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Finding the ground-state energy of electrons subject to an external electric field is a fundamental
problem in computational chemistry. While the theory of QMA-completeness has been instrumental in
understanding the complexity of finding ground states in many-body quantum systems, prior to this work
it has been unknown whether or not the special form of the Hamiltonian for the electronic structure of
molecules can be exploited to find ground states efficiently or whether the problem remains hard for this
special case. We prove that the electronic-structure problem, when restricted to a fixed single-particle
basis and a fixed number of electrons, is QMA-complete. In our proof, the local Hamiltonian is encoded
in the choice of spatial orbitals used to discretize the electronic-structure Hamiltonian. In contrast, Schuch
and Verstraete have proved hardness for the electronic-structure problem with an additional site-specific
external magnetic field, but without the restriction to a fixed basis, by encoding a local Hamiltonian on
qubits in the site-specific magnetic field. We also show that estimation of the energy of the lowest-energy
Slater-determinant state (i.e., the Hartree-Fock state) is nondeterministic polynomial time (NP)-complete
for the electronic-structure Hamiltonian in a fixed basis.
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I. INTRODUCTION

The simulation of quantum-mechanical systems is one
of the most important computational challenges in modern
science. The solution of this problem, broadly defined, will
allow us to probe the foundations of physics, chemistry,
and materials science, and will have useful applications
to a wide variety of industries. On the other hand, the
very properties that make quantum-mechanical systems so
interesting—such as the exponential growth of the under-
lying state space and quantum entanglement—also make
quantum simulation a particularly difficult computational
task.

Finding the means to tame this daunting complexity is
an objective that is nearly as old as quantum mechan-
ics itself. Paul Dirac, in a foundational paper from 1929,
asserted that “The fundamental laws necessary for the
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mathematical treatment of a large part of physics and the
whole of chemistry are thus completely known, and the
difficulty lies only in the fact that application of these
laws leads to equations that are too complex to be solved.
It therefore becomes desirable that approximate practi-
cal methods of applying quantum mechanics should be
developed, which can lead to an explanation of the main
features of complex atomic systems without too much
computation” [1].

Today, nearly a century later, Dirac’s quote captures
the underlying motivation for a large body of quantum
science research. For example, in the context of simulat-
ing systems of many electrons, the complexity inherent in
the simulation problem has been addressed by approxima-
tion methods such as Hartree-Fock and density-functional
theory [2], as well as by considering simplified quantum
models such as the Hubbard and Heisenberg Hamiltonians
[3]. Moreover, even in a new, exciting era in which noisy,
intermediate-scale quantum computers are being devel-
oped that may be well suited to solve certain quantum sim-
ulation problems, Dirac’s wisdom prevails. Existing quan-
tum algorithms, such as the phase-estimation algorithm
and the variational quantum eigensolver, all obtain
approximate solutions to special cases of the quantum
simulation problem (see, e.g., Refs. [4–6]).
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However, there are also fundamental limitations to these
simulation algorithms that stem from quantum computa-
tional complexity. Kitaev, building on the classical work
of Cook and Levin, has proved that a very general quan-
tum simulation problem—approximating the ground-state
energy of a k-local Hamiltonian—is QMA-complete [7,
8]. QMA is a natural quantum analog of nondeterminis-
tic polynomial time (NP), and QMA-complete problems
should not have an efficient quantum algorithm, for essen-
tially the same reasons that NP-complete problems (such
as Boolean satisfiability) should not have efficient classical
algorithms.

Nonetheless, QMA-completeness should not be inter-
preted as a categorical roadblock but, rather, as an impor-
tant guidepost for the development of future quantum
algorithms. In the same way that many practically interest-
ing instances of classical constraint satisfaction problems
have special structural properties that avoid the worst-
case hardness implied by NP-completeness results, we
study QMA-completeness in order to understand which
structural properties reduce the complexity of the simu-
lation problem—and which properties do not—enabling
improved quantum simulation algorithms that could poten-
tially exploit this structure.

In the case of qudit Hamiltonians, many subsequent
results have helped discover the landscape of these
structural properties. For instance, we know that QMA-
completeness persists even if the terms are 2-local on a
two-dimensional (2D) lattice of qubits [9], are all the same
up to a positive rescaling [10], or are translationally invari-
ant in one dimension (but for high local dimensions) [11].
On the other hand, much less is known about local Hamil-
tonians acting on indistinguishable particles. The current
state of knowledge is summarized in Table I. Note that,
despite a wealth of numerical work, hardly anything is
rigorously known about the boundary between easy and
hard electronic structure instances, and there is no well-
defined nontrivial family of instances that is known to be in
bounded-error quantum polynomial time (BQP). Crucially,
we do not know if the special form of the Hamiltonian for
the electronic structure of molecules can be exploited by

efficient algorithms to decide the ground-state energy or if
this restricted problem remains intractable. This problem is
of particular interest since simulating quantum chemistry
is often heralded as an important application for near-term
quantum computers.

Our results take an important step toward answering this
question. We show that when restricted to a fixed number
of electrons and a fixed single-particle basis, approxima-
tion of the ground-state energy of the electronic-structure
Hamiltonian is QMA-complete. This can be interpreted
as a direct sharpening of Dirac’s quote: we conclusively
demonstrate that these properties do not add enough struc-
ture to enable the existence of an efficient quantum sim-
ulation algorithm to approximate the ground-state energy
of such systems. We conclude with the formalization of
two variants of the electronic-structure problem that get
even closer to capturing the true goal of quantum chem-
istry. These formal problem statements constitute part of
the contribution of this work; to apply the tools of com-
plexity theory to real-world problems, as we do here,
the essence of practitioners’ goals must be formalized
precisely before the achievability of those goals can be
definitively determined. We hope that, by doing so here,
we lay the foundation for future work on the computational
complexity of quantum chemistry.

II. THE ELECTRONIC-STRUCTURE PROBLEM

The local Hamiltonian problem for systems of indis-
tinguishable particles has two distinctive features. First,
the Hamiltonians themselves are invariant under permu-
tations of the particles. Second, the goal is to estimate
the lowest energy of a symmetric (for bosons) or anti-
symmetric (for fermions) state. In this work, we consider
the local Hamiltonian problem for fermionic systems.
Generic Hamiltonians (i.e., quartic polynomials in the
elementary operators with general coefficients) for both
types of indistinguishable particles have been shown to
be QMA-complete [13,15], but, as with Hamiltonians on
distinguishable particles, we can ask: how hard are more
physically realistic classes of Hamiltonians? Physically

TABLE I. Known results for physically realistic Hamiltonians. The result for qubits is representative but many similar results are
known (see, e.g., Refs. [11,12]). The results for bosons and fermions are exhaustive, to the knowledge of the authors.

Particle Hamiltonian State Complexity Instance encoding Reference

Qubits 2D semitranslationally invariant Quantum QMA-complete Coefficients [10]
Bosons Two-body Quantum QMA-complete Coefficients [13]
Bosons Bose-Hubbard Quantum QMA-complete Graph [14]
Fermions Two-body Quantum QMA-complete Coefficients [15]
Fermions Two-body Slater determinant NP-complete Coefficients [16]
Fermions Electronic structure (with magnetic field) Quantum QMA-complete Magnetic field [16]
Fermions Electronic structure (fixed basis) Quantum QMA-complete Basis This paper

Slater determinant NP-complete This paper
Fermions One-body P
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realistic Hamiltonians on indistinguishable particles have
special properties that could make them more amenable
to computing ground energies. In particular, here we are
focused on the computational complexity of the electronic
structure (ES) Hamiltonian

H (ES) = −1
2

∑

i

∇2
i +

∑

i

V(ri)+ 1
2

∑

i�=j

1∣∣ri − rj
∣∣ , (1)

which acts on an antisymmetric state ψ : R
η×3 → C of

η electrons, where ri is the position of the ith electron in
three-dimensional (3D) space. For η electrons and a speci-
fied electric potential V : R

3 → R, this is the Hamiltonian
dictated by the laws of electromagnetism. Of particular
interest in chemistry is the molecular electronic-structure
Hamiltonian, in which the external potential

V(r) = −
∑

j

Zj∣∣r − Rj
∣∣ (2)

is that of nuclei modeled as classical point particles, each
with positive charge Zj and located at fixed position Rj . In
reality, the nuclei are also quantum particles but they are
so much more massive than the electrons that this model
(the Born-Oppenheimer approximation) is usually a suf-
ficiently accurate approximation to the Hamiltonian of a
molecule specified by the nuclear charges and number of
electrons. There is a separate optimization procedure to
find the lowest-energy configuration of nuclear positions.

Physically, the wave function of the electrons is over
continuous real space. Computationally, we need to dis-
cretize the space of possible wave functions in some way
in order to have a finite representation of a potential ground
state. This leads to the fundamental computational prob-
lem of quantum chemistry, estimation of the ground-state
energy of the electronic-structure Hamiltonian in a fixed
basis:

H (ES)(φ, V) = T + V + U (3)

=
∑

i,j ∈[n]
σ∈{±1}

(ti,j + vi,j )a
†
i,σaj ,σ (4)

+ 1
2

∑

i,j ,k,l∈[n]
σ ,τ∈{±1}

ui,j ,k,la
†
i,τa

†
j ,σak,σal,τ , (5)

where φ = (φ1, . . . ,φn) is the single-particle basis with
elements φi : R

3 → C and

ti,j = −1
2

∫
drφ∗

i (r)∇2φj (r), (6)

vi,j =
∫

drφ∗
i (r)V(r)φj (r), (7)

ui,j ,k,l =
∫

drdsφ∗
i (r)φ

∗
j (s)

1
|r − s|φk(s)φl(r). (8)

The indices i, j , k, l ∈ [n] index spatial orbitals and σ , τ ∈
{±1} indicate the spin. For each spatial orbital φi(r), there
are two spin orbitals φi,±1(r). We use ±1 as an index for
simplicity but, of course, physically the spin of the electron
has magnitude 1/2 (in atomic units). Given the potential
V(r) and a fixed set of orbitals, the Hamiltonian shown in
Eq. (3) is then completely determined by the integrals for
the kinetic and potential energy shown in Eqs. (6)–(8). This
leads to the following computational problem.

A. Electronic structure in a fixed basis

An instance of electronic structure in a fixed basis is
specified by an external electric field V : R

3 → R, a num-
ber η of electrons, a basis φ = (φ1, . . . ,φn), and thresholds
a < b, where b − a ≥ 1/poly(η). The external potential V
and the basis φ must be specified concisely [using poly(n)
bits] in a way that allows for efficient [poly(n)-time] cal-
culation of the integrals in Eqs. (6)–(8). The goal is to
determine whether the ground-state energy of HES in the
subspace of η electrons spanned by the given basis is at
most a or at least b.

This is the version of the problem posed by Whitfield
et al. [17], who left its hardness as an open problem. We
answer here in the affirmative by showing a family of
single-particle bases that encodes hard problems; our result
shows hardness both when there is no external potential
[V(r) = 0] and when the external potential is due to posi-
tive point charges at fixed positions (i.e., classical nuclei in
the Born-Oppenheimer approximation).

Our definition of the problem allows for states with
arbitrary total spin, and this freedom is critical in our con-
struction. One can also consider a variant in which the total
spin is fixed, analogous to, for example, the XY problem
with fixed magnetization. Our definition of the problem
also restricts the states allowed to a finite-dimensional
space spanned by a set of fixed single-electron orbitals.
By necessity, this is the form of the problem solved in
practice by computational chemists. However, for practi-
cal purposes, it is desirable that the ground state or ground
energy in the chosen basis be close to that in a complete
infinite-dimensional basis. The difference between these
two is known as the basis-set error, and bases are typically
chosen in order to minimize this error. The basis we use in
our construction is artificial in this sense; in the absence of
an external potential, there is nothing to confine the elec-
trons to the subspace of R

3 spanned by this particular basis.
However, the orbitals that we use are still superpositions
of Gaussians, a commonly used form in computational
chemistry; for example, the basis functions in the STO-
3G basis set [18] are composed of a fixed superposition
of three primitive Gaussians. Indeed, we prove the follow-
ing theorem that the electronic-structure problem in a fixed
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basis is QMA hard by encoding a QMA-hard Hamiltonian
in the construction of the basis. We use linear combinations
of Gaussians because of the nice analytic form of the rele-
vant integrals. Gaussians cannot precisely model the cusps
at the nuclei [19], though we expect that this is inessential
to our results. That is, we expect that Theorem 1 would
hold for, e.g., linear combinations of Slater-type orbitals.

Theorem 1: (electronic structure in a fixed basis is QMA-
complete, informal). The electronic-structure problem in a
fixed basis and at fixed particle number is QMA-complete,
both with no external potential and with a nuclear poten-
tial.

We prove Theorem 1 without an external potential in
Appendix C and in Appendix D we prove the version with
a nuclear potential as Corollary 1.

Other variants of the electronic-structure problem have
been considered. Schuch and Verstraete show QMA hard-
ness for electronic structure with an additional site-specific
magnetic field (without restricting to a fixed basis), which
is used to encode an instance of a QMA-hard problem [16].
Their result is thus incomparable to ours; we remove the
magnetic field, but their problem does not require a fixed
basis. The problem we prove to be hard is much closer
to that solved in practical quantum chemistry: typically,
molecular problems do not have external magnetic fields,
let alone ones that can take on arbitrary values at different
points in space.

III. HARDNESS OF ELECTRONIC STRUCTURE

The proof that electronic structure in a fixed basis is
QMA hard proceeds in two stages. We first reduce from the
antiferromagnetic Heisenberg Hamiltonian to the Fermi-
Hubbard Hamiltonian in Sec. III A. Then we reduce from
Fermi-Hubbard to electronic structure in a fixed basis in
Sec. III B.

A. First step: Hardness of the Fermi-Hubbard
Hamiltonian

This section gives an overview of the first reduction.
The Bose-Hubbard and Fermi-Hubbard Hamiltonians

are as follows:

H (BH) =
∑

i∈V

Uni(ni − 1)+
∑

{i,j }∈E

ti,j
(

b†
i bj + h.c.

)
, (9)

H (FH) =
∑

i∈V

Uni,+ni,− +
∑

{i,j }∈E,σ∈{±}
ti,j a†

i,σaj ,σ , (10)

where G = (V, E) is the interaction graph and aia
†
j +

a†
j ai = bib

†
j − b†

j bi = δij . When we refer to the “Hubbard”
model without qualification, we mean the Fermi-Hubbard
model, in which the particles are fermions. Hubbard

Hamiltonians are of practical interest because they approx-
imate Hamiltonians of many more complicated condensed-
matter and chemical systems. Their solutions are taken to
qualitatively describe those of the approximated systems.

Childs et al. [14,20] show that the Bose-Hubbard Hamil-
tonian and XY Hamiltonian are QMA hard with uniform
coefficients. In both cases, because the coefficients are uni-
form, the instance is encoded entirely in the graph, which
does not seem embeddable in, say, three spatial dimen-
sions, as we would want for a physically realistic Hubbard
Hamiltonian. Schuch and Verstraete [16] show as an inter-
mediate result that the Fermi-Hubbard Hamiltonian on a
2D lattice with a site-specific magnetic field is QMA hard;
the instance is encoded entirely in this magnetic field. We
show that the magnetic field is not necessary, at the cost of
having an arbitrary weighted interaction graph.

Theorem 2: (FH is QMA-complete). The Fermi-Hubbard
Hamiltonian with arbitrary coefficients and fixed parti-
cle number is QMA-complete, even if all of the tunneling
coefficients have the same sign and are bounded by a
polynomial in the number of particles.

We prove Theorem 2 rigorously in Appendix B and
present a sketch here. The proof reduces from the antifer-
romagnetic Heisenberg Hamiltonian:

H (Heis) =
∑

{i,j }∈E

κi,j Wi,j , W = (II + XX + YY + ZZ)/2,

(11)

which is known to be QMA hard [10,21]. As in related
previous constructions, we fix the number of particles to
equal the number of spatial orbitals, i.e., half the number of
spin orbitals. The large on-site-repulsion term U penalizes
two electrons occupying the same spatial orbital and so the
ground space of the repulsion term has exactly one elec-
tron in each spatial orbital. As has been done in Ref. [15],
the spin of the electron in each orbital encodes a logical
qubit. With the repulsion term dominating the Hamilto-
nian, we treat the rest perturbatively. To second order, this
yields an antiferromagnetic Heisenberg Hamiltonian on
the same graph as a Hubbard Hamiltonian. We go between
a qubit Hamiltonian and a fermionic Hamiltonian using the
Jordan-Wigner transformation ai ↔ ∏

j<i Zj (Xi + iYi)/2.
In general, this transforms local fermionic Hamiltonians
into nonlocal qubit Hamiltonians, but with a particular
ordering of the spin orbitals, the parity strings

∏
j<i Zj

cancel out. In our case, this yields the local Heisenberg
Hamiltonian.

B. From Fermi-Hubbard to electronic structure

We reduce from Fermi-Hubbard to electronic struc-
ture in a fixed basis by starting with an instance of
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Fermi-Hubbard and creating a set of orbitals such that the
resulting Hamiltonian given by Eq. (3) closely approxi-
mates the input Fermi-Hubbard Hamiltonian. The interac-
tion graph for the input Hamiltonian has an edge for every
pair of fermions with a nonzero interaction term. Given a
Hamiltonian of this form, we create a set of orbitals corre-
sponding to the vertices in the interaction graph. φi is the
orbital for vertex i. Each φi is a superposition of what we
call primitive orbitals, which are just Gaussians centered
at various points in space. For the most part, these points
are spaced out from all the other points by a parameter 	,
which is set to be large. For every edge {i, j } in the inter-
action graph of the Fermi-Hubbard Hamiltonian, there is
a pair of primitive orbitals, one in φi and one in φj , such
that the two primitive orbitals are a distance γi,j apart. The
values of the γi,j are small compared to 	.

The dominant term that emerges from this construction
is the kinetic energy between two Gaussians with expo-
nent α that are separated by a distance of γi,j (with a
slight correction due to the fact that the Gaussians are not
exactly pairwise orthogonal). Each distance γi,j can then
be tuned to obtain the desired coefficient to encode the
Fermi-Hubbard Hamiltonian. Each orbital also includes a
primitive orbital with exponent β > α in order to increase
the on-site-repulsion term, ensuring that the ground space
for the effective Hamiltonian has exactly one electron per
spatial orbital. Thus, each of our orbitals has the form

φi(r) = 2−1/2φi,0(r)+ (2d)−1/2
d∑

i=1

φi,l(r), (12)

where each φi,l is a Gaussian and the parameter d is an
upper bound on the degree of the graph. The functions
φi,0 all have some large exponent β and are therefore more
concentrated than the functions φi,l for l > 0 which have a
smaller exponent α. The construction is illustrated in Fig. 1
with a small example.

