-induced Erk and p38 MAP kinase signaling
activation also promotes EMT, and inhibition of the Erk
MAP kinase pathway prevents EMT induced by TGF-β
[84–86]. TGF-β also influences junctional integrity and
epithelial cell polarization through direct interaction
between the TGF-β receptors and the tight junction
proteins. TGF-β-activated TβRI phosphorylates the polar-
ity protein Par6 at tight junctions leading to RhoA
degradation and dissolution of the junction [87, 88]. On
the other hand, during the course of EndMT in MS-1 cells,
TGF-β activates the Rho signal and myocardin-related
transcription factor (MRTF)-A in a Smad4-dependent
manner, resulting in the induction of a mesenchymal
marker, α-SMA [89].

Cooperation with diverse signaling pathways in
cancer-related EMT

Cooperation of TGF-β signaling and other signaling
pathways regulates epithelial plasticity. Receptor tyrosine
kinase (RTK) signaling pathways activated by growth
factors such as hepatocyte growth factor (HGF), FGF,
PDGF and epidermal growth factor (EGF) collaborate with
TGF-β signaling to control the process of EMT in cancer
cells. These ligands activate the Erk, p38, and JNK MAP
kinase pathways as well as the PI3K-Akt-mTOR pathway,
which enhance TGF-β-induced non-Smad pathways and
also affect Smad-mediated transcription. Increased activa-
tion of RTK signaling, which is observed in many cancers,
enhances TGF-β-induced EMT and cell invasion. For
example, Ras-mediated cell transformation activates the
Erk MAP kinase pathway, and cooperates with TGF-β in
the induction of EMT transcription factors [90]. In
pancreatic cancer cells, activation of the oncogenic K-
Ras signals is required for the induction of Snail by TGF-β.
Silencing of K-Ras attenuates the Snail induction by TGF-
β and TGF-β fails to induce EMT in the absence of Ras
signaling [91]. Ras and TGF-β signaling activation also
induces a p63-dependent transcriptional program, which
leads to cell migration, invasion, and metastasis [92].
In addition to coordinately controlling the EMT

transcriptional program, Ras-induced transformation and
TGF-β signaling have been found to induce more global
alterations in chromatin accessibility during the process of
EMT. In mouse mammary epithelial EpH4 cells and Ras-
transformed EpRas cells, TGF-β and Ras alter chromatin
accessibility either cooperatively or independently, and
AP1, ETS, and RUNX binding motifs are enriched in the
accessible chromatin regions. Oncogenic ETS family
transcription factors Etv4 and Etv5, which are strongly
induced by Ras signaling and bind to accessible chromatin
regions in EpRas cells, may regulate transcriptional
regulation during Ras- and TGF-β-induced EMT [93].
Cooperation of RTK signaling with TGF-β signaling
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also regulates epithelial plasticity in cancer stromal cells.
EMT of epithelial cells adjacent to cancer cells plays
important roles in the generation of cancer-associated
fibroblasts (CAFs) [94–96]. FGF-2 (also known as basic
FGF) collaborates with TGF-β in inducing differentiation
of normal epithelial cells to fibroblastic cells, which may
promote the invasion of adjacent cancer cells [97]. In the
absence of FGF-2, prolonged treatment of normal
mammary epithelial cells with TGF-β induces differentia-
tion to α-SMA-expressing myofibroblastic cells. Addition
of FGF-2 inhibits TGF-β-induced expression of α-SMA,
and thus myofibroblastic differentiation. Instead, com-
bined FGF-2 and TGF-β treatment drives the differentia-
tion of the cells towards more migratory and invasive α-
SMA-negative fibroblastic cells.
This crosstalk between FGF signaling and TGF-β

signaling is controlled by alternative splicing of mRNAs.
The RNA-binding proteins ESRP1 and ESRP2 are
expressed in epithelial cells, and activate the epithelial-
specific splicing program [98]. TGF-β-induced ZEB1 and
ZEB2 repress the expression of ESRP1 and ESRP2 during
EMT [99]. Downregulation of ESRPs alters the splicing
patterns of many mRNAs to generate mesenchymal forms
of the proteins. ESRPs induce alternative splicing of FGF
receptors (FGFRs), resulting in the expression of the IIIb
isoforms of FGFRs in epithelial cells. In contrast, ESRP
expression is decreased during EMT, leading to the
increased expression of the IIIc isoforms of FGFRs [98,
99]. Epithelial cells that express the FGFR IIIb isoforms
respond to FGF-7 (also known as keratinocyte growth
factor). TGF-β-induced transition to the mesenchymal state
results in isoform switching, and mesenchymal cells that
express the FGFR IIIc isoform become responsive to FGF-
2, promoting the generation of fibroblastic cells [97].
Crosstalk between FGF and TGF-β signaling also

regulates EndMT, which contributes to generation of
CAFs. Similar to the roles of FGF-2 in preventing
myofibroblast differentiation from epithelial cells, FGF-2
inhibits TGF-β-induced α-SMA expression in endothelial
cells. FGF-2 prevents TGF-β-induced EndMT through the
induction of miRNAs that target the TGF-β signal
components, and through the activation of the MEK-Erk
pathway that inhibits Smad2 phosphorylation [100–102].

