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Abstract: This paper introduces an adaptive neuro-fuzzy inference system 
(ANFIS) for financial trading, which learns to predict price movements from 
training data consisting of intraday tick data sampled at high frequency. The 
empirical data used in our investigation are five-minute mid-price time series 
from FX markets. The ANFIS optimisation involves back-testing as well as 
varying the number of epochs, and is combined with a new method of capturing 
volatility using an event-driven approach that takes into consideration 
directional changes within pre-specified thresholds. The results show that the 
proposed model outperforms standard strategies such as buy-and-hold or linear 
forecasting. 
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1 Introduction 

Financial investors and traders have always attempted to forecast the movement of stock 
markets (e.g., Schulmeister, 2009). Financial trading itself is embedded in a complex 
structure not only involving the dynamics of price formation but also the market 
microstructure itself. Market information, news and external factors affect the investors’ 
trading decisions concerning buying and selling. Usually, the price pattern is hard to 
recognise, notice or categorise, regardless of the type of the actual financial market 
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studied (Murphy, 1986). This paper presents a model that tries to prove that artificial 
intelligence and soft computing such as the adaptive neuro-fuzzy inference system 
(ANFIS) can provide a major solution in such tasks. The fuzzy logic approach, inspired 
by a model of human reasoning in which linguistic terms are used and fuzzy (as opposed 
to crisp) quantities are manipulated, is combined in neuro-fuzzy systems with the pattern 
recognition ability of neural networks (see Konstantaras et al., 2006; Sewell, 2010). 

The recent escalation in computing power has led to a vast increase in the availability 
of data and information. Computers, sensors and information channels are developing 
faster, and data is easier to collect than ever before. Due to the availability of real-time 
order book information nowadays, the difference in decision making and risk taking 
among various traders represents a complicated process that affects market conditions. 
High-frequency trading is a new discipline in financial trading where trends are analysed 
in tick-by-tick fashion and buy and sell decisions are consequently taken. Therefore, 
implementing a system that would provide a means of capturing and forecasting the 
market movements on the real-time level would help to improve an investor’s financial 
trading record (see Dacarogna et al., 2001; Dempster and Jones, 2001). This paper 
proposes a new computational processing and filtration technique that has not yet been 
fully discussed or implemented in the existing literature [for a recent survey on 
algorithmic trading strategies and trading systems, see Aldridge (2009), Schulmeister 
(2009), Yeh et al. (2011), and the references therein]. 

Traditionally, most prediction algorithms presented in literature focus on data mining 
which is the integration of statistics, machine-learning paradigms and the analysis of 
dynamical systems (e.g., Hellstrom and Holmström, 1998; Kasabov and Song, 2002). 
Furthermore, given that financial time series are often very noisy, a filtering process 
should remove such noise from the signal (Sheen, 2005). An ANFIS architecture was 
chosen for this automated trading system as it shows very high performance in modelling 
non-linear functions and in identifying non-linear components (Denaï et al., 2007). The 
proposed financial ANFIS uses a hybrid learning algorithm and is able to construct a 
unique input-output mapping based on both human knowledge (fuzzy rules) and 
stipulation input-output data pairs (Castillo et al., 2006). It also has shown excellent 
results in predicting time series (see Jang, 1993; Kasabov and Song, 2002). In addition, 
since the trading system deals with intraday data, the data input to the system must be 
deseasonalised in a specific manner in order to separate the deterministic component  
in the times series as it otherwise would introduce spurious autocorrelation. The 
deseasonalisation is performed using a new event-based measure of volatility (Glattfelder 
et al., 2010). 

The reminder of the paper is organised as follows. Section 2 introduces the 
methodology. Section 3 presents the empirical data and the results. Section 4 concludes. 