We use three approximation steps that ultimately show
that the electronic-structure Hamiltonian H (ES) closely
approximates the Fermi-Hubbard Hamiltonian H (Hubb):

H (ES) Sec.→
C2

H (round) Sec.→
C3

H (main) Sec.∝
C4

H (Hubb). (13)

Each step introduces some small error, the bounding of
which constitutes the bulk of the technical work in our
proof.

The transition from H (ES) to H (round) includes two
approximation steps. The first approximation arises from
the fact that the orbitals φ that we use are not perfectly
orthonormal. However, there is an orthonormal basis φ̃ that
is very close to φ. We show that the difference is suffi-
ciently small that we can proceed with the coefficients from
the nonorthonormal basis but using the elementary opera-
tors of the orthonormal basis. There is one exception to this
approximation: the overlap of the Gaussians that are rela-
tively close (distance γi,j apart) has a non-negligible effect
and requires a slight correction to the corresponding kinetic
energy coefficient. In the second approximation step, we
drop the interactions of primitive orbitals that are at least a
distance of 	 apart, resulting in an expression with many
fewer terms. The effect of applying both approximations
results in the Hamiltonian H (round). The transition from

κ1,2

κ1,3

κ1,4 κ2,3

γ1,2 γ1,3 γ1,4 γ2,3

1.
0

1.
1

1.
2

1.
3

2.
0

2.
1

2.
2

2.
3

3.
0

3.
1

3.
2

3.
3

4.
0

4.
1

4.
2

4.
3

x

�i(x,0,0)

FIG. 1. The inset shows the interaction graph of a Heisenberg Hamiltonian with coefficients
{
κi,j

}
{i,j }∈E as in Eq. (11). It has degree

d = 3. Each vertex is associated with a composite orbital φi(r) as in Eq. (12). φi(r) is a sum of primitive Gaussian orbitals centered at
points xi,0, . . . , xi,d, where the Gaussian centered at xi,0 has more weight and a larger exponent. The orbitals are color coded according
to which vertex they belong to from the interaction graph and thus to which composite orbital they contribute. For example, the orbital
associated with the blue vertex in the interaction graph would be a superposition of the blue Gaussians. In this example, all of the
points xi,l are arranged along a single line, but the only requirements are that (1) for every edge {i, j } in the Heisenberg graph, the
corresponding pair of points is separated by γi,j and (2) otherwise all centers are 	 
 γmax away from each other.
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H (round) to H (main) involves dropping the potential-energy
terms that involve more than one primitive orbital. The
difference between H (round) and H (main) is an energy off-
set that is constant for a fixed number of electrons plus
an error term that we bound in the proof. We then show
that the parameters can be set so that the coefficients of
H (main) approximate the Fermi-Hubbard model to within
any inverse polynomial.

IV. HARDNESS OF LOWEST-ENERGY SLATER
DETERMINANT

The methods we develop for proving the hardness of
electronic structure can also be used to show the hard-
ness of a commonly used variant of electronic structure
known as Hartree-Fock. Classical algorithms for finding
the ground-state energy of quantum Hamiltonians are often
limited by the fact that the ground state seems to have
no concise classical description. For that reason, chemists
often try to find the lowest-energy Slater determinant,
known as the Hartree-Fock state. Within a fixed basis
φ = (φ1, . . . ,φn), a Slater determinant (SD) is a state of
the form

|ψSD(B)〉 = b†
1b†

2 · · · b†
η |0〉 , (14)

where each bi = ∑n
j =1 Bi,j aj is a sum of annihilation oper-

ators in the original basis and the rows of the η × n matrix
B are orthonormal.

A. Lowest-energy Slater determinant

Given a local fermionic Hamiltonian in a fixed basis of
size n, number η of electrons, and bounds b > a, where
b − a = 1/poly(n), determine whether the lowest-energy
Slater determinant has energy at most a or at least b. The
Slater determinant is specified by the η × n matrix B with
entries specified by polynomially many bits.

Theorem 3: (informal). The lowest-energy Slater determi-
nant problem for electronic-structure Hamiltonians [H (ES)

as defined in Eq. (3)] is NP-complete.

We prove Theorem 3 in Appendix F, building on the
proof in Appendix C of Theorem 1, with which it shares
many ingredients.

Schuch and Verstraete have shown that the lowest-
energy Slater determinant problem for generic quartic
number-preserving fermionic Hamiltonians is NP hard [16,
arXiv version]. We show NP hardness for the restricted
class of such Hamiltonians with coefficients implied by
a basis and external potential as in Eqs. (3)–(8); that is,
our Theorems 1 and 3 cover the same class of electronic-
structure Hamiltonians and differ only in the class of states
over which to optimize. Schuch and Verstraete’s proof for
the QMA hardness of electronic structure with magnetic

fields could likely be extended to the NP hardness of the
Slater-determinant version, but they have not done so and
neither do we.

Slater determinants are useful because they have concise
classical descriptions, but they cannot capture the ground
states of all electronic-structure Hamiltonians. Two alter-
native concise classical descriptions of the ground state are
the two-body reduced density matrices (2-RDMs) and the
electron density. Both contain all the information neces-
sary to compute the energy. However, the determination
of whether a given set of 2-RDMs is consistent with a
quantum state (known as the N -representability problem)
and the actual computation of the energy from the electron
density (known as the universal functional in density-
functional theory) are both known to be QMA hard under
Turing reductions [15,22]. In both cases, it remains an
open question whether they remain hard when the inputs
are restricted to the ground states of electronic-structure
Hamiltonians.

V. CONCLUSIONS AND OPEN PROBLEMS

Our results contribute to a large body of work formally
establishing the computational intractability of increas-
ingly physically realistic Hamiltonians. Specifically, we
view our hardness results as an important step toward mak-
ing the abstract framework of computational-complexity
theory relevant to the kind of computational problems
addressed by practicing chemists. While several aspects of
our constructions may seem unnatural, we hope that future
work can build on our work to address these issues. As is
typical of complexity-theoretic hardness results, ours does
not say that every instance of the problem considered (i.e.,
electronic structure in a fixed basis) is hard, but, rather,
only that there exist hard instances. Prior to this work, it
has been consistent with current knowledge, for example,
that merely restricting the Hamiltonian to the form of elec-
tronic structure in a fixed basis (with or without an nuclear
potential) would make computation of the ground energy
tractable; we show conclusively that this is not the case,
thereby significantly narrowing the scope of the ongoing
search for the boundary between tractable and intractable
instances of quantum chemistry. Our result brings the
powerful tools of complexity theory to the applied world
of quantum chemistry, establishing a strong connection
between the two areas that we expect will be the founda-
tion of much more research. For example, it may seem that,
based on physical intuition, the rounding of the Hamilto-
nian done in order to sculpt a Fermi-Hubbard Hamiltonian
out of an electronic-structure Hamiltonian is so strong as
to preclude the resulting Hamiltonian from capturing elec-
tronic correlation. In fact, however, our result means that it
can be argued on complexity-theoretic grounds that this in
not the case. For if it was not the case that the rounded
Hamiltonian captured a significant amount of the corre-
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lation energy, then a Slater determinant would suffice to
describe its ground state, implying NP = QMA, which is
widely believed to be false. That is, because estimating
the ground-state energy of the Hamiltonian is QMA hard,
if there was always a low-energy Slater determinant that
approximates the ground state, then any problem in QMA
could be answered (and verified) classically (i.e., it would
be in NP). In other words, then any problem in QMA
could be solved in NP. We emphasize that this answer
exemplifies the value of our work: enabling the power
of complexity theory to be applied to electronic-structure
problems.

There are still many important problems in computa-
tional chemistry the computational complexity of which
is unknown. For example, even in a fixed basis, does fix-
ing the spin make the problem easier? Does the problem
become more tractable if the given orbitals are guaranteed
to have small basis-set error? Is the electronic-structure
problem hard in a complete (infinite-dimensional) basis? If
so, is it still hard when the external potential arises solely
from a set of positively charged nuclei at fixed positions?
We pose two variants of the electronic-structure problem
the hardness of which is an open question. In both cases,
the “size” of the problem is the number of electrons.

A. Electronic structure in a fixed basis with bounded
basis-set error

Given an external electric potential V, number of elec-
trons η, thresholds a < b, and a basis set φ with basis-set
error ε(η) = 1/poly(η) for the given potential V, deter-
mine whether the lowest energy of a state in the space
spanned by φ is at most a or greater than b = a +
1/poly(η). The basis-set error is defined as

min
|ψ̃〉in basis

〈ψ̃ |H |ψ̃〉 − min
|ψ〉

〈ψ |H |ψ〉 ≤ ε(η),

where both minimizations are over antisymmetric normal-
ized states of η electrons.

The parameters of the problem are the promised basis-
set error bound ε(η), the thresholds a(η) and b(η), and
the family of potentials considered (as a function of η);
an instance is specified by simply the number of electrons
η, the potential V, and a specification of the basis set φ.
This variant entertains the possibility that, while the prob-
lem is hard for arbitrary bases, it may always be easy for
good bases (in the sense of having low basis-set error). In
practice, chemists always want to use a good basis, and
often do, though in general they have no guarantees on
the error of the bases that they use. Note that a good basis
need not necessarily be complete for the whole space; all
that matters is that its span includes a state sufficiently
close to the ground state. For example, in Schuch and
Verstraete’s construction for the QMA hardness of elec-
tronic structure with magnetic fields, the external electric

potential V implies a good basis of size n = η that cap-
tures the ground state but is far from complete. Theoretical
and numerical results suggest that for physically realistic
external potentials there is a always good basis of size
poly(η) [19,23], though the constant prefactors may be
impractically large. Furthermore, there may exist patho-
logical external potentials for which no polynomially large
good basis exists.

To account for both the possibility of no good poly-
nomially large basis and the desirability of working in a
small basis, we define another variant of the problem that
includes finding the basis in which the state is expressed.
The formulation attempts to be as general as possible
while remaining in QMA. Ideally, we would like to con-
sider all states that can be efficiently represented and the
energy of which can be efficiently estimated by a quan-
tum computer. To formalize this, we specify some family
of parametrized orbitals in which the putative low-energy
state can be expressed. For example, the family of bases
could consist of all weighted sums of Gaussians. In this
case, the prover would provide, for each basis element, the
centers, the weights, and the exponents of the constituent
Gaussians.

B. Electronic structure in parametrized basis

Given an external electric potential V, number of elec-
trons η, thresholds a < b, and a family of basis functions
{φθ }θ , and basis size k, determine whether there exists a
basis φ = (φθ1 , . . . ,φθk ) such that the lowest energy of a
state in the space spanned by φ is at most a or greater than
b = a + 1/poly(η).

The problem is parametrized by the thresholds a(η) and
b(η) and the family of basis functions {φθ }θ allowed; an
instance is specified by just the number of electrons η,
basis set size k, and potential V. A certificate consists of
the classical description of orbitals φ and a quantum state
on 2k qubits that is supposed to represent a low-energy of
state of η electrons in the basis φ.
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APPENDIX A: OUTLINE OF THE
SUPPLEMENTAL MATERIAL

Appendix B gives the reduction from the antiferro-
magnetic Heisenberg Hamiltonian to the Fermi-Hubbard
Hamiltonian, thereby proving Theorem 2. Theorem 1 is
proven first without an external potential in Appendix C,
using a reduction from Fermi-Hubbard to the electronic-
structure Hamiltonian in a fixed basis; Appendix D extends
this to include an external nuclear potential in Corollary 1.
The proof of Theorem 1 uses a technical lemma, Lemma
1, the proof of which is deferred to Appendix E. Finally,
Appendix F shows that finding the lowest-energy Hartree-
Fock state for the electronic-structure Hamiltonian in a
fixed basis is NP-complete.

The various quantities used in the constructions are
summarized in Table II.

1. A note on notation

By [n], we mean the set {1, 2, . . . , n}. We use ‖ · ‖ for
the spectral norm of a matrix and the Euclidean norm of a
vector. We use | · | for the element-wise scalar norm.

TABLE II. The quantities used in the constructions.

Quantity Description Definition Related

H (Hubb) Fermi-Hubbard
Hamiltonian

Eq. (B1) u(Hubb)
0 , t(Hubb)

i,j

H (Heis) Heisenberg Hamiltonian Eq. (B2) κi,j
H (ES) Electronic-structure

Hamiltonian
Eq. (C1)

ξα(r) Normalized 3D Gaussian Eq. (C3)
φi,p(r) Primitive orbital Eq. (C4)
φi(r) Composite orbital Eq. (C5)
cT Constant in kinetic

operator
Eq. (C31)

ωi,j αγ 2
i,j Eq. (C33)

f (ω) ω2 exp(−ω) Eq. (C33)
H (round) Rounded Hamiltonian Eq. (C47)
H (main) Fermi-Hubbard-like

Hamiltonian
Eq. (C48)

cU Constant in
electron-electron
interaction operator

Eq. (C40)

APPENDIX B: FERMI-HUBBARD MODEL

We show that the version of the Fermi-Hubbard Hamil-
tonian problem described below is QMA-complete. In
order for the Fermi-Hubbard model to approximate the
antiferromagnetic Heisenberg from which we are reduc-
ing, we need a large on-site-repulsion term u0 to penalize
orbitals with double occupancy. The Fermi-Hubbard prob-
lem remains QMA-complete for any u0 that satisfies the
lower bound in the theorem stated below. For the reduction
from Fermi-Hubbard to electronic structure, we require
that the t(Hubb)

i,j coefficients are bounded by a polynomial
in n, the number of electrons. The hardness result that we
prove establishes that Fermi-Hubbard remains hard, even
under that constraint.

Theorem 2: (QMA-completeness of Hubbard Hamilto-
nian with uniform on-site repulsion). There exist constants
p > q > 0 such that for all u(Hubb)

0 ≥ n14+3p+2q, deter-
mining to precision n−q the ground-state energy in the
n-particle subspace of a Hubbard Hamiltonian

H (Hubb) = u(Hubb)
0

∑

i∈[n]

ni,+1ni,−1

+
∑

i<j
σ∈{±1}

t(Hubb)
i,j

(
a†

i,σaj ,σ + a†
j ,σai,σ

)
(B1)

subject to
∣∣∣t(Hubb)

i,j

∣∣∣ ≤
√

npu(Hubb)
0 is QMA-complete.

We now reduce from the antiferromagnetic Heisenberg
Hamiltonian problem.

Definition 1: (antiferromagnetic Heisenberg Hamilto-
nian). An instance of an antiferromagnetic Heisenberg
Hamiltonian is defined by an edge-weighted graph G =
(V, E) with κ : E �→ R≥0 as

H (Heis)(G, w) =
∑

{i,j }∈E

κi,j
(
XiXj + YiYj + ZiZj

)
. (B2)

We require in our reduction that the coefficients κi,j
are bounded by a polynomial in the number of qubits.
Although not explicitly stated, the following theorem is
proven in Ref. [10].

Theorem 4: (QMA-completeness of antiferromagnetic
Heisenberg Hamiltonian [10]). Finding the ground state
of an antiferromagnetic Heisenberg Hamiltonian is QMA-
complete even when restricted to families of Hamiltonians
in which the coefficients are bounded by a polynomial in
the number of qubits.
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To prove Theorem 2, we show that for sufficiently large
u(Hubb)

0 , the Hubbard model approximates an antiferromag-
netic Heisenberg model up to second order in perturbation
theory.

We treat U(Hubb) = u(Hubb)
0

∑
i ni,+1ni,−1 as the penalty

term and T(Hubb) = H (Hubb) − U(Hubb) as the perturbation.
To convert the fermionic Hamiltonians above to qubit
Hamiltonians, we use the Jordan-Wigner transform with
the ordering (1, +1), (1, −1), (2, +1), (2, −1), . . . . For
the full Hilbert space H, we use a basis of one qubit per
spin orbital. For the ground space H0 of U(Hubb), we use
a basis of one qubit per spatial orbital, the latter span-
ning the half-filled subspace of the corresponding pair of
spin orbitals. We associate the occupancy of the orbitals of
spin +1 and −1 with the qubit states |0〉 and |1〉, respec-
tively. Let �0 be the projector onto H0 and �1 = I −�0
the projector onto the orthogonal subspace. In H0, U(Hubb)

is zero (U(Hubb)
0 = �0U(Hubb)�0 = 0), and outside it is at

least u(Hubb)
0 . In the half-filling regime, the ground space

of U(Hubb) is spanned by those basis states having exactly
one electron in each spatial orbital. In H0, T(Hubb) vanishes.
In the notation below, we use a bit to indicate whether an
orbital is filled. For edge {i, j }, the first two bits correspond
to orbitals φi,+1 and φi,−1 and the last two bits correspond
to φj ,+1 and φj ,−1. So the state |0110〉 has φi,−1 and φj ,+1
filled. The “excitation” terms are

T (Hubb)
1,0 = �1T (Hubb)�0 =

∑

{i,j }∈E

(−1)j −i−1t(Hubb)
i,j

× [(|1100〉 + |0011〉) (〈1001| − 〈0110|)]i,j .
(B3)

With this, using Theorem 5 from Sec. B 1, we obtain

H (eff) = −T (Hubb)
0,1

[
U (Hubb)

1

]−1
T (Hubb)

1,0

=
∑

{i,j }∈E

2
(

t(Hubb)
i,j

)2

u(Hubb)
0

(
Wi,j − 1

) = ceff

+
∑

{i,j }∈E

h(eff)
i,j Wi,j , (B4)

where

h(eff)
i,j = 2

(
t(Hubb)
i,j

)2

u(Hubb)
0

, ceff = − 1

u(Hubb)
0

∑

{i,j }∈E

(
t(Hubb)
i,j

)2
.

(B5)

1. Perturbation theory

We use the following formulation of second-order per-
turbation theory, adapted from a special case of the more
general formulation by Bravyi et al. [24].

Theorem 5: (second-order perturbation theory). Consider
a Hamiltonian H = H (pen) + H (pert). Let �0 be the pro-
jector onto the ground space of H (pen) and �1 = 1 −�0.
Define

H (eff) = +H (pert)
0 − H (pert)

0,1

(
H (pen))−1

H (pert)
1,0 , (B6)

where Ai = �iA�i and Ai,j = �iA�j . If H (pen)
0 = 0 and

H (pen)
1 ≥ � ≥ 2H (pert). Then,

∥∥Hlow − H (eff)
∥∥ ≤ O

(∥∥H (pert)
∥∥3

�2

)
, (B7)

where Hlow is the projection of H onto its eigenspace with
eigenvalues at most �/2.

