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1

Financial investors and traders have always attempted to forecast the movement of stock
markets (e.g., Schulmeister, 2009). Financial trading itself is embedded in a complex
structure not only involving the dynamics of price formation but also the market
microstructure itself. Market information, news and external factors affect the investors’
trading decisions concerning buying and selling. Usually, the price pattern is hard to
recognise, notice or categorise, regardless of the type of the actual financial market
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studied (Murphy, 1986). This paper presents a model that tries to prove that artificial
intelligence and soft computing such as the adaptive neuro-fuzzy inference system
(ANFIS) can provide a major solution in such tasks. The fuzzy logic approach, inspired
by a model of human reasoning in which linguistic terms are used and fuzzy (as opposed
to crisp) quantities are manipulated, is combined in neuro-fuzzy systems with the pattern
recognition ability of neural networks (see Konstantaras et al., 2006; Sewell, 2010).

The recent escalation in computing power has led to a vast increase in the availability
of data and information. Computers, sensors and information channels are developing
faster, and data is easier to collect than ever before. Due to the availability of real-time
order book information nowadays, the difference in decision making and risk taking
among various traders represents a complicated process that affects market conditions.
High-frequency trading is a new discipline in financial trading where trends are analysed
in tick-by-tick fashion and buy and sell decisions are consequently taken. Therefore,
implementing a system that would provide a means of capturing and forecasting the
market movements on the real-time level would help to improve an investor’s financial
trading record (see Dacarogna et al., 2001; Dempster and Jones, 2001). This paper
proposes a new computational processing and filtration technique that has not yet been
fully discussed or implemented in the existing literature [for a recent survey on
algorithmic trading strategies and trading systems, see Aldridge (2009), Schulmeister
(2009), Yeh et al. (2011), and the references therein].

Traditionally, most prediction algorithms presented in literature focus on data mining
which is the integration of statistics, machine-learning paradigms and the analysis of
dynamical systems (e.g., Hellstrom and Holmstrom, 1998; Kasabov and Song, 2002).
Furthermore, given that financial time series are often very noisy, a filtering process
should remove such noise from the signal (Sheen, 2005). An ANFIS architecture was
chosen for this automated trading system as it shows very high performance in modelling
non-linear functions and in identifying non-linear components (Denai et al., 2007). The
proposed financial ANFIS uses a hybrid learning algorithm and is able to construct a
unique input-output mapping based on both human knowledge (fuzzy rules) and
stipulation input-output data pairs (Castillo et al., 2006). It also has shown excellent
results in predicting time series (see Jang, 1993; Kasabov and Song, 2002). In addition,
since the trading system deals with intraday data, the data input to the system must be
deseasonalised in a specific manner in order to separate the deterministic component
in the times series as it otherwise would introduce spurious autocorrelation. The
deseasonalisation is performed using a new event-based measure of volatility (Glattfelder
etal., 2010).

The reminder of the paper is organised as follows. Section 2 introduces the
methodology. Section 3 presents the empirical data and the results. Section 4 concludes.

2 Methodology

In the following, Section 2.1 first describes the design and architecture of the ANFIS
originally introduced by Jang (1993). Section 2.2 then expands on the use of ANFIS for
financial trading. Section 2.3 introduces an event-based measure of volatility to be fed
into the ANFIS to capture the intraday seasonality and to optimise the trading schedule.
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2.1 The ANFIS framework

The ANFIS is an adaptive network of nodes and directional links with associated learning
rules. The approach learns the rules and membership functions from the data (Takagi and
Sugeno, 1985). It is called adaptive because some or all of the nodes have parameters that
affect the output of the node. These networks identify and learn relationships between
inputs and outputs, and have high learning capability and membership function definition
properties. Although adaptive networks cover a number of different approaches, for our
purposes, we will conduct a detailed investigation of the method proposed by Jang et al.
(1997) with the architecture shown in Figure 1.

