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Abstract

Among infertile couples, 25% involve both male and female factors, while male factor alone accounts for another 25% due to oligo-, 
astheno-, teratozoospermia, a combination of the three, or even a complete absence of sperm cells in the ejaculate and can lead to a 
poor prognosis even with the help of assisted reproductive technology (ART). Intracytoplasmic sperm injection (ICSI) has been with 
us now for a quarter of a century and in spite of the controversy generated since its inception, it remains in the forefront of the 
techniques utilized in ART. The development of ICSI in 1992 has drastically decreased the impact of male factor, resulting in millions 
of pregnancies worldwide for couples who, without ICSI, would have had little chance of having their own biological child. This 
review focuses on the state of the art of ICSI regarding utility of bioassays that evaluate male factor infertility beyond the standard 
semen analysis and describes the current application and advances in regard to ICSI, particularly the genetic and epigenetic 
characteristics of spermatozoa and their impact on reproductive outcome.
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Background

Infertility is defined as the failure to conceive after one 
year of unprotected intercourse and affects approximately 
15% of couples of reproductive age worldwide (Palermo 
et al. 2014a). Therefore, the use of ART to treat couples 
unable to conceive has increased steadily, representing 
1.5% of all infants born in the United States (Sunderam 
et al. 2015). Among all indications, male factor infertility 
is responsible for approximately 50% of couples who 
are unable to conceive.

Many procedures were developed in the 1980s 
to address fertilization failure due to dysfunctions 
of the male gamete, notably zona drilling (Gordon & 
Talansky 1986), zona softening (Gordon et  al. 1988, 
Kiessling et al. 1988) or partial zona dissection (Cohen 
et  al. 1988) with the most efficient process being 
subzonal injection of a single spermatozoon into the 
perivitelline space (Laws-King et  al. 1987, Palermo & 
Van Steirteghem 1991, Palermo et  al. 1992a). Indeed, 
it was during the performance of subzonal injection 
of an oocyte that the oolemma was accidentally 
breached and the spermatozoon was delivered into the 
ooplasm, subsequently establishing the development of 
intracytoplasmic sperm injection (ICSI) as it is performed 
still today in humans (Palermo et al. 1996a).

To date, ICSI (Palermo et  al. 2014d) has been 
responsible for over two million babies worldwide 

(ESHRE 2012, Sullivan et al. 2013) and has supplanted 
prior assisted fertilization techniques due to its ability 
to successfully bypass zona pellucida irregularities 
and circumvent the presence of antisperm antibodies, 
sperm acrosome dysfunction and sperm kinetic defects 
(Palermo et al. 1996c).

As previously mentioned, ICSI involves the injection 
of a single sperm cell directly into the ooplasm. The 
treatment capabilities of ICSI range from the utilization 
of spermatozoa with poor progressive motility to those 
gametes microsurgically collected from the epididymis 
and the testis of azoospermic patients (Palermo et  al. 
1995, 1999, Wallach et al. 1996). Beyond male factor, an 
additional application for ICSI is cases with low oocyte 
yields. Indeed, ICSI has been used in European countries, 
such as Germany and Italy, to comply with restrictive 
laws that limit the number of eggs to be inseminated 
(Ludwig & Diedrich 1999, Benagiano & Gianaroli 
2004). ICSI is also very useful for fertilization of oocytes 
that were previously cryopreserved (Porcu et al. 1997) as 
cryostress can lead to a premature exocytosis of cortical 
granules and zona hardening, hindering spermatozoa 
from penetrating naturally (Johnson 1989, Schalkoff 
et al. 1989, Vincent et al. 1990, Van Blerkom & Davis 
1994). ICSI is the preferred insemination method to 
avoid polyspermy, fertilize a high number of oocytes and 
generate a maximal cohort of embryos. Additionally, the 
selection of a single spermatozoon significantly reduces 
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the chance of transmission of HIV, HBV and HCV, among 
others. Indeed, the eventual presence of viruses in semen 
or accompanying cells may be reduced by the removal 
of seminal fluid by density gradient preparations and by 
retrieval of sperm cells directly from a viscous medium 
just prior injection (Vitorino et al. 2011), electing ICSI 
as the preferential method of insemination for patients 
at risk for HIV (Peña et al. 2002, Sauer & Chang 2002, 
Mencaglia et al. 2005).

ICSI is also unaffected by the immaturity of the male 
gamete, such as spermatozoa retrieved directly from the 
epididymis or testis, which are often characterized by 
an incomplete flagellum and an underdeveloped cell 
membrane (Palermo et  al. 1996c, 1999). Successful 
pregnancies from the use of these spermatozoa has 
pressed the boundaries of the application of ICSI 
to the most extreme aspect of male infertility, often 
encountered in cryptozoospermia, virtual azoospermia 
or of men with absolute azoospermia where surgical 
retrieval is required (Ron-El et al. 1997).

In regard to the popularity of ICSI, a cross-sectional 
survey of ART procedures performed in 60 countries 
during 2010 by the International Committee for 
Monitoring Assisted Reproductive Technologies 
(ICMART), reported that 63.0% (455,845 of 723,855) of 
all cycles utilized ICSI (Dyer et al. 2016) ranging from a 
prevalence of 58.4% in Asia to a virtual totality of 98.4% 
in the Middle East (Dyer et  al. 2016). Another recent 
publication, which analyzed ART trends in the United 
States between 1996 and 2012, reported an increase in 
the use of ICSI from 36.4% in 1996 to 76.2% in 2012 
(Boulet et al. 2015). Indeed at our center, there has also 
been a progressive increase in ICSI utilization starting 
at 32.2% in 1993 rising to 48.8% in 1995, 73.6% by 
2002 and 79.29% in 2016 (Palermo et al. 2015b, Dyer 
et al. 2016).

The high utilization of ICSI at our center is partly 
related to the tertiary nature of the clinic and the fact 
that we are highly integrated with the services of male 
reproductive urology and surgery. This being the reason 
why our patients are referred from other clinics, often 
with a history of several failed ART cycles in terms of 
fertilization and/or pregnancy. As a note of caution, this 
should not encourage the indiscriminate utilization of ICSI 
for cases of non-male factor infertility and should mainly 
focus on cases with male reproductive dysfunction.

The ability of ICSI to achieve fertilization 
independently of any observable characteristics of the 
spermatozoon, although puzzling initially, has guided 
research into the processes involved in successful 
fertilization, particularly in cases where dysfunctional 
spermatozoa have been delivered into the ooplasm. The 
disparity between the success of ICSI and classic semen 
parameter thresholds has induced the development of 
new bioassays aimed at qualifying the male gamete from 
a genetic and epigenetic point of view. In this review, 
we describe such pertinent bioassays that investigate the 

effects on clinical outcome in relation to chromosomal 
aneuploidy, chromatinic integrity, perinuclear PLCZ 
responsible for triggering oocyte activation and inducing 
the initial step of fertilization, the role of the centrosome 
as a scaffold for the segregation of the first embryonic 
cleavage, and finally the recently discovered presence 
of small RNA, that appear imperative post-fertilization 
to guide embryo development prior to the activation 
of the embryonic genome. We will also describe the 
clinical achievements of ICSI throughout the last quarter 
of a century in regard to the use of spermatozoa of 
various sources, quality and status considering safety 
implications on the offspring generated.

Male gamete bioassays

The semen analysis is the first test that reproductive 
physicians consult to gain initial information on the 
male partner’s fertility. Semen analysis is carried out 
according to the WHO guidelines (WHO 2010) and 
while the assay measures individual parameters such as 
semen volume, concentration, motility and morphology 
of the spermatozoa present, frequent variability among 
ejaculates in individuals is a recurrent issue (Schwartz 
et  al. 1979, Mallidis et  al. 1991). Moreover, the 
assessment of semen parameters are subjective and so 
may appear inconsistent across laboratories (Neuwinger 
et al. 1990, Cooper et al. 1992, Matson 1995). It should 
be noted that the range of normal values published by 
the WHO are not evidence based and therefore are 
difficult to interpret in relation to their diagnostic value, 
resulting in a blanket diagnosis of unexplained infertility 
that nonetheless can be identified by use of assays with 
a higher sensitivity (such as the acrosome reaction, 
antisperm antibody and PLCZ tests). The converse 
is also true when gametes with suboptimal semen 
parameters display normal function (Irvine et al. 1986, 
Glazener et al. 1987). Due to this disparity between the 
subjectivity of the semen analysis and WHO standards, 
it would be advisable for each individual laboratory to 
identify their own ‘normal’ semen profile.

High magnification sperm morphology

Traditionally the morphological assessment of 
spermatozoa has been considered a valuable element 
(MacLeod & Wang 1979) to predict the fertility potential 
of infertile men undergoing ART (Kruger et  al. 1986). 
However, the introduction of ICSI (Palermo et al. 1992b) 
has diminished the relevance of semen parameters in this 
procedure due to their inability to predict fertilization 
and pregnancy outcomes in male factor cases (Nagy 
et al. 1995).

Although there is no apparent correlation with clinical 
outcome, ICSI has shifted the focus from evaluating 
blanket semen parameters to the observation of each 
individual male gamete, with the aim of identifying 
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a spermatozoon with normal morphology implying 
inherent competence in achieving fertilization and 
supporting embryo development. Selection of individual 
spermatozoa under high magnification, defined as 
intracytoplasmic morphologically selected sperm 
injection (IMSI), is a method used to select spermatozoa 
that have the choicest morphology in couples with 
the most severe male factor. IMSI has been proposed 
in patients with recurrent implantation failure or 
spontaneous abortions (Lo Monte et al. 2013) attributing 
these pregnancy failures to a sperm defect. However, 
recent studies have challenged this view, arguing that 
IMSI does not improve outcomes for couples undergoing 
a repeated ART attempt (Oliveira et al. 2011, Gatimel 
et al. 2016).

In human spermatozoa, it is known that irregular 
vacuolization of the head is almost ubiquitous (Watanabe 
et al. 2011) and seems to be a paraphysiologic finding 
(Bedford et al. 1973, Tanaka et al. 2012), not a sign of 
incompetency. Irregularities of the sperm head surface 
occur during spermiogenesis and may have a disparate 
prevalence in male gametes retrieved from different 
sites of the male genital tract, and in addition, the 
appearance and size of the vacuoles may be related 
to the different stages of capacitation (Kacem et  al. 
2010). Indeed, previous studies have demonstrated that 
abnormal semen profiles are associated with a modest 
increase in the frequency of sperm chromosomal 
abnormalities and that spermatozoa with aberrations 
in their shape and head contours may be carriers of 
chromatinic defects (Lewis-Jones et al. 2003, Sun et al. 
2006). However, vacuoles identified on the sperm head 
are not necessarily related to DNA fragmentation or 
aneuploidy and therefore, their influence on embryo 
development remains unclear (Watanabe et  al. 2011). 
Moreover, the issue of safety remains paramount to 
address, indeed infants born from this procedure tend to 
have a higher occurrence of low birth weight (<2500 g) 
(Junca et al. 2010).

Although different high-power magnification 
techniques corroborated by video-generated 
magnification have been suggested to deselect 
dysmorphic spermatozoa, these methods are inherently 
limited by the clarity of the image, the time required 
for image analysis and the risk of variable spermatozoa 
head-positioning during imaging due to the asymmetry 
of the head contour (Palermo et al. 2011).

While the current concept of IMSI is still being 
debated and further augmented, the interest in the 
meticulous assessment of the spermatozoon, its contour 
and all its facets remains an intriguing quest. To address 
these observational issues, a study was performed at 
our center aimed at eliminating the aforementioned 
limitations on high magnification sperm morphology, in 
which an image-tracking software was used to capture 
serial photographs of spermatozoa from recorded videos. 
The images were automatically extracted from each 

digital frame using enhanced correlation coefficient 
maximization; the general shape of the spermatozoa 
was then extracted via space-carving. The reconstructed 
image was rotated to permit viewing from any vantage 
and the final image was rendered via interpolation. 
This method yielded images that enable noninvasive, 
3-D, real-time, in vitro assessment of sperm surface 
morphology that is easily automated and required little 
equipment, presumably available in most embryology 
laboratories. From this study, we observed that although 
a spermatozoon may appear to be morphologically 
acceptable by IMSI standards, when rotated, the 
head of the cell revealed a vacuole, suggesting that 
even spermatozoa selected via high magnification for 
injection may still possess the same characteristics as the 
spermatozoa deselected in the IMSI procedure (Levine 
et al. 2015).

While the selection of the sperm is undoubtedly the 
proper approach, it is clear that physical characteristics 
do not provide any specific information on the health 
of the genome and epigenome of the male gamete. 
Therefore, further screening needs to be employed to 
truly quantify the competence of the spermatozoa.

Sperm aneuploidy assessment

High fetal wastage in humans is commonly attributed to 
aneuploidy. Most aneuploid pregnancies do not survive, 
with the majority of losses occurring during the first few 
weeks of uterine life. In general, autosomal trisomies 
constitute the large majority of aneuploid embryos, 
with 16, 18 and 21 having a maternal origin and sex 
chromosomal aneuploidies (45X, 47XXY, 47XYY) often 
originating from the paternal origin (Hassold & Hunt 
2001, Neri et al. 2014a). While meiotic errors that lead 
to fetal aneuploidy can originate from either the male or 
female gamete, the occurrence is lower in spermatozoa 
(9%) when compared to oocytes (20%) (Hassold & Hunt 
2001, Neri et al. 2014a). Regardless, assessment of male 
gamete ploidy is an important aspect of pre-fertilization 
genetic diagnosis.

The assessment of sperm chromosome abnormalities 
has increased over the years with the popularity of ICSI, 
especially after it was recognized that infertile men 
possess an increased frequency of sperm aneuploidy 
despite having a normal peripheral karyotype (Martin 
2006). It was previously demonstrated that men with 
suboptimal semen parameters have an increased 
frequency of sperm chromosomal abnormalities 
(Colombero et  al. 1999a). Furthermore, chromosomal 
evaluation of the aging male gamete has become of 
particular interest and is crucial in determining the extent 
of meiotic errors, which can affect the conceptus’ health. 
In studies performed on ejaculated spermatozoa, the 
occurrence of chromosome 18 disomy has been found 
to be significantly higher in men over 50 years of age 
(Griffin et al. 1996). There was also a linear increase in 
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chromosome 9 disomy with respect to age (Bosch et al. 
2003). Similar results were reported for chromosome 
21 (McIntosh et al. 1995), where a higher frequency of 
disomy 21 was identified in men more than 60  years 
of age (Rousseaux et al. 1998). Chromosome 1 disomy 
was reported to increase with advancing paternal age, 
while the assessment of gonosomal disomy observed an 
increase in disomy YY (Martin et al. 1995). There was also 
a significant relationship established between increasing 
paternal age and XY disomy (Asada et al. 2000).

These findings, however, were not always confirmed 
by other studies. For instance, in a separate study, 
there was no correlation found between paternal age 
and chromosome 12, XX or XY disomy (Martin et  al. 
1995). Even more contradictory, chromosome 13 and 
18 disomy have both been found to increase in younger 
men instead (Steiner et al. 2015). Furthermore, another 
study found that although aneuploidy of the gonosomes 
is more common than that of autosomes, neither occur 
more frequently with increasing paternal age (Donate 
et al. 2016).

Although fluorescent in situ hybridization (FISH) 
enables the detection of chromosomal abnormalities, 
the indications for FISH on sperm are currently not 
fully established (Funaro & Paduch 2014). At our 
center, patients with a history of recurrent ART failure 
or recurrent pregnancy loss are assessed for sperm 
aneuploidy. This assessment is particularly stressed for 
azoospermic patients who are undergoing epididymal 
and testicular retrieval. However, with FISH, only a 
limited number of chromosomes can be analyzed and 
only specific regions of interest labeled by the fluorescent 
probe may be visualized (Fig.  1) (Neri et  al. 2014a). 
Twenty-four chromosome FISH on spermatozoa may be 
a more advantageous method to determine the overall 
aneuploidy in a particular specimen (Hu et  al. 2011). 
Furthermore, a more accurate aneuploidy assessment 
can be achieved by determining specific copy number 
variants of sequenced DNA in individual spermatozoa.

Sperm chromatin assessment

During late spermiogenesis in the testis, male gametes 
undergo a complex and sensitive process of chromatin 
condensation, in which DNA strands are severed in 
order to allow tight supercoiling around protamines, 
owing to the action of testis-specific serine kinase 6 
(TSSK6) (Palermo et al. 2014c). The chromatin packing 
of sperm cells is markedly different from that in somatic 
cells, primarily differentiated by the substitution of 
protamines for DNA compaction rather than histones 
(Ward 2010). Said protamines are introduced through 
an exchange with histones, regulated by the H1 histone 
family, member N, testis specific (H1FNT) to allow for a 
tighter compaction of the chromatin. The spermatozoa’s 
DNA is densely wrapped for its protection, rendering the 
spermatozoa transcriptionally inactive and resilient to 

damage during transport through the male genital tract 
and subsequently, the female genital tract. In addition 
to providing protection while in transit through the 
uterine environment, nuclear compaction results in a 
hydrodynamicity of the head, allowing for better sperm 
mobility and penetration through the zona pellucida of 
the ovum (Dadoune 2003).

Although the majority of spermatozoon DNA is tightly 
bound around protamines, between 2% and 15% of the 
chromatin is bound in histone linker sections (Dadoune 
2003, Hammoud et  al. 2009b) that can be found 
throughout the genome, specifically at gene promoter 
regions (Wykes & Krawetz 2003). The family of genes 
involved in embryo development has been observed 
to preferentially persist on residual histone regions in 
human spermatozoa (Hammoud et  al. 2009b). This 
finding demonstrates that histones, rather than being 
distributed haphazardly in the sperm genome, are linked 
to specific genes and compose conserved linker regions 
with high nuclease sensitivity between each protamine-
bound toroid (Sotolongo et al. 2003). It is these histone 
linker regions that are actually assessed by the majority 
of chromatin status tests (Noblanc et al. 2013).

Understanding this unique process of chromatin 
packing is essential in the development of tests for 
male infertility and the assessment of sperm chromatin 
characteristics, which may have distinct consequences 
on ART outcomes (Evenson & Wixon 2006, Zini & Sigman 
2009). Several studies have suggested that fertile men 
with normal semen analyses generally have lower levels 
of DNA breakage than infertile men, in particular those 
with compromised semen parameters. However, up to 

Figure 1 Fluorescent in-situ hybridization (FISH) analysis of 
ejaculated human spermatozoa. FISH analysis was carried out using 
4 different probe sets. In the 2 columns on the left, sperm chromatin 
stained with 4′,6-diamino-2-phenylindole (DAPI) appears in blue. 
As indicated from left to right: spermatozoa were assessed by probe 
sets for chromosomes X/Y/15/17, X/Y/16/18, X/Y/13/18/21 and 
13/16/18/21/22 in various colors. As depicted in each cell, disomy is 
indicated by the appearance of multiple fluorescent signals in the 
same color. Spermatozoa exhibiting various occurrences of 
gonosomal and autosomal disomy are shown.
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8% of infertile men with compromised DNA integrity 
may present with normal parameters for concentration, 
motility and/or morphology (Zini et al. 2001).

Thus, the origin of DNA damage in the male gamete 
seems to be caused by a multitude of inherent and 
external factors. Protamine deficiencies and DNA 
packaging defects (Hammoud et  al. 2009a) comprise 
just a small number of the inherent factors that indicate 
the potential for DNA damage of this cell.

Separately from innate defects that can affect 
chromatin integrity, advanced age in men has been 
found to be associated with a higher incidence of sperm 
DNA damage (Plastira et  al. 2007, Sakkas & Alvarez 
2010, Zanko et  al. 2014). In addition, environmental 
factors such as cigarette smoking, (Künzle et al. 2003) 
genital tract inflammation, varicoceles (Saleh et  al. 
2003) and hormone deficiencies (Xing et al. 2003) are 
correlated with increased DNA damage, as described 
in both human and animal studies (Mathur & D’Cruz 
2011, Lewis et al. 2013).

It is postulated that spermatozoon DNA integrity 
is closely associated with sperm quality, male fertility 
potential and pregnancy outcomes (Brewer et al. 2002). 
Specifically, an abnormal DNA fragmentation index 
(DFI) is thought to have an inverse relationship with 
male fertility success (Zini et al. 2001) and if pregnancy 
does occur, these conceptuses are thought to be at an 
increased risk of miscarriage (Kumar et al. 2012).

The most popular techniques for evaluating sperm 
DNA integrity include the sperm chromatin structure 
assay (SCSA), terminal deoxynucleotidyl transferase 
(TdT) dUTP Nick-End Labeling assay (TUNEL) (Fig. 2), 
sperm chromatin dispersion test (SCD) and the comet 
assay (Funaro & Paduch 2014). Although there has been 
little standardization within chromatin integrity assays 
and a high variability among index thresholds per assay 
and per testing laboratory, SCSA, TUNEL and SCD have 
been found to have comparable predictive values for 
DNA fragmentation (Chohan et  al. 2006). Although 
these tests provide invaluable information regarding the 
chromatin integrity of an individual spermatozoon, it 
is important to note that these assays are consumptive; 
in other words, once the sample is used for any of 
the aforementioned assays, it cannot be used for the 
treatment of the couple (Funaro & Paduch 2014). Thus, 
in current clinical practice, it is difficult to isolate 
spermatozoa with a high level of chromatin integrity 
for use at the time of insemination (Funaro & Paduch 
2014) as characteristics such as an abnormal motility or 
morphology of the spermatozoon in question, does not 
directly signify impaired chromatin integrity (Chen et al. 
2011, Palermo et al. 2015a).

With that being said, DNA fragmentation as assessed 
by the most popular assays, does correlate with semen 
parameters of motility and morphology en masse 
(Younglai et  al. 2001, Tang et  al. 2010); however, this 
correlation is not predictive of pregnancy outcomes in 
relation to ICSI insemination as corroborated by Evenson 
and Wixon (Evenson & Wixon 2006) and by Zini 
(Zini 2011). ICSI insemination is sui generis for sperm 
transport, eliminating the effects of sibling spermatozoa. 
Thus, the selection of the best-looking, progressively and 
regularly motile spermatozoon may account for the lack 
of correlation between DFI values and pregnancy rates, 
as it has been found in several studies that utilization 
of the motile portion of ejaculated spermatozoa with 
in vitro insemination methods curtails DNA-damaged 
spermatozoa from generating a conceptus (Zini et  al. 
2008, Aitken et al. 2009, Simon & Lewis 2011, Palermo 
et al. 2014c).

With that being said, a recent meta-analysis of 16 
IVF studies and 24 ICSI studies using TUNEL, SCSA, 
COMET or SCD did suggest that there is an effect of 
DNA fragmentation on IVF and ICSI outcomes (Simon 
et  al. 2017). However, the majority of the studies 
included relating DNA fragmentation to ICSI did not 
control for confounding female factors. These include 
advanced maternal age that may result in oocytes 
with a compromised ability to repair DNA damage of 
spermatozoa (Sakkas & Alvarez 2010, Meseguer et al. 
2011). Additionally, it was noted in another recent 
meta-analysis assessing the four most popular chromatin 
integrity assays mentioned above that, while the TUNEL 
and COMET tests were of fair predictive power in 
regard to clinical pregnancies with IVF and ICSI once 

Figure 2 Terminal deoxynucleotidyl transferase dUTP nick-end 
labeling (TUNEL) immunofluorescent staining of human spermatozoa 
for detection of DNA fragmentation. Sperm cells which fluoresce 
green indicate the presence of DNA fragmentation that occurs during 
the late stages of apoptosis, detected by the action of the TdT 
enzyme. Spermatozoa are considered TUNEL positive if 
approximately 40% or more of the head is fluorescent. Spermatozoa 
without compromised chromatin integrity are shown in blue using 
DAPI counterstain. Five hundred sperm cells per sample are assessed 
using fluorescent microscopy in order to determine the sperm 
chromatin fragmentation, with a threshold of ≤15% TUNEL positivity 
considered normal.
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compared to SCSA and SCD, the specificity of their 
predictive power was low suggesting that even levels of 
DNA fragmentation below threshold did not guarantee 
a successful pregnancy (Cissen et al. 2016). Considering 
these factors, while a valuable understanding of the 
effects of DNA fragmentation is beginning to form, 
widely accepted standards for each assay need to be 
assigned before we can more accurately evaluate the 
impact of DNA fragmentation on ART procedures.

PLCz

Despite the widespread success of ICSI treatments for 
male factor infertility, cases of complete fertilization 
failure continue to persist. Their occurrence is emotionally 
devastating for couples, with significant expenditure of 
logistic and financial resources to no avail. Therefore, 
understanding the etiology of fertilization failure is of 
critical importance to counsel patients and devise a 
successful treatment protocol.

At our center, ICSI with ejaculated spermatozoa 
yields a fertilization rate well over 70%, irrespective 
of sperm characteristics. It seems the only requirement 
for fertilization is that the spermatozoon displays 
some level of motility and certainly maintenance of 
viability (Palermo et  al. 2009). With that being said, 
couples undergoing ICSI can still experience a total 
lack of fertilization, with a frequency of occurrence 
just below 3% (Palermo et  al. 2015a). Complete 
fertilization failure can be due to various etiologies 
such as unsuccessful immobilization and breaching of 
the spermatozoal membrane, a lack of decondensation 
of the sperm nucleus or a failure of the oocyte to 
undergo activation (Sousa & Tesarik 1994, Flaherty 
et  al. 1995, Palermo et  al. 1996c, Yanagida 2004), 
although most often, the rationale can be attributed 
to an oosplasmic dysmaturity (Pereira et  al. 2016b). 
Nonetheless, in a very small proportion of cases, 
recurrent failed fertilization is a result of the inability of 
the male gamete to activate an oocyte due to a lack of 
an activating cytosolic factor (Swann et al. 2004, Kashir 
et al. 2010, Neri et al. 2014b).

Our team has been among many that attempted 
to identify and correct for a sperm cytosolic oocyte-
activating factor (Palermo et  al. 1997, Wolny et  al. 
1999), attributing its absence to the reason why certain 
infertile men fail to fertilize their partner’s oocytes (Neri 
2010, Neri et al. 2010).

Over a period of 23  years at our center, ICSI 
was performed in 19,757 couples, of which 2.6% 
experienced a complete failure of fertilization. In a small 
portion of these couples, the absence of an oocyte-
activating factor in the spermatozoa was reported by 
PLCZ (phospholipase c-zeta) assessment (Neri et  al. 
2010), distinguishing cases with an oocyte-activating 
factor deficiency vs an ooplasmic dysmaturity (Neri et al. 
2014a,b, Pereira et al. 2016b).

Oocyte activation is induced by a sizeable influx of 
calcium into the cell, stimulating the different pathways 
required for proper fertilization and prevention of 
polyspermy (Tosti & Ménézo 2016). It has been recently 
demonstrated in animal studies that PLCZ found in 
the perinuclear theca of the spermatozoa is the factor 
responsible for oocyte activation in mammals. A study 
in mice used the CRISPR-Cas9 system in order to create 
Zfy1/2 double-knockout mice, significantly decreasing 
PLCZ expression and producing mice with spermatozoa 
that failed to fertilize oocytes after ICSI (Nakasuji et al. 
2017). In a second study also using CRISPR-Cas9 gene 
editing technology, investigators were able to create 
Plcz1-null mice and tested their fertilizing capability 
using IVF and ICSI (Hachem et  al. 2017). When 
compared to the wild type, Plcz-null mice gametes had 
significantly higher events of polyspermy in IVF and 
significantly lower instances of normal fertilization and 
embryo development after ICSI (Hachem et  al. 2017). 
Therefore, in the event of recurrent fertilization failure, it 
would be useful to screen male patients for the presence 
of PLCz in spermatozoa. Couples that have experienced 
fertilization failure as a result of low expression of PLCz 
in the male partner’s gametes then have the option to 
undergo assisted oocyte activation (AOA) (Neri et  al. 
2010). Although the prevalence of such cases using 
AOA are low and often result in little success, the use 
of calcium ionophore treatment in these patients can 
improve fertilization results and even progress safely 
to pregnancy (Chi et  al. 2004, Sugaya 2010, Neri 
et al. 2014b).

Centrosome

During the process of fertilization, fusion of the two 
parental haploid chromosomal complements allows for 
the formation of the diploid genome of the conceptus. 
In humans, the mature oocyte contains the supporting 
elements capable of sustaining the development 
of the embryo, while a primary contribution of the 
spermatozoon is to provide the centrosome, the scaffold 
that generates the first mitotic spindle and ordains a 
correct chromosomal segregation for this new entity. In 
one of the early studies at our center, we were able to 
define the contribution of the male gamete in supplying 
the centrosome to the oocyte for proper embryonic 
cleavage (Palermo et al. 1994). The centrosome consists 
of a pair of centrioles carried at an angle from each 
other, the proximal centriole, comprising nine triplets of 
microtubules located at the base of the sperm head, and 
the distal centriole, representing the main framework for 
the development of the flagellum (Sathananthan et  al. 
1991, 1996, Neri et al. 2010). The use of immunological 
techniques allows for the identification of proteins that 
are intimate components of this microtubule organizing 
center (Kimble & Kuriyama 1992, Palermo et al. 1997, 
Colombero et  al. 1999b, Neri et  al. 2011). Indeed, a 
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centrosomal defect results in embryonic aneuploidy or 
mosaicism resulting in the inability of the conceptus to 
undergo the first embryonic cleavage effectively (Moomjy 
et al. 1999). In cases where syngamy fails to occur after 
ICSI or a chaotic distribution of the chromosomes within 
the conceptus is identified, the spermatozoon centriole 
can be labeled with anti-centrin antibodies to assess for 
its presence and estimate its integrity by measuring the 
angle that the proximal centriole creates with the distal 
centriole of the flagellum (Neri et al. 2011). Indeed, the 
angle appears to be unique to the centriolar geometry 
within the human spermatozoon. Several studies have 
identified cases of the centrosome being severely 
altered or absent in infertile men, plagued by abnormal 
midpieces and stump tails originating in the testis and 
often resulting in complete immotility of the spermatozoa 
in the ejaculate (Baccetti et al. 1989, Barthelemy et al. 
1990, Stalf et al. 1995, Toyama et al. 2000, Gambera et al. 
2009, Neri et al. 2011). Although there is a high rate of 
centrosomal abnormality in these ejaculate specimens, 
the use of ICSI with these immotile spermatozoa can 
result in normal fertilization and pregnancies (Stalf et al. 
1995, Barros et al. 1997). This confirms the importance 
of the male gamete to contribute in generating an 
euploid conceptus, and therefore, the availability of an 
assay capable of estimating centrosomal integrity and 
function is undeniable.

Recent studies have identified that variants in maternal 
PLK4, normally responsible for mediating centriole 
duplication and embryo cleavage, result in aneuploidy 
within the embryo (McCoy et al. 2015). Furthermore in 
a recent study, assessment of a cohort of infertile women 
evidenced that a common variant rs2305957 of the 
PLK4 gene yielded a significantly lower blastocyst rate 
in comparison to a control; this variant was particularly 
pronounced in a subset of patients with early recurrent 
miscarriage (Zhang et al. 2017).

The understanding of the role of the centrosome 
in the human male gamete, made possible by a shift 
in focus to the competence of a single spermatozoon 
induced by ICSI, has heightened the study of the 
spermatozoon as a contributor not only of the paternal 
genome, but as a vector of an important organelle that 
ordains the chromosomal segregation during the first 
mitotic division.

Sperm small RNA

The recent discovery of RNA present in human 
spermatozoa has raised several interesting questions 
regarding its role in male fertility (Krawetz et  al. 
2011, Jodar et  al. 2013). Analyses of spermatozoal 
RNA transcripts have shown to contain remnants of 
prior events in spermatogenesis as well as highlight 
potential genes that may be critical for fertilization 
and embryo development (Krawetz et  al. 2011, Jodar 
et al. 2013). In addition to mRNA, human spermatozoa 

carry small non-coding RNAs (sncRNAs), in which the 
distribution in ejaculated specimens is as follows: 65% 
repeat-associated small RNAs, 17% Piwi-interacting 
piRNAs, 11% quiescent RNAs and 7% microRNAs 
(Krawetz et  al. 2011). Evidence of sncRNAs suggests 
a role of spermatozoal transcripts in post-fertilization 
development and further designates them as an emerging 
biomarker of male infertility (Krawetz et al. 2011).

The first specific mRNA identified in human 
spermatozoa was C-MYC mRNA (Kumar et  al. 1993), 
thereafter several studies utilizing RT-PCR (reverse 
transcriptase PCR) or ISH (in situ hybridization) identified 
specific transcripts encoding protamines, progesterone 
and estrogen receptors, CYCLIN B1, STAT4, DAZL, SRY 
and PLCZ (Dadoune 2009). Additionally, ISH was used 
in studies to pinpoint the localization of such RNA at the 
periphery of the nucleus beneath the nuclear envelope, 
revealing an interior component of the nuclear matrix 
previously unexplored (Hamatani 2012). The presence 
of such mRNAs consistently persisting in ejaculated 
spermatozoa suggests a purposeful conservation of these 
transcripts post-spermiogenesis (Ostermeier et al. 2002, 
Miller & Ostermeier 2006). Indeed, several conserved 
transcripts in spermatozoa between mammalian species 
have been recently identified, suggesting an important 
role of these RNA in the spermatozoon’s contribution to 
early embryonic development (Schuster et al. 2016). An 
example of such transcripts contributing to the oocyte 
is the identification of RNA encoding the previously 
discussed PLCZ, which upon isolation and injection 
into a mouse oocyte, triggered calcium oscillations and 
activation of the oocyte (Sone et al. 2005).

An important role attributed to spermatozoal RNA is 
the epigenetic reprogramming of the sperm chromatin 
(Miller et  al. 2005), acting as a stabilizer for the 
interaction between the nuclear envelope and the small 
regions of histone-bound DNA, as well as mediating the 
selective escape of these histone-bound sequences from 
tight packing around protamines, therefore influencing 
the balance between protamine- and histone-packaged 
DNA (Hammond et al. 2009a,b). Epigenetic studies are 
foreseen to play an increasingly important role in the 
etiology of human infertility (Carrell 2012) as epigenetic 
regulation is becoming apparently more useful in 
quantifying the impact of environmental factors on the 
male gamete (Furrow et al. 2011).

Gene expression is regulated post-transcriptionally 
via small non-coding RNA entities as well as miRNA, 
responsible for fine-tuning cell differentiation through 
translational regulation during spermatogenesis (McIver 
et al. 2012). Further, antisense RNA has been identified 
in the human male gamete and includes small antisense 
RNAs, PIWI-interacting RNAs (piRNAs), MIWI and 
germline-specific argonaute proteins involved in RNA 
silencing (Ostermeier et al. 2005a,b, Girard et al. 2006, 
Grivna et  al. 2006, Kim 2006). This small antisense 
RNA carried by the sperm cells suggest that paternal 
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ribonucleic acid may help regulate embryonic gene 
expression (Biermann & Steger 2007, Boerke et  al. 
2007). Further, non-coding RNA have been found 
to be involved in the X-inactivation occurring in the 
spermatocyte during spermatogenesis, thus representing 
a large complex in ejaculated human spermatozoa that 
may also orchestrate gene expression upon fertilization 
(Royo et al. 2015).

There have already been preliminary efforts into 
classifying fertile and infertile men via the analysis 
of their respective spermatozoal transcriptomes. 
Microarray analysis comparing oligozoospermic 
infertile men to normozoospermic fertile men revealed 
a remarkable down-regulation of genes relating to 
germ cell anti-apoptotic mechanisms (PRN2, SP2-1, 
STATA-4, MRA-1, CREM), a reduced expression of DNA 
repair (NIPBL), oxidative stress regulation (PARK-7), 
histone modification (DDX3X), spermatogenesis and 
sperm motility (Montjean et  al. 2012). RNA profiling 
by microarray was also carried out in infertile men 
with normal semen parameters reporting a several-fold 
reduction in the expression of 136 genes (Garrido et al. 
2009). In another study assessing infertile men with 
teratozoospermia in comparison to a cohort of men 
that had previously fathered a child, teratozoospermic 
men were found to lack RNA involved in the ubiquitin-
proteasome pathway as well as other transcripts involved 
in acrosomal development and oocyte activation (Platts 
et al. 2007).

Furthermore, transcriptome analysis is already being 
applied to studying clinical outcomes in infertile men. 
A study of a small cohort of patients undergoing their 
first cycle of intrauterine insemination (IUI) treatment 
screened for over 19,000 transcripts, reporting that the 
cohort supporting a pregnancy had 756 overexpressed 
genes while only 194 of these common transcripts 
were overrepresented in couples that did not achieve 
a pregnancy (Garcia-Herrero et al. 2010). Additionally, 
expression of 741 transcripts was identified as 
exclusive to the fertile cohort. These findings are also 
in concordance with a more recent study evidencing 
that the absence of certain sperm RNA elements (SREs), 
as assessed in 96 couples with idiopathic infertility, 
were predictive of clinical outcome, reducing timed 
intercourse and IUI outcome success rates from 73% to 
27% (Jodar et al. 2015).

In men with unexplained infertility, supplementary 
tests are pivotal to gaining insight into the paternal 
contribution to the zygotic genome. Profiling men via 
RNA sequencing to supplement the standard semen 
analysis may aid in the diagnosis and management 
of couples with recurrent ART failures. Although 
further research on spermatozoa-borne transcripts 
is needed, based on findings to date, screening men 
for an epigenetic imbalance of sncRNA and lncRNA 
may provide crucial information on the etiology 

of unexplained infertility and overall reproductive 
capacity of the infertile male.

25 years of ICSI

In this section, we will recount our experience at our 
center using ejaculated, epididymal and testicular 
spermatozoa with ICSI over the last quarter of a century; 
data have been updated from studies by Palermo and 
coworkers ( Palermo et al. 2012, 2014b). To summarize 
our overall clinical data from ICSI, of a total of 35,065 
cycles, 15,646 cycles presented with a positive βhCG 
(44.6%), resulting in losses of 2694 biochemical (17.2%) 
and 861 blighted ova (5.5%). Among the 11,548 cycles 
that progressed to clinical pregnancy as defined by 
the observation of a fetal heartbeat, 1343 resulted 
in additional losses from miscarriage or therapeutic 
abortion. These overall cases resulted in a pregnancy 
and delivery rate of 32.9% per retrieval (11,548/35,065) 
and 38.1% per embryo replacement (11,548/30,289), 
resulting in the birth of 12,719 neonates from 9572 
deliveries, consisting of 6230 females and 6315 
males. The frequency of multiple deliveries including 
2711 twins was (28.3%), 212 triplets (2.24%), and 4 
quadruplets (0.04%).

Ejaculated spermatozoa

Between September 1993 and April 2017, a total of 
31,723 ICSI cycles using ejaculated spermatozoa were 
performed. To provide an overview, a total of 262,659 
MII oocytes were injected; 75.7% fertilized normally 
while 2.5% and 3.8% were 1PN and 3PN respectively, 
with no fertilization observed in 14.4%. The clinical 
pregnancy rate per oocyte retrieval was 36.4% and per 
embryo transfer procedure was 42.1%.

The advantages ICSI has provided over other 
ART techniques for severe male factor patients have 
been well documented in the literature over the past 
25 years. Indeed, a study assessing a cohort of men with 
asthenoteratozoospermia reported a pregnancy rate of 
just 8% with IUI, which increased to 29% with ICSI 
(Mangoli et al. 2008).

Additionally, oligozoospermic patients with a count less 
than 5 million spermatozoa/mL in the neat sample have 
been found to have a pregnancy rate as low as 4% with 
intrauterine insemination (Mangoli et al. 2008). Our patient 
population includes many severely oligozoospermic men 
with a concentration less than 1 × 106/mL spermatozoa, 
therefore signifying a primary indication for ICSI. In 1969 
ejaculates where the initial specimen presented with a 
count less than 1 million/mL, a high-speed centrifugation 
was carried out, resulting in an average sperm density 
of 0.85 ± 2.6 × 106/mL and a motility of 29.8 ± 29%. 
Subsequent use with ICSI yielded a fertilization rate of 
61.1% and a clinical pregnancy rate of 40.0% (Table 1).
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Surgically retrieved spermatozoa

The value of ICSI chiefly lies in the ability to establish a 
successful pregnancy with surgically retrieved specimen 
from azoospermic men. Prior to the implementation 
of ICSI, such situations were resolved with the use of 
donor spermatozoa. Azoospermia presents in less 
than 1% of men and in about 10–15% diagnosed with 
infertility, either as obstructive (OA) or non-obstructive 
(NOA) azoospermia (Hamada et al. 2013). Obstructive 
azoospermia can be due to a congenital bilateral absence 
of the vas deferens (CBAVD) often linked to a defect in 
the CTFR gene associated with cystic fibrosis (Patrizio 
& Zielenski 1996), trauma, infection, or vasectomy 
(Hamada et  al. 2013). Specimen to be utilized for 
ICSI may be aspirated from the epididymis (MESA) or 
retrieved percutaneously (PESA) (Kahraman et al. 1996, 
Schlegel et al. 1997, Schlegel & Li 1998). In men with 
non-obstructive azoospermia in which spermatogenesis 
is scant, a testicular sperm extraction (TESE) or a micro-
TESE (mTESE) can yield adequate spermatozoa while 
maintaining anatomical integrity (Schlegel 2009). 
Additionally, epididymal and testicular sampling can 
also be an effective alternative in males with extreme 
oligoasthenoteratospermia (OAT) (Palermo et al. 1992b, 
2014a, Nyboe Andersen et al. 2009). Furthermore, men 
with cryptozoospermia that undergo a surgical retrieval 
have resulted in improved clinical outcomes compared 
to their previous cycle with ejaculated specimen 
(Bendikson et al. 2008, Ketabchi 2016).

The use of spermatozoa sourced from different areas 
within the male genital tract has led to an increased 
scrutiny in regard to fertilizing ability and clinical 
outcome. Over the past 25  years, our center has 
carried out 1140 cycles using epididymal spermatozoa 
and 1713 cycles with testicular spermatozoa. Table  2 
summarizes the patient demographic and embryologic 
data of couples inseminated with different spermatozoa 
sources, chiefly ejaculated, epididymal, and testicular. 
Epididymal spermatozoa yielded the highest number of 
fertilized oocytes per cycle, followed by the ejaculate 
and testicular spermatozoa (Fig.  3). Although having 
a lower fertilization rate, testicular spermatozoa 
demonstrated a significantly higher pregnancy rate 
compared to the ejaculated specimen (Fig. 4), which has 
also been confirmed in other studies (Esteves et al. 2015, 
Pabuccu et al. 2017).

Implantation rates were congruent with the clinical 
pregnancy rates by sperm source, with epididymal 
specimens yielding the highest implantation rate, 
followed by testicular, and finally ejaculated specimen. 
In our experience, utilization of fresh testicular 
spermatozoa with ICSI yielded a more consistent zygote 
development and clinical pregnancy rate in comparison 
to the cryopreserved counterpart (Table 3), which appears 
to be discordant with the findings of other studies that 
did not see a significant difference (Habermann et  al. 
2000, Ohlander et  al. 2014, Schachter-Safrai et  al. 
2017). Although reaching comparable fertilization 
rates, thawed epididymal spermatozoa had impaired 
motility and lower pregnancy outcomes than the fresh 
counterpart (Table 3). It must be noted that this analysis 
is purely academic, due to the fact that spermatozoa 
retrieved from different sources address different 
clinical indications.

Table 1 ICSI outcomes in men with severe oligozoospermia 
(<1 × 106/mL spermatozoa).

Parameter Value

Cycles 1969
Mean initial concentration (106 per mL ± S.D.) 0.2 ± 0.2
Mean initial motility (% ± S.D.) 17.8 ± 21.8
Mean morphology (% ± S.D.) 0.7 ± 1
Fertilization (%) 11,036/18,067 (61.1)
Clinical pregnancy (%) 788 (40.0)

Table 2 Outcomes using ejaculated, epididymal and testicular 
spermatozoa. Data are presented as mean ± S.D.

Parameter Ejaculated Epididymal Testicular

Maternal age (years) 37.7 ± 5a 35.3 ± 5b 33.8 ± 6c

Cycles 31,723 1140 1713
Oocytes retrieved 10.3 ± 6d 12.0 ± 7e 12.5 ± 7f

Oocytes injected 8.3 ± 5g 9.6 ± 5h 10.1 ± 5i

Oocytes fertilized 6.3 ± 4j 6.9 ± 5k 5.2 ± 4l

Clinical pregnancy rate 
per cycle (%)

11,536 (36.4)m 576 (53.2)n 687 (40.1)o

a vs b vs c: ANOVA, 2 df, effect of sperm source on average maternal 
age, P < 0.0001; d vs e, f: t-test, 1 df, effect of sperm source on 
number of oocytes retrieved, P < 0.0001; g vs h, i: t-test, 1 df, effect of 
sperm source on number of oocytes injected, P < 0.0001; j vs k vs l: 
ANOVA, 2 df, effect of sperm source on number of oocytes fertilized, 
P < 0.0001; m vs n vs o: χ2, 3 × 2, 2 df, effect of sperm source on 
clinical pregnancy rate, P < 0.0001.
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Figure 3 Comparison of fertilization rates according to spermatozoa 
source. Ejaculated specimens yielded a fertilization rate comparable 
to the epididymal and both were superior to testicular spermatozoa 
per oocytes retrieved (χ2, 2 × 3, 2 df; P < 0.0001). A similar pattern 
was observed once the fertilization rate was calculated based on the 
number of metaphase II oocytes injected (χ2, 2 × 3, 2 df; P < 0.0001).
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Overall, the implementation of surgical retrievals in 
conjunction with ICSI cycles has aided many men with 
no chance of natural conception to have their own child. 
However, further observation and follow-up studies 
need to be carried out as the cohort of reproductive 
aged offspring from these procedures increases.

Extreme ICSI cases

When very few to no spermatozoa are seen even 
after high-speed centrifugation, an extensive search 
is performed prior to ICSI in order to identify cells for 
injection. In 986 ICSI cycles, as updated from Palermo 
et  al. (Palermo et  al. 2014d), a search for injectable 
spermatozoa that required at least 30 min was carried 
out in ejaculate and testicular biopsy specimens. 
Ejaculated spermatozoa demonstrated a significantly 
higher fertilization rate in comparison to TESE specimen 
without however, affecting clinical pregnancy rates, 
which remained comparable between the two 
sources (Fig. 5). A similar study of patients with virtual 

azoospermia found an improved clinical pregnancy 
and implantation rate when using surgical vs ejaculated 
specimen (Ketabchi 2016).

Although scant spermatozoa can occasionally be 
found in ejaculated and testicular samples of these 
aforementioned cases, 40–60% of NOA patients that 
undergo a TESE/micro-TESE fail to retrieve spermatozoa 
(Bernie et  al. 2013, Vloeberghs et  al. 2015). The high 
occurrence of failed TESEs in NOA patients has 
prompted research into alternative approaches for these 
men to conceive a child of their own. In the event that 
no spermatozoa are identified in a testicular sample, 
studies have reported that in patients identified as having 
scant spermatogenesis and even maturation arrest, the 
use of round spermatids for injection (ROSI) has the 
ability to fertilize an oocyte (Vanderzwalmen et  al. 
1997). It should be noted however, that this procedure 
has incited vehement assertion that cases where round 
spermatids are identified always contain elongating 
spermatids as well (Silber et  al. 2000). Nevertheless, 
a recent study using ROSI has now claimed to have 
yielded 14 babies as of 2015 from a patient cohort 
that failed their first micro-TESE (Tanaka et  al. 2015). 
Although these data seem encouraging regarding 
patients that did not appear to have spermatozoa upon 
surgical extraction and further evaluation, injection of 
these round cells did not consistently induce oocyte 
activation without the aid of electric stimulation. From 
what we have learned thus far about the role of paternal 
RNAs in embryogenesis, these observations could 
indicate a lack of necessary transcripts available to the 
oocyte once a round spermatid is injected, possibly due 
to its spermiogenic block. As a result, close follow-ups 
of the offspring should be conducted before any clinical 
value can be assumed from the procedure.

ICSI safety

The issues related to the safety of intracytoplasmic sperm 
injection will be discussed in further detail following 
this chapter.

The general adoption of ICSI and its success has not 
been without some concern that this procedure bypasses 
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Figure 4 Comparison of pregnancy and implantation rates according 
to spermatozoa source. Embryos generated from epididymal 
spermatozoa had the highest pregnancy rate followed by testicular 
and ejaculated spermatozoa (χ2, 2 × 3, 2df; P < 0.0001). Embryo 
implantation rate was highest with epididymal, followed by testicular 
and ejaculated specimen (χ2, 2 × 3, 2 df; P < 0.0001).

Table 3 Spermatozoal parameters and intracytoplasmic sperm injection outcome according to retrieval sites and specimen condition.

No. of items

Spermatozoa

Epididymal Testicular
Fresh Frozen/thawed Fresh Frozen/thawed

Cycles 364 776 1158 555
Density (106 per mL ± S.D.) 37.9 ± 44 21.1 ± 26 0.3 ± 2.6 0.3 ± 1.8
Motility (% ± S.D.) 19.0 ± 17a 3.9 ± 9a 2.9 ± 7 1.4 ± 5
Morphology (% ± S.D.) 1.7 ± 2 1.3 ± 2 0 0
Fertilization (%) 2775/3829 (72.5) 5072/7126 (71.1) 6418/12,220 (52.5)c 2477/5059 (49.0)c

Clinical pregnancy (%) 221 (60.7)b 353 (45.5)b 500 (43.2)d 187 (33.7)d

aStudent’s t-test, two independent samples, effect of epididymal cryopreservation on sperm motility, P < 0.0001; bχ
2, 2 × 2, 1 df, effect of 

epididymal cryopreservation on clinical pregnancy rate, P < 0.0001; cχ2, 2 × 2, 1 df, effect of testicular cryopreservation on fertilization rate, 
P = 0.02; dχ

2, 2 × 2, 1 df, effect of testicular cryopreservation on clinical pregnancy rate, P < 0.0001.
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natural sperm selection (Cummins & Jequier 1994, de 
Kretser 1995, De Rycke et al. 2002, Edwards & Ludwig 
2003) bringing into question the growth, cognitive 
development and postnatal well-being of the offspring as 
well as the impact on their future reproductive capacity 
(Bowen et al. 1998, Schieve et al. 2004).

Several surveys of children born through ART 
evidenced an increased rate of neonatal malformations 
(Hansen et al. 2002), lower birth weights (Schieve et al. 
2002), the prevalence of imprinting errors (DeBaun et al. 
2003, Gicquel et al. 2003, Maher et al. 2003, Orstavik 
2003, Halliday et  al. 2004), and even some forms of 
cancer (Moll et  al. 2003). However, these studies did 
not link the cases of imprinting disorders or childhood 
neoplasia to the ICSI procedure itself (Edwards & 
Ludwig 2003).

Nevertheless, concerns related to the utilization 
of these less than ideal spermatozoa may still be the 
reason for genetic and congenital abnormalities (Ludwig 
& Katalinic 2002). Contrary to these concerns, we 
observed that the rate of malformation from ICSI was 
no higher than naturally conceived offspring reported 
in New York State (Palermo et al. 1996b). Additionally, 
a study of 14,211 ART children determined that the 
malformation rate with ICSI is comparable to that with 
IVF (Palermo et al. 2013).

In fact, the follow-up literature assessing ICSI offspring 
from neonates to adolescents have shown satisfactory 
physical and psychological development (Belva et  al. 
2007, 2011, 2012, Basatemur & Sutcliffe 2008, Knoester 
et al. 2008, Leunens et al. 2008, Goldbeck et al. 2009, 
Basatemur et al. 2010, Carson et al. 2013).

Among all epigenetic diseases, Beckwith–
Wiedemann Syndrome (BWS) is the only disorder that 

has been unequivocally linked to ART (Sutcliffe et  al. 
2006) although not related to a specific reproductive 
technique. A more recent study assessed the methylome 
in cord blood of children generated through standard in 
vitro insemination, ICSI, and compared to a naturally 
conceived offspring (El Hajj et  al. 2017). The initial 
analysis failed to evidence any particular effect of the 
ART on the DNA methylation patterns. A confirmatory 
analysis pointed at some small differential methylation of 
two specific genes (ATG4C and SNORD114). However, 
in consideration of several confounding factors, the 
authors were not able to distinguish between the effect 
of a specific insemination method or the contribution 
of a male factor. The authors also acknowledged that 
this study, carried out by a non-clinically validated 
assay, appears inconclusive until a larger study is carried 
out. Separately from the insemination procedure, long-
term blastocyst culture has been associated with gene 
expression imbalances (Basatemur & Sutcliffe 2008, 
Rivera et  al. 2008), furthermore, there is presently no 
clear evidence that resort to ICSI predisposes offspring 
to gene expression disorders, in animals or humans 
(Wilson et al. 2007).

In summary, the most prevalent factor that may 
contribute to adverse postnatal outcomes in children 
conceived by ART stems from high order-gestation 
(Pereira et  al. 2016a), a common consequence of 
assisted reproduction. Indeed, the adoption of single 
embryo transfer procedures has helped to diminish this 
issue. Additional complications such as prematurity, low 
birth weight, perinatal mortality, as well as congenital 
malformations have been indiscriminately linked to 
ART, though the primary factor responsible appears to be 
inherent in the infertility indication itself. While ICSI is 
not a causation of long-term neurodevelopmental defects 
or cancer, further follow-up studies into adulthood 
should be continued to better inform our understanding 
of assisted reproduction and more comprehensively 
answer these questions (Palermo et al. 2013).

In consideration of the foregoing, the first studies on 
the oldest ICSI cohort have been recently published, 
assessing the male and female offspring independently 
compared to a naturally conceived control. A survey 
of male reproductive hormones in young ICSI men 
proved to be comparable to naturally conceived peers 
(Belva et al. 2017a). A second study in a similar cohort 
of ICSI men focused assessing their spermatogenesis 
by measuring the semen characteristics in comparison 
to a control. This study demonstrated lower semen 
parameters in the ICSI cohort, although all metrics were 
still considered above threshold according to the WHO 
criteria (WHO 2010, Belva et  al. 2016). The fact that 
these ICSI offspring have semen parameters within the 
normal range, and therefore supports the notion of their 
potential ability to conceive, is somewhat reassuring, 
considering they were generated from fathers afflicted 
by male infertility incapable of procreating naturally 

0

10

20

30

40

50

60

70

80

90

100

Fer�liza�on

Clinical Pregnancy (% of Total)

59.2

44.4
41.5

40.7

%

Sample Source

Ejaculate TESE

Figure 5 Comparison of fertilization and clinical pregnancy rates in 
cases with few spermatozoa identified. In 986 cycles, extremely few 
spermatozoa were seen after high-speed centrifugation. Samples 
were searched for injectable spermatozoa in drops under oil for up to 
several hours by multiple embryologists until all oocytes were 
injected. Oocytes injected with ejaculate spermatozoa demonstrated 
a higher fertilization rate compared to those injected with testicular 
specimen (χ2, 2 × 2, 1 df; P < 0.0001). Clinical pregnancy rates 
remained comparable between the two sperm sources.

Downloaded from Bioscientifica.com at 08/26/2022 07:10:04PM
via free access



G D Palermo and othersF104

Reproduction (2017) 154 F93–F110 www.reproduction-online.org

PROOF ONLY

or by standard in vitro insemination. Alike, the most 
recent follow-up study on young women born from 
ICSI has shown encouraging results in relation to their 
fertility status, demonstrating a comparable hormonal 
profile to naturally conceived girls (Belva et al. 2017b). 
Nonetheless, as these cohorts assessed are relatively 
small, further multicenter studies would be welcome in 
order to confirm these preliminary findings.

Conclusions

In spite of the fact that ICSI was developed almost by 
chance, and earlier conclusions that the intracytoplasmic 
approach was too invasive and unreliable, its value has 
been affirmed in a variety of challenging situations, 
particularly for severe male factor couples wishing 
to have their own genetic child. Not least, over these 
last 25 years, ICSI has made possible the utilization of 
immature forms of the male gamete such as epididymal 
and testicular spermatozoa.

At our center, ICSI is additionally used in all cases 
using cryopreserved donor and husband spermatozoa 
samples in order to compensate for poor survival upon 
thawing. The utilization of a single spermatozoon 
has been instrumental to permit proper fertilization 
of oocytes prior to cryopreservation and in cases 
with a low egg yield, as often seen in couples with 
advanced maternal age or in poor responders to 
ovarian superovulation.

The advantages of an insemination technique that 
leveled the equivalency between a single male and 
female gamete have been indispensable in helping to 
explain specific aspects of sperm–oocyte interaction, 
such as understanding the acrosomal function in 
relation to the stability of the spermiolemma and 
its inherent connection to sperm motility as well 
as validating the mechanism of inheritance of the 
sperm centrosome.

Failure to achieve fertilization with ICSI has stimulated 
research into the mechanisms behind oocyte activation 
and has conversely indicated that a dysmature ooplasm 
is not receptive even to a fully competent spermatozoon.

The introduction of assays, particularly the assessment 
of chromatin integrity of sperm cells has evidenced that 
DNA fragmentation can influence the reproductive 
outcome of couples, running the gamut of assisted 
reproductive techniques from programmed intercourse 
and IUI, to standard in vitro insemination, and rarely 
intracytoplasmic injection.

It appears that ICSI will continue to play a role in the 
immediate and distant future of assisted reproductive 
technology and remain of paramount importance in 
cases involving mitochondrial therapies of micro-
manipulated oocytes or eventually, for use of sperm 
cells generated through in vitro spermatogenesis and 
even neo-gametogenesis from stem cells.
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