2. Fermi-Hubbard is QMA hard

Proof of Theorem 2. There are constants p , q ≥ 0 such that
it is QMA hard to find the ground-state energy to precision
n−q of

H (Heis) =
∑

{i,j }∈E

κi,j Wi,j (B8)

subject to 0 ≤ κi,j ≤ np . Consider such an instance. We
want to choose u(Hubb)

0 and t(Hubb)
i,j such that

H (Heis) = H (eff) − ceff (B9)

and
∥∥∥H (Hubb)

low − H (eff)
∥∥∥ = o(n−q). (B10)

The first constraint, Eq. (B9), is

κi,j = h(eff)
i,j = 2

(
t(Hubb)
i,j

)2

u(Hubb)
0

(B11)

or

t(Hubb)
i,j = ±

√
u(Hubb)

0 κi,j /2. (B12)

Therefore, for any κi,j such that
∣∣κi,j

∣∣ ≤ np we can choose

t(Hubb)
i,j such that

∣∣∣t(Hubb)
i,j

∣∣∣ ≤
√

npu(Hubb)
0 and that Eq. (B9) is

satisfied. To satisfy the second constraint, Eq. (B10), we
use second-order perturbation theory (Theorem 5).

Furthermore, the assumption that u(Hubb)
0 ≥ n14+3p+2q

implies that the condition of Theorem 5 is met:
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∥∥T(Hubb)
∥∥ ≤

∑

{i,j }∈E
σ∈{±1}

∣∣∣t(Hubb)
i,j

∣∣∣ (B13)

≤ n2
︸︷︷︸
{i,j },σ

×
√

u(Hubb)
0 np

︸ ︷︷ ︸
t(Hubb)
i,j

(B14)

=
√

u(Hubb)
0

√
n4+p (B15)

≤
√

u(Hubb)
0 × 1

2

√
n14+3p+2q n ≥ 2; p , q ≥ 0

(B16)

≤
√

u(Hubb)
0 × 1

2

√
u(Hubb)

0 = 1
2

u(Hubb)
0 . (B17)

Theorem 5 then yields

∥∥∥H (Hubb)
low − H (eff)

∥∥∥ ≤ O

⎛
⎜⎝
∥∥T(Hubb)

∥∥3

(
u(Hubb)

0

)2

⎞
⎟⎠

≤ O

⎛
⎜⎜⎜⎜⎜⎜⎝

(B14)︷ ︸︸ ︷
n6n1.5p

(
u(Hubb)

0

)1.5

(
u(Hubb)

0

)2

⎞
⎟⎟⎟⎟⎟⎟⎠

(B18)

= O

⎛

⎝ n6n1.5p
√

u(Hubb)
0

⎞

⎠ ≤ O
(

n6n1.5p

√
n14+3p+2q

)

= O
(
n−(q+1)) = o

(
n−q) . (B19)

�

APPENDIX C: ELECTRONIC STRUCTURE

Here, we prove our main result.

Theorem 1: (QMA-completeness of electronic structure
in fixed basis). Determination of the ground-state energy
of an electronic-structure Hamiltonian in a fixed basis
and with a fixed particle number to inverse-polynomial
precision is QMA-complete.

For ease of presentation, we first prove the theorem
using Hamiltonians with no external potential. In
Appendix D, we show how the proof holds even when
including a “nuclear” potential (i.e., that due to positive
point charges at fixed positions); essentially, we can choose
the nuclear positions such that, within the fixed basis and at
a fixed particle number, the nuclei contribute to the overall
energy an additive constant plus some corrections that are
negligible compared to the other parts of the Hamiltonian.

We start by defining a set of n spatial orbitals. Once the
orbitals are fixed, the t and u coefficients are determined
by the integrals in Eqs. (6) and (8), which then yields the
physical Hamiltonian

H (ES) = T + U =
∑

i,j ∈[n]
σ∈{±1}

ti,j a†
i,σaj ,σ

+ 1
2

∑

i,j ,k,l∈[n]
σ ,τ∈{±1}

ui,j ,k,la
†
i,σa†

j ,τak,τal,σ (C1)

in the absence of any external potential (V = 0). We
show that, when restricted to the subspace with exactly
n electrons (with arbitrary spin), this yields an effective
Hamiltonian that is close, up to rescaling and shifting, to
a Fermi-Hubbard Hamiltonian

H (Hubb) = u(Hubb)
0

∑

i∈[n]

ni,+1ni,−1

+
∑

i<j

t(Hubb)
i,j

(
a†

i,σaj ,σ + a†
j ,σai,σ

)
(C2)

with constants p > q > 0 such that u(Hubb)
0 ≥ n14+3p+2q

and
∣∣∣t(Hubb)

i,j

∣∣∣ ≤
√

npu(Hubb)
0 for all edges {i, j }.

1. Orbitals

Recall from Sec. III B that our goal is a basis of orbitals
such that the electronic structure Hamiltonian in that basis
is sufficiently close to a Hubbard Hamiltonian. We define
here a set of orbitals that effectively encodes the inter-
action graph of the Hubbard Hamiltonian. Each orbital
represents a vertex of the interaction graph and consists
of a superposition of Gaussians centered at various points
in space. For the most part, these Gaussians are far apart
from each other. If two vertices are connected by an edge,
then their corresponding orbitals have two Gaussians that
are relatively close to each other. This distance between the
Gaussians can be tuned to match the interaction coefficient
in the Hubbard Hamiltonian. Let

ξα(r) =
(

2α
π

)3/4

exp
(−α ‖r‖2) (C3)

be the Gaussian centered at 0 ∈ R
3 with exponent α > 0.

Each of our orbitals is a superposition of Gaussians. The
centers of these Gaussians comprise a set of points

{
xi,l

}
i,l

in R
3, where i ∈ [n] and l ∈ {0} ∪ [d], and d ≤ n − 1 is

an upper bound on the maximum degree of the interac-
tion graph G. Note that although the points are in R

3, the
properties we require of them can be satisfied by placing
them all along a line; Fig. 1 illustrates the construction with
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a small example. We require two properties of this set of
points:

(1) For each edge {i, j } in the interaction graph,
there is exactly one pair (l, l′) ∈ [d]2 such that∥∥xi,l − xj ,l′

∥∥ = γi,j > 0. Let γmin and γmax be lower
and upper bounds on γi,j over {i, j } ∈ E.

(2) Every other pair of points is at least 	 
 γmax apart
(in Euclidean distance).

The important part is the m = |E| pairs of points such that
points from different pairs are at least a distance of 	 apart.
Each pair of points is associated with an edge {i, j } in the
interaction graph. The pair of points associated with edge
{i, j } is γi,j apart, where 	 
 γi,j . In addition, there is a
set X of (d + 1)n − 2m points each of which is a distance
at least 	 from any other point in the construction. The
points associated with vertex i in the interaction graph are
as follows:

(1) xi,0 is a point from X .
(2) If p ≤ deg(i) and j is the pth neighbor of vertex i,

then xi,p is one of the points from the pair associ-
ated with edge {i, j }. (The other point from the pair
belongs to vertex j .)

(3) If p > deg(i), then xi,p is a point from X . (These
are just dummy neighbors to ensure that all of the
orbitals have the same form.)

With these points, we can define the primitive orbitals:

φi,p(r) =
{
ξβ

(
r − xi,0

)
, p = 0,

ξα
(
r − xi,p

)
, otherwise,

(C4)

where α and β are positive constants to be set later. Ulti-
mately, we need β 
 α. The composite orbitals that we use
in the construction are superpositions of these primitive
orbitals:

φi(r) = 1√
2
φi,0(r)+ 1√

2d

d∑

l=1

φi,l(r). (C5)

It is convenient to be able to refer to the indices of the prim-
itive orbitals that are a distance γi,j apart, corresponding to
edge {i, j }. Define B(i, j ) = {(i, p), (j , q)}, where j is the
pth neighbor of i and i is the qth neighbor of j .

We eventually show that the kinetic energy terms
between the primitive orbitals that are separated by only a
distance of γi,j are the dominant terms in the Hamiltonian
(besides the on-site repulsion). We then tune the γi,j dis-
tances so that the coefficients resulting from kinetic energy
integrals scale with the t(Hubb)

i,j from Eq. (C2), which are the
coefficients in the Fermi-Hubbard Hamiltonian from which
we are reducing. The radius β is chosen to be large enough

so that the potential-energy coefficients ui,i,i,i effectively
result in a u0ni,+1ni,−1 with a large coefficient u0.

The orbitals are strictly positive everywhere, so the
overlap

∫
drφ∗

i (r)φj (r) cannot be exactly zero, but we
show that it is very close. That is, we show that the orbitals
are not perfectly orthonormal but that they are sufficiently
close. For now, we proceed as if they are and address the
effect of the nonorthonormality in Sec. C 2. The purpose of
including the φi,0 component as part of the orbital, which
is far away from every other primitive orbital center, is
to decouple the scale of the on-site-repulsion term in the
Hamiltonian from that of the interaction term, which is
effected by the one of the components

{
φi,l

}
1≤deg(i). To

this end, we ultimately set β 
 α. Including the other
components

{
φi,l′

}
l′>deg(i) is simply to ease the analysis

by making all of the orbitals {φi}i have integrals, over
single-electron operators, that are of approximately the
same form.

a. Integrals of operators over Gaussians

Since the composite orbitals are superpositions of prim-
itive orbitals, the expressions for overlap, kinetic energy,
and potential energy for the composite orbitals are linear
combinations of the corresponding expression for combi-
nations of primitive orbitals. The following integrals of
operators over Gaussians are useful in expressing these
terms for the primitive orbitals.

The overlap of two Gaussians with exponents α and β
with centers x apart:

sα,β(‖x‖) =
∫

drξα(r)ξβ(r − x)

=
(

2
√
αβ

α + β

)3/2

exp
(

− αβ

α + β
‖x‖2

)
. (C6)

Due to the rotational invariance of the Gaussians, all of
the functions defined in this subsection depend only on the
magnitude of their argument and so we write, for example,
s (‖x‖).

We can define the n(d + 1)× n(d + 1)matrix S of over-
lap between the primitive orbitals, where each row and
column is indexed by a pair (i, p) corresponding to a
primitive orbital:

s(i,p),(j ,q) = −1
2

∫
drφ∗

(i,p)(r)φ(j ,q)(r). (C7)

Note that sα,β(‖x‖) denotes the overlap of primitive orbital
φi,0 (the exponent of which is β) and φj ,p>0 (the expo-
nent of which is α), where φi,0 and φj ,p are separated
by a distance ‖x‖: s(i,0),(j ,p) = sα,β(‖x‖). The overlap of
two primitive orbitals with the same exponent is denoted
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by

sα(‖x‖) = sα,α(‖x‖) = exp
(−α ‖x‖2 /2

)
, (C8)

sβ(‖x‖) = sβ,β(‖x‖) = exp
(−β ‖x‖2 /2

)
. (C9)

Therefore, s(i,0),(j ,0) = sβ(‖x‖), where primitive orbitals
φ(i,0) and φ(j ,0) are a distance ‖x‖ apart. Also, s(i,p),(j ,q) =
sα(‖x‖), where p , q > 0 and primitive orbitals φ(i,p) and
φ(j ,q) are a distance ‖x‖ apart.

The kinetic energy between two Gaussians with expo-
nents α and β with centers x apart is as follows:

tα,β(‖x‖) = −1
2

∫
drξα(r)∇2ξβ(r − x)

= 23/2 (αβ)7/4

(α + β)5/2

(
3 − 2μ ‖x‖2) exp

(−μ ‖x‖2)

≤ 3
2

max {α,β} , (C10)

where μ = αβ/(α + β), with

tα(‖x‖) = tα,α(‖x‖) = α

2
(
3 − α ‖x‖2) exp

(−α ‖x‖2 /2
)

,

(C11)

tβ(‖x‖) = tβ,β(‖x‖) = β

2
(
3 − β ‖x‖2) exp

(−β ‖x‖2 /2
)

.

(C12)

Define T to be the n(d + 1)× n(d + 1) matrix of kinetic
energy terms between primitive orbitals. An entry of
matrix T is

t(i,p),(j ,q) = −1
2

∫
drφ∗

(i,p)(r)∇2φ(j ,q)(r). (C13)

Therefore, t(i,0),(j ,0) = tβ(‖x‖), where primitive orbitals
φ(i,0) and φ(j ,0) are a distance ‖x‖ apart. Also, t(i,p),(j ,q) =
tα(‖x‖), where p , q > 0 and primitive orbitals φ(i,p) and
φ(j ,q) are a distance ‖x‖ apart.

The potential integrals are as follows:

u(Coul)
α (‖x‖) =

∫
drdsξα(r)2ξα(s − x)2 ‖r − s‖−1

=
√

4α
π

F0
(
α ‖x‖2) ≤ 2

√
α, (C14)

u(exch)
α (‖x‖) =

∫
drdsξα(r)ξα(r − x)ξα(s)ξα(s − x)

× ‖r − s‖−1 = exp
(−α ‖x‖2) u(Coul)

α (0),
(C15)

u(other)
α (‖x‖) =

∫
drdsξα(r)2ξα(s)ξα(s − x) ‖r − s‖−1

= exp
(−α ‖x‖2 /2

)
u(Coul)
α (x/2) , (C16)

where

Fk(x) =
∫ 1

0
e−xt2 t2kdt (C17)

is the Boys function of order k. The analogous defini-
tions for u(other)

β (x), u(other)
β (x), and u(other)

β (x) use Gaussians
with exponent β. The potential-energy terms on the primi-
tive orbitals are represented by an n2(d + 1)2 × n2(d + 1)2

matrix U, where each row and column is indexed by a
pair of primitive orbitals [(i, p), (j , q)]. The entry in row
[(i, p), (j , q)] and column [(k, r), (l, s)] is the potential-
energy term for orbitals φ(i,p)(r), φ(j ,q)(r), φ(k,r)(r), and
φ(l,s)(r):

u[(i,p),(j ,q)],[(k,r),(l,s)]

=
∫

drds
φ∗
(i,p)(r)φ

∗
(j ,q)(s)φ(k,r)(s)φ(l,s)(r)

|r − s| . (C18)

The definitions of the integral functions above correspond
to the situation where all four indices (i, p), (j , q), (k, r),
and (l, s) denote at most two distinct orbitals with the
same exponent. Specifically, for p , q > 0, where ‖x‖ is the
distance between φ(i,p) and φ(j ,q),

u[(i,p),(j ,q)],[(j ,q),(i,p)] = u(Coul)
α (x), (C19)

u[(i,p),(j ,q)],[(i,p),(j ,q)] = u(exch)
α (x), (C20)

u[(i,p),(i,p)],[(i,p),(j ,q)] = u(other)
α (x). (C21)

2. Orthonormalizing and rounding

Having constructed our orbitals, we now make two
approximations to get a clean “round” Hamiltonian
H (round). First, the orbitals we define in Eq. (C5) are slightly
nonorthonormal, and so we derive a related orthonormal-
ized basis in which the electronic-structure Hamiltonian
does not change too much. Second, we remove contribu-
tions to the Hamiltonian from the electron-electron interac-
tion pairs of primitive orbitals that are far (> 	) away from
each other. The error of these approximations is quantified
by Lemma 1.

The matrix S is defined in Eq. (C7) to be the overlap
matrix of the primitive orbitals. We can construct a set of
orthonormal primitive orbitals by setting

φ̃i,k(r) =
∑

j ,l

[
S−1/2]

(j ,l),(i,k)φj ,l(r) (C22)

and new orthonormal composite orbitals

φ̃i(r) = 1√
2
φ̃i,0(r)+ 1√

2d

d∑

l=1

φ̃i,l(r) (C23)
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with annihilation operators ãi,σ [2]. The Hamiltonian in
this orthonormal basis is

H (ES) = T(ES) + U(ES) =
∑

i,j ∈[n]
σ∈{±1}

t̃i,j ã†
i,σ ãj ,σ

+ 1
2

∑

i,j ,k,l∈[n]
σ ,τ∈{±1}

ũi,j ,k,lã
†
i,σ ã†

j ,τ ãk,τ ãl,σ , (C24)

where

t̃i,j =
∫

drφ̃∗
i (r)Tφ̃j (r), (C25)

ũi,j ,k,l =
∫

drdsφ̃∗
i (r)φ̃

∗
j (s)Uφ̃k(s)φ̃l(r). (C26)

The matrices T̃ and Ũ showing the kinetic and potential
energies using the orthonormalized primitive orbitals are
analogous to the definitions given in Eqs. (C13) and (C18).
The pair T and T̃ and the pair U and Ũ are related by
conjugation by S−1/2:

T̃ = S−1/2 T S−1/2, (C27)

Ũ = (S−1/2 ⊗ S−1/2) U (S−1/2 ⊗ S−1/2). (C28)

Since S ≈ I , the coefficients t̃ and ũ for the orthonormal-
ized orbitals are close to t and u for the nonorthonormalized
orbitals but the difference needs to be carefully bounded.
We approximate H (ES) by the Hamiltonian H (round) that
uses creation and annihilation operators of the orthonor-
mal basis φ̃ with the original coefficients, subject to two
modifications. First, we add a first-order correction to the
off-diagonal kinetic coefficients. Second, we remove con-
tributions from pairs of primitive orbitals that are at least
	 apart (which makes many terms vanish completely).

The rounded Hamiltonian is

H (round) = T(round) + U(round). (C29)

The rounded kinetic operator is

T(round) = t(round)
i,i

∑

i∈[n]
σ∈{±1}

ñi,σ

+
∑

{i,j }∈E
σ∈{±1}

t(round)
i,j

(
ã†

i,σ ãj ,σ + ã†
j ,σ ãi,σ

)
, (C30)

t(round)
i,i = cT = 1

2
[
tα(0)+ tβ(0)

]
, (C31)

t(round)
i,j = − α

4d

√
f (ωi,j ), (C32)

where

ωi,j = αγ 2
i,j , f (ω) = ω2 exp(−ω). (C33)

Before getting to the rounded potential operator, let us con-
sider the difference between T(round) and the true kinetic
operator T(ES) in Eq. (C24). Let ψ0 = 1/

√
2 and ψl =

1/
√

2d for l > 0. Since the composite orbitals are super-
positions of the primitive orbitals, the kinetic energy term
for a pair of composite orbitals is just a linear combination
of kinetic energy terms for pairs of primitive orbitals:

t̃i,j =
∑

p ,q

ψpψqt̃(i,p),(j ,q). (C34)

We eventually show that the kinetic energy contribu-
tion for pairs of primitive orbitals that are at least 	
apart are negligible. Therefore, the only kinetic energy
terms that contribute significantly to the sum above are
t̃(i,p),(i,p) and t̃(i,p),(j ,q), where {i, j } is an edge and B(i, j ) =
{(i, p), (j , q)}. This means that for edge {i, j }, there is only
one significant term in the sum for t̃i,j . If {i, j } is not
an edge, then all of the primitive orbitals for composite
orbitals i and j are at least 	 apart, and t̃i,j ≈ 0. For the
diagonal terms t̃i,i, there are d + 1 significant terms in the
sum, corresponding to t̃(i,p),(i,p) terms. Thus, we show that

t̃i,j =
∑

p ,q

ψpψqt̃(i,p),(j ,q) ≈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

p

ψ2
p t̃(i,p),(i,p), i = j ,

1
2d

t̃(i,p),(j ,q), {i, j } ∈ E,

0, {i, j } /∈ E,
(C35)

where B(i, j ) = {(i, p), (j , q)}. We would now like to
approximate each t̃(i,p),(j ,q) with t(i,p),(j ,q), which is the
kinetic energy term for a pair of simple Gaussians. This
turns out to be a sufficiently accurate approximation for
t̃(i,p),(i,p). Note that

t(round)
i,i = 1

2
[
tα(0)+ tβ(0)

] =
∑

p

ψ2
p t(i,p),(i,p).

However, for edge {i, j }, where B(i, j ) = {(i, p), (j , q)},
primitive orbitals φ(i,p) and φ(j ,q) are only γi,j apart. In this
case, there is sufficient overlap between the orbitals that
the effect of orthonormalizing the orbitals has a significant
impact on the kinetic energy between the pair. Therefore,
instead of setting t(round)

i,j to be (1/2d)t(i,p),(j ,q), we use a
slightly corrected expression as defined by the function f .
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For comparison,

1
2d

t(i,p),(j ,q) = α

4d
(3 − ωi,j ) exp(−ωi,j /2), (C36)

t(round)
i,j = − α

4d

√
f (ωi,j ) = −αωi,j

4d
exp(−ωi,j /2).

(C37)

For the potential operator, the coefficients u are a suffi-
ciently good approximation for the ũ. We show that we
can also drop potential-energy terms that involve any two
primitive orbitals that are a distance at least 	 apart. Thus,
we only need to include terms u[(i,p),(j ,q)],[(k,r),(l,s)], where the
indices (i, p), (j , q), (k, r), and (l, s) are all the same or all
come from the set B(i, j ) for some edge {i, j }. Thus, u(round)

i,j ,k,l
are 0, except when i, j , k, l are all equal or are all endpoints
of the same edge. The rounded potential operator is

U(round) = 1
2

∑

(i,j ,k,l)∈B
σ∈±1

u(round)
i,j ,k,l ã†

i,σ ã†
j ,τ ãk,τ ãl,σ , (C38)

where

B =
⋃

{i,j }∈E

{i, j }4 (C39)

is the set of all 4-tuples of indices such that they are all
the same or there are two distinct indices corresponding
to an edge in the graph. For example, (i, i, i, i), (i, j , j , i) ∈
B but (i, i, j , k), (i, k, k, i) /∈ B for {i, j } ∈ E and {i, k} /∈ E.
The coefficients are defined as follows:

c(round)
U = u(round)

i,i,i,i = 1
4

u(i,0),(i,0),(i,0),(i,0)

+ 1
4d2

∑

p∈[d]

u(i,p),(i,p),(i,p),(i,p) (C40)

= 1
4

u(Coul)
β (0)+ 1

4d
u(Coul)
α (0), (C41)

u(round)
i,j ,j ,i = u(round)

j ,i,i,j = 1
4d2 u(i,p),(j ,q),(j ,q),(i,p) = 1

4d2 u(Coul)
α (γi,j ),

(C42)

u(round)
i,i,j ,j = u(round)

j ,j ,i,i = u(round)
i,j ,i,j = u(round)

j ,i,j ,i

= 1
4d2 u(i,p),(i,p),(j ,q),(j ,q) = 1

4d2 u(exch)
α (γi,j ),

(C43)

u(round)
i,i,i,j = u(round)

i,i,j ,i = u(round)
i,j ,i,i = u(round)

j ,i,i,i =
u(round)

j ,j ,j ,i = u(round)
j ,j ,i,j = u(round)

j ,i,j ,j = u(round)
i,j ,j ,j (C44)

= 1
4d2 u(i,p),(i,p),(i,p),(j ,q) = 1

4d2 u(other)
α (γi,j ),

(C45)

with u(round)
i,j ,k,l = 0 for (i, j , k, l) /∈ B. The following lemma

bounds the difference between H (ES) and H (round).

Lemma 1: If β ≥ α ≥ 1, ωmin ≥ 4, 	 ≥ 640n18β3, and
α	2 ≥ 12 logβ + 80 log n + 4ωmin + 24, then

∥∥H (ES) − H (round)
∥∥

≤ 3n2αf (ωmin)+ 1
20n2 + 8n4√α exp(−ωmin/2),

(C46)

where ωmin = αγ 2
min.

The matrices T, T̃, S, and S−1/2 are all close to block
diagonal. Blocks are either single entries on the diago-
nal (corresponding to primitive orbitals that are a dis-
tance at least 	 from all other primitive orbitals) or a
2 × 2 submatrix corresponding to an edge {i, j }. Suppose
that B(i, j ) = {(i, p), (j , q)}. For any n(d + 1)× n(d + 1)
matrix A, let Ai,j denote the 2 × 2 submatrix of A indexed
by the elements of B(i, j ):

Ai,j =
(

a(i,p),(i,p) a(i,p),(j ,q)
a(j ,q),(i,p) a(j ,q),(j ,q)

)
.

We refer to all of the Ai,j blocks collectively as the edge
blocks of A. The proof of Lemma 1 uses the fact that the
off-diagonal terms of T outside of the Ti,j blocks are small.
The same is true for T̃ and R = S−1/2.

Ũ and U are also related by conjugation by S−1/2 ⊗
S−1/2. We show that Ũ and U are also close to block
diagonal. We define Ui,j to be the 4 × 4 submatrix of U
corresponding to the intersections of the four rows and four
columns indexed by

[(i, p), (i, p)], [(i, p), (j , q)], [(j , q), (i, p)], [(j , q), (j , q)].

The proof of Lemma 1 uses the fact that the off-diagonal
terms of U outside of the Ui,j blocks are small. The same
is true for Ũ. We refer to all of the Ui,j blocks collectively
as the edge blocks.

Lemma 1 is proved in Appendix E. Outside of this sub-
section, all creation and annihilation operators are those of
the orthonormalized basis φ̃; in other words, we drop the
tildes.

3. Getting the main Hamiltonian

With the rounded Hamiltonian H (round) in hand, we
make one final approximation to get to the main Hamil-
tonian H (main) that we later show is close to a Hubbard
Hamiltonian. Specifically, we remove the “off-diagonal”
Coulomb interaction terms. The error of this approxima-
tion is bounded by Lemma 2.
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The main Hamiltonian is

H (round) = H (main) + H (approx) + ncT, (C47)

H (main) = c(main)
U

∑

i

ni,+1ni,−1

+
∑

{i,j }∈E
σ∈{±1}

t(round)
i,j

(
a†

i,σaj ,σ + a†
j ,σai,σ

)
, (C48)

where c(main)
U = u(Coul)

β (0)/4 . The difference H (round) −
H (main) − n · cT contains two types of terms, both of
the coefficients of which are O(

√
α): the smaller part

of the on-site terms c(round)
U and the off-site terms

corresponding to edges in the interaction graph. The
following lemma bounds the contribution from this
difference.

Lemma 2:
∥∥H (round) − H (main) − ncT

∥∥ ≤ 30n2√α. (C49)

Proof of Lemma 2. First, recall that we are restricting to the fixed-particle-number subspace, in which the diagonal part
cT

∑
i,σ ni,σ of T(round) is the constant n · cT. That is, T(round) = T(main) + n · cT. Let

B2 = B \ {(i, i, i, i) : i ∈ [n]} (C50)

be the subset of B, the elements of which contain two distinct indices (corresponding to an edge):
∥∥H (round) − H (main) − n · cT

∥∥ = ∥∥U(round) − U(main)
∥∥ (C51)

=

∥∥∥∥∥∥∥∥

1
2

∑

(i,j ,k,l)∈B
σ ,τ∈{±1}

u(round)
i,j ,k,l a†

i,σa†
j ,τak,τal,σ − c(main)

U

∑

i∈[n]

ni,+1ni,−1

∥∥∥∥∥∥∥∥
(C52)

≤
∑

i∈[n]

∣∣∣c(round)
U − c(main)

U

∣∣∣ + 1
2

∑

(i,j ,k,l)∈B2
σ ,τ∈{±1}

u(round)
i,j ,k,l (C53)

= n
1

4d
u(Coul)
α (0)+ 1

2

∑

(i,j ,k,l)∈B2
σ ,τ∈{±1}

u(round)
i,j ,k,l (C54)

≤ n
1

4d
u(Coul)
α (0)+ 1

2
× 4︸︷︷︸

σ ,τ

× 14 ×
(

n
2

)

︸ ︷︷ ︸
B2

×u(Coul)
α (0) (C55)

≤ 15n2u(Coul)
α (0) = 15n2 2√

π

√
α ≤ 30n2√α. (C56)

�

4. Hardness of estimating ground-state energy

Now, we are ready to prove the main theorem.

Proof of Theorem 1. Membership in QMA is straightfor-
ward. For hardness, we reduce from the Fermi-Hubbard
model. Recall Theorem 2: for some p , q and all
u(Hubb)

0 ≥ n14+3p+2q, finding the ground state to precision

n−q of

H (Hubb) = u(Hubb)
0

∑

i∈[n]

ni,+1ni,−1

+
∑

i<j

t(Hubb)
i,j

(
a†

i,σaj ,σ + a†
j ,σai,σ

)
(C57)
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subject to
∣∣∣t(Hubb)

i,j

∣∣∣ ≤
√

npu(Hubb)
0 is QMA-complete. In the

preceding sections, we show that, using our choice of
single-electron orbitals, the electronic-structure Hamilto-
nian is close to

H (ES) ≈ H (main) + n · cT = c(main)
U ni,+1ni,−1

+
∑

i<j

t(round)
i,j

(
a†

i,σaj ,σ + a†
j ,σai,σ

)
+ n · cT.

(C58)

To prove the theorem, it suffices to show that for any Hub-
bard Hamiltonian satisfying the conditions of Theorem 2,
we can set the parameters α,β,

{
γi,j

}
i,j ,	 such that

ρH (Hubb) = H (main) (C59)

and

∥∥H (main) − H (ES) − n · cT
∥∥ = o

(
ρn−q) (C60)

for some ρ ∈ R. With this, finding the ground state of
H (ES) to precision O(ρn−q) allows us to find the ground
state of H (Hubb) to precision O(n−q) and so the former
must be QMA hard. We base our parametrization on four
constants independent of n:

a = logn α, b = logn β, r = logn ρ,

g = − logn

√
f (ω0) = −1

2
logn f (ω0), (C61)

where ω0 is a lower bound on ωi,j to be set later. The first
three immediately set α, β, and ρ, respectively. Equating
nrH (Hubb) and H (main) requires

nru(Hubb)
0 = c(main)

U = 1
2
√
π

√
β, (C62)

nrt(Hubb)
i,j = − α

4d

√
f (ωi,j ). (C63)

a. Coefficient ranges. If we set

b = 30 + 6p + 4q + 2r , (C64)

then

u(Hubb)
0 =

√
β

2
√
πnr

≥ 1
4

√
β

nr = 4−1n0.5b−r

= n
4

n14+3p+2q ≥ n14+3p+2q, n ≥ 4 (C65)

satisfies the lower bound in the statement of Theorem 2.

If we set

g = −1
2

p + a − 1
4

b − 3
2

− 1
2

r ≥ 1 , (C66)

then, for n ≥ 9,

α

4d

√
f (ω0) ≥ α

4n

√
f (ω0) = 1

4
na−g−1 =

√
n

4
n

1
2 r+ 1

2 p+ 1
4 b

(C67)

≥ 3
4

n
1
2 r+ 1

2 p+ 1
4 b (C68)

≥ 1√
2
√
π

n
1
2 r+ 1

2 p+ 1
4 b = nr

√

np n−r
√
β

2
√
π

= ρ

√
npu(Hubb)

0 ,

(C69)

and thus for any t(Hubb)
i,j ≤

√
npu(Hubb)

0 there is some ωi,j ≥
ω0 that satisfies Eq. (C63).

b. Bounding the difference between electronic struc-
ture and Hubbard. The difference between the electronic-
structure Hamiltonian and the main Hamiltonian is
∥∥H (main) + n · cT − H (ES)

∥∥

≤ ∥∥H (main) + n · cT − H (round)
∥∥ + ∥∥H (round) − H (ES)

∥∥
(C70)

≤ 30n2√α + 1
20n2 + 3n2αf (ωmin)

+ 8n4√α exp(−ωmin/2) (C71)

≤ 30n2√α + 1
20n2 + 3n2αf (ω0)+ 8n4√α

√
f (ω0)

(C72)

= O
(

n2+ 1
2 a + n−2 + n2+a−2g + n4+ 1

2 a−g
)

(C73)

= O
(

n4+ 1
2 a + n2+a−2g

)
. (C74)

Therefore, to satisfy Eq. (C60), it suffices to have

4 + 1
2

a < r − q (C75)

and

2 + a − 2g < r − q. (C76)

Plugging Eq. (C66) into the latter yields

p + q + 5 < a − 1
2

b . (C77)
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c. Parameter setting. In summary, our constraints are

30 + 6p + 4q = b − 2r, (C78)

1
2

p + 5
2
< a − 1

4
b − 1

2
r, (C79)

4 + q < −1
2

a + r, (C80)

p + q + 5 < a − 1
2

b. (C81)

The following settings satisfy all the required constraints:

a = 18p + 12q + 90, (C82)

b = 5
3

a, (C83)

r = 2
3

a, (C84)

g = 1
4

a − 1
2

p − 3
2

. (C85)

�

APPENDIX D: ADDING IN A POTENTIAL

In this appendix, we describe how Theorem 1 can be
strengthened to include a “molecular” external potential;
Theorem 3 can also be strengthened in the same way using
similar techniques. The basic idea is that, given the orbitals
used in the proof of Theorem 1, we can specify a set of
nuclear positions such that the contribution to energy is
approximately a fixed constant (within the fixed basis of
the orbitals). We emphasize that this is only for this spe-
cific set of nuclear positions (and charges) and not for
arbitrary positions (which would, inter alia, contradict the
virial theorem). That being said, this single specification of
nuclear positions is sufficient to prove the claim.

Recall that both constructions are based on compos-
ite orbitals (φi)

n
i=1, each a linear combination of primitive

Gaussian orbitals
(
φi,p

)d
p=0 respectively centered at points

(
xi,p

)d
p=0 (see Sec. C 1). Suppose we were to add a nucleus

with a single proton at each point xi,p , modeled (using the
Born-Oppenheimer approximation) as a positive unit point
charge. In real space, the single-particle external potential
would then be

V(r) =
n∑

i=1

d∑

p=0

V(i,p)(r) = −
n∑

i=1

d∑

p=0

∥∥r − xi,p
∥∥−1,

(D1)

V(i,p)(r) = −∥∥r − xi,p
∥∥−1, (D2)

where V(i,p)(r) is the contribution from the nucleus at xi,p
[below, we use V and V(i,p) refer to the n(d + 1)× n(d + 1)

matrices the entries of which are the integrals of the above
functions in the nonorthonormalized primitive basis, as in
Eq. (D5)]:

(V)(i,p),(j ,q). (D3)

The main goal of this section is to prove the following
lemma, where V(ES) is the contribution to the Hamiltonian
from these additional interactions (in the orthonormalized
basis φ̃).

Lemma 3: For α ≥ 1, ωmin ≥ 2, 	 ≥ 2ωmax + n9, and
α	2 ≥ 36 log n + 2 logβ,

∥∥V(ES) − n · cV
∥∥ ≤ 37n

√
α. (D4)

Note that 	 is unconstrained from above and so we
can always set it large enough to satisfy the conditions
of the lemma. More significantly, adding V(ES) as con-
structed here to H (ES) in the proof of Theorem 1 simply
adds O(n

√
α) to Eq. (C70), which is subsumed by the

extant O(n2√α) term there, so that the rest of the proof
is unaffected. From this, we can conclude the following.

Corollary 1: Theorem 1 holds even with an external
potential induced by positive unit point charges.

The remainder of this subsection lays out the ingredients
of the proof of Lemma 3 and concludes with the formal
proof putting them together.

As in Sec. C 2, we define the pair of n(d + 1)× n(d + 1)
matrices V(i,p) and Ṽ(i,p) with entries

v
(i′,p ′)
(i,p),(j ,q) =

(
V(i

′,p ′)
)

(i,p),(j ,q)
=

∫
drφ∗

i,p(r)V
(i′,p ′)(r)φj ,q(r),

(D5)

ṽ
(i′,p ′)
(i,p),(j ,q) =

(
Ṽ(i

′,p ′)
)

(i,p),(j ,q)
=

∫
drφ̃∗

i,p(r)V
(i′,p ′)(r)φ̃j ,q(r).

(D6)

They are related by

Ṽ(i,p) = S−1/2V(i,p)S−1/2 = RV(i,p)R, (D7)

where S is the overlap matrix of the primitive orbitals(
φi,p

)
i,p and R = S−1/2. In the composite orthonormalized

basis
(
φ̃i

)

i
, we have the potential operator

V(ES) =
∑

i,j ∈[n]
σ∈{±1}

ṽi,j ã†
i,σ ãj ,σ , (D8)

where

ṽi,j =
∑

i′,p ′
ṽ
(i′,p ′)
i,j , (D9)
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ṽ
(i′,p ′)
i,j =

∫
drφ̃∗

i (r)V
(i′,p ′)φ̃j (r) =

∑

p ,q

ψpψqṽ
(i′,p ′)
(i,p),(j ,q).

(D10)

We define the utility function

vμ,ν(y, x) =
∫

drξμ(r)ξν(r − x)‖r − y‖−1 (D11)

corresponding to the magnitude of two Gaussians (with
exponents μ and ν and with centers 0 and x, respectively)

interacting with a unit point charge at y. Note that when
both x and y are nonzero, this definition is not symmetric
with respect to the two Gaussians and depends on the rela-
tive positions of x and y. However, when y = 0, v depends
only on the magnitude ‖x‖ of x. Furthermore, when x = 0
(i.e., the two Gaussians have identical centers), then v is
symmetric with respect to the two Gaussians and depends
only on the magnitude ‖y‖ of y. The following summarizes
some useful facts.

Fact 1: For μ ≥ ν > 0,

vμ,ν(y, x) = exp
(

− μν

μ+ ν
‖x‖2

)
vμ+ν

2 ,μ+ν
2

(
y − ν

μ+ ν
x, 0

)
(D12)

= 2

√
μ+ ν

π
exp

(
− μν

μ+ ν
‖x‖2

)
F0

(
(μ+ ν)

∥∥∥∥y − ν

μ+ ν
x
∥∥∥∥

2
)

(D13)

≤ 2

√
2μ
π

exp
(
−ν

2
‖x‖2

)
F0

(
2ν

∥∥∥∥y − ν

μ+ ν
x
∥∥∥∥

2
)

(D14)

≤ 2

√
2μ
π

exp
(
−ν

2
‖x‖2

)
, (D15)

vμ,μ(0, 0) = 2
√

2μ/π , (D16)

vμ,μ(x, 0) = vμ,μ(0, 0)F0(2μ‖x‖2), (D17)

vμ,μ(0, x) = exp(−μ‖x‖2/2)vμ,μ(x/2, 0). (D18)

Consider the element v(i
′,p ′)

(i,p),(j ,q), the integral of two Gaus-
sians centered at xi,p and xj ,q interacting with a nucleus
at xi′,p ′ . For most triples (i, p), (j , q), (i′, p ′), at least one
of these points is at least 	 away from the others. There
are two exceptions. The first is when all three points are
the same and in a singleton block: i = j = i′ and p =
q = p ′ /∈ {1, . . . , degi}. This corresponds to this situation
in which the nuclear charge and the two primitive orbitals
are centered at the same point xi,p which is at least a
distance 	 from all other points. The second case cor-
responds to the situation in which the three points are
all contained in B(i, j ) for some edge {i, j } in the origi-
nal graph. The set B(i, j ) contains the two indices for the
points that are γi,j apart from each other in the construction.
We define the matrix V(block) to include only contributions
arising from such exceptions. That is, we define the ele-
ments of V(block) in the following way. For fixed i and
p ∈ {0, degi + 1, . . . , d},

v
(block)
(i,p),(i,p) = v

(i,p)
(i,p),(i,p). (D19)

For adjacent vertices i and j , whereB(i, j ) = {(i, p), (j , q)},
the block V(block)

i,j is the 2 × 2 submatrix the elements
of which are in a row and column from B(i, j ). The
on-diagonal entries of V(block)

i,j are

v
(block)
(i,p),(i,p) = v

(i,p)
(i,p),(i,p) + v

(j ,q)
(i,p),(i,p). (D20)

The off-diagonal entries of V(block)
i,j are

v
(block)
(i,p),(j ,q) = v

(i,p)
(i,p),(j ,q) + v

(j ,q)
(i,p),(j ,q). (D21)

Since the block V(block)
i,j is symmetric and has the same on-

diagonal entries, we can define ON and OFF as:

ON
(

V(block)
i,j

)
= v

(i,p)
(i,p),(i,p) + v

(j ,q)
(i,p),(i,p) (D22)

= vα,α(0, 0)+ vα,α(γi,j , 0) (D23)

= vα,α(0, 0)
[
1 + F0(2αγ 2

i,j )
]

= 2
√

2α/π
[
1 + F0(2ωi,j )

]
, (D24)
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OFF
(

V(block)
i,j

)
= v

(i,p)
(i,p),(j ,q) + v

(j ,q)
(i,p),(j ,q) (D25)

= vα,α(0, γi,j )+ vα,α(γi,j , γi,j )

= 2vα,α(0, γi,j ) (D26)

= 2vα,α(0, 0) exp(−αγ 2
i,j /2)F0(αγi,j /2)

= 4
√

2α/πεi,j F0(ωi,j /2). (D27)

We now define an approximate potential operator

V(aprx) =
∑

i,j ∈[n]
σ∈{±1}

ṽ
(aprx)
i,j ã†

i,σ ãj ,σ , ≈ V(ES), (D28)

ṽ
(aprx)
i,j =

∑

p ,q

ψpψqṽ
(aprx)
(i,p),(j ,q), (D29)

Ṽ(aprx) = R(aprx) · V(block) · R(aprx), (D30)

where R(aprx) is the block-diagonal approximation of R
defined in Appendix E.

The following lemma, proved in Sec. D 3, bounds the
error introduced by this approximation.

Lemma 4: For 	 ≥ 2ωmax + n9 and α	2 ≥ 36 log n +
2 logβ,

∥∥V(ES) − V(aprx)
∥∥ ≤ 32n. (D31)

The following lemma, proved in Sec. D 1, shows that the
approximate potential operator is not too big.

Lemma 5: For ωmin ≥ 2,
∥∥V(aprx) − n · cV

∥∥ ≤ 5n
√
α. (D32)

Putting these together, we can prove Lemma 3.

Proof of Lemma 3. Under the conditions of the lemma,
Lemmas 4 and 5 imply
∥∥V(ES) − n · cV

∥∥ ≤ ∥∥V(ES) − V(aprx)
∥∥ + ∥∥V(aprx) − n · cV

∥∥
(D33)

≤ 32n + 5n
√
α ≤ 37n

√
α. (D34)

�

1. Proof of Lemma 5

Let j be the pth neighbor of i and i the qth neighbor of
j . Then the elements of Ṽ(aprx) are

ṽ
(aprx)
(i,p),(i,p) = ON(Ri,j · V(block)

i,j · Ri,j ) (D35)

= v
(block)
(i,p),(i,p) − εi,j v

(block)
(i,p),(j ,q)

1 − ε2
i,j

(D36)

= vα,α(0, 0)
[1 + F0(2ωi,j )] − 2ε2

i,j F0(ωi,j /2)

1 − ε2
i,j

(D37)

= vα,α(0, 0)

{
1 + F0(2ωi,j )+ ε2

i,j [1 − 2F0(ωi,j /2)]

1 − ε2
i,j

}
, (D38)

ṽ
(aprx)
(i,p),(j ,q) = OFF(Ri,j · V(block)

i,j · Ri,j ) (D39)

= v
(block)
(i,p),(j ,q) − εi,j v

(block)
(i,p),(i,p)

1 − ε2
i,j

(D40)

= vα,α(0, 0)
εi,j

1 − ε2
i,j

{
2F0(ωi,j /2)− [1 + F0(2ωi,j )]

}
. (D41)

Note that for p = 0 or p > degi, ṽ
(aprx)
(i,p),(i,p) = v

(block)
(i,p),(i,p).
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In the composite basis, the diagonal coefficients are

ṽ
(aprx)
i,i =

∑

p ′,q′
ψpψqṽ

(aprx)
(i,p ′),(j ,q′) = 1

2d

∑

p

ṽ
(aprx)
(i,p),(i,p) (D42)

= cV + vα,α(0, 0)
2d

∑

j :{i,j }∈E

F0(2ωi,j )+ ε2
i,j [1 − 2F0(ωi,j /2)]

1 − ε2
i,j

. (D43)

Later, we use the fact that

∣∣∣∣∣
F0(2ωi,j )+ ε2

i,j [1 − 2F0(ωi,j /2)]

1 − ε2
i,j

∣∣∣∣∣ ≤
∣∣F0(2ωi,j )

∣∣ + ε2
i,j

∣∣1 − 2F0(ωi,j /2)
∣∣

1 − ε2
i,j

(D44)

≤ 1 + ε2
i,j

1 − ε2
i,j

≤ 2. (D45)

The off-diagonal coefficients in the composite basis are

ṽ
(aprx)
i,j =

∑

p ′,q′
ψp ′ψq′ ṽ(aprx)

(i,p ′),(i,q′) = 1
2d
ṽ
(aprx)
(i,p),(j ,q) (D46)

= vα,α(0, 0)
2d

εi,j

1 − ε2
i,j

[
2F0(ωi,j /2)− (1 + F0(2ωi,j ))

]
(D47)

∣∣∣ṽ(aprx)
i,j

∣∣∣ ≤ εi,j

1 − ε2
i,j

≤ 1. (D48)

Putting it all together,

∥∥V(aprx) − n · cV
∥∥ (D49)

=

∥∥∥∥∥∥∥

∑

i,j
σ

ṽ
(aprx)
i,j ã†

i,σ ãj ,σ − n · cV

∥∥∥∥∥∥∥
(D50)

≤

∥∥∥∥∥∥∥

∑

i
σ

cVñi,σ − n · cV

∥∥∥∥∥∥∥
+ vα,α(0, 0)

2d

∥∥∥∥∥∥∥

∑

i
σ

∑

j :{i,j }∈E

F0(2ωi,j )+ ε2
i,j [1 − 2F0(ωi,j /2)]

1 − ε2
i,j

ñi,σ

∥∥∥∥∥∥∥
(D51)

+ vα,α

2d

∥∥∥∥∥∥∥

∑

{i,j }∈E
σ

εi,j

1 − ε2
i,j

{
2F0(ωi,j /2)− [1 + F0(2ωi,j )]

} (
ã†

i,σ ãj ,σ + h.c.
)
∥∥∥∥∥∥∥

(D52)

≤ 2vα,α(0, 0)
d

∑

{i,j }∈E

[1 + 2] (D53)

≤ 2
d

2
√

2α/π
nd
2

3 ≤ 5n
√
α. (D54)

�
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2. Proof of Fact 1

vα,β(y, x) =
(

2α
π

)3/2 ∫
dr exp

(−α‖r‖2 − ‖r − x‖2) ‖r − y‖−1 (D55)

=
(

2α
π

)3/2

exp
(

− αβ

α + β
‖x‖2

)∫
dr exp

[
−(α + β)

∥∥∥∥r − β

α + β
x
∥∥∥∥

2
]

‖r − y‖−1 (D56)

= exp
(

− αβ

α + β
‖x‖2

){(
2α
π

)3/2 ∫
dr exp

[−(α + β)‖r‖2]
∥∥∥∥r −

(
y − β

α + β
x
)∥∥∥∥

−1
}

(D57)

= exp
(

− αβ

α + β
‖x‖2

)
vα+β

2 , α+β
2

(
y − β

α + β
x, 0

)
, (D58)

vα,α(0, 0) =
∫

drξα(r)2‖r‖−1 (D59)

=
(

2α
π

)3/2 ∫
dr exp(−2α‖r‖2)‖r‖−1 (D60)

= 27/2α3/2

π1/2

∫ ∞

0
dr exp(−2αr2)r (D61)

= − 23/2α1/2

π1/2 e−2αr2
∣∣∣∣
∞

r=0
(D62)

= 23/2α1/2

π1/2 , (D63)

vα,α(x, 0) =
∫

drξα(r)2‖r − x‖−1 (D64)

= 2
(

2α
π

)1/2

F0(2α‖x‖2), (D65)

vα,α(0, x) =
∫

drξα(r − xe1)ξα(r)‖r‖−1 (D66)

=
(

2α
π

)3/2 ∫
dr exp

[−α (‖r‖2 + ‖r − x‖2)] ‖r‖−1 (D67)

=
(

2α
π

)3/2

exp(−α‖x‖2/2)
∫

dr exp
[
−2α

(∥∥∥r − x
2

∥∥∥
2
)]

‖r‖−1 (D68)

= exp(−α‖x‖2/2)

{(
2α
π

)3/2 ∫
dr exp

[−2α
(‖r‖2)] ‖r + x

2
‖

−1
}

(D69)

= exp(−α‖x‖2/2)vα(x/2, 0). (D70)

�

3. Proof of Lemma 4

Lemma 6: For 	 ≥ 2γmax,

vmax ≤ 2n2
√
β (D71)

v(neg)
max ≤ 2n2 max

{√
β exp(−α	2/2), 1/	

}
. (D72)
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The proof is deferred to the end of this subsection.
Using the same logic as in Eq. (E23) et seq.,

max
∣∣Ṽ − Ṽ(aprx)

∣∣ ≤ n4 [(rmax)
2v(neg)

max + 4vmaxr(neg)
max

]
(D73)

≤ n4
[
4 × 2n2 max

{√
β exp(−α	2/2), 1/	

}
+ 4 × 2n2

√
βn2 exp[−(α	2 − ωmin)/2]

]
(D74)

= 8n6
[
max

{√
β exp(−α	2/2), 1/	

}
+

√
βn2 exp[−(α	2 − ωmin)/2]

]
(D75)

≤ 8n6
[
max

{√
β exp(−α	2/2), 1/	

}
+

√
βn2 exp(−α	2/4)

]
(D76)

≤ 16n8 max
{√
β exp(−α	2/4), 1/	

}
(D77)

≤ 16n8 max
{√
β exp[−(36 log n + 2 logβ)/4], n−9

}
≤ 16n−1, (D78)

where we use the fact that 	 ≥ 2γmax (a condition of the lemma) implies α	2 ≥ 2ωmin, as well as the conditions of the
lemma directly in the last few lines. Therefore,

∥∥V(ES) − V(aprx)
∣∣ =

∥∥∥∥∥∥∥

∑

i,j
σ

(
ṽi,j − ṽ

(aprx)
i,j

)
ã†

i,σaj ,σ

∣∣∣∣∣∣∣
(D79)

≤ 2
∑

i,j

∣∣∣ṽi,j − ṽ
(aprx)
i,j

∣∣∣ (D80)

≤ 2n2 × 16n−1 ≤ 32n. (D81)

Proof of Lemma 6. We start with vmax:

vmax = max |V| = max
(i,p),(j ,q)

∣∣v(i,j ),(p ,q)
∣∣ (D82)

≤ max
(i,p),(j ,q)

∑

(i′,p ′)

∣∣∣v(i
′,p ′)

(i,p),(j ,q)

∣∣∣ (D83)

≤ n2 max
(i,p),(j ,q),(i′,p ′)

∣∣∣v(i
′,p ′)

(i,p),(j ,q)

∣∣∣ (D84)

= n2 max
i,j ,(i′,p ′)

{∣∣∣v(i
′,p ′)

(i,0),(p ,q)

∣∣∣ , max
q>0

∣∣∣v(i
′,p ′)

(i,0),(j ,q)

∣∣∣ , max
p>0,q>0

∣∣∣v(i
′,p ′)

(i,p),(j ,q)

∣∣∣
}

(D85)

= n2 max
i,j ,(i′,p ′)

{
vβ,β

(
xi′,p ′ − xi,0, xj ,0 − xi,0

)
, max

q>0
vβ,α

(
xi′,p ′ − xi,0, xj ,q − xi,0

)

max
p>0,q>0

vα,α
(
xi′,p ′ − xi,0, xj ,q − xi,p

)}
(D86)

≤ 23/2

π1/2 n2
√
β ≤ 2n2

√
β, (D87)

where we use the fact that

vμ,ν(y, x) = exp
(

− μν

μ+ ν
‖x‖2

)
vμ+ν

2 ,μ+ν
2

(
y − ν

μ+ ν

)
≤ vμ+ν

2 ,μ+ν
2

(
y − ν

μ+ ν

)
(D88)

= vμ+ν
2 ,μ+ν

2
(0, 0)F0

[
(μ+ ν)

∥∥∥∥y − ν

μ+ ν

∥∥∥∥
2
]

≤ vμ+ν
2 ,μ+ν

2
(0, 0) = 2

√
(μ+ ν)/π . (D89)
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Now we turn our attention to v(neg)
max = max(i,p),(j ,q)

∣∣∣v(neg)
(i,p),(j ,q)

∥∥∥. Recall that V(neg) = V − V(block), where V(block) includes only
contributions from Gaussians and nuclei that are mutually “close” (� 	) to each other.

Let us consider the maximand in three cases.
a. Case 1. (i, p) and (j , q) are in different blocks. Let

v
(neg)
(i,p),(j ,q) =

∑

(i′,p ′)
v
(neg(i′,p ′))
(i,0),(i,0) (D90)

≤
∑

(i′,p ′)
2
√

2β/π exp(−α	2/2) (D91)

≤ 2n2
√

2β/π exp(−α	2/2) ≤ 2n2
√
β exp(−α	2/2). (D92)

b. Case 2 i = j and p = q = 0. In this case,

v
(neg)
(i,0),(j ,0) =

∑

(i′,p ′) �=(i,0)
v
(neg(i′,p ′))
(i,0),(j ,0) (D93)

=
∑

(i′,p ′) �=(i,0)
vβ,β(xi′,p ′ − xi,0, 0) (D94)

≤ n22
√

2β/πF0(2β	2) (D95)

≤ n22
√

2β/π
√
π

2
1√

2β	2
= n2/	. (D96)

c. Case 3. (i, p) and (j , q) are in the same block and p �= 0. (This implies that q > 0.) Let j ′ be the pth neighbor of i
and i the q′th neighbor of j ′. This case includes both (j , q) = (i, p) and (j , q) = (j ′, q′):

v
(neg)
(i,p),(j ,q) =

∑

(i′,p ′) �=(i,p),(j ,q)

v
(neg(i′,p ′))
(i,p),(j ,q) (D97)

=
∑

(i′,p ′)/∈{(i,p),(j ′,q′)}
vα,α(xi′,p ′ − xi,p , xj ,q − xi,p) (D98)

= 2
√

2α/π
∑

(i′,p ′)/∈{(i,p),(j ′,q′)}
exp

(
−α∥∥xj ,q − xi,p

∥∥2
/2

)
F0

[
2α

∥∥∥∥xi′,p ′ − xi,p − 1
2
(
xj ,q − xi,p

)∥∥∥∥
2
]

(D99)

≤ 2
√

2α/π
∑

(i′,p ′)/∈{(i,p),(j ′,q′)}
F0

[
2α

∥∥∥∥xi′,p ′ − 1
2
(
xj ,q + xi,p

)∥∥∥∥
2
]

(D100)

≤
∑

(i′,p ′)/∈{(i,p),(j ′,q′)}
2
√

2α/πF0

[
2α

(
	 − γi,j

)2
]

(D101)

≤ n22
√

2α/πF0
(
α	2/2

)
(D102)

≤ n22
√

2α/π
√
π

2
1√
α	2/2

= 2n2

	
. (D103)

�
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APPENDIX E: PROOF OF LEMMA 1

The proof of Lemma 1 uses the following technical
lemmas that quantify the statement that matrices T̃, S,
and Ũ are approximately block diagonal. It is convenient
to refer only to the entries along the diagonal or inside
the edge blocks. For an n(d + 1)× n(d + 1) matrix or an
n2(d + 1)2 × n2(d + 1)2 matrix A, let A(block) denote the
matrix obtained by replacing all of the off-diagonal entries
of A outside the edge blocks with 0. Define

S(neg) = S − S(block), (E1)

R = S−1/2, (E2)

R(aprx) = (S(block))
−1/2

, (E3)

R(neg) = R − R(aprx). (E4)

Note that, because S(block) is block diagonal, R(aprx) is also
block diagonal. However, R(block) �= R(aprx). The matrix
R(neg), unlike S(neg), has nonzero entries even on the diago-
nal and within the blocks, though these are small.

The first lemma bounds max(|R(neg)|), where max(|A|)
is defined to be the maximum of the absolute values of the
entries in matrix A.

Lemma 7: If α	2 ≥ 4 log n + 2ωmin + 2 and ωmin ≥ 4,
then

r(neg)
max = max

(∣∣R(neg)
∣∣) ≤ n2 exp

[−(α	2 − ωmin)/2
]

.
(E5)

Corollary 2: For α	2 ≥ 4 log n + 2ωmin + 2 and
ωmin ≥ 2,

r(neg)
max ≤ n2 exp

[− (
α	2 − ωmin

)
/2

]

≤ n2 exp [− (4 log n + 2ωmin + 2 − ωmin) /2]

≤ exp(−1) ≤ 1/2. (E6)

The entries of matrix S are just the overlap of normalized
Gaussians, so the diagonal is all ones. Block Si,j corre-
sponding to edge {i, j }, where B(i, j ) = {(i, p), (j , q)} is

Si,j =
(

1 εi,j
εi,j 1

)
, (E7)

εi,j = s(i,p),(j ,q) = sα(γi,j ) = exp(−ωi,j /2),

where ωi,j = αγ 2
i,j . (E8)

The entry s(i,p),(i,p) is not contained in an edge block if
and only if p = 0 or p > degi. In this case, the orbital
φi,p is at least a distance 	 away from every other prim-
itive orbital and the block for s(i,p),(i,p) is just the single
element on the diagonal. For these primitive orbitals,
we have

s(i,p),(i,p) = r(aprx)
(i,p),(i,p) = 1.

The edge blocks of R(aprx) can be computed exactly as

R(aprx)
i,j = (

Si,j
)−1/2 (E9)

= 1
2

⎛
⎜⎝

1√
1+εi,j

+ 1√
1−εi,j

1√
1+εi,j

− 1√
1−εi,j

1√
1+εi,j

− 1√
1−εi,j

1√
1+εi,j

+ 1√
1−εi,j

⎞
⎟⎠ .

(E10)

The following lemma bounds the error from just tak-
ing the leading term in εi,j . Note that the 2 × 2 matrix
R(aprx)

i,j has identical on-diagonal entries and identical off-
diagonal entries. Let ON(R(aprx)

i,j ) refer to the value of the
on-diagonal entries and let OFF(R(aprx)

i,j ) refer to the value of
the off-diagonal entries. The matrix R(aprx)

i,j Ti,j R(aprx)
i,j has the

same symmetries, so we can define ON and OFF for those
matrices as well.

Lemma 8: For ωmin ≥ 4 and {i, j } ∈ E where B(i, j ) = {(i, p), (j , q)},

1 ≤ ON(r(aprx)) ≤ 1 + ε2
i,j , (E11)

−εi,j

2
− ε3

i,j ≤ OFF(r(aprx)) ≤ −εi,j

2
, (E12)

tα(0) ≤ ON
(

R(aprx)
i,j Ti,j R(aprx)

i,j

)
≤ tα(0)+ αωi,j ε

2
i,j , (E13)

−α
2

√
f (ωi,j )(1 + 4ε2

i,j ) ≤ OFF
(

R(aprx)
i,j Ti,j R(aprx)

i,j

)
≤ −α

2

√
f (ωi,j ), (E14)

max
[∣∣∣∣
(

R(aprx)
i,j

)⊗2
Ui,j

(
R(aprx)

i,j

)⊗2
− Ui,j

∣∣∣∣
]

≤ 16
√
αεi,j . (E15)
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Corollary 3: For ωmin ≥ 4,

r(aprx)
max = max

(∣∣R(aprx)
∣∣) ≤ 3/2. (E16)

Corollary 4: For α	2 ≥ 4 log n + ωmin + 2 andωmin ≥ 4,

rmax = max (|R|) ≤ r(aprx)
max + r(neg)

max ≤ 2. (E17)

Define T(neg) = T − T(block). Similarly, define U(neg) =
U − U(block). The following lemma bounds these coeffi-
cients.

Lemma 9: For β ≥ α ≥ 1 and α	2 ≥ 64,

tmax = max (|T|) ≤ 3
2
β, (E18)

t(neg)
max = max

(∣∣T(neg)
∣∣) ≤ β exp

(−α	2/4
)

, (E19)

umax = max (|U|) ≤ 2β3, (E20)

u(neg)
max = max

(∣∣U(neg)
∣∣) ≤ 2β3/	. (E21)

Proofs of the technical lemmas follow the proof of
Lemma 1. Note that the conditions of the technical lemmas
(and corollaries) are implied by the conditions of Lemma 1.

Lemma 10: (restated). If β ≥ α ≥ 1, ωmin ≥ 4, 	 ≥
640n18β3, and α	2 ≥ 12 logβ + 80 log n + 4ωmin + 24,
then

∥∥H (ES) − H (round)
∥∥ ≤ 3n2αf (ωmin)+ 1

20n2

+ 8n4√α · exp(−ωmin/2), (46a)

where ωmin = αγ 2
min.

Proof of Lemma 1. We bound the kinetic and potential
parts separately, starting with the former.

Define T̃(aprx) = R(aprx)T(block)R(aprx), and recall that T̃ =
RTR. The first task is to bound the error of approximating
T̃ by T̃(aprx):

max
(∣∣T̃ − T̃(aprx)

∣∣) = max
(∣∣RTR − R(aprx)T(block)R(aprx)

∣∣) (E22)

≤ max
(∣∣RTR − RT(block)R

∣∣) + max
(∣∣RT(block)R − R(aprx)T(block)R(aprx)

∣∣) . (E23)

We bound each term from Eq. (E23) separately. We use the fact that if A and B are m × m matrices, then max(|AB|) ≤
m · max(|A|) · max(|B|). Since the matrices R and T are n(d + 1)× n(d + 1)matrices and d + 1 ≤ n, we pick up a factor
of at most n2 every time this rule is applied:

max
(∣∣RTR − RT(block)R

∣∣) = max
(|R(T − T(block))R|) (E24)

≤ n4(rmax)
2 max(|T − T(block)|) = n4(rmax)

2t(neg)
max (E25)

≤ 4n2β exp(−α	2/4). (E26)

The last inequality uses the bound from Eq. (E17) that rmax ≤ 2 and from Eq. (E19) that t(neg)
max ≤ β exp(−α	2/4). To

bound the second term from Eq. (E23), recall that R = R(aprx) + R(neg):

max
(∣∣RT(block)R − R(aprx)T(block)R(aprx)

∣∣) (E27)

= max
{∣∣[R(aprx) + R(neg)]T(block) [R(aprx) + R(neg)] − R(aprx)T(block)R(aprx)

∣∣} (E28)

= max
(∣∣R(aprx)T(block)R(neg) + R(neg)T(block)R(aprx) + R(neg)T(block)R(neg)

∣∣) (E29)

≤ n4tmaxr(neg)
max

(
2r(aprx)

max + r(neg)
max

)
(E30)

≤ n4 × 3
2
β

︸︷︷︸
Eq. (E18)

× exp
[−(α	2 − ωmin)/2

]
︸ ︷︷ ︸

Eq. (E5)

⎡
⎢⎢⎣
(

2 × 3
2︸︷︷︸

Eq. (E16)

)
+ 1

2︸︷︷︸
Eq. (E6)

⎤
⎥⎥⎦ (E31)

≤ 6n4β exp
[−(α	2 − ωmin)/2

] ≤ 6n4β exp(−α	2/4). (E32)
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The last inequality is implied by the assumptions of the
lemma, specifically that α	2 ≥ 2ωmin. Putting together the
bounds from Eqs. (E26) and (E32), we obtain that

max
(∣∣T̃ − T̃(aprx)

∣∣) ≤ 10n4β exp(−α	2/4). (E33)

The next step is to use the approximation for the kinetic-
energy terms for the primitive orbitals to obtain the
kinetic-energy term for the composite orbitals. Recall that
composite orbital φi is a superposition of φi,p :

φi =
d∑

p=0

ψpφi,p ,

where ψ0 = 1/
√

2 and ψp>0 = 1/
√

2d. Therefore, the
kinetic-energy terms for the composite orbitals are just
superpositions of the kinetic-energy terms for the primitive
orbitals:

ti,j =
∑

p ,q

ψpψqt(i,p),(j ,q).

We can apply this principle to T̃ and T̃(aprx) as well:

t̃i,j =
∑

p ,q

ψpψqt̃(i,p),(j ,q) and t̃(aprx)
i,j =

∑

p ,q

ψpψqt̃(aprx)
(i,p),(j ,q).

Using the bound from Eq. (E33),

|t̃i,j − t̃(aprx)
i,j | ≤

∑

p ,q

ψpψq|t̃(i,p),(j ,q) − t̃(aprx)
(i,p),(j ,q)| (E34)

≤ 1
2
(d + 1)2 max

(∣∣T̃ − T̃(aprx)
∣∣)

≤ 5n6β exp(−α	2/4). (E35)

The next task is to bound |t̃(aprx)
i,j − t(round)

i,j |. We consider
three separate cases. In each case, we show that

∣∣∣t̃(aprx)
i,j − t(round)

i,j

∣∣∣ ≤ αf (ωmin). (E36)

Recall that T̃(aprx) = R(aprx)T(block)R(aprx), so matrix T̃(aprx)

is block diagonal. This means that t̃(aprx)
(i,p),(j ,q) = 0 unless

(i, p) = (j , q) or {i, j } ∈ E and B(i, j ) = {(i, p), (j , q)}.
This considerably simplifies the sum

t̃(aprx)
i,j =

∑

p ,q

ψpψqt̃(aprx)
(i,p),(j ,q). (E37)

a. Case 1 Diagonal element: i = j . First note that if p =
0 or p > degi, then the block containing (i, p) is just the
single entry on the diagonal. In this case, r(aprx)

(i,p),(i,p) = 1 and

t̃(aprx)
(i,p),(i,p) = t(i,p),(i,p).

Thus, when i = j , the sum given in Eq. (E37) simplifies
to

t̃(aprx)
i,i = 1

2
t(i,0),(i,0) + 1

2d

∑

j :{i,j }∈E

ON
(

R(aprx)
i,j Ti,j R(aprx)

i,j

)

+ 1
2d

∑

p>degi

t(i,p),(i,p). (E38)

The function t is defined in Eq. (C11), so that tβ(0) =
t(i,0),(i,0) and tα(0) = t(i,p),(i,p) for p > 0. Thus,

t̃(aprx)
i,i = 1

2
tβ(0)+ 1

2d

∑

j :{i,j }∈E

ON
(

R(aprx)
i,j Ti,j R(aprx)

i,j

)

+ 1
2d

∑

p>degi

tα(0). (E39)

Recall from Eq. (C31) that the diagonal coefficients of
T(round) are

t(round)
i,i = cT = 1

2
[
tβ(0)+ tα(0)

] = 1
2

tβ(0)+ 1
2d

∑

p>0

tα(0).

(E40)

Therefore, the difference between t̃(aprx)
i,j and t(round)

i,j is

∣∣∣t̃(aprx)
i,i − t(round)

i,i

∣∣∣

=
∣∣∣∣∣∣

1
2d

∑

j :{i,j }∈E

ON
(

R(aprx)
i,j Ti,j R(aprx)

i,j

)
− tα(0)

∣∣∣∣∣∣
(E41)

≤ 1
2d

∑

j :{i,j }∈E

∣∣∣ON
(

R(aprx)
i,j Ti,j R(aprx)

i,j

)
− tα(0)

∣∣∣ (E42)

≤ 1
2d

∑

j :{i,j }∈E

αωi,j ε
2
i,j by Eq. (E13) (E43)

≤ α

2d

∑

j :{i,j }∈E

f (ωi,j ) (E44)

≤ α

2d
df (ωmin) ωmin ≥ 2 (E45)

= α

2
f (ωmin) ≤ αf (ωmin). (E46)

Note that since ωmin ≥ 2 (by the assumptions of the
lemma), the function f (ω) = ω2 exp(−ω) is maximized at
ωmin.

b. Case 2 Off-diagonal element corresponding to edge:
{i, j } ∈ E. In this case, there is exactly one p and exactly
one q such that (i, p) and (j , q) are in the same block, where
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B(i, j ) = {(i, p), (j , q)}. Thus, the summation in Eq. (E37)
has only one nonzero term:

t̃(aprx)
i,j = 1

2d
OFF

(
R(aprx)

i,j Ti,j R(aprx)
i,j

)
. (E47)

Recall from Eq. (C32) that t(round)
i,j = −α/4d

√
f (ωi,j ).

Therefore,

∣∣∣t̃(aprx)
i,j − t(round)

i,j

∣∣∣

= 1
2d

∣∣∣OFF
(

R(aprx)
i,j Ti,j R(aprx)

i,j

)
−

[
−α

2

√
f (ωi,j )

]∣∣∣
(E48)

≤ 1
2d
α

2

√
f (ωi,j )4ε2

i,j by Eq. (E14) (E49)

= α

d
ωi,j exp(−3ωi,j /2) (E50)

≤ αωi,j exp(−ωi,j ) (E51)

≤ αf (ωmin). (E52)

Again, we are using the fact that since ωmin ≥ 2, the
function f (ω) = ω2 exp(−ω) is maximized at ωmin.

c. Case 3. Off-diagonal element corresponding to
nonedge: {i, j } /∈ E. In this case, (i, p) and (j , q) are in
different blocks for all p , q, and so the summation in
Eq. (E37) is empty. That is, t̃(aprx)

i,j = 0. Recall that t(round)
i,j

is also zero for {i, j } /∈ E.
Finally, we can combine the bound for

∣∣∣t̃i,j − t̃(aprx)
i,j

∣∣∣

from Eq. (E35) and the bound for
∣∣∣t̃(aprx)

i,j − t(round)
i,j

∣∣∣ from
Eq. (E36):

∥∥T(ES) − T(round)
∥∥

≤

∥∥∥∥∥∥∥

∑

i,j
σ

(
t̃i,j − t(round)

i,j

)
ã†

i,σ ãj ,σ

∥∥∥∥∥∥∥
(E53)

≤
∑

i,j
σ

∣∣∣t̃i,j − t(round)
i,j

∣∣∣
∥∥∥ã†

i,σ ãj ,σ

∥∥∥ = 2
∑

i,j

∣∣∣t̃i,j − t(round)
i,j

∣∣∣

(E54)

≤ 2
∑

i,j

∣∣∣t̃i,j − t̃(aprx)
i,j

∣∣∣ + 2
∑

i,j

∣∣∣t̃(aprx)
i,j − t(round)

i,j

∣∣∣ (E55)

≤ 10n8β exp(−α	2/4)+ 2n2αf (ωmin). (E56)

We can apply the conditions of the lemma to sim-
plify this expression. The lower bound on α	2 implies
that exp(−α	2/4) ≤ (10n6β)

−1 exp(−ωmin). Using the

assumptions that α ≥ 1 and ωmin ≥ 1:

10n8β exp(−α	2/4) ≤ n2 exp(−ωmin)

≤ n2α(ωmin)
2 exp(−ωmin) = n2αf (ωmin).

Recall that f (ω) = ω2 exp(−ω). The final bound for the
kinetic-energy difference is

∥∥T(ES) − T(round)
∥∥ ≤ 3n2αf (ωmin). (E57)

Next, we consider the terms for the potential energy. As
with the kinetic-energy terms, we approximate Ũ = (R ⊗
R)U(R ⊗ R) by

Ũ(aprx) = (R(aprx) ⊗ R(aprx))Ũ(block)(R(aprx) ⊗ R(aprx)).
(E58)

The matrices are now n2(d + 1)2 × n2(d + 1)2. We use the
fact that if A and B are m × m matrices, then max(|AB|) ≤
m max(|A|) · max(|B|). Since d + 1 ≤ n, we pick up a fac-
tor of at most n4 every time this principle is applied. We
bound max(|Ũ − Ũ(aprx)|) in two stages. First, we bound

max
[∣∣Ũ − (R ⊗ R)Ũ(block)(R ⊗ R)

∣∣]

= max
[∣∣(R ⊗ R)U(R ⊗ R)− (R ⊗ R)Ũ(block)(R ⊗ R)

∣∣]

(E59)

= max
[∣∣(R ⊗ R)(U − Ũ(block))(R ⊗ R)

∣∣] (E60)

≤ n8(rmax)
4u(neg)

max (E61)

≤ n8 24
︸︷︷︸

Eq. E17

2β3/	︸ ︷︷ ︸
Eq. E21

= 32n8β3/	. (E62)

The next step is to bound

max
[∣∣(R ⊗ R)Ũ(block)(R ⊗ R)− Ũ(aprx)

∣∣] (E63)

= max
[∣∣(R ⊗ R)Ũ(block)(R ⊗ R)

− (R(aprx) ⊗ R(aprx))Ũ(block)(R(aprx) ⊗ R(aprx))
∣∣] .
(E64)

If we substitute R = R(neg) + R(aprx) in to the expression
(R ⊗ R)U(block)(R ⊗ R) and expand the product, we obtain
the sum of 24 terms:

(R ⊗ R)Ũ(block)(R ⊗ R)

=
∑

a,b,c,d∈{neg,aprx}
(R(a) ⊗ R(b))Ũ(block)(R(c) ⊗ R(d)).