Fundamental roles of TGF-β-induced EMT in the
progression of cancer

EMT and its reversibility play important roles in multiple
aspects of cancer initiation and progression. Using in vivo
models, TGF-β-induced EMT is shown to be required for
cancer cell invasion and dissemination. Targeted inactiva-
tion of TGF-β receptor expression in cancer cells or
pharmacological inhibition of TGF-β signal activation
inhibits the invasive phenotype and cancer cell dissemina-
tion [8, 103]. TGF-β signaling also contributes to

generation of cancer stem cells through the induction of
EMT [104, 105]. Autocrine TGF-β signaling is required
for maintenance of the mesenchymal phenotype and
tumorigenicity in breast cancer cells [106]. TGF-β-induced
EMT is also linked to increased resistance to anti-cancer
drugs [107, 108]. In addition to the effect on cancer cells,
increased TGF-β expression and enhanced signaling
activation in many cancers regulate epithelial plasticity in
stromal cells, and TGF-β signaling in fibroblast-like
stromal cells contributes to cancer progression [109,
110]. TGF-β promotes the generation of CAFs from
epithelial cells and endothelial cells in tumor stroma
through EMT and EndMT, respectively [46, 51, 111].
The roles and molecular mechanisms of TGF-β signal-

ing and crosstalk with other signals in EMT have been well
studied in cell culture. Studies using animal models and
patient tumor samples provide support for the importance
of TGF-β-induced EMT in cancer progression [8, 43]. The
development of novel techniques, including intravital
imaging, has helped demonstrate the roles of the epithelial
plasticity program in cancer. More recently, tissue-clearing
based 3D imaging strategies have been applied to cancer
models, and these techniques have enabled the visualiza-
tion of cancer micrometastases throughout the body [112,
113]. One of the tissue-clearing protocols, clear unob-
structed brain/body imaging cocktails (CUBIC)-based
cancer analysis, allowed spatiotemporal visualization and
quantification of the metastatic cancer cells at single cell
resolution [113]. This approach provides tools to visualize
EMT at better resolution in mouse models at the whole
organ level, and promotes understanding of the dynamics
of the EMT program in cancer progression. Indeed,
CUBIC-cancer analysis suggests that the TGF-β-induced
EMT promotes cell survival at metastatic sites as well as
extravasation of cancer cells (Fig. 2) [113]. These technical
advances in visualization of EMT in animal models,
together with molecular mechanistic studies, advanced
bioinformatics, and mathematical modeling, will provide a
better understanding of the roles of TGF-β signaling and
crosstalk with other signaling pathways in the progression
of cancers.

TGF-β signaling in lung cancer

Comprehensive analyses of the genomic alterations in lung
cancer suggested that genes encoding core components of
the TGF-β signaling pathway are largely not common sites
of somatic mutations. However, accumulating evidence
indicates dysregulated TGF-β signaling and its pathogenic
roles in lung cancers. Lung adenocarcinoma cells, which
may arise from lung epithelial stem cells [114], undergo
EMT in response to TGF-β and acquire tumor-progressive
phenotypes (Fig. 3). TGF-β also regulates tumor progres-
sion through the expression of its various target genes. In
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contrast, disrupted TGF-β signaling in small cell lung
carcinoma (SCLC) cells represses apoptosis and induces
cell survival. Importantly, molecular mechanisms involved
in these processes are related to the interaction of the TGF-
β signaling pathway with the lineage-specific transcription
factors NK2 homeobox 1 (NKX2-1, also known as thyroid
transcription factor-1, TTF-1) or achaete-scute family
bHLH transcription factor 1 (ASCL1, also known as
achaete-scute homolog 1 or ASH1). This section focuses
on the recent advances in our understanding of the roles of
TGF-β signaling in lung cancers in relation to the recent
development of targeted drugs.

TGF-β-induced target gene expression and EMT in
lung adenocarcinoma cells

Non-small cell lung carcinoma (NSCLC) constitutes
approximately 80% of lung cancer, of which lung
adenocarcinoma is the most frequent histological subtype.
Experimentally, TGF-β is a well-known inducer of EMT in
A549 lung adenocarcinoma cells. Similar to other cancers

of different organs, lung adenocarcinoma cells frequently
acquire constitutive Ras activation through its mutations or
EGFR (EGF receptor) mutations [115]. This allows the
cells to be prone to TGF-β-induced EMT. The regulatory
process of EMT induced by TGF-β in lung adenocarci-
noma cells follows the common mechanisms with other
types of cancers, which include the contribution of EMT-
related transcription factors, such as Snail and ZEB1 [116,
117]. Likewise, TGF-β-induced EMT in lung adenocarci-
noma cells is enhanced by co-stimulation with TNF-α or
IL-1β secreted by other cells in the tumor microenviron-
ment [118].
NKX2-1 plays a central role in tissue-specific regulation

of EMT. NKX2-1 is a transcription factor essential for the
development of thyroid, lung, and a part of the brain [119].
NKX2-1 is expressed in the adult lung epithelium and is
important for the expression of genes related to lung
epithelium-specific functions. In lung cancer, NKX2-1 is
frequently expressed in both adenocarcinoma cells and
SCLC cells. As described in detail previously, NKX2-1
works as both a tumor suppressor and oncogenic factor in

Fig. 2 Regulation of cancer metastasis by TGF-β and analyses by whole-body tissue-clearing. TGF-β acts on epithelial cells and accelerates the
invasion of cells through induction of EMT. After intravasation, TGF-β stimulates cell adhesion and survival at distant organs, and facilitates
extravasation. Then, cancer cells may undergo mesenchymal-epithelial transition (MET), a reverse process of EMT, and form metastatic foci, where
the cancer cells often express an epithelial cell marker E-cadherin. (A) Whole lung of mice treated with the CUBIC tissue-clearing reagents. Blue
dotted line indicates the outline of the lung. (B, C) Mice were injected with A549 lung adenocarcinoma cells pretreated with TGF-β through tail vein.
Cancer cells expressing mCherry (shown in red) were visualized after 1 hour (B) and 14 days (C) after injection of cells into mice. Cell nuclei were
visualized by RedDot2 (shown in blue). (D) Immunostaining of lung tissue of the mouse injected with the TGF-β-treated A549 cells. Cancer cells in
the metastatic foci are positively stained by anti-E-cadherin antibody. (Courtesy of Drs. Shimpei I. Kubota, Kei Takahashi, and Hiroki R. Ueda.) See
Kubota et al. [113].
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lung adenocarcinoma [120, 121]. NKX2-1 is highly
expressed in some lung adenocarcinoma cell lines,
including NCI-H441 cells, but not in A549 cells [116].
Accordingly, E-cadherin expression is high in NCI-H441
cells, whereas it is low in A549 cells. Overexpression of
NKX2-1 in A549 cells reverses TGF-β–induced EMT,
decreases MMP-2 activity, and suppresses cell migration
and invasion. Furthermore, exogenous NKX2-1 stimulates
the expression of E-cadherin and induces the appearance of
an epithelial phenotype. Conversely, TGF-β induces the
expression of EMT transcription factors, i.e., Snail and
Slug, in A549 cells, and knockdown of NKX2-1 in NCI-
H441 cells accelerates the TGF-β-induced EMT program.
On the other hand, Smad3 inhibits binding of NKX2-1 to
the SFTPB (encoding surfactant protein B) promoter [122],

suggesting a close relationship between Smads and NKX2-
1 in the transcriptional regulation.
Transcription factor binding sites are determined by

genomic sequences, epigenetic status, and the repertoire of
binding molecules expressed in the cells. Indeed, chroma-
tin accessibility and epigenetic modifications are altered
during the EMT process [93, 123], and emerging roles of
lncRNAs in the regulation of histone modification have
been revealed. A lncRNAMEG3 is induced by TGF-β and
involved in the process of EMT in lung adenocarcinoma
cells through recruitment of polycomb repressive complex
2 (PRC2) and its accessory component jumonji and AT-
rich interaction domain containing 2 (JARID2) to the
promoter regions of CDH1 (encoding E-cadherin) and
MIR200 family genes (encoding the miR-200 family) to

Fig. 3 Roles of TGF-β signaling in lung adenocarcinoma and small cell lung carcinoma. (A) TGF-β signaling in lung adenocarcinoma. TGF-β
signaling induces the expression of SNAI1 and SNAI2 genes, encoding Snail and Slug, respectively, and regulates the expression of other target genes
involved in progression of cancer. NKX2-1/TTF-1 antagonizes the effects of TGF-β-Smad signaling. (B) TGF-β signaling in small cell lung
carcinoma (SCLC). TGF-β inhibits the expression of ASCL1/ASH1 through the Smad signaling pathway. Because ASCL1 induces cell survival,
TGF-β signaling attenuates the induction of cell survival by ASCL1. In SCLC cells, expression of TβRII (encoded by the TGFBR2 gene) is
downregulated through an epigenetic mechanism by an increase in the EZH2 expression. Thus, TGF-β signaling is suppressed in SCLC cells, leading
to enhanced cell survival in SCLC cells.

394 TGF-β signaling in cancer



induce tri-methylation of lysine 27 of histone H3 (H3K27)
[78]. In Smad signaling, the binding regions of the Smad
family in the genome are strikingly different depending on
the cellular context [124, 125]. A genome-wide analysis of
Smad3 binding regions in NCI-H441 cells demonstrates
that most of the Smad3 binding regions are shared with
NKX2-1. Further investigation revealed that NKX2-1
disrupts the Smad3-Smad4 complex in the nucleus and
dramatically alters both the binding strength and distribu-
tion of Smad3 throughout the genome (Fig. 3A) [126]. In
addition, NKX2-1 forms a complex with Smad3, but
without Smad4, and the Smad3-NKX2-1 complex reg-
ulates the expression of target genes related to other
processes of cancer, such as LMO3 [126].
Analyses of lung adenocarcinoma cells by next-genera-

tion sequencers allowed the identification of new target
molecules of TGF-β. An RNA binding motif protein
RBM47 is induced by NKX2-1 and suppressed by TGF-β,
and RBM47 functions as a tumor suppressor by inhibiting
the activity of NF-E2-related factor 2 (Nrf2), a master
regulator of various cytoprotective genes [127]. RBM47
binds to kelch-like ECH-associated protein 1 (Keap1) and
Cullin 3 mRNAs and increases their protein expression
[127]. Because Keap1 is a component of the Cullin 3-
based E3 ubiquitin ligase complex and decreases the
stability of Nrf2 protein [128], a decrease in the expression
of RBM47 results in the activation of Nrf2 in lung
adenocarcinoma cells. In contrast, a cytoplasmic protein
tuftelin 1 (TUFT1) is induced by TGF-β and functions as a
pro-tumorigenic factor. TUFT1 enhances mTOR complex
1 (mTORC1) signaling by modulating the Rab GTPase-
regulated processes through interaction with RABGAP1
[129].
Inhibition of the Smad2 activity by chaperonin contain-

ing TCP1 subunit 6A (CCT6A), with the function of
Smad3 intact, was shown to be associated with metastasis
of NSCLC cells [130]. In contrast, Smad3 activates a
transcriptional program that promotes cell survival and
cancer metastasis in NSCLC cells. ChIP-seq analysis using
A549 cells revealed differential binding of Smad2 and
Smad3 to the genome and regulation of distinct target
genes for Smad2 and Smad3, which explains their opposite
functions. Mechanistically, CCT6A directly binds to
Smad2 and inhibits the interaction of Smad2 with
Smad4. This regulatory process appears not to be restricted
to lung adenocarcinoma cells because of the expression of
CCT6A in several types of cancers.

Inactivated TGF-β signaling pathway in SCLC cells

SCLC constitutes a smaller subset of primary lung cancer.
Somatic mutations are found in TP53 and RB1 genes in
most cases [131]. Mice carrying mutant alleles for both
Trp53 and Rb1 exclusively develop SCLC by intratracheal
administration of a Cre-expressing adenoviral vector

[132]. Importantly, a lineage-specific transcription factor,
ASCL1/ASH1, specifically regulates neuronal and onco-
genic gene expression and provides tumor-initiating
capacity in SCLC cells [133, 134]. Tumors are not formed
in the absence of ASCL1 in the SCLC mouse model.
Somatic mutations in the genes involved in the TGF-β

signal transduction pathway are rare in SCLC. Thus, SCLC
mouse models related to TGF-β signaling have not been
reported. However, most SCLC cells have low expression
of TGFBR2, and downstream TGF-β signaling is sup-
pressed (Fig. 3B) [135–137]. Mechanistically, altered
epigenetic regulation of gene expression is a characteristic
of SCLC, and elevated expression of enhancer of zeste 2
(EZH2) and other PRC2 proteins are found in SCLC cells
compared with NSCLC cells [138–141]. Indeed, the
elevated expression of EZH2 contributes to the down-
regulation of TGFBR2 expression in SCLC [137]. Both
EZH2 shRNAs and an EZH2 inhibitor restore TGFBR2
expression, which in turn suppress the expression of
lineage-specific gene ASCL1 and its anti-apoptotic func-
tion via activation of Smad2 and/or 3. By using patient-
derived xenograft (PDX) samples, SCLC was classified
based on the patterns of CpG methylation. Elevated
expression of EZH2 was also observed and PDX tumor
growth was suppressed by EZH2 inhibitors [142]. EZH2
not only induces histone H3K27 tri-methylation but also
recruits DNA methyltransferases (DNMTs) by direct
interaction [143]. The expression of EZH2 correlates
with high promoter CpG methylation in the development
of SCLC among various cancers in The Cancer Genome
Atlas (TCGA) data [142]. These findings suggest central
roles of EZH2 in SCLC, partly through the suppression of
TGF-β signaling.
Heterogeneity in SCLC is related to chemoresistance of

the cancer cells, and differential expression of ASCL1 and
NEUROD1 and amplification of the MYC gene define
molecular subgroups of SCLC [134, 144]. Future analysis
of TGF-β signaling in SCLC, therefore, should focus on
this aspect with evaluation of the therapeutic efficacy of
EZH2 inhibitors.

Pancreatic cancer and TGF-β signaling

Pancreatic cancer is one of the leading causes of cancer
death, with a five-year survival of less than 5% due to its
high recurrence rate [145, 146]. The prognosis has not
improved for more than half a century [145, 147], despite
extensive research and novel insights in the field of cancer
biology. Although surgical resection provides a chance of
cure, median survival of patients in Stage IA (T1N0M0,
the size of primary tumor is less than or equal to 2 cm
without any lymph node involvement or distant metastasis)
is still approximately 24 months [148]. The major
histological subtype is pancreatic ductal adenocarcinoma
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(PDAC), which accounts for over 90% of pancreatic
cancer. PDACs originate from pancreatic ductal epithelium
and evolve from premalignant lesions to fully invasive
cancer with successive accumulation of gene mutations
[149, 150]. Since SMAD4 is identical to a putative tumor
suppressor gene “deleted in pancreatic cancer locus 4,
DPC4” [151], there have been extensive efforts to clarify
the impact of this pathway on the development of PDACs.

Multistep progression of PDACs

Similar to colorectal cancers, in which the multistep
progression of cancer is well described and is supported by
organoid models [152–155], PDACs are thought to
develop through a particular sequence of genetic altera-
tions: KRAS activation followed by loss of function of
cyclin-dependent kinase inhibitor 2A (CDKN2A) and then
mutations in TP53 and SMAD4. The most common
precursor lesions of PDACs are known as pancreatic
intraepithelial neoplasia (PanIN), which is graded from 1
to 3 depending on the extent of dysplasia and the risk of
malignant transformation (Fig. 4A) [149]. Genomic
sequencing confirmed that the most common genetic
alterations in low-grade dysplasia PanIN-1 lesions are

mutations in KRAS, whereas KRAS wild-type PDACs are
rare (less than 7%) [156, 157]. The mutant KRAS gene
produces a constitutively active form of Ras, which results
in aberrant activation of proliferative and survival signal-
ing pathways. During tumorigenesis, inactivation of tumor
suppressor genes is required to further drive clonal
expansion. Inactivating mutations in CDKN2A, encoding
the cell cycle regulator p16INK4A protein, can be detected as
early as PanIN-1/2 lesions [157, 158]. In addition,
mutations in TP53 and SMAD4 genes can be detected in
the PanIN-3 stage, or severe dysplasia/carcinoma in situ
[157, 159]. TP53 is abnormal in approximately 50% – 75%
of tumors with most changes as mutations rather than
deletions. SMAD4 is inactivated in approximately 20% –
50% of tumors. These four genes are major genes with
alterations found in PDACs, while recent exome and
whole-genome sequencing data revealed recurrent somatic
mutations in genes such as ARID1A, RNF43, and RREB1,
but to lesser extents [160–163]. It is of note that
examination of the genomes of 107 PDAC patients
showed that two or more somatic alterations occurred
simultaneously rather than sequentially [164]. Although
the sequential stepwise-progression model has been well-
established, it is also possible that a few catastrophic events

Fig. 4 Roles of TGF-β signaling in pancreatic carcinoma. (A) Multistep progression of pancreatic carcinoma. Genes involved in progression of
pancreatic carcinoma and the frequencies of abnormalities of these genes are shown [239]. Red, oncogene; blue, tumor-suppressive genes. (B) Tumor-
suppressive and pro-tumorigenic activities of TGF-β during the development of pancreatic carcinoma.
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like chromothripsis strongly promote the evolution of
PDACs.

Tumor-suppressive roles of TGF-β in PDACs

TGF-β is a bifunctional regulator during tumorigenesis,
which functions as a tumor suppressor in early stages and
as a tumor promoter in later stages of cancer [8, 41]. A
growing body of evidence demonstrates that the bifunc-
tional nature of TGF-β involves both cell-intrinsic and
environment-mediated mechanisms. In several cancers, for
example, inactivation of SMAD4 gene serves as the cell-
intrinsic switch, causing the escape from the cytostatic
effects of TGF-β. However, Smad4-intact cancer cells,
such as breast cancer cells, have a different cell-intrinsic
switch of TGF-β signaling: accumulation of pro-oncogenic
stimuli switches and stabilizes the TGF-β-induced migra-
tory and invasive phenotype of Ras-transformed mammary
epithelial cells [165].
During the course of PDAC development, TGF-β

signaling functions as a tumor suppressor by inducing
cell cycle arrest and apoptosis of epithelial cells, thereby
preventing clonal expansion caused by Ras activation [34].
Indeed, several components of the TGF-β signaling
pathway, not only SMAD4 (DPC4) [151], but also
TGFBR2, TGFBR1 (ALK-5) [166], and ACVR1B (also
known as ALK-4) [167], become genetically inactivated in
PDACs. Recent exome and whole-genome sequencing
data confirmed these findings and showed that the
frequency of the latter three mutations is approximately
5% or less [160–163]. Intriguingly, SMAD4 gene inactiva-
tion is associated with a poorer prognosis [168, 169],
indicating that the TGF-β-Smad4 signaling functions as a
tumor suppressor in PDACs (Fig. 4B).
The tumor-suppressive role of TGF-β is well recapitu-

lated in PDAC mouse models, which use the pancreatic
and duodenal homeobox gene 1 (Pdx1) or pancreatic
transcription factor 1a (Ptf1a, or p48) promoter system
[170]. Endogenous expression of oncogenic KrasG12D

serves to initiate PanIN, which can spontaneously progress
to fully invasive and metastatic disease at a low frequency
[170]. Pancreas-selective Smad4 knockout on top of the
Kras activation results in the rapid development of
pancreatic cystic neoplasms, i.e., intraductal papillary
mucinous neoplasms (IPMNs) [171] and mucinous cystic
neoplasms (MCNs) [172], although Smad4 inactivation
alone causes no pancreatic neoplasm formation. On the
other hand, in vivo disruption of TGF-β signaling in the
pancreas by Smad7 overexpression induces premalignant
ductal lesions through promoting proliferation of ductal
and acinar cells [173]. Interestingly, inactivation of Tgfbr2
has stronger effects than inactivation of Smad4 [174]. It
suggests that Smad4-independent cellular signaling acti-
vated by TβRII also hinders clonal expansion. It is of note

that tripartite motif containing 33 (TRIM33, also known as
transcriptional intermediary factor-1γ or TIF1γ, or ecto-
dermin), which forms a complex with Smad2 and/or 3
without Smad4 [175], functions as a tumor suppressor
during the course of PDAC development [176].

Pro-tumorigenic functions of TGF-β in pancreatic
cancer

In the later stage of pancreatic cancer development, TGF-β
functions as a tumor-promoting factor. Cancer cells secrete
larger amounts of TGF-β1 than their normal cell counter-
parts do, and this overexpression is strong in the later
stages of pancreatic cancers and other malignancies (Fig.
4B) [177]. Consistently, inhibitors for the TGF-β signaling
components possess therapeutic potential against pancrea-
tic cancers, at least those in orthotopic mouse models, e.g.,
a soluble TβRII protein [178], TβRI kinase inhibitor SD-
208 [179], TβRI inhibitor SB431542 [180], dual inhibitor
of TβRI/II kinase LY2109761 [181], and neutralizing
antibody against TβRII [182]. In addition, TβRI kinase
inhibitor Galunisertib (LY2157299) is now in phase I/IB
clinical trials in Japanese patients with metastatic or locally
advanced pancreatic cancer, with promising preliminary
results [183, 184]. Because the Smad4-dependent signal-
ing pathway may function as a tumor suppressor, Smad4-
independent intracellular signaling in cancer cells or
environment-mediated mechanisms can explain the
tumor-promoting effects of TGF-β, which may be blocked
by these inhibitors.
The molecular mechanisms regarding how TGF-β

promotes tumor progression in the later stage are still
elusive. In general, TGF-β enhances migration, invasion,
and survival of tumor cells through stimulating ECM
deposition and tissue fibrosis, perturbing immune and
inflammatory function, stimulating angiogenesis, main-
taining the stem cell-like properties of CICs, and
promoting EMT [12, 53, 64, 185]. However, some of
these characteristics are regulated through the Smad
pathway, and Smad4 loss attenuates them. For example,
activin and Nodal drive self-renewal and tumorigenicity of
pancreatic cancer stem cells in a Smad4-dependent manner
[186], whereas TGF-β impairs the activity of pancreatic
CICs [187]. Since SMAD4 mutations predict a poor
prognosis in patients with PDACs [168, 169], the latter
case may apply to patients with PDACs.
In addition, pancreatic cancer cell lines with Ras-

activation have been widely used to analyze TGF-β-
induced EMT. As discussed in the EMT section, the gene
induction of transcription factors associated with EMT
such as Snail, Slug, ZEB1, and ZEB2 are usually Smad4-
dependent. Since Smad4 is a tumor suppressor, the
induction of EMT through TGF-β-Smad4 is not necessa-
rily associated with aggressiveness of the disease. Indeed,
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Smad4-deleted cancer cells were reportedly resistant to
induction of EMT by TGF-β in vitro, although these cells
were highly proliferative in vivo [188]. It was also claimed
that complete loss of Smad4 in mice was associated with
elevated levels of Runx3, which increased the migratory
and metastatic potential of PDACs. On the other hand,
another report proposed a detailed role for Smad4 in
switching TGF-β signaling [189]. They suggest that in
PDAC cells with Ras activation, TGF-β induces the
expression of SOX4 in a Smad4-independent manner,
which cooperates with the Krüppel-like factor 5 (KLF5)
and functions as a pro-oncogenic factor. In the Smad4
intact cells, KLF5 is repressed in a Smad4-dependent
manner, resulting in the switches of the role of SOX4 to a
tumor suppressor, which induces apoptosis [189]. Inter-
estingly, in PDACs with chromosomal rearrangement,
SMAD4 loss is accompanied by a gain in a region of
chromosome 18 that harbors GATA6 [164]. Thus, several
transcription factors are induced in SMAD4-deleted
PDACs, some of which empower the cells to acquire
more migratory and more metastatic characteristics.

Induction of desmoplasia in pancreatic cancer

Abundant stroma, commonly referred to as desmoplasia, is
one of the characteristics of PDACs. The stroma is
composed of excessive deposition of ECM and cellular
components, such as fibroblasts, myofibroblasts, pancrea-
tic stellate cells (PSCs), and vascular and immune cells.
Although it is still under debate whether depletion of
stroma is protective or pathogenic [190], the stroma plays
essential roles in promoting pancreatic cancer cell
progression and determining response to therapy. In
addition, several stroma-targeted therapies are already in
clinical trials [191]. TGF-β is established as a key pro-
fibrotic cytokine, and the effects of TGF-β on stromal cells
have been reviewed elsewhere [46]. In mouse orthotopic
models, the TβRI inhibitor SB431542 was shown to
selectively target stromal cells, not cancer cells, within the
pancreatic tumor [180]. Moreover, it was recently shown
that the application of TβRII neutralizing antibody mainly
targets stromal cells that participate directly in the tumor
cell phenotype and pancreatic cancer progression [182].
The tumor miocroenvironment plays critical roles in the
induction of highly malignant pancreatic cancer cells and
confers a mesenchymal phenotype to these cells [192].
Intriguingly, several members of the nuclear receptor
superfamily, such as the vitamin D receptor (VDR), have
been reported to repress fibroblast activation induced by
TGF-β [193]; activation of stromal VDR antagonizes TGF-
β-Smad3 and overcomes chemotherapeutic drug resistance
[194]. Moreover, VDR ligand plus gemcitabine enhances
survival in a PDAC mouse model [194]. Thus, the
enhanced TGF-β signaling in stroma may explain the
tumor-promoting effects of TGF-β in PDACs.

Extracellular regulation of TGF-β signaling

TGF-β is overexpressed in advanced cancers, and
accumulating evidence demonstrates that TGF-β drives
the progression of most solid tumors. Elevated TGF-β
expression correlates with tumor progression and poorer
prognosis. Thus,various inhibitors for TGF-β signaling,
e.g., ligand trap using the extracellular domain of TβRII,
neutralizing antibodies against TGF-βs or TβRII, and
inhibitors for TβRI and/or TβRII kinases, have been
developed, and some of them are in clinical trials [103,
195].
Platelets store large amounts of TGF-β1 [196], and

serum levels of TGF-β1 are affected by the number of
platelets. TGF-βs are produced as latent forms, and active
forms of TGF-βs are below the detectable levels under
physiological conditions; therefore, total levels of TGF-β,
after transient acidification of samples, are usually assessed
using enzyme-linked immunosorbent assay (ELISA) and
other methods. Circulating plasma levels of TGF-β1 are
increased in patients with breast and colorectal cancer and
decreased following surgical resection of tumors [197,
198]. However, TGF-β in platelets may also play critical
roles in cancer progression. During the process of cancer
metastasis, platelets adhere to tumor cells in blood
circulation, and function as a source of TGF-β; thus,
platelet contact induces a mesenchymal phenotype in
cancer cells and enhances cancer metastasis [199].

Latent TGF-βs

TGF-βs are 25-kDa disulfide-linked dimeric proteins. The
mature proteins of TGF-β1, -β2, and -β3 are highly
conserved in their amino acid sequences, including nine
conserved cysteine residues [1, 5]. TGF-βs are produced as
large precursor polypeptides composed of three segments:
N-terminal signal peptides that are involved in secretion of
the TGF-β precursors, large precursor segments known as
latency-associated peptides (LAPs), and the C-terminal
TGF-β monomer peptides that form the mature dimeric
TGF-β proteins (112 amino acid residues for TGF-β1, -β2,
and -β3) (Fig. 5A). Only some of the TGF-β family
members, including TGF-β1, -β2, and -β3 and myostatin/
GDF-8, are produced as latent forms [200].
The amino acid sequences of LAPs are not highly

conserved among TGF-β1, -β2, and -β3 (249, 281, and 279
amino acid residues for β1-, β2-, and β3-LAP, respectively)
compared to the mature TGF-β monomer peptides. The
LAPs are cleaved from the mature TGF-β peptides by a
furin protein convertase. However, the LAPs remain non-
covalently associated with the mature TGF-β dimer and
form the small latent complexes (SLCs) (Fig. 5B). The
SLC is thus unable to bind and activate the TGF-β
receptors. The SLC binds to other proteins by disulfide
bonding through one of the cysteine residues in the LAP
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(Cys33) and forms the large latent complex (LLC). At least
two different groups of proteins have been reported to bind
to the LAPs, i.e., LTBPs (LTBP-1, -3, and -4) and GARP/
LRRC32 (Fig. 5C).
LTBPs are involved in TGF-β functions, such as

incorporation into the ECM and storage for future
activation [15, 201]. LTBPs are broadly expressed in
various cells and tissues. LTBPs are structurally related to
fibrillin-1, which is a component of extracellular micro-
fibrils. Fibrillins interact with LTBPs and keep the latent
TGF-β complexes bound to elastic microfibrils [202].
Abnormalities in the FBN1 gene (encoding fibrillin-1) are
responsible for Marfan syndrome [1].

Activation of latent TGF-β1

Activation mechanisms of latent TGF-β have been
extensively studied for TGF-β1. β1-LAP contains a
proline-rich loop termed the latency lasso, which encapsu-
lates the TGF-β1 monomer peptide, thereby keeping TGF-
β1 in an inactive form [203]. β1-LAP and β3-LAP contain
an Arg-Gly-Asp (RGD) sequence, the recognition motif
for integrins, and bind to cell surface integrins, particularly
αvβ1, αvβ6, and αvβ8, while LTBPs anchor the latent
TGF-β complex in the ECM [204]. Biological and
structural studies demonstrate that the molecular tension
mediated by the physical stretch between the β-LAP-

Fig. 5 Structure of pre-pro-TGF-β1 and latent forms of TGF-β. (A) Structure of pre-pro-TGF-β1. Red arrows, proteolytic processing sites; blue
asterisks, cysteine residues, which form intramolecular disulfide bridges; red asterisks, cysteine residues, which form intermolecular disulfide bridges;
green asterisk, cysteine residue, which forms a disulfide bridge with LTBPs or GARP; RGD, integrin recognition sequence. (B) Small latent TGF-β
complex (SLC). TGF-β is produced as a latent form, consisting of the dimeric LAP proteins, which are non-covalently associated with the dimeric
mature TGF-β. The RGD integrin recognition sequence is present in TGF-β1 and β3, but not in β2. Latent TGF-β is activated by various mechanisms;
among those, mechanisms of activation by integrins have been best-characterized (see text). (C) Structures of the large latent TGF-β complexes
(LLCs). SLCs are bound to LTBPs (LTBP-1, 3, and 4) or GARP. LTBPs are comprised of multiple EGF-like domains and 8-cysteine domains. The
latent TGF-β complexes with LTBPs are released from the producer cells. LTBPs are associated with ECM proteins, which are involved in activation
of the latent TGF-β. GARP is a transmembrane protein with a horseshoe-like structure. The latent TGF-β complex with GARP is thus anchored to the
cell surface. The extracellular domain of GARP is comprised of multiple leucine-rich repeats.
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integrin interaction at the cell surface and LTBP anchorage
in the ECM is responsible for the release of active TGF-β1
from the latent TGF-β1 complex [203–205]. It should be
noted that the RGD sequence is not present in β2-LAP, and
therefore, the latent TGF-β2 complex may not be activated
by the interaction with integrins. Latent TGF-β complexes
are also activated by other mechanisms, such as proteolytic
cleavage of the LAPs, action of reactive oxygen species
(ROS), ionizing radiation, and thrombospondin-1 [15].

GARP anchors the latent TGF-β complex on the cell
surface

The GARP/LRRC32 gene encodes an 80-kDa transmem-
brane protein, comprised of an extracellular domain with a
horseshoe-like structure, almost entirely made of leucine-
rich repeat sequences, followed by a transmembrane
domain, and a short intracellular domain [206, 207].
GARP is expressed in various tissues and cells, including
megakaryocytes/platelets, endothelial cells, lymphocytes,
and mesenchymal stromal cells [207]. Notably, GARP is
co-expressed with latent TGF-β on the surface of activated
Tregs but not on helper T cells, and is thus regarded as a
specific marker of activated Tregs [16, 17, 208]. miRNAs
that target a short region of the 3' UTR of GARP have been
identified in stimulated human Tregs, including miR-142-
3p, which represses the expression of GARP [209, 210].
Garp-deficient mice do not exhibit apparent abnormal-

ities in major organs; however, they show defective
palatogenesis and die within 24 hours after birth [211].
Interestingly, the failure to develop the secondary palate
and reduction of Smad2 phosphorylation without other
defects in Garp-deficient mice are similar to the phenotype
of Tgfb3-null mice. Although GARP forms a complex with
the SLC containing TGF-β1 in human Tregs [212], GARP
is co-localized with TGF-β3 in the medial edge epithelial
cells in mouse embryos, and it directly interacts with latent
TGF-β3, suggesting that GARP plays a crucial role in
regulation of TGF-β3 signaling during mouse develop-
ment.

Immunosuppressive roles of GARP through the
regulation of TGF-β

As described in the earlier section, TGF-β regulates the
differentiation and function of multiple types of immune
cells, which in turn inhibits immune responses [56].
Among them, TGF-β plays a central role in conversion of
naïve T cells into Tregs. TGF-β induces and maintains the
expression of the master transcription factor of Tregs,
forkhead box P3 (Foxp3) [213]. TGF-β induces the
expression of Foxp3 through a Smad2 and Smad3-
dependent manner [214]. Analyses of the TCGA-skin
cutaneous melanoma dataset and TCGA-breast cancer
dataset revealed correlation between TGF-β signaling and

FOXP3 expression [215]. IL-2 signaling through STAT5 is
essential for the development of Foxp3+ Tregs [216].
Foxp3 inhibits secretion of pro-inflammatory cytokines
and enhances the expression of anti-inflammatory cyto-
kines as well as immune checkpoint molecules, including
cytotoxic T lymphocyte-associated molecule-4 (CTLA-4).
In addition, TGF-β released from Tregs acts on effector T
cells (Teffs) in a paracrine manner, which inhibits the
proliferation and differentiation of Teffs.
GARP is expressed on the surface of Tregs and tethers

latent TGF-β1 on the cell surface. Similar to LTBPs,
GARP directly binds to the SLC of TGF-β by disulfide
linkages through Cys192 and Cys331 of GARP and Cys33
of pro-TGF-β1 as well as by noncovalent association,
which prevents the secretion of TGF-β1 [217]. Integrin
αvβ8 dimers are present on stimulated Tregs, recognize the
RGD motif in β1-LAP, and release active TGF-β1 from the
latent TGF-β1-GARP complex [212]. GARP overexpres-
sion in T cells induces expression of Foxp3 and enhances
their immunosuppressive functions, while silencing of
GARP in Tregs attenuates their suppressive activity [218,
219].

GARP and human diseases

In accordance with these findings, immunosuppressive
roles of GARP are implicated in various inflammatory
diseases. GARP is expressed on megakaryocytes/platelets,
and may be important for platelet-endothelium interactions
[220]. Impaired immunosuppressive functions of GARP+

Tregs have also been reported to be involved in acute
coronary syndrome [221, 222].
Increasing evidence has revealed the roles of GARP in

cancer progression. Amplification of the GARP gene has
been found in colorectal cancer, head and neck cancer, and
breast cancer [223]. Aberrant expression of GARP is
observed in human breast, lung, and colon cancers and it
promotes immune tolerance by activating latent TGF-β in
the tumor microenvironment [224]. Moreover, the fre-
quency of GARP+Foxp3+ Tregs is significantly higher in
patients with advanced hepatocellular carcinoma than in
controls, and the levels of GARP expression are elevated
on the Foxp3+ Tregs of these patients [225], suggesting
that increased expression of GARP promotes cancer
progression through activation of immunosuppressive
functions of Tregs.

Application of GARP for cancer immunotherapy

Targeting immune checkpoints, such as CTLA-4 or
programmed death-1 (PD-1)/PD-1 ligand (PD-L1) has
introduced a paradigm shift in recent basic and clinical
cancer research [226]. Since only some patients respond to
the immune checkpoint therapies, an important strategy to
improve their efficacies may be combination with other
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immune therapies. Inhibition of TGF-β signaling is
potentially a very interesting way to treat cancers, and
many preclinical and clinical trials are ongoing [195].
Thus, combination of the immune checkpoint therapy with
inhibition of TGF-β signaling may be an attractive strategy
to treat cancers, especially those resistant to current
immune checkpoint inhibitors. Recent studies revealed
that co-administration of anti-PD-L1 antibody and TGF-β
inhibitor (Galunisertib or anti-TGF-β antibody) showed
high anti-tumor immunity and tumor regression [227,
228]. Moreover, enhanced anti-tumor activities could be
observed by using bifunctional fusion proteins containing
the PD-L1 (or CTLA-4) antibody and the TβRII
extracellular domain [215, 229].
Since TGF-β exhibits a wide variety of biological

activities, methods to selectively inhibit certain activities of
TGF-β are desirable to provide an opportunity to inhibit
tumor progression without severe side effects. Indeed, the
TGF-β receptor kinase inhibitor Galunisertib has side
effects on the heart [230]. Considering its immunoregula-
tory functions, GARP is thus expected to be a potential
target for cancer treatment. When Tregs are transfected
with an siRNA targeting GARP, inhibition of helper T cell
proliferation by human Tregs is attenuated [17]. Platelet-
specific deletion of the Garp gene in mice diminishes
TGF-β activity within the tumor and enhances immunity
against both melanoma and colon cancer [231], suggesting
that the inhibition of GARP-TGF-β axis through a
combination of immunotherapy and platelet inhibitors
may be a new therapeutic strategy for cancer. Anti-GARP
monoclonal antibodies that recognize a critical epitope for
the function of the GARP-pro-TGF-β1 complex (including
amino acids 137 – 139 of GARP) were generated and these
antibodies inhibit the production of active TGF-β1 by
human Tregs and their immunosuppressive activity in vivo
[232]. In addition, the therapeutic efficacy of GARP-
specific monoclonal antibodies was evaluated using
immunocompetent mice [224]. GARP overexpression
promotes Treg activity and cancer progression in breast
cancer-bearing mice, whereas administration of GARP-
specific monoclonal antibodies attenuates the progression
of cancer metastasis. Most recently, antibodies against the
integrin β8 subunit as well as antibodies against GARP
have been shown to inhibit the immunosuppression
induced by human Tregs in a model of xenogeneic graft-
versus-host disease [212]. Administration of these anti-
bodies alone or in combination with immune checkpoint
inhibitors may improve the efficiency of cancer immu-
notherapy.

Conclusion and perspectives

TGF-β is a multifunctional cytokine that regulates various

cellular responses. Recent findings reveal that TGF-β
functions as a pro-tumorigenic factor in various types of
cancers. Thus, it is expected that inhibition of TGF-β
signaling may lead to prevention of the cancer progression.
In this review, we have discussed the roles of TGF-β in
lung and pancreatic carcinomas, but TGF-β also acts in
other cancers, including breast cancer (reviewed in [233–
235]), colorectal cancer, melanoma, leukemia/myelodys-
plastic syndromes, and glioblastoma [9, 236]. TGF-β
activities occur in a context-dependent manner and some
tissue-specific molecules may regulate TGF-β activities.
Therefore, further studies are required to understand the
functional regulation of TGF-β in each type of cancer.
In the present study, we have shown intriguing

mechanisms of the activation of latent TGF-β complexes.
Although activation mechanisms of the latent TGF-β
complexes with LTBPs, and more recently with GARP,
have been elucidated, latent TGF-β complexes may be
associated with other molecules. TGF-β2 has been
reported to be increased in some cancers [237, 238];
however, the mechanisms of activation for the latent TGF-
β2 complex have been poorly investigated. In addition,
although the functions of GARP in Tregs have recently
been elucidated [212], its function in platelets and other
cells need clarification. It is thus intriguing to characterize
the latent TGF-β complexes and determine how these
complexes are activated under physiological and patholo-
gical conditions.
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