Figure 1 ANFIS architecture for a two rule Sugeno system (see online version for colours)
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The circular nodes have a fixed input-output relation, whereas the square nodes have
parameters to be learnt. Typical fuzzy rules are defined as a conditional statement in the
form:

If Xis A, thenY isB,. O]
If X is A,, thenY is B,. ()

X and Y are linguistic variables; 4; and B, are linguistic values determined by fuzzy sets
on the particular universes of discourse X and Y respectively. However, in ANFIS we use
the first order Takagi-Sugeno system (Takagi and Sugeno, 1985), which is:

If X is A and Y is B, thenf, =p X+qY+n. 3)
If Xis Ay and Y is By, thenf, =p,X+q,Y+r. “)

X and Y represent the universes of discourse; 4; and B, are linguistic terms defined by
their membership functions, and p;, g; and r; are the consequent parameters that are
updated in the forward pass in the learning algorithm. The forward pass propagates the
input vector through the network layer by layer. In the backward pass, the error is
returned through the network in a similar manner to back-propagation. We briefly discuss
the five layers in the following:
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1 The output of each node in Layer 1 is:

O, =pu,(x) fori=12

: (%)
01,1- = U, (x) fori=34.
Hence, O, (x) is essentially the membership grade for x and y. Although the
membership functions could be very flexible, experimental results lead to the
conclusion that for the task of financial data training, the bell-shaped membership
function is most appropriate (see, e.g., Abonyi et al., 2001). We calculate

H4(0) = ———, (©)

where a;, b;, and ¢; are parameters to be learnt. These are the premise parameters.

2 In Layer 2, every node is fixed. This is where the #-norm is used to ‘AND’ the
membership grades, for example, the product:

Oy =w, =p, (g (y), =12 (7

3 Layer 3 contains fixed nodes that calculate the ratio of the firing strengths of the
rules:
w;

Oy, = =— ®)
’ w +w,

4 The nodes in Layer 4 are adaptive and perform the consequent of the rules:
04ji:v_vl-fl-=v7i(pix+ql-y+ri). )

The parameters (p;, g;, ;) in this layer are to be determined and are referred to as the
consequent parameters.

5 InLayer 5, a single node computes the overall output:
Z — W
O . = w. f, = =2t 10
5,i i lft Zi W, ( )

This is how the input vector is typically fed through the network layer by layer. We then
consider how the ANFIS learns the premise and consequent parameters for the
membership functions and the rules. We apply the hybrid learning algorithm proposed by
Jang et al. (1997) which uses a combination of steepest descent and least-squares
estimation (LSE) to calibrate the parameters in the adaptive network (see also
Fontenla-Romero et al., 2003). We split the total parameter set S into two further sets S,
the set of premise (non-linear) parameters, and S,, the set of consequent (linear)
parameters. In this study, ANFIS uses a two-pass learning algorithm. In the forward pass,
S is unmodified and S, is computed using a LSE algorithm, whereas in the backward
pass, S; is unmodified and S, is updated using a gradient descent algorithm such as
back-propagation (see also illustration in Figure 2).
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Figure 2 Learning algorithm forward and backward passes (see online version for colours)
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The task of the ANFIS learning algorithm for this architecture is to tune all of the
modifiable parameters, namely {a;, b;, ¢;} and {p;, q;, r;} to make the ANFIS output match
the training data. When the premise parameters a;, b;, and ¢; of the membership function
are fixed, the output of the ANFIS model can be written as

[ . (1)

w +w, w +w,

In particular, the learning process consists of a forward pass and back-propagation, where
in the forward pass, functional signals go forward until Layer 4, and the consequent
parameters are identified by the least-square estimate. In the backward pass, the error
rates propagate backwards and the premise parameters are updated by the gradient
descent.

For given fixed values of §j, the parameters in S, found by this approach are
guaranteed to be the global optimum. Table 1 provides a summary of the learning
methods. The output error is used to adapt the premise parameters by means of a standard
back-propagation algorithm.

Table 1 Summary of different learning methods

Forward pass Backward pass
Premise parameters Fixed Gradient descent
Consequent parameters LSE Fixed
Signals Node o/p Error rates

There are four methods used to update the parameters, these are:
1 Gradient descent (GD) only: all parameters are updated by gradient descent.

2 GD and one pass of LSE: LSE is applied only once at the start so as to obtain the
initial values of the consequent parameters. GD then updates.

3 GD and LSE: the proposed hybrid rule (see also Jang, 1993).
4 Sequential LSE only: uses a Kalman filter to update the parameters.

In this chapter, for the purpose of using ANFIS for financial predictions, we use the third
entry from the above list as this method usually represents a good compromise between
computational complexity and resulting performance (see also Mitra et al., 2008).
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2.2 ANFIS for financial predictions and trading

The proposed system as described above now takes the price series as input; it first takes
a certain amount of m data points for training and generating the initial fuzzy inference
system from the data values, and then takes the next m data points for validation. This
will generate an ANFIS that has modified its parameters and membership functions and
is ready to produce a prediction for the next data points, given the pattern that it has
recognised. The success rate of such a system would be determined by its level of
accuracy in predicting the movement of the next trading periods in seconds, minutes,
hours, days, weeks or months, depending on the trading frequency. Taking the correct
decisions after processing all of the inputs from other blocks is also essential to a
successful system (Sheen, 2005).

In particular, the system considers the past three price observations in the market
x(t—3), x(t — 2), x(t — 1) and the current observation x(#) in order to predict the next price
observation x(¢ + 1) using ANFIS. This is then used as a movement indicator (either up or
down). In other words, to make a prediction for ¢ + 1, the system will be fed the current
price at time t plus the previous three price observations ¢t — 1, # — 2 and ¢ — 3,
respectively. Now that a system to ‘predict’ the movement of the market has been
implemented, a suitable position can be opened according to the indicator of this
prediction. The pseudo-code is shown in Figure 3.

Figure 3 Introducing the hold position when prediction does not change direction

BEGIN
Train the system using the last 500 points;
check the systems accuracy using the last 500 points;
REPEAT
from now till the next 100 points;
generate prediction;
if prediction is up -> then buy
if next prediction is up -> then hold
else if prediction is down -> then sell
if next prediction is down -> then hold
END

retrain;

Figure 4 illustrates the above described strategy, where hold positions are introduced and
the buy sell frequency is reduced. When the red line goes down (dummy value = 0), the
system is in sell mode, remaining unchanged means that it is in hold mode, and moving
back up (dummy value = 1) means that it went to buy mode. Additionally, in order to
increase the return of the trading investment, a final prediction and trading strategy was
introduced where a ‘trigger pointer’ value is used. Therefore, for a sequence of buy and
hold positions, if the prediction of the next time sample falls below the set trigger, the
position is closed; hence, a sell position is opened. The trigger pointer value is updated



74 A. Kablan and W.L. Ng

after each iteration, as illustrated in the pseudo code in Figure 5. Initially this trigger is set
to the first value in the dataset.

Figure 4 Positions being placed according to the prediction of the movement (see online version
for colours)
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Figure S Introducing the trigger to track the prediction and detect directional changes to adjust
position

trigger = price (1)
if prediction is up and prediction > trigger
then trigger = prediction (now-1)

position = buy;

else if prediction is down and prediction < trigger
then trigger = prediction (now-1)

position = sell;

After the implementation of the above ANFIS system, further experiments had to be
performed in order to optimise the results obtained from the above system. One important
test that has been conducted involved varying the number of epochs and step sizes in
each run on the system. In adaptive networks theory, an epoch is defined as a single pass
through the entire dataset (each set of data is evaluated once). This means that the more
epochs we have, the more evaluations we get. However, this also takes longer.

One epoch is one sweep through all of the records in the dataset. This does not mean
that the more epochs we have, the better will be the results. Our experiments have proven
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that a threshold exists at which point a system will reach saturation, and no matter how
many epochs are used, the performance will not improve. In fact, a too large number of
epochs would result in overtraining for the system, causing a decrease in performance
(see Figure 6a and 6b). The initial setup included an 80-epoch system that took
18.4 seconds to execute during each run.' Experiments for various numbers of epochs
have been used, which in turn have caused a change in the learning rate that can be
analysed in the panels in Figure 6. The step size is considered as a variable that is
corrected after every fourth epoch, counting from the epoch in which the previous
correction has been done. It is realised on the basis of the following rules:

1 if the error undergoes four consecutive reductions, then increase the step size by 10%

2 if the error successively goes through a combination of increases and decreases, then
decrease the step size by 10%.

Finally another variable is allocated to store the last change, which stores the index of the
epoch in which the variable step size has been previously changed.

In general, there is no conclusive theory to decide the number of epochs in neural
networks literature. However, it is a general rule to avoid the problem of overfitting when
increasing the number of epochs. Practically, it is observed that the higher the number of
training epochs the better is the classification performance but this worsens the ability of
the generalisation by the network hence the ability to correctly predict the future
processing data not seen before. This is confirmed by the results in Table 2 in the
empirical section below, hence we choose 80 as an optimal epoch size [for a brief
discussion on the choice of epoch numbers, see also Yezioro et al. (2008) and Chelani
and Hasan (2001)].

Figure 6 Error curves and step size update for various epochs: (a, b) 180 epochs
(c, d) 100 epochs (e, f) 50 epochs (g, h) 10 epochs (see online version for colours)
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Figure 6 Error curves and step size update for various epochs: (a, b) 180 epochs
(c, d) 100 epochs (e, f) 50 epochs (g, h) 10 epochs (continued) (see online version
for colours)
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2.3 Intraday seasonality

As trading activities are observed in real-time, common approaches to measure volatility
such as the standard deviation can not be applied due to the inhomogeneous data structure
of the time series. Therefore, an Intraday Seasonality Observation Model (ISOM) as an
event-based concept to measure market activity will be used in this study as a proxy for
volatility as it can map the times of day with their respective volatility. This is viewed
from an event-based perspective, where each ‘directional change’ with a specific
threshold is an event. The aim is to use the ISOM to filter and clean this data by pointing
out periods of the day when the volatility has exceeded a certain range (number of
events). The idea here is to take the number of observations per intraday sampling
interval in order to produce a model that would estimate the number of average
observations that occur for the targeted time of day window (see also Bauwens et al.,
2005).

In financial trading, directional-change (dc) events are understood as price
movements, where a total-price move between two extreme price levels, expressed as a
relative price jump of threshold size dx(%), can be decomposed into a price reversion
(i.e., the directional-change itself) and an overshoot sections (Glattfelder et al., 2010).
The ISOM for a particular time of day ¢ at a particular threshold dx is equal to the total
number of directional change events that occurred at that time window #;, in the entire
dataset:
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1som (1) = > N(delr )
day=1

(12)

day’

where 7 is the total number of days in the dataset, and N(dc) is the number of directional
changes (events). In its simple definition, the ISOM is a model that takes into
consideration a certain threshold dx(%) and will observe the timings where the directional
changes dc occur. It would iteratively and consecutively parse through the entire dataset
of prices and save the observations into their respective time bins. This would ultimately
give a horizon of seasonalities, pointing out the exact times of day when these
observations were made. This indicates the times of day when the volatility was high or
low. The idea is that the data will be viewed from a scaling law perspective of directional
changes (events), where each up/down percentage change within a pre-specified
threshold is observed, the time stamps and relative price are marked, and all data is
iteratively stored in bins of time value, which will then be analysed further.

For illustration purpose, when applied with a dx = 0.05% change for 30 minutes
windows for the foreign exchange (FX) pair EUR-USD observed from 04/04/2006 to
04/04/2008. The ISOM resulted in the seasonality pattern shown in Figure 7. The plot
reveals that most of the directional change events occur between 12:00 and 14:00 GMT.
This confirms the fact that these are the times when the announcements are made and the
market’s reaction to these announcements takes place. It is also the time when the US
markets open; hence, the volatility of the markets increases. Other times of high volatility
occur between 7:00 and 8:00 GMT, which is usually the time before the European
markets open.