(E65)

In bounding the difference from Eq. (E64), we are left with
the terms in which a, b, c, d are not all equal to “aprx,” so
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every remaining term has at least one factor of R(neg):

|(R ⊗ R)Ũ(block)(R ⊗ R)− Ũ(aprx)|

≤ n8umax

3∑

x=0

(
4
x

)(
r(aprx)

max

)x(
r(neg)

max

)4−x
(E66)

≤ n8umax × 15 × r(neg)
max

[
max

{
r(aprx)

max , r(neg)
max

}]3
(E67)

≤ n8 2β3
︸︷︷︸

Eq. (E20)

×15 × n2 exp
[−(α	2 − ωmin)/2

]
︸ ︷︷ ︸

Eq. (E5)

×
(

3
2

)3

︸ ︷︷ ︸
Eqs. (E16) and (E6)

(E68)

≤ 102n10β3 exp
[−(α	2 − ωmin)/2

]
(E69)

≤ 102n10β3 exp(−α	2/4). (E70)

The last inequality uses the assumption from the lemma
that α	2 ≥ 2ωmin. Putting the two bounds from Eqs. (E62)

and (E70) together, we obtain that

max
(∣∣Ũ − Ũ(aprx)

∣∣) (E71)

≤ max
[∣∣Ũ − (R ⊗ R)Ũ(block)(R ⊗ R)

∣∣]

+ max
[∣∣(R ⊗ R)Ũ(block)(R ⊗ R)− Ũ(aprx)

∣∣] (E72)

≤ 32n8β3/	 + 102n10β3 exp(−α	2/4). (E73)

Since the composite orbitals are superpositions of the
primitive orbitals, the potential-energy terms for the com-
posite orbitals can be expressed as linear combinations
of the potential-energy terms for the primitive orbitals.
Therefore,

ui,j ,k,l =
∑

p ,q,r,s,∈[d+1]

ψpψqψrψsu[(i,p),(j ,q)][(l,r),(l,s)], (E74)

where the amplitudes ψ are defined to be ψ0 = 1/
√

2 and
ψp>0 = 1/

√
2d. The same definition for ũi,j ,k,l and ũ(aprx)

i,j ,k,l
can be applied using the potential-energy terms for the
primitive orbitals defined in Ũ and Ũ(aprx). We can apply
the bound from Eq. (E73) to bound the difference in the
potential-energy terms for the composite orbitals:

|ũi,j ,k,l − ũ(aprx)
i,j ,k,l | =

∣∣∣∣∣∣

∑

p ,q,r,s,∈[d+1]

ψpψqψrψs

(
ũ[(i,p),(j ,q)][(l,r),(l,s)] − ũ(aprx)

[(i,p),(j ,q)][(l,r),(l,s)]

)
∣∣∣∣∣∣

(E75)

≤ 1
4
(d + 1)4 max

(∣∣Ũ − Ũ(aprx)
∣∣) (E76)

≤ 1
4

n4[32n8β3/	 + 102n10β3 exp(−α	2/4)] (E77)

≤ 8n12β3/	 + 26n14β3 exp(−α	2/4). (E78)

We can now apply the assumptions of the lemma
to simplify the above expression. The assumption
that 	 ≥ 640n18β3 implies that 8n12β3/	 ≤ 1/(80n6).
The assumption that α	2 ≥ 12 logβ + 80 log n + 4ωmin +
24 ≥ 12 logβ + 80 log n + 40 implies that 26n14β3 exp
(−α	2/4) ≤ 1/(80n6). Therefore,

8n12β3/	 + 26n14β3 exp(−α	2/4) ≤ 1
40n6 . (E79)

The next task is to bound |ũ(aprx)
i,j ,k,l − u(round)

i,j ,k,l |. Since

Ũ(aprx) = (R(aprx) ⊗ R(aprx))Ũ(block)(R(aprx) ⊗ R(aprx))

is block diagonal, many of the terms in the sum given in
Eq. (E74) are zero. We consider three cases. In each case,
we show that

|ũ(aprx)
i,j ,k,l − ũ(round)

i,j ,k,l | ≤ 4
√
α exp (−ωmin/2). (E80)

d. Case 1 On-site term i = j = k = l. Note that
the entry in row [(i, p), (i, q)] and row [(i, r), (i, s)]
is outside of a block unless p = q = r = s. If p =
0 or p > degi, then the block containing [(i, p), (i, p)]
is just the single entry on the diagonal. In this
case, r(aprx)

(i,p),(i,p) ⊗ r(aprx)
(i,p),(i,p) = 1 and the diagonal ele-

ment at [(i, p), (i, p)] is the same for Ũ(aprx) and U.
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If p = 0, then primitive orbital φi,0 is a Gaussian of width β and the diagonal term of U at [(i, 0), (i, 0)] is as in Eq. (C14)
defined as u(Coul)

β (0). For p > degi, then primitive orbital φi,p is a Gaussian of width α and the diagonal term of U at
[(i, p), (i, p)] is, as in Eq. (C14), defined as u(Coul)

α (0).
Thus, when i = j = k = l, the sum given in Eq. (E74) simplifies to

ũ(aprx)
i,i,i,i = 1

4d2

∑

0<p≤degi

[(
R(block)

i,j

)⊗2
Ui,j

(
R(block)

i,j

)⊗2
]

(i,p),(i,p),(i,p),(i,p)
(E81)

+ 1
4

u(Coul)
β (0)+ 1

4d2

∑

p>degi

u(Coul)
α (0). (E82)

Recall that u(round)
i,i,i,i is defined in Eq. (C41) to be

c(round)
U = 1

4
u(Coul)
β (0)+ 1

4d
u(Coul)
α (0) = 1

4
u(Coul)
β (0)+ 1

4d2

∑

p∈[d]

u(Coul)
α (0) (E83)

Therefore,

∣∣∣ũ(aprx)
i,i,i,i − u(round)

i,i,i,i

∣∣∣ (E84)

= 1
4d2

∣∣∣∣∣∣

∑

0<p≤degi

{[(
R(block)

i,j

)⊗2
Ui,j

(
R(block)

i,j

)⊗2
]

(i,p),(i,p),(i,p),(i,p)

}
− u(Coul)

α (0)

∣∣∣∣∣∣
(E85)

= 1
4d2

∣∣∣∣∣∣

∑

0<p≤degi

[(
R(block)

i,j

)⊗2
Ui,j

(
R(block)

i,j

)⊗2
− Ui,j

]

(i,p),(i,p),(i,p),(i,p)

∣∣∣∣∣∣
(E86)

≤ 1
4d2 · d · max

∣∣∣∣
(

R(block)
i,j

)⊗2
Ui,j

(
R(block)

i,j

)⊗2
− Ui,j

∣∣∣∣ (E87)

≤ 1
4

16
√
αεmax︸ ︷︷ ︸

(E15)

= 4
√
α exp(−ωi,j /2) ≤ 4

√
α exp(−ωmin/2). (E88)

The last inequality uses the assumption of the lemma that ωmin ≥ 2.

e. Case 2 All indices within block corresponding to edge {i, j } ∈ E. Let B(i, j ) = {(i, p), (j , q)}.
Consider, for example, the term ũ(aprx)

i,j ,j ,i . The sum in Eq. (E74) has only one nonzero term corresponding to row
[(i, p), (j , q)] and column [(j , q), (i, p)]. So

ũ(aprx)
i,j ,j ,i = 1

4d2

[(
R(block)

i,j

)⊗2
Ui,j

(
R(block)

i,j

)⊗2
]

[(i,p),(j ,q)],[(j ,q),(i,p)]
. (E89)

Recall that

u(round)
i,j ,j ,i = 1

4d2 u(Coul)
α (γi,j ) = 1

4d2 u[(i,p),(j ,q)],[(j ,q),(i,p)]. (E90)

The first equality comes from the definition of u(round) in Eq. (C42) and the second comes from the definition of u(Coul)
α (γi,j )

in Eq. (C14). The entry in row [(i, p), (j , q)] and column [(j , q), (i, p)] is inside the block corresponding to edge {i, j }.
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Therefore,
∣∣∣ũ(aprx)

i,j ,j ,i − u(round)
i,j ,j ,i

∣∣∣ = 1
4d2 max

[∣∣∣∣
(

R(block)
i,j

)⊗2
Ui,j

(
R(block)

i,j

)⊗2
− Ui,j

∣∣∣∣
]

(E91)

≤ 1
4

16
√
αεi,j︸ ︷︷ ︸

Eq. (E15)

= 4
√
α exp(−ωi,j /2) ≤ 4

√
α exp(−ωmin/2). (E92)

The same bound holds for
∣∣∣ũ(aprx)

i,i,j ,i − u(round)
i,i,j ,i

∣∣∣ ,
∣∣∣ũ(aprx)

j ,i,j ,i − u(round)
j ,i,j ,i

∣∣∣, etc. for {i, j } ∈ E.

f. Case 3 At least one pair of indices corresponding to nonedge {i, j } /∈ E. In this case, both ũ(aprx)
i,j ,k,l and u(round)

i,j ,k,l are zero.
All together,

∥∥U(ES) − U(round)
∥∥ ≤

∥∥∥∥∥∥∥

1
2

∑

i,j ,k,l
σ ,τ

(
ũi,j ,k,l − u(round)

i,j ,k,l

)
ã†

i,σ ã†
j ,σ ãk,σ ãl,σ

∥∥∥∥∥∥∥
(E93)

≤ 1
2

∑

i,j ,k,l
σ ,τ

∣∣∣ũi,j ,k,l − u(round)
i,j ,k,l

∣∣∣
∥∥∥ã†

i,σ ã†
j ,σ ãk,σ ãl,σ

∥∥∥ (E94)

= 1
2

× 4︸︷︷︸
σ ,τ

∑

i,j ,k,l

∣∣∣ũi,j ,k,l − u(round)
i,j ,k,l

∣∣∣ (E95)

≤ 2
∑

i,j ,k,l

∣∣∣ũi,j ,k,l − ũ(aprx)
i,j ,k,l

∣∣∣ + 2
∑

i,j ,k,l

∣∣∣ũ(aprx)
i,j ,k,l − u(round)

i,j ,k,l

∣∣∣ (E96)

≤ 2n4
(

1
40n6

)

︸ ︷︷ ︸
Eq. (E79)

+2n4 × 4
√
α exp(−ωmin/2)︸ ︷︷ ︸

Eq. (E80)

(E97)

= 1
20n2 + 8n4√α exp(−ωmin/2). (E98)

Equations (E57) and (E98) imply the lemma:
∥∥H (ES) − H (round)

∥∥ ≤ ∥∥T(ES) − T(round)
∥∥ + ∥∥U(ES) − U(round)

∥∥ (E99)

≤ 3n2αf (ωmin)+ 1
20n2 + 8n4√α exp(−ωmin/2). (E100)

�

1. Proof of Lemma 7

Define εmax to be the largest off-diagonal element of S and εneg to be the largest entry of S(neg), which is the largest entry
of S outside of an edge block:

εmax = max
(i,p) �=(j ,q)

s(i,p),(j ,q) = sα(γmin) = exp(−ωmin/2), (E101)

εneg = max
(
S(neg)) ≤ sα(	) = exp(−α	2/2). (E102)

Let S(block) = I + S(OD); S(OD) has at most one entry per row or column, and that entry is between 0 and εmax. Using the
Taylor expansion

M−1/2 =
∞∑

k=0

(−2)−k (2k − 1)!!
k!

(M − I)k (E103)
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of a matrix M around the identity I , we have

R(neg) = R − R(aprx) (E104)

= (S)−1/2 − (
S(block))−1/2

(E105)

= (
I + S(OD) + S(neg))−1/2 − (

I + S(OD))−1/2
(E106)

=
∞∑

k=0

(−2)−k (2k − 1)!!
k!

[(
S(OD) + S(neg))k − (

S(OD))k
]

. (E107)

Entry-wise,

[(
S(OD) + S(neg))k

]

(i0,l0),(ik ,lk)
(E108)

=
∑

(i1,l1),...,(ik−1,lk−1)

(
S(OD) + S(neg))

(i0,l0),(i1,l1)
· · · (S(OD) + S(neg))

(ik−1,lk−1),(ik ,lk)
(E109)

=
∑

0<
∥∥∥xik′ ,lk′ −xik′+1,lk′+1

∥∥∥

s(i0,l0),(i1,l1) · · · s(ik−1,lk−1),(ik ,lk), (E110)

where the summation excludes the diagonal entries. (Recall that I , S(OD), and S(neg) have disjoint support.) Similarly,

[(
S(OD))k

]

(i0,l0),(ik ,lk)
=

∑

0<
∥∥∥xik′ ,lk′ −xik′+1,lk′+1

∥∥∥<	

s(i0,l0),(i1,l1) · · · s(ik−1,lk−1),(ik ,lk), (E111)

where the summation excludes both the diagonal and anything outside of the blocks. The difference between Eqs. (E110)
and (E111) is the summation in Eq. (E110) restricted to when at least one of the neighboring pairs is at least 	 separated.
Each term with exactly x pairs separated by at least 	 contributes at most εk−x

maxε
x
neg. There are

(k
x

)
places in the sequence

that these pairs can occur. For each factor contributing more than εneg there is at most one index value (ik′ , lk′), and for
each factor contributing at most εneg there are at most n(d + 1)− 1 ≤ 2n2 indices. Therefore,

[(
S(OD) + S(neg))k − (

S(OD))k
]

(i0,l0),(ik ,lk)
(E112)

≤
k∑

x=1

(
k
x

)(
2n2εneg

)x
εk−x

max (E113)

=
k−1∑

x=0

(
k
x

)(
2n2εneg

)k−x
εx

max = (
2n2εneg

)k
k−1∑

x=0

k
k − x

(
k − 1

x

)(
εmax

2n2εneg

)x

(E114)

≤ (
2n2εneg

)k
k−1∑

x=0

k
(

k − 1
x

)(
εmax

2n2εneg

)x

= k
(
2n2εneg

)k
(

1 + εmax

2n2εneg

)k−1

(E115)

= k
(
2n2εneg

)(
2n2εneg + εmax

)k−1
(E116)

≤ k
(
2n2εneg

)
(2εmax)

k−1 = kn2 εneg

εmax
(2εmax)

k, (E117)

where we use the fact that

2n2εneg = 2n2e−α	2/2 ≤ e · n2e−α	2/2 ≤ e · n2e−(4 log n+ωmin+2)/2 = e−ωmin/2 = εmax (E118)
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by assumption. Returning to the expression in Eq. (E107), the norm of each entry of R(neg) is then

∣∣∣r(neg)
(i0,l0),(ik ,lk)

∣∣∣ =
∣∣∣∣∣

∞∑

k=0

(−2)−k (2k − 1)!!
k!

[(
S(OD) + S(neg))k − (

S(OD))k
]

(i0,l0),(ik ,lk)

∣∣∣∣∣ (E119)

≤
∞∑

k=0

(2)−k (2k − 1)!!
k!

∣∣∣∣
[(

S(OD) + S(neg))k − (
S(OD))k

]

(i0,l0),(ik ,lk)

∣∣∣∣ (E120)

≤ n2 εneg

εmax

∞∑

k=1

(2)−k (2k − 1)!!
k!

k(2εmax)
k (E121)

= n2 εneg

εmax

∞∑

k=1

(2k − 1)!!
(k − 1)!

εk
max (E122)

= n2 εneg

εmax

εmax

(1 − 2εmax)
3/2 (E123)

≤ n2 εneg

εmax
for ωmin ≥ 4 (E124)

≤ n2 exp
[−(α	2 − ωmin)/2

]
. (E125)

�

2. Proof of Lemma 8

In this proof, we use the following form of Taylor’s theorem. �

Theorem 2: (Taylor’s theorem with remainder in Lagrange form [25]). Let f be a (n + 1)-times differentiable function
in the region [0, 1]. Then, for every x ∈ [0, 1], there is some c ∈ [0, x] such that

f (x) =
n∑

k=0

f (k)(0)
k!

xk + f (n+1)(c)
(n + 1)!

xn+1. (E126)

Note that ωmin ≥ 2 implies that εi,j = e−ωi,j /2 ≤ e−ωmin/2 ≤ 1/e.
We start with the bounds on the entries of R(aprx). Given the derivatives

d
dε

(
1√

1 + ε
± 1√

1 − ε

)
= 1

2
[−(1 + ε)−3/2 ± (1 − ε)−3/2] , (E127)

d2

dε2

(
1√

1 + ε
± 1√

1 − ε

)
= 3

4
[
(1 + ε)−5/2 ± (1 − ε)−5/2] , (E128)

d3

dε3

(
1√

1 + ε
± 1√

1 − ε

)
= 15

8
[−(1 + ε)−7/2 ± (1 − ε)−7/2] , (E129)

Theorem 6 implies that

1√
1 + ε

+ 1√
1 − ε

= 2 + 0 + 1
2

3
4

[
(1 + ε′)−5/2 + (1 − ε′)−5/2

]
ε2, (E130)

1√
1 + ε

− 1√
1 − ε

= 0 − ε + 0 − 1
3!

15
8

[
(1 + ε′)−7/2 + (1 − ε′)−7/2

]
ε3 (E131)
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for some ε′ ∈ [0, ε]. For 0 ≤ ε ≤ 1/e, we have

2 ≤ 1√
1 + ε

+ 1√
1 − ε

≤ 2 + 2ε2, (E132)

−ε − 2ε3 ≤ 1√
1 + ε

− 1√
1 − ε

≤ −ε. (E133)

Dividing by 2 and substituting ε = εi,j implies Eqs. (E11) and (E12).
Now, let us turn to the entries of R(aprx)

i,j Ti,j R(aprx)
i,j . Let B(i, j ) = {(i, p), (j , q)}. To make the notation more concise

within this proof, we refer to the diagonal elements of R(aprx)
i,j as rON = r(aprx)

(i,p),(i,p) = r(aprx)
(j ,q),(j ,q) and the off-diagonal elements

as rOFF = r(aprx)
(i,p),(j ,q) = r(aprx)

(j ,q),(i,p). Note that

(rON )
2 + (rOFF)

2 = 1
4

⎡

⎣
(

1√
1 + εi,j

+ 1√
1 − εi,j

)2

+
(

1√
1 + εi,j

− 1√
1 − εi,j

)2
⎤

⎦ (E134)

= 1
2

(
1

1 + εi,j
+ 1

1 − εi,j

)
= 1

1 − ε2
i,j

(E135)

and

rON · rOFF = 1
4

(
1√

1 + εi,j
+ 1√

1 − εi,j

)(
1√

1 + εi,j
− 1√

1 − εi,j

)
(E136)

= 1
4

(
1

1 + εi,j
− 1

1 − εi,j

)
= − εi,j

2(1 − ε2
i,j )

. (E137)

The diagonal entries of Ti,j are t(i,p),(i,p) = t(j ,q),(j ,q) = tα(0) and the off-diagonal entries are t(i,p),(j ,q) = t(j ,q),(i,p) = tα(γi,j ).
Then, the diagonal of R(aprx)

i,j Ti,j R(aprx)
i,j entry is

ON
(

R(aprx)
i,j Ti,j R(aprx)

i,j

)
(E138)

= (
rON rOFF

) ( tα(0) tα(γi,j )

tα(γi,j ) tα(0)

)(
rON
rOFF

)
(E139)

= tα(0)
[
(rON )

2 + (rOFF)
2] + 2tα(γi,j )rON rOFF (E140)

= tα(0)
1 − ε2

i,j
− tα(γi,j )εi,j

1 − ε2
i,j

(E141)

= [
tα(0)− sα(γi,j )tα(γi,j )

] 1
1 − ε2

i,j
(E142)

=
[

3
2
α − 1

2
α(3 − ωi,j ) exp(−ωi,j )

]
1

1 − ε2
i,j

(E143)

=
[

3
2
α(1 − ε2

i,j )+ 1
2
αωi,j ε

2
i,j

]
1

1 − ε2
i,j

(E144)

= tα(0)+ αωi,j ε
2
i,j

2(1 − ε2
i,j )

(E145)
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and the off-diagonal entry of R(aprx)
i,j Ti,j R(aprx)

i,j is

OFF
(

R(aprx)
i,j Ti,j R(aprx)

i,j

)
(E146)

= (
rON rOFF

) ( tα(0) tα(γi,j )

tα(γi,j ) tα(0)

)(
rOFF
rON

)
(E147)

= 2tα(0) · rON · rOFF + tα(γi,j )
[
(rON )

2 + (rOFF)
2]

(E148)

= − tα(0)εi,j

1 − ε2
i,j

+ tα(γi,j )

1 − ε2
i,j

(E149)

= [
tα(γi,j )− sα(γi,j )tα(0)

] 1
1 − ε2

i,j
(E150)

=
[

1
2
α(3 − ωi,j ) exp(−ωi,j /2)− 3

2
α exp(−ωi,j /2)

]

× 1
1 − ε2

i,j
(E151)

= −1
2
αωi,j exp(−ωi,j /2)

1
1 − ε2

i,j
(E152)

= −1
2
α

√
f (ωi,j )

1
1 − ε2

i,j
. (E153)

Let us look at this factor (1 − ε2)
−1. It is always at least 1

and its first two derivatives are

d
dε

(
1

1 − ε2

)
= 2ε

(
1 − ε2

)2 , (E154)

d2

dε2

(
1

1 − ε2

)
= 2(1 + 3ε2)

(
1 − ε2

)3 . (E155)

By Theorem 6,

1
1 − ε2 = 1 + (1 + 3ε′2)

(
1 − ε′2)3 ε

2 (E156)

for some 0 ≤ ε′ ≤ ε. For ε ≤ 1/e, we have

1 ≤ 1
1 − ε2 ≤ 1 + 4ε2 ≤ 2. (E157)

The combination of Eqs. (E145), (E153), and (E157)
implies Eqs. (E13) and (E14).

Finally, we turn to the bound for

max
∣∣∣∣
(

R(aprx)
i,j

)⊗2
Ui,j

(
R(aprx)

i,j

)⊗2
− Ui,j

∣∣∣∣ .

Each entry of
(

R(aprx)
i,j

)⊗2
is a product of two terms from

{rON , rOFF} and only the diagonal terms are (rON )
2. For

notational ease, we index the four rows and columns
of Ui,j by {0, 1, 2, 3}. For a, b ∈ {0, 1, 2, 3}, we denote
the entry in row a and column b by Ui,j [a, b]. Now
consider a particular entry in row a and column b of(

R(aprx)
i,j

)⊗2
Ui,j

(
R(aprx)

i,j

)⊗2
. This entry is the sum of 16

terms, each of which is a product of one entry from Ui,j and
four factors from {rON , rOFF}. The only term that has four
factors of (rON ) is (rON )

4Ui,j [a, b] because the two factors

of (rON )
2 must come from diagonal entries of

(
R(aprx)

i,j

)⊗2
.

The other 15 terms all have at least one factor of rOFF .
Also, since |rOFF | < |rON |, each of these other terms is at
most |rOFF ||rON |3 · max

(
Ui,j

)
. Therefore, we have

∣∣∣∣
(

R(aprx)
i,j

)⊗2
Ui,j

(
R(aprx)

i,j

)⊗2
[a, b] − Ui,j [a, b]

∣∣∣∣ (E158)

≤ ∣∣(rON )
4Ui,j [a, b] + 15|rOFF ||rON |3 max

(
Ui,j

)

− Ui,j [a, b]
∣∣ (E159)

The maximum entry in Ui,j is u(Coul)
α (0). Therefore,

max
∣∣∣∣
(

R(aprx)
i,j

)⊗2
Ui,j

(
R(aprx)

i,j

)⊗2
− Ui,j

∣∣∣∣

≤ u(Coul)
α (0)

[
(rON )

4 − 1 + 15 · |rOFF | · |rON |3]

Using the bounds from Eqs. (E11) and (E12), we know that
|rOFF | ≤ εi,j (1/2 + ε2

i,j ) and |rON | ≤ 1 + ε2
i,j . Also εi,j =

exp(ωi,j /2) and since by assumption ωi,j ≥ 4, ε ≤ 1/4:

max
∣∣∣∣
(

R(aprx)
i,j

)⊗2
Ui,j

(
R(aprx)

i,j

)⊗2
− Ui,j

∣∣∣∣ (E160)

≤ u(Coul)
α (0)

[
(rON )

4 − 1 + 15|rOFF | · |rON |3] (E161)

≤ u(Coul)
α (0)

[
(1 + ε2

i,j )
4 − 1

+ 15εi,j (1/2 + ε2
i,j )(1 + ε2

i,j )
3
]

(E162)

≤ u(Coul)
α (0)

[
2εi,j + 15

(
9

16

)(
17
16

)3

εi,j

]
(E163)

≤ u(Coul)
α (0)εi,j × 12 = 2√

π
13

√
αεi,j ≤ 16

√
αεi,j .

(E164)

3. Proof of Lemma 9

We start with the kinetic coefficient bounds. Each
t(i,p),(j ,q) coefficient has one of the following three forms
[from Eq. (C10)], depending on whether orbitals φi,p and
φj ,q have exponent α or β, and where x is the distance
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between the two orbitals:

tα,β(x) = 23/2 (αβ)7/4

(α + β)5/2

(
3 − 2μx2) exp

(−μx2) ,

where μ = αβ/(α + β), (E165)

tα(x) = α

2
(
3 − αx2) exp

(−αx2/2
)

, (E166)

tβ(x) = β

2
(
3 − βx2) exp

(−βx2/2
)

. (E167)

Consider the prefactor

23/2 (αβ)7/4

(α + β)5/2
=

√
αβ

2

⎡

⎣
√
αβ(

α+β
2

)

⎤

⎦
5/2

≤
√
αβ

2
. (E168)

The inequality follows from the fact that the geomet-
ric mean of two positive numbers is no more than their
arithmetic mean. Therefore, since β ≥ α, the maximum
prefactor for tα(x), tβ(x), or tα,β(x) is

max
{
α

2
,
β

2
,
√
αβ

2

}
= β

2
. (E169)

The part of the function t that depends on x is

t̄μ(x) = (3 − 2μx2) exp(μx2),

where μ = αβ/(α + β) or α/2 or β/2. Note that t̄μ(x)
changes sign once, from positive to negative, at 2μx2 = 3.
Its derivative,

t̄′μ(x) = 23/2μx(4μx2 − 10) exp
(−μx2) , (E170)

vanishes only at the origin and 2μx2 = 5, where it goes
from negative to positive. Therefore,

max
x≥0

∣∣t̄μ(x)
∣∣ = max

{
t̄μ(0), −t̄μ(

√
5/2μ)

}
= t̄μ(0) = 3.

(E171)

Putting this together with the bound on the prefactor from
Eq. (E169), we obtain that tmax ≤ 3

2β.
μ ≥ α/2 and therefore 2μ	2 ≥ α	2. Since, by assump-

tion, α	2 ≥ 5, we know that t̄μ(x) is monotonic for x ≥ 	.
Therefore,

max
x≥	

∣∣t̄μ(x)
∣∣ = ∣∣t̄μ(	)

∣∣ , (E172)

= ∣∣3 − 2μ	2
∣∣ exp

(−μ	2) , (E173)

≤ 2μ	2 exp
(−μ	2) , (E174)

≤ 2 exp
(−μ	2/2

) ≤ 2 exp
(−α	2/4

)
,

(E175)

where in getting to the last line we use that xe−x ≤ e−x/2.
Putting this together with the bound on the prefactor from
Eq. (E169), we obtain that t(neg)

max ≤ β exp
(−α	2/4

)
.

Bounding the potential integrals is easier because the
integrand is strictly positive. Each potential integral cor-
responds to four Gaussians with centers x1 through x4 and
exponents ζ1 through ζ4:

∫
drdsξζ1(r − x1)ξζ2(s − x2)

1
‖r − s‖ξζ3(s − x3)ξζ4(r − x4), (E176)

=
4∏

i=1

(
2ζi

π

)3/4 ∫
drds exp

[−ζ1 ‖r − x1‖2 − ζ2 ‖s − x2‖2 − ζ3 ‖s − x3‖2 − ζ4 ‖r − x4‖2] 1
‖r − s‖ , (E177)

≤
(

2β
π

)3 ∫
drds exp

[−α (‖r − x1‖2 + ‖s − x2‖2 + ‖s − x3‖2 + ‖r − x4‖2)] 1
‖r − s‖ , (E178)

=
(

2β
π

)3 ∫
drds exp

[
−α

(
2
∥∥∥∥r − x1 + x4

2

∥∥∥∥
2

+ 1
2

‖x1 − x4‖2 + 2
∥∥∥∥s − x2 + x3

2

∥∥∥∥
2

+ 1
2

‖x2 − x3‖2

)]
1

‖r − s‖ ,

(E179)

=
(
β

α

)3

exp
[
−α

2
(‖x1 − x4‖2 + ‖x2 − x3‖2)]

(
2α
π

)3 ∫
drds

exp

[
−α

(
2 ‖r‖2 + 2

∥∥∥∥s − x2 + x3 − x1 − x4

2

∥∥∥∥
2
)]

1
‖r − s‖ , (E180)
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=
(
β

α

)3

exp
[
−α

2
(‖x1 − x4‖2 + ‖x2 − x3‖2)] u(Coul)

α

(
x2 + x3 − x1 − x4

2

)
, (E181)

≤ β3α−3

√
4α
π

≤ 2β3α−5/2 ≤ 2β3, (E182)

and so umax ≤ 2β3. To bound u(neg)
max , consider the above when at least one pair of the points x1 through x4 are at least 	

apart. If ‖x1 − x4‖ ≥ 	/2, then the integral is at most

β3α−3 exp
[
−α

2
‖x1 − x4‖2

]
u(Coul)
α (0) ≤ β3α−3 exp

(−α	2/8
)

2
√
α ≤ 2β3 exp

(−α	2/8
)

(E183)

and similarly for ‖x2 − x3‖ ≤ 	/2. If neither of these are the case, then at least one of x1, x4 must be at least 	 away from
at least one of x2, x3. Without loss of generality, suppose that ‖x1 − x2‖ ≥ 	. That ‖x1 − x4‖ ≤ 	/2 implies

∥∥∥∥
x1 + x4

2
− x1

∥∥∥∥ ≤ 	

4
(E184)

and similarly for x2 and x3. Then,

∥∥∥∥
x2 + x3 − x1 − x4

2

∥∥∥∥ =

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

x2 + x3

2
− x2

︸ ︷︷ ︸
≤	/4

⎞
⎟⎟⎠ −

⎛
⎜⎜⎝

x1 + x4

2
− x1

︸ ︷︷ ︸
≤	/4

⎞
⎟⎟⎠ +

⎛

⎝x2 − x1︸ ︷︷ ︸
≥	

⎞

⎠

∥∥∥∥∥∥∥∥
≥ 	 − 	

4
− 	

4
= 	

2
(E185)

and the potential integral is at most

β3u(Coul)
α (	/2) = β3

√
4α
π

F0(α	
2/4)

≤ β3

√
4α
π

√
π

4
1√
α	2/4

= 2β3 1
	

.

(E186)

Together with Eq. (E182), this yields

u(neg)
max ≤ max

{
2β3 exp(−α	2/8), 2β3	−1}

= 2β3 max{exp(−α	2/8),	−1}. (E187)

For α	2 ≥ 64 (a condition of the lemma),

1
exp(−α	2/8)

= exp(α	2/8) =
∞∑

k=0

1
k!

(α
8
	2

)k
(E188)

≤ α

8
	2 ≤ α2

8
	2 =

√
α	2

64
	 ≥ 	 (E189)

and so

u(neg)
max ≤ 2β3/	. (E190)

�

APPENDIX F: HARDNESS OF FINDING
LOWEST-ENERGY SLATER DETERMINANT

In this appendix, we show that finding the lowest-energy
Slater determinant (i.e., the Hartree-Fock state) of an
electronic-structure Hamiltonian is NP hard. This is a natu-
ral complement to our QMA-hardness result, in that Slater
determinants are the most natural class of fermionic states
that are efficiently representable and manipulable classi-
cally. The proof has much in common with that of Theorem
1. We start with the same parametrized construction of
orbitals described in Sec. C 1 and then orthonormalize
and round them as in Sec. C 2 to obtain the Hamiltonian
H (round). We then diverge from the QMA-hardness proof
by setting the parameters in a different regime. Specifically,
we set the exponents α and β large enough that the Hamil-
tonian becomes essentially classical (diagonal). The proof
concludes by showing that this classical Hamiltonian can
express an NP-hard problem such as independent set.

Theorem 3: Determining the lowest-energy Slater deter-
minant of an electronic-structure Hamiltonian in a fixed
basis and with a fixed particle number to inverse-
polynomial precision is NP-complete.

Proof. To start, we set γi,j = γ for all {i, j } ∈ E. We show
that the parameters α, β, γ , 	 can be set such that the
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electronic structure approximates a diagonal Hamiltonian

H (ES) − n · cT ≈ H (class)

= u(class)
1

∑

i

ni,+1ni,−1 + u(class)
2

∑

{i,j }∈E
σ ,τ∈{±1}

ni,σnj ,τ , (F1)

where

u(class)
1 = c(round)

U , u(class)
2 = 1

4d2 u(Coul)
α (γ ). (F2)

For a diagonal Hamiltonian, there is always a computa-
tional basis state of lowest energy. Because basis states are
a special case of Slater determinants, finding the lowest-
energy Slater determinant for diagonal Hamiltonians is
equivalent to finding the ground state.

For sufficiently large u(class)
1 > 4n2u(class)

2 , the ground
space of H (class) in the k-electron subspace for k ≤ n
has at most one electron in each spatial orbital and the
ground-state energy is

h(n) = u(class)
2

∑

{i,j }∈E

ninj , (F3)

where ni = ni,+1 + ni,−1 is the occupancy of the ith spatial
orbital.

The state space is spanned by vectors n such that∑
i ni = k, which we can interpret as representing a subset

S ⊂ V of vertices with size |S| = k. The classical func-
tion h(n) is then proportional to the number of edges with
both endpoints in the set S. In other words, if h(n) =
0, then the set S is an independent set of size k; oth-
erwise, h(n) ≥ u(class)

2 . Therefore, if u(class)
1 is sufficiently

larger than u(class)
2 , then finding the lowest-energy Slater

determinant of H (class) in the k-electron subspace to pre-
cision u(class)

2 is as hard as determining if a graph has an
independent set of size k.

To finish the proof, we just need to set the parameters
such that

u(class)
1 > 4n2u(class)

2 , (F4)
∥∥H (ES) − H (class)

∥∥ < 1
2

u(class)
2 . (F5)

Let γ = 1, leaving α, β, and	 to be set. The first constraint
is satisfied by β ≥ 16n4:

u(class)
1 = c(round)

U ≥ 1
4

u(Coul)
β (0) (F6)

= 1
4

√
4β
π
>

1
4

√
β (F7)

≥ n2 (F8)

≥ n2

d2 erf
(√
αγ 2

)
(F9)

= 4n2u(class)
2 . (F10)

For the second constraint, if α ≥ 1, then

1
2

u(class)
2 ≥ 1

2
1

4d2 erf 1 ≥ 1
8n2

1
2

≥ 1
16n2 . (F11)

Lemma 10: For α ≥ 1, γi,j = γ ≥ 1,

∥∥H (round) − H (class)
∥∥ ≤ 14αn2e−αγ 2/4. (F12)

Proof of Lemma 10. The classical Hamiltonian H (class) has
no kinetic component and so we need to bound the entirety
of the nonconstant kinetic component of the rounded
Hamiltonian H (round):

∥∥T(round) − n · cT
∥∥ =

∥∥∥∥∥∥∥∥

∑

{i,j }∈E
σ∈{±1}

t(round)
i,j

∥∥∥∥∥∥∥∥

(
a†

i,σaj ,σ + a†
j ,σai,σ

)

(F13)

≤ 4
∑

{i,j }∈E

∣∣∣t(round)
i,j

∣∣∣ (F14)

≤ α

d
n2
√

f (ω) ≤ α2n2γ 2e−αγ 2/2.

(F15)

For the potential difference, define

B3 = B2 \ {(i, j , j , i) : {i, j } ∈ E} , (F16)

i.e., the indices of potential terms that are not Coulomb
(which are exactly those included in H (class)). Then,
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∥∥U(round) − H (class)
∥∥ (F17)

=

∥∥∥∥∥∥∥∥

1
2

∑

(i,j ,k,l)∈B
σ ,τ∈{±1}

u(round)
i,j ,k,l a†

i,σa†
j ,τak,τal,σ − u(class)

1

∑

i∈[n]

ni,+1ni,−1 − u(class)
2

∑

{i,j }∈E
σ ,τ∈{±1}

ni,σnj ,τ ,

∥∥∥∥∥∥∥∥
(F18)

≤ 1
2

∑

(i,j ,k,l)∈B3
σ ,τ∈{±1}

u(round)
i,j ,k,l (F19)

≤ 1
2

× 4︸︷︷︸
σ ,τ

× 12 ×
(

n
2

)

︸ ︷︷ ︸
B3

× 1
4d2 2

√
α exp

(−αγ 2/2
)

(F20)

≤ 6
√
αn2 exp

(−αγ 2/2
)

. (F21)

Putting them together,

∥∥H (round) − H (class)
∥∥

≤ ∥∥T(round) − n · cT
∥∥ + ∥∥U(round) − H (class) − n · cT

∥∥ ,
(F22)

≤ 7αn2(αγ 2)e−αγ 2/2 ≤ 14αn2e−αγ 2/4. (F23)

�
Together, Lemmas 1 and 10 imply that for γ = 1, β ≥

α > 74 + 48 log n, 	 ≥ 640n18β3, and α	2 ≥ 12 logβ +
80 log n + 4α + 24,

∥∥H (ES) − H (class) − n · cT
∥∥

≤ ∥∥H (ES) − H (round)
∥∥ + ∥∥H (round) − H (class) − n · cT

∥∥
(F24)

≤ 3n2αf (ωmin)+ 1
20n2 + 8n4√α exp(−ωmin/2)

+ 14αn2e−αγ 2/4 (F25)

= 3n2α2e−α/2 + 1
20n2 + 8n4√α exp(−α/2)

+ 14αn2e−α/4 (F26)

≤ 1
20n2 + 100n4e−α/8 ≤ 1

20n2 + 1
80n2 = 1

16n2 ,

(F27)

where use the fact that for x ≥ 0, max{x2e−x/2,
√

xe−x/2,
xe−x/4} ≤ 4e−x/8. For sufficiently large n, it suffices to set
β = α = n, γ = 1 and 	 = n32. �
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