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Abstract

Manual and semi-automatic identification of artifacts and unwanted physiological signals in large intracerebral electroenceph-

alographic (iEEG) recordings is time consuming and inaccurate. To date, unsupervised methods to accurately detect iEEG

artifacts are not available. This study introduces a novel machine-learning approach for detection of artifacts in iEEG signals

in clinically controlled conditions using convolutional neural networks (CNN) and benchmarks the method’s performance

against expert annotations. The method was trained and tested on data obtained from St Anne’s University Hospital (Brno,

Czech Republic) and validated on data from Mayo Clinic (Rochester, Minnesota, U.S.A). We show that the proposed technique

can be used as a generalized model for iEEG artifact detection. Moreover, a transfer learning process might be used for retraining

of the generalized version to form a data-specific model. The generalized model can be efficiently retrained for use with different

EEG acquisition systems and noise environments. The generalized and specialized model F1 scores on the testing dataset were

0.81 and 0.96, respectively. The CNN model provides faster, more objective, and more reproducible iEEG artifact detection

compared to manual approaches.
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Introduction

In general, EEG artifacts and undesired signals can be gener-

ated by biological phenomena (eye blinks, head movement,

muscle activity, cardiac signals), acquisition instrumentation

(signal discontinuities, transient filter effects), or external

sources (electromagnetic inductive noise). Automated detec-

tion and removal of scalp EEG artifacts have been widely

explored. Scalp EEG artifacts can be detected by signal pro-

cessing and statistical methods (Delorme et al. 2007; Gerla et

al. 2017), wavelet transform time-frequency methods (Bern

2015; Kiamini et al. 2008; Huang et al. 2014), Hilbert-

Huang transform (Yan et al. 2008; Wang and Su 2014),

spatio-temporal signal processing (Liu and Yao 2006) (in

cases were the electrode spatial information is known), adap-

tive filtering (Somers and Bertrand n.d.), independent compo-

nent analysis (Islam et al. 2016; T. Radüntz et al. 2015;

Delorme et al. 2007), or machine learning methods (Thea

Radüntz et al. 2017).

However, methods for automatic detection of artifacts that

occur in intracerebral EEG (iEEG) have received less atten-

tion. Historically, iEEG recordings were assumed to be large-

ly, immune to eye movement and muscle artifacts. This as-

sumption has more recently been proven incorrect (Ball et al.

2009; Jerbi et al. 2009; Kovach et al. 2011) and there is now a

generally recognized need for automated, unbiased, methods

to remove iEEG artifacts (Hu et al. 2007), particularly in wide-
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bandwidth (Worrell et al. 2012) and microwire recordings

(Stead et al. 2010). In general, iEEG can be contaminated by

similar artifact sources to scalp EEG, but the effect tends to be

weaker than in the scalp electrodes and may be predominantly

present in contacts located near the scalp or near cranial nerve

foramen (muscle artifacts, eye movements, electrocardio-

graphic signals). Scalp EEG artifacts might also be transferred

to intracranial electrodes by use of a scalp or epidural common

reference. There also exist artifacts introduced specifically by

iEEG instrumentation (subdural and depth), such as move-

ment of electrode in the tissue (e.g. by natural pulsatile move-

ment of the brain).

The primary application of iEEG is evaluation of drug re-

sistant epilepsy (DRE). Therefore, the electrodes are often

placed in pathological brain tissue generating pathological

activity. Hence the iEEG recording contains both pathological

and physiological activity (Fig. 1), and the pathological activ-

ity (e.g. interictal spikes and high-frequency activity) share

some characteristics with common artifacts. Most iEEG signal

processing studies use expert visual review or simple automat-

ed artifact rejection approaches. For example a method for

detection of noise-free segments based on estimation of line

length in bandpass filtered data was published in (Gliske et al.

2016), however detector performance (Recall and PPV) is not

specified. More sophisticated techniques using independent

component analysis for removing of scalp reference artifacts

from iEEG signals have been explored but are not compre-

hensively validated (Hu et al. 2007). Recording iEEG over

multiple days with high sampling rates (1 kHz to 32 kHz)

and high channel counts (256) creates large datasets that make

expert visual scoring nearly impossible. Automation and us-

age of modern deep-learning techniques with strong pattern

recognition capabilities may be capable of providing an accu-

rate, automated method for iEEG artifact identification.

Convolutional neural networks (CNN) were originally de-

signed for computer vision and character recognition by

Lecun (Lecun and Bengio 1995). Since their invention,

CNNs have gained in effectiveness and popularity, driven by

increasing computing power and graphical processing unit

(GPU) advances. In recent years, deep learning techniques

have been shown to significantly improve classification tasks

in the scientific and industrial fields (Krizhevsky et al. 2012).

In comparison with traditional machine learning techniques

convolutional neural networks (CNNs) do not require manual

feature extraction. Moreover, CNNs exhibits translational in-

variance, which gives them ability to localize given patterns

independently on location in the given image. In general, we

can use this technique for classification of time-series. Time-

series might be treated as 1D image or some time-frequency

transformations (Fourier transform or Wavelet transform)

might be used for transformation from signal to image.

Lastly, CNNs were also proven to work with 1D signals in

fields like speech recognition (Zhang et al. 2017). Regarding

given facts, CNNs exhibits strong potential to be used in bio-

logical signal processing.

More recently, CNNs have been used in biological time

series signal processing, including Electrocardiogram

(Kiranyaz et al. 2016; Rahhal et al. 2016), Polysomnography

(Supratak et al. 2017), and electroencephalography

(Schirrmeister et al. 2017a, b). Unlike other machine learning

algorithms that use EEG frequency, spatial and temporal fea-

tures as inputs, CNNs can learn directly from the data without

the need for feature identification and extraction, which can be

time consuming and may introduce bias into the machine

learning model. The downside of CNN methods has

been the need for large amounts of expert-annotated

data required for training. Given the excellent perfor-

mance by CNNs in similar applications it seems reason-

able to assess the capability of these networks for

rejecting recording artifacts in iEEG data.

The aim of this study is to develop and validate

convolutional neural networks (CNN) for fully automated

iEEG noise detection. This research is focused on supporting

detection of high frequency oscillations (HFO) and

Fig. 1 Example of pathological

activity seen in epileptogenic

brain, and characterized as a sharp

wave transient. The blow up of

the pathological transient shows a

high frequency oscillation (HFO)

riding on spike peak

226 Neuroinform (2019) 17:225–234



localization of epileptiform activity. For this reason, this meth-

od must avoid mutual misclassification between pathological

activity and artifacts. Therefore, this algorithm is designed to

meet the condition. The proposedmethod automates, labelling

artifacts and noise in iEEG, and can significantly improve pre-

processing in large studies with high sampling rates and chan-

nel counts. The proposed method not only eliminates the

subjectivness of expert interpretation, but is also significantly

faster. Here we describe a method that provides independent

detections for each channel separately and generates an arti-

fact probability matrix (APM) that offers visual feedback of

automated detections. Lastly, we demonstrate the method can

be generalized to other iEEG acquisition systems with a lim-

ited amount of additional training data to characterize the ac-

quisition system specific artifacts.

Material and Methods

Data Recording

We retrospectively analyzed iEEG data from the Department

of Neurology, St. Anne’s University Hospital (Brno,

Czech Republic) and Mayo Clinic (Rochester, Minnesota,

U.S.A). Data from St. Anne’s University Hospital consisted

of iEEG recordings obtained from 11 patients with DRE who

were undergoing evaluation for epilepsy surgery. All patients

were implanted with standard intracranial depth electrodes (5,

10 and 15 contact semi-flexible multi-contact platinum elec-

trodes (ALCIS), with a diameter of 0.8 mm, a contact length

of 2 mm, contact surface area 5.02 mm2 and inter-contact

distance 1.5 mm). A 192-channel research EEG acquisition

system (M&I; Brainscope, Czech Republic) with 25 kHz sam-

pling rate and common reference montage was used to record

30min of awake resting interictal iEEG recordings used in this

study. Raw data was filtered in the bandwidth of 2 kHz, and

downsampled to 5 kHz. The present study is carried out in

accordance with the ethical standards and the study proce-

dures were approved by St. Anne’s University Hospital

Research Ethics Committee and the Ethics Committee of

Masaryk University. All subjects gave written informed con-

sent in accordance with the Declaration of Helsinki.

Data from Mayo Clinic consisted of two-hour long iEEG

recordings obtained from 25 patients with DRE undergoing

evaluation for epilepsy surgery. Two hour data segments were

taken from the first night of patient’s stay at ICU between

1 AM and 3 AM. Data was acquired using a Neuralynx

Cheetah system (Neuralynx Inc., Bozeman MT) and sampled

at 32 kHz with hardware filter bandwidth of DC – 9 kHz.

Subsequently, an antialiasing filter was applied to the data

(Bartlett-Hanning window, 1 kHz), and data was

downsampled to 5 kHz. Patients were implanted with depth

electrodes (AD-Tech Medical Instrument Corp., Racine, WI

or PMT, Chahassen, MN). Electrodes consisted of 4 or 8

Table 1 Number of 3-s length

segments from St. Anne’s

University Hospital and Mayo

Clinic in each class based on

manual scoring by experts

St. Anne’s University Hospital Mayo Clinic

Classification category Segments in category Segments in category

Physiological iEEG 66,581 44,259

Pathological iEEG 18,184 6099

Noise and muscle activity 13,777 25,389

Power line noise (50hz/60hz) 13,825 22,420

Total 112,367 98,167

Fig. 2 Example of physiological

iEEG in channels B1-B2,

compared to muscle
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Platinum/Iridium contacts (2.3 mm long, 1 mm diameter,

spaced 5 or 10 mm center-to-center). Subdural grids and strips

are composed of 4.0 mm diameter Platinum/Iridium discs

(2.3 mm exposed) with 10 mm center-to-center distance.

This study was carried out in accordance with the recommen-

dations of the Mayo Clinic Institutional Review Board with

written informed consent from all subjects. All subjects gave

written informed consent in accordance with the Declaration

of Helsinki. The protocol was approved by the Mayo Clinic

Institutional Review Board.

Manual Artifact Detection Technique

We used a previously published (Brázdil et al. 2017) manual

detection technique for expert artifact annotations. A key as-

pect for the detection of artifacts were the power envelopes

(envelograms) in several frequencies bands and calculation of

power distribution matrices (PDM). PDMs were visually

inspected to identify artifact candidates, and these areas were

manually verified in the raw iEEG data. Although the PDM

allows inspection of all channels in a single image, subsequent

Fig. 3 Flowchart of the CNN

system. As an input of the CNN a

z-score of raw data for each 3-s

epoch was used as well as

envelograms in five different fre-

quency bands. Drop out layers,

Batch Normalization Layers and

L2 regularization is used to con-

trol for over-training. The

Artefacts Probability Matrix

(APM) was generated from a

resulting image
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verification in raw signals was also performed. Figure 1 shows

example epileptogenic pathological activity in single

channel, while Fig. 2 compares two channels with and

two without artifactual segments, in this case showing

motion and muscle artifacts.

artifacts present at same time in channels B14 and B15.

Datasets and Classes

All recorded data were used to create a labelled dataset for

future machine learning experiments. All 11 datasets from St.

Anne’s University Hospital (Czech Republic) and 25 datasets

from Mayo Clinic (USA) were manually annotated. Artifacts

and pathological activity were annotated in each individual

channel separately. Signals were examined and annotated in

SignalPlant, a free software tool for signal inspection and pro-

cessing (Plesinger et al. 2016). Data were manually scored

into one of five classes (Physiological iEEG, Pathological

iEEG, 50 Hz Line noise, 60 Hz Line noise, and Non-cerebral

artifact) and subsequently segmented into segments of 3-s

length (15,000 samples). All data segments containing patho-

logical activity (including interictal spikes, high frequency

oscillations) were set to Pathological iEEG. Segments with

power line interference (50 Hz or 60 Hz) were set to

the Line Noise class. All segments representing non-

cerebral activity (e.g. muscle, movement, machine arti-

facts etc.) were assigned to Non-cerebral artifacts. The

remaining training data segments were automatically

assigned to Physiological iEEG. The final number of

annotated examples for each class is shown in

Table 1. A selected segment length of 3 s was heuristi-

cally set to account for the fact that muscle artifacts

may span several seconds. The dataset from Saint

Anne’s hospital was then split into training (70% of

each class) and validation (30% of each class) data,

and the Mayo Clinic dataset was used for testing

(Fig. 4).

Data Preprocessing

We constructed a CNN with a matrix input layer (5 ×

15000 samples). The first row of the input matrix was a

low-pass filtered raw data segment (cutoff frequency

Fig. 5 Flowchart illustrating training for specialized model.A- Mayo

clinic dataset (Table 1), B- retraining of generalizedmodel, C- generalized

model results for out of sample testing Mayo Clinic dataset (Table 5)

Fig. 4 Flowchart illustrating

training for generalized model. A-

St. Anne’s University Hospital

(FNUSA) dataset (Table 1), B-

Mayo clinic dataset (Table 1), C-

training of generalized model, D-

generalized model results for out

of institution/out of patient testing

Mayo Clinic dataset (Table 3)
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900 Hz). Subsequent input rows consist of the following

bandpass envelograms: 20–100 Hz, 80–250 Hz, 200–

600 Hz, 500-900 Hz (Fig. 3). Envelograms were com-

puted from bandpass filtered signals using the squared

absolute value of the Hilbert transformed signal. For the

lowpass and bandpass filtering, we used 3rd order

Butterworth zero-phase filters. Each row of matrix was

normalized using a z-score to form CNN inputs.

Envelogram data were used to provide more specific

information about the frequency distribution of data for

CNN. Data ranges were selected to account for several

physiological bands in known frequency distribution of

iEEG (20–100 Hz spanning beta, low and high gamma

activity, 80–250 Hz ripples, 200–600 Hz fast ripples

and 500–1000 Hz very fast ripples) as well as for mus-

cle and motion artifacts.

Architecture of Convolutional Neural Network
and Training Methods

The CNN is a modification of a feed-forward neural network

that uses weight sharing and exhibits translation invariance.

Learning in the CNNs operates on the same principle as a

traditional feed-forward neural network where an error from

output layer is back-propagated through the network and

weights of the network are proportionally updated to the gra-

dient of error. More sophisticated descriptions can be found in

(LeCun 1988, 2015; LeCun and Kavukcuoglu 2010; Lecun

and Bengio 1995). The architecture of CNN typically consists

of convolutional layers, batch normalization layer, nonlinear-

ity mapping layer and pooling layer. These layers are stacked

several times on each other to form complex feature extraction

module. Extracted features from convolutional layers are

propagated through fully-connected layers to perform classi-

fication or regression (depending on the task). Over-fitting of

CNN is controlled by dropout layers and L2 regularization.

To create a generalized model (GM), we have used training

(70%) and validation data (30%) from St. Anne’s University

Hospital. Results for generalized model are reported based on

out of institution testing (Mayo Clinic). The generalized mod-

el was trained for classification into 3 groups: Noise and mus-

cle activity, Physiological iEEG, and Pathological iEEG. The

power line noise group was excluded due to power line fre-

quency differences between the EU (50 Hz) and USA (60 Hz).

Classification of powerline noise is introduced by retraining of

generalized model with small part of Mayo Clinic dataset

(training data) to form a specific model for Mayo Clinic data.

The setup of the CNN network is shown on Fig. 3. The CNN

was built and trained inMatlab 2017b extended by the parallel

computing toolbox, neural network toolbox, statistics and ma-

chine learning toolbox. The generalized model (GM) was

trained using training St. Anne’s University Hospital data,

and validation data (out of sample) were used to avoid

overtraining and to stop the training process (network weights

are not updated during validation process). This way, the GM

was trained until the performance on validation data started to

decline or reached 25 training epochs. Complete Mayo dataset

was used for model testing. This provides a worst case sce-

nario for classification, where model is trained on different

data than testing data obtained from another acquisition sys-

tem and under diverse measurement conditions. Results for

the trained GM are reported for cross-institution testing based

on Mayo Clinic dataset (Fig. 4).

For transfer learning (Fig. 5) we used the trained GM and

Mayo training data to generate a specialized model for Mayo

data, including 60 Hz power line noise. During the transfer

learning process, the last fully connected layer with softmax

activation function was reset to a random state with a normal

distribution. Next, we retrained the model with the Mayo

training dataset, with the learning rate of the transferred layers

set to 10% of the learning rate of last fully connected layer

with softmax activation function. Mayo clinic dataset previ-

ously used for testing of GM was divided into small training

Table 2 A confusion matrix of the generalized iEEG model (trained on St Anne’s University Hospital training dataset). Tensting was performed on

complete Mayo Clinic dataset

Automated Classification

Gold Standard Noise and muscle activity Physiological iEEG Pathological iEEG Total

Noise and muscle activity 23,253 1241 895 25,389

Physiological iEEG 3073 38,647 2539 44,259

Pathological iEEG 20 1549 4530 6099

Total 26,346 41,437 7964

Table 3 Classification results of the generalized iEEG model (trained

on St Anne’s University Hospital training dataset). Testing was performed

on Mayo Clinic testing dataset

Classification Category Recall PPV F1

Noise and muscle activity 0.91 0.88 0.89

Physiological iEEG 0.87 0.93 0.90

Pathological iEEG 0.74 0.56 0.64

Average 0.863 0.804 0.81
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(4%), small validation (4%) and testing dataset (92%) and

used for out of sample model training.

Results

Precision, recall, and F1 scores are reported below for evalu-

ation of the proposed machine learning method with an un-

balanced dataset. (each category has a different number of

observations). The confusion matrix (Table 2) shows the clas-

sification results of GM trained on St. Anne’s University

Hospital data and tested on the complete Mayo Clinic dataset

(Table 3). The confusion matrix (Table 4) shows transfer

learning results after retraining the GM onMayo training data

to be specialized for Mayo Clinic data. Note that we have used

only 4% of randomly selected data fromMayo Clinic as train-

ing dataset and another 4% as validation dataset for the trans-

fer learning process and rest of data was used as testing

dataset. The resulting average F1-scores for GM and the spe-

cialized model were F1 = 0.81 and F1 = 0.96, respectively.

Results for Recall, positive prediction value (PPV) and F1

scores for the generalized and specialized models are shown

in Table 3, Table 5.

Artifact Probability Matrix and Pathology Probability
Matrix

In order to provide a graphical method for interpretation of

results, we generated an Artifact Probability Matrix (APM,

Fig. 6) and a Pathology Probability Matrix (PPM, Fig. 7) as

an alternative to the PDM discussed in (Brázdil et al. 2017).

Matrices consist of blue background with yellow dots (stripes)

that indicate a probability higher than 95% of artifact or pa-

thology in the corresponding iEEG data segment. Each row

denotes a different electrode and each column a 1-s iEEG

epoch. The CNN model classifies a 3 s segment with overlap

of 2 s, and the probability is assigned to the center 1 s span of

the segment. This overlap method is used in order to make

sure that algorithm does not miss events localized between

two windows. Areas classified as artifacts can be easily local-

ised by visual inspection of APM or by fully-automatic image

processing procedures. The fully-automatic method can for

example use connected component labelling and morpholog-

ical operations on the image to select most significant artifact

or pathological data segments in iEEG record. Because all

automated detections are electrode specific, all detections in

each channel are independent from other channels.

Discussion

We trained a generalized CNN model with a training dataset

from one institution and tested on a separate dataset from

another institution. We showed that a generalized CNNmodel

can be used for iEEG classification with data acquired by

different acquisition systems with different parameters of

measurements. Most importantly, the general model could

be optimized using a relatively small amount of data from

the second acquisition system. This produced better perfor-

mance of the model that was retrained by a small amount of

labelled data (4%) from the new institution. Conventionally,

CNNs require large datasets for training, and this can be a

significant limitation if the training data requires time consum-

ing annotation of the primary data, as in the case here of iEEG.

Here we show that after training the GM using a large initial

training dataset, the CNN can be retrained for a different ac-

quisition system (Neuralynx, Inc.) and recording environment

(Mayo Clinic, USA) with modest data requirements. By train-

ing the generalized model on data from St. Anne’s University

Hospital, and enhancing and retraining it with a relatively

small amount of labelled Mayo data, we obtained a specific

Table 4 A confusion matrix of the specialized Mayo Clinic data model (generalized model retrained by small Mayo Clinic training dataset). Testing

was performed on Mayo Clinic testing dataset

Automated Classification

Gold Standard Power line noise (60hz) Noise and muscle activity Physiological iEEG Pathological iEEG Total

Power line noise (60hz) 19,949 171 487 19 20,626

Noise and muscle activity 44 23,084 183 47 23,358

Physiological iEEG 87 531 39,625 475 40,718

Pathological iEEG 0 29 454 5128 5611

Total 20,080 23,815 40,749 5669

Table 5 Classification results of the specialized Mayo Clinic data

model (generalized model retrained by small Mayo Clinic training

dataset). Testing was performed on Mayo Clinic testing dataset

Classification Category Recall PPV F1

Power line noise (60hz) 0.96 0.99 0.98

Noise and muscle activity 0.98 0.96 0.97

Physiological iEEG 0.97 0.97 0.97

Pathological iEEG 0.91 0.90 0.90

Average 0.96 0.95 0.96
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generalized model using a small amount of iEEG data mea-

sured under different conditions and acquisition system. This

approach achieved a mean F1 score of 0.81 with the general-

ized CNN model and 0.96 with the Mayo Clinic data special-

ized model.

The resulting solution for automated labelling of large

datasets provides objective and fast artifact detection com-

pared to manual approaches. The method used feature extrac-

tion from raw iEEG data, and power envelopes from several

frequency bands as additional input to the CNN. In order to

prevent mutual misclassification of artifacts and pathological

activity (typically interictal epileptiform spikes and high-

frequency oscillations), we also trained the CNN for

classification of segments that were manually classified to

gold standard group as pathological local field potentials with-

out specifying any pathology type. However, classification of

specific pathological segments is possible and will be the sub-

ject of further research.

The results from Tables 2 and 3 describe the system behav-

iour on completely unseen data from a different institution.

Those results represent worst case scenario when patients’

data are obtained from different acquisition systems.

Moreover, the model was tested on patients likely with differ-

ent behavioural states (awake vs sleep), which also have dif-

ferent characteristics. Results show low mutual misclassifica-

tion between noise and pathological iEEG, this successfully

Fig. 7 Example of binarized pathology probability matrix (PPM). Yellow stripes indicate patology segments with a probability higher than 95%.Y-axis

shows iEEG channels and X-axis shows time in seconds

Fig. 6 Example of binarized Artifacts ProbabilityMatrix (APM). Yellow stripes indicate artifacts with a probability higher than 95%.Y-axis shows iEEG

channels and X-axis shows time in seconds
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fulfils the requirement for further HFO analysis. On the other

hand, mutual misclassification between physiological iEEG

and pathological iEEG is higher, but in expected range (not

purpose of proposed detector). This observation is reasonable

regarding a fact that boundaries between physiological and

pathological iEEG cannot be clearly defined in all the patients

and there is also high inter-rater variability for these two clas-

ses in ranking real data.

We suggest that retraining of a generalized CNN model to

create a data specialized model is needed when a significant

change in signal properties is introduced, for example by

using different electrode types, acquisition system, or power

line frequency. This yield in significantly better performance

(F-score 0.96) using only minimal data for re-training.

The generalized CNN may be used to preliminarily score

the new data, double checked by a visual inspection and man-

ual corrections for new training samples. A drawback of this

method is the dependence on sampling frequency due to direct

feature extraction by convolution filter layers from raw data,

but this could be solved by data resampling.

In conclusion, this paper introduces an iEEG noise detec-

tion technique based on CNN and a graphical display to inter-

pret and analyze results using Artifacts Probability Matrix and

Pathology Probability Matrix. The results demonstrate that

CNN can provide automated artifact identification in iEEG.

We have shown that the generalized CNN model can be used

with promising results to classify iEEG data among multiple

research institutions. The numerical results allow for subse-

quent automatic processing and evaluation of the actual bio-

logical and pathological deep brain activity.
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