Figure 7 ISOM for a threshold of dx = 0.5% price move observed every 30 minutes for the
FX pair EUR/USD from 04/04/2006 to 04/04/2008 (see online version for colours)
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The ISOM shows that when considering observations every 30 minutes, the period with
the highest volatility is between 12:30 and 13:00 GMT, which is again the time when all
of the announcements that were made at 12:00 have been absorbed by the markets and
the traders have started to act on them. The period of highest trading activity occurs
between 12:00 and 16:00 GMT, i.e., the times that include the announcements, the
opening of the US markets until the close of the European markets. The above results
have confirmed real-life events that are known to increase markets volatility. They can
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also help the trader or the system to ignore the periods that experience a low number of
events.

It must be noted that the ISOM can be applied to any threshold and any time
frequency (daily, half daily, quarter daily, five minutes, etc.). We have taken a threshold
of dx = 0.05% for the scope of this illustration; the concept can be applied freely to any
threshold or time frequency (additional figures illustrating the intraday seasonality for
other threshold values are shown in Figure 10 in the Appendix).

The next step is now to use ISOM to filter and clean this data by pointing out periods
of the day when the volatility has exceeded a certain range (number of events). The
ISOM model has been redesigned to cater to five-minute data instead of hourly or
30-minute data, as previously shown. We now have bins of five-minute data, and we will
capture the directional changes as they occur within these bins, where the counter of
events will increase according to the number of events and the number of times that the
threshold has been exceeded. In this study, ANFIS was fed data from the times of day
when the number of observations exceeded ten events. After being trained on data with
higher volatility (stress training), ANFIS will perform prediction of a set of checking
data. The pseudo-code is shown in Figure 8.

Figure 8 Optimising ANFIS with ISOM

Function Collect-ISOM-Times
BEGIN

for i = 2 to end(in-sample-data)
calculate the percentage directional changes
dc (i) = (price(i) - price(i-1) * 100)/ price(i-1)

if abs(dc(i))> 0.05%
save time bin observation (T)
count number of observations for respective time bin (Tcount)
Observations Per Day = Tcount/length (in-sample-data)
if Observations Per Day > 5

Valid ISOM Time Bin = T

end 1if

end 1if

end for
END

Function Use-ISOM-for-Training-ANFIS
BEGIN
for k = 1 to end(out-of-sample data)
if time = Valid ISOM Time Bin
train ANFIS
perform predictions
else
proceed to next time bin
end 1if
end for
END
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3 Empirical data and results

The FX market is a 24-hour worldwide market with high liquidity and volatility,
especially in the three major financial centres with international influence: New York,
London and Tokyo. Volatility is highest during the early morning in New York time
because exchanges in London and New York are open and simultaneously trading.
Stylised facts such as gain-loss asymmetry and heavy tails are observed in FX return
distributions (Bauwens et al., 2005). Commercial banks, corporate, funding and retail
institutions from around the globe participate in FX trading. The price at the FX market is
formed by buying and selling currencies to institutions, traders, exporters, importers,
portfolio managers and tourists. Nowadays, orders are electronically matched via
automated brokerage terminals. Yoon et al. (1994) state that approximately 85% of all
FX trading occurs between market makers. This creates an opportunity for speculation.

In this study, high-frequency FX data sampled from 04/04/2006 to 04/04/2008 has
been fed into the trading system. For the analysis, we compute the mid-price from the
quote data (Dacorogna et al., 2001). As we are trading in FX, the half-spread, which is
the only transaction cost traders need to consider in this type of market, is already
implicitly taken into account in all reported strategies. The system has been tested on five
FX rates, which are: EUR-USD, AUD-USD, GBP-USD, USD-CHF, and USD-JPY.
Figure 9 shows the different time series that has been used in this study.

Figure 9 Time series of all five FX currency pairs observed from 04/04/2006 to 04/04/2008,
normalised to 1USD (see online version for colours)
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This original dataset of five-minute price data is split into (non-overlapping) sub-datasets
comprising m = 500 data points, for each of the FX rates. A too small m (say 100 points)
might not be enough to build momentum and achieve a desired number of observations
(events) as the threshold might not be exceeded. Similarly, a larger number might include
more observations that we desire for one run of the system which would cause
overtraining and overfitting (Yeh et al., 2011). As all high-frequency FX rates have a
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different amount of data points, m was chosen such that the all series have reasonably
comparable sub-datasets.

For each FX rates series, the first 500 ‘in-sample’ data points in each subset are used
for system training. The subsequent 500 data points are considered as ‘out-of-sample’
and used for validating the system’s performance and updating the network structure
using the output error. The 500 data points that were used for validation at one simulation
can be reused for retraining the system in the next simulation, thus creating a rolling
window approach for training and validating the system, making full use of all the
available data.

In order to evaluate the performance of the proposed model, we will compare the
ANFIS with the standard strategies that are commonly applied in the industry, such as
buy and hold [e.g., Yeh et al., (2011), p.796, Section 2.2] or linear forecasting using trend
following or trend reverting signals [e.g., Schulmeister (2009), pp.191-194, Section 2].
We use different measures for assessment, such as

a the wining rate

b  the profit factor

¢ the return of investment (ROI)
d the Sharpe ratio

e the Sortino ratio.

The winning rate simply describes the number of winning trades against the overall
number of trades. The profit factor mainly describes the historic profitability of a series
of trades on an investment. The break-even of the profit factor is 1 meaning an
investment that generates trades with a 50% chance of the gross sum of winning trades
and a 50% chance of the gross sum of losing trades. Normally, investors pick investments
with the profit factor higher than one. The ROI is used to evaluate the efficiency of an
investment or compare returns on investments. That is, ROI is the ratio of profit gained or
lost on an investment in relation to the amount of cost invested. The Sharpe ratio is used
to the measure risk-adjusted return of an investment asset or a portfolio, which can tell
investors how well the return of an asset compensates investors for the risk taken. The
Sharpe ratio is defined as
Sharpe ratio = M,

Op

where R, denotes the expected return, R, the risk-free interest rate and o, the portfolio
volatility. Technically, this ratio measures the risk premium per each unit of total risk in
an investment asset or a portfolio. Investors often pick investments with high Sharpe
ratios because the higher the Sharpe ratio, the better its risk-adjusted performance has

been. As there is no risk-free interest rate for intraday maturities, we use the mean return
from the training sub-dataset as a substitute. Similarly, the Sortino ratio is defined as

Rp B Rf

Oy eg

Sortino ratio =
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where 0,,, denotes the standard deviation of only negative asset returns. The main
difference between the Sharpe ratio and the Sortino ratio is that the Sortino ratio only
penalises the downside volatility, while the Sharpe ratio penalises both upside and
downside volatility. Thus, the Sortino ratio measures the risk premium per each unit of
downside risk in an investment asset or a portfolio.

When training the ANFIS, it has been noticed after running initial experiments that
the larger the numbers of epochs, the more stable the system will be because of damping
oscillation (see Figure 6). Furthermore, the larger the size of the step, the faster the errors
will decrease, although there will be more oscillations. When designing a system that will
trade in high frequency, a major category that has to be satisfied along with high
performance and optimum results is high speed or run-time and execution. As it can be
seen from the Figure 6 and Table 2, a low (high) number of epochs results in a system
that is rather fast (slow). On the other hand, a low number of epochs produces very poor
results compared to a higher number of epochs, which produces a system with very high
performance rates. However, it was also observed from the experiments that as the
number of epochs increases, there may be a stage where the performance does not
increase as much as required, whereas the time of execution increases drastically. Hence,
it is a matter of compromise between speed and performance. This issue can be resolved
by choosing a system with 80 epochs, where it has been found to produce the highest
performance for the smallest amount of time after conducting extensive experiments
(see Table 2). Furthermore, since the system trades on five-minute intervals, a time of
25.15 seconds cannot be considered a long execution time, given the complexity of the
ANFIS design.

Having determined the number of epochs to be considered, ANFIS was fed data from
the times of day when the number of observations exceeded ten events. After being
trained on data with higher volatility (stress training), ANFIS will perform prediction of a
set of checking data.

Table 2 Out-of-sample evaluation of the ANFIS system using various numbers of epochs
Num. of CPU time Winning Profit ROI Sharpe Som:no
epochs (secs) rate factor ratio ratio
10 3.72 0.40 1.9 0.07 0.13 0.12
50 12.53 0.55 2.1 0.15 0.14 0.19
80 25.15 0.65 2.3 0.27 0.19 0.20
100 28.31 0.65 23 0.27 0.19 0.21
180 50.27 0.64 24 0.26 0.18 0.20

As mentioned before, all sub-datasets used for validation of the implemented trading
system is considered as the ‘out-of-sample’. The performance measures introduced above
are computed for each validation sub-dataset. Table 3 reports the overall average
performance measure for

1  the buy and hold
2 the momentum (trend following)
3 the contrarian (trend reversal)

4  the Intraday ANFIS trading strategy.



82 A. Kablan and W.L. Ng

Table 3 Comparison of the average performance measures in the out-of-sample for all
implemented trading strategies

FX pair Winning rate  Profit factor ~ ROl ~ Sharpe ratio  Sortino ratio
EUR-USD
Buy and hold 0.42 1.1 0.09 -0.07 —0.05
Momentum 0.58 1.7 0.21 0.12 0.10
Contrarian 0.39 0.8 0.07 0.09 0.09
Intraday ANFIS 0.71 2.7 0.33 0.22 0.20
AUD-USD
Buy and hold 0.51 0.9 0.11 0.03 0.01
Momentum 0.59 1.1 0.14 0.02 —0.02
Contrarian 0.53 1.2 0.18 —0.05 —0.06
Intraday ANFIS 0.56 1.4 0.17 0.01 -0.01
GBP-USD
Buy and hold 0.51 1.3 0.11 0.04 0.05
Momentum 0.47 0.7 0.08 -0.01 -0.03
Contrarian 0.55 0.9 0.06 0.02 —0.02
Intraday ANFIS 0.50 0.9 0.07 —0.08 -0.09
USD-CHF
Buy and hold 0.43 0.8 0.07 —0.02 —0.04
Momentum 0.57 1.3 0.10 0.09 0.04
Contrarian 0.54 1.0 0.12 0.07 —-0.01
Intraday ANFIS 0.65 1.2 0.19 0.11 0.07
USD-JPY
Buy and hold 0.29 0.4 0.01 -0.14 -0.17
Momentum 0.44 0.7 0.05 —0.02 —0.00
Contrarian 0.47 1.3 0.09 0.01 0.01
Intraday ANFIS 0.52 1.8 0.12 0.03 -0.01

With respect to the winning rate, Table 3 shows that in most cases, the ANFIS system
outperforms the standard strategies in the overall number of wins. In terms of the profit
factor, which indicates the actual profitability of a series of trades on an investment, the
results show that the ANFIS system also has a profit factor higher than 1 in most cases.
Table 3 also reveals that ANFIS generally obtains a higher ROI than the conventional
strategies, i.e., it has a higher ratio of profit gained on a trade in relation to the amount of
cost invested. Last not least, the Sharpe ratio and Sortino ratio, which measure the
investment per unit of risk, also indicate a better performance of the ANFIS model, but
less consistent as compared to the other benchmark values. Positive Sharpe and Sortino
ratios imply that the trading strategy has not taken high risk.

Other descriptive statistics of performance measures in the ‘out-of-sample’ such as
the standard deviation, skewness and kurtosis are listed in Table 4 in the Appendix. It can
be seen that in general the performance measures for ANFIS have a lower standard
deviation (higher accuracy), higher skewness (higher oufperformance) as compared to the
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benchmark models. Comparisons for the kurtosis are rather inconsistent, allowing no
particular conclusion.

Finally, in order to statistically test the performance of a benchmark model (either
buy and hold, momentum or contrarian) compared to the proposed ANFIS model,
Table 5 in the Appendix lists the test-statistics of the (one tailed) s-test with the
null-hypothesis that average measure for the benchmark is better than that for the
ANFIS. A negative test-statistic with a value lower than —1.6649 indicates a rejection of
the null-hypothesis at a 5% significance level, implying a statistically significant
outperformance of the ANFIS strategy. Furthermore, a low positive value of the
test-statistic would imply that a particular benchmark model is not significantly better
than ANFIS (e.g., Sortino ratios for AUS-USD or USD-JPY).

4 Conclusions

The distinctive area of soft computing and artificial intelligence was addressed in this
project by revisiting and improving the performance of the ANFIS by manipulating the
number of epochs and the learning rate. It was concluded that a certain number of optimal
epochs should not be exceeded, since this would not drastically improve the system. The
ISOM proposed in this project has been tested on various threshold levels. The
observation of a directional change within a threshold leads to taking the time stamp and
its consequential addition to all of the observations that have been made during that time.
The power of this method lies in the fact that any threshold can be used for any time
frequency. This leads to the observation of events for the entire data series from a new
perspective. The above concepts of event-driven volatility have proven to be consistent
with ANFIS if sufficient data is present to perform the ISOM. A comparison of the
proposed model against the standard trading strategies that are commonly applied in the
industry shows an outperformance of the Intraday ANFIS.
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1 Simulations have been performed on a Toshiba Tecra A9-11M Laptop PC. CPU type: Intel
Core 2 Duo, CPU speed: 2.4 GHz, internal memory: 2048 MB, hard drive size: 160.0 GB.

Appendix

Figure 10 ISOM for alternative thresholds: (a) threshold = 0.2% (b) threshold = 0.4%
(c) threshold = 0.6% (see online version for colours)
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Descriptive statistics for the performance measures in the out-of-sample for all

implemented trading strategies

Table 4
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Table 5 t-tests on significance of the outperformance of the Intraday ANFIS compared to the
benchmark models
Winning rate  Profit factor ROI Sharpe ratio  Sortino ratio
EUR-USD
Buy and hold —25.1390 —87.7696 —-9.1041 -5.6101 —8.0404
Momentum —25.2152 —44.1580 -9.9627 —5.0338 -3.3665
Contrarian —44.1665 —67.5499 -17.5153 —4.7709 —2.5080
AUD-USD
Buy and hold —5.8162 —83.9129 —4.3898 —0.8362 0.9140
Momentum 6.5559 —41.3212 -4.3607 —0.5586 —0.3871
Contrarian —-9.9370 -61.0892 1.0640 -5.0704 -1.5031
GBP-USD
Buy and hold 0.6132 46.9026 1.9547 5.7761 5.6225
Momentum —4.2883 —75.8641 —0.7037 3.0029 3.5683
Contrarian 11.2452 1.9371 —-1.4116 2.2437 2.5437
USD-CHF
Buy and hold -18.3256 —-32.8665 —8.4406 -3.5630 —7.4428
Momentum —49.3637 38.8532 -11.3662 —-1.2525 -1.6518
Contrarian —32.5415 —50.9244 -9.7339 —2.1374 -7.0753
Intraday ANFIS -18.3256 —32.8665 —8.4406 -3.5630 —7.4428
USD-JPY
Buy and hold —18.8390 —72.8580 -10.0507 —4.7790 -5.1781
Momentum —20.3472 -10.5751 —4.6689 -1.0293 0.3112
Contrarian —-15.1101 —41.5113 —2.3427 —0.5362 0.5320

Notes: This table lists the test-statistics of the (one-tailed) #-test with the null-hypothesis
that the average performance of a benchmark model (either buy and hold,
momentum or contrarian) is better than that of the ANFIS model, i.e.,

Ho: upencrmark = tanris- A negative value lower than —1.6649 indicates a

rejection of the null at a 5% significance level.