2 Methodology 

In the following, Section 2.1 first describes the design and architecture of the ANFIS 
originally introduced by Jang (1993). Section 2.2 then expands on the use of ANFIS for 
financial trading. Section 2.3 introduces an event-based measure of volatility to be fed 
into the ANFIS to capture the intraday seasonality and to optimise the trading schedule. 
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2.1 The ANFIS framework 

The ANFIS is an adaptive network of nodes and directional links with associated learning 
rules. The approach learns the rules and membership functions from the data (Takagi and 
Sugeno, 1985). It is called adaptive because some or all of the nodes have parameters that 
affect the output of the node. These networks identify and learn relationships between 
inputs and outputs, and have high learning capability and membership function definition 
properties. Although adaptive networks cover a number of different approaches, for our 
purposes, we will conduct a detailed investigation of the method proposed by Jang et al. 
(1997) with the architecture shown in Figure 1. 

Figure 1 ANFIS architecture for a two rule Sugeno system (see online version for colours) 
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The circular nodes have a fixed input-output relation, whereas the square nodes have 
parameters to be learnt. Typical fuzzy rules are defined as a conditional statement in the 
form: 

1 1   ,    .If X is A then Y is B  (1) 

2 2   ,    .If X is A then Y is B  (2) 

X and Y are linguistic variables; Ai and Bi are linguistic values determined by fuzzy sets 
on the particular universes of discourse X and Y respectively. However, in ANFIS we use 
the first order Takagi-Sugeno system (Takagi and Sugeno, 1985), which is: 

1 1 1 1 1 1       ,  .If X is A and Y is B then f p X q Y r= + +  (3) 

2 2 2 2 2 2       ,   .If X is A and Y is B then f p X q Y r= + +  (4) 

X and Y represent the universes of discourse; Ai and Bi are linguistic terms defined by 
their membership functions, and pi, qi and ri are the consequent parameters that are 
updated in the forward pass in the learning algorithm. The forward pass propagates the 
input vector through the network layer by layer. In the backward pass, the error is 
returned through the network in a similar manner to back-propagation. We briefly discuss 
the five layers in the following: 
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1 The output of each node in Layer 1 is: 

2
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 Hence, O1,i(x) is essentially the membership grade for x and y. Although the 
membership functions could be very flexible, experimental results lead to the 
conclusion that for the task of financial data training, the bell-shaped membership 
function is most appropriate (see, e.g., Abonyi et al., 2001). We calculate 
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 where ai, bi, and ci are parameters to be learnt. These are the premise parameters. 

2 In Layer 2, every node is fixed. This is where the t-norm is used to ‘AND’ the 
membership grades, for example, the product: 

2, ( ) ( ), 1, 2.
i ii i A BO w x y iμ μ= = =  (7) 

3 Layer 3 contains fixed nodes that calculate the ratio of the firing strengths of the 
rules: 

3,
1 2

.i
i i

w
O w

w w
= =

+
 (8) 

4 The nodes in Layer 4 are adaptive and perform the consequent of the rules: 

( )4, .i i i i i i iO w f w p x q y r= = + +  (9) 

 The parameters (pi, qi, ri) in this layer are to be determined and are referred to as the 
consequent parameters. 

5 In Layer 5, a single node computes the overall output: 

5, .i i i
i i i

i ii

w f
O w f

w
∑

= =
∑∑  (10) 

This is how the input vector is typically fed through the network layer by layer. We then 
consider how the ANFIS learns the premise and consequent parameters for the 
membership functions and the rules. We apply the hybrid learning algorithm proposed by 
Jang et al. (1997) which uses a combination of steepest descent and least-squares 
estimation (LSE) to calibrate the parameters in the adaptive network (see also  
Fontenla-Romero et al., 2003). We split the total parameter set S into two further sets S1, 
the set of premise (non-linear) parameters, and S2, the set of consequent (linear) 
parameters. In this study, ANFIS uses a two-pass learning algorithm. In the forward pass, 
S1 is unmodified and S2 is computed using a LSE algorithm, whereas in the backward 
pass, S1 is unmodified and S2 is updated using a gradient descent algorithm such as  
back-propagation (see also illustration in Figure 2). 
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Figure 2 Learning algorithm forward and backward passes (see online version for colours) 

 

The task of the ANFIS learning algorithm for this architecture is to tune all of the 
modifiable parameters, namely {ai, bi, ci} and {pi, qi, ri} to make the ANFIS output match 
the training data. When the premise parameters ai, bi, and ci of the membership function 
are fixed, the output of the ANFIS model can be written as 

1 2
1 2 1 1 2 2

1 2 1 2
.

w w
f f f w f w f

w w w w
= = +

+ +
 (11) 

In particular, the learning process consists of a forward pass and back-propagation, where 
in the forward pass, functional signals go forward until Layer 4, and the consequent 
parameters are identified by the least-square estimate. In the backward pass, the error 
rates propagate backwards and the premise parameters are updated by the gradient 
descent. 

For given fixed values of S1, the parameters in S2 found by this approach are 
guaranteed to be the global optimum. Table 1 provides a summary of the learning 
methods. The output error is used to adapt the premise parameters by means of a standard 
back-propagation algorithm. 
Table 1 Summary of different learning methods 

 Forward pass Backward pass 

Premise parameters Fixed Gradient descent 
Consequent parameters LSE Fixed 
Signals Node o/p Error rates 

There are four methods used to update the parameters, these are: 

1 Gradient descent (GD) only: all parameters are updated by gradient descent. 

2 GD and one pass of LSE: LSE is applied only once at the start so as to obtain the 
initial values of the consequent parameters. GD then updates. 

3 GD and LSE: the proposed hybrid rule (see also Jang, 1993). 

4 Sequential LSE only: uses a Kalman filter to update the parameters. 

In this chapter, for the purpose of using ANFIS for financial predictions, we use the third 
entry from the above list as this method usually represents a good compromise between 
computational complexity and resulting performance (see also Mitra et al., 2008). 
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2.2 ANFIS for financial predictions and trading 

The proposed system as described above now takes the price series as input; it first takes 
a certain amount of m data points for training and generating the initial fuzzy inference 
system from the data values, and then takes the next m data points for validation. This 
will generate an ANFIS that has modified its parameters and membership functions and 
is ready to produce a prediction for the next data points, given the pattern that it has 
recognised. The success rate of such a system would be determined by its level of 
accuracy in predicting the movement of the next trading periods in seconds, minutes, 
hours, days, weeks or months, depending on the trading frequency. Taking the correct 
decisions after processing all of the inputs from other blocks is also essential to a 
successful system (Sheen, 2005). 

In particular, the system considers the past three price observations in the market  
x(t – 3), x(t – 2), x(t – 1) and the current observation x(t) in order to predict the next price 
observation x(t + 1) using ANFIS. This is then used as a movement indicator (either up or 
down). In other words, to make a prediction for t + 1, the system will be fed the current 
price at time t plus the previous three price observations t – 1, t – 2 and t – 3, 
respectively. Now that a system to ‘predict’ the movement of the market has been 
implemented, a suitable position can be opened according to the indicator of this 
prediction. The pseudo-code is shown in Figure 3. 

Figure 3 Introducing the hold position when prediction does not change direction 

BEGIN 

Train the system using the last 500 points; 

check the systems accuracy using the last 500 points; 

REPEAT 

 from now till the next 100 points; 

 generate prediction; 

 if prediction is up -> then buy 

 if next prediction is up -> then hold 

 else if prediction is down -> then sell 

 if next prediction is down -> then hold 

END 

retrain; 

Figure 4 illustrates the above described strategy, where hold positions are introduced and 
the buy sell frequency is reduced. When the red line goes down (dummy value = 0), the 
system is in sell mode, remaining unchanged means that it is in hold mode, and moving 
back up (dummy value = 1) means that it went to buy mode. Additionally, in order to 
increase the return of the trading investment, a final prediction and trading strategy was 
introduced where a ‘trigger pointer’ value is used. Therefore, for a sequence of buy and 
hold positions, if the prediction of the next time sample falls below the set trigger, the 
position is closed; hence, a sell position is opened. The trigger pointer value is updated 
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after each iteration, as illustrated in the pseudo code in Figure 5. Initially this trigger is set 
to the first value in the dataset. 

Figure 4 Positions being placed according to the prediction of the movement (see online version 
for colours) 

 

Figure 5 Introducing the trigger to track the prediction and detect directional changes to adjust 
position 

trigger = price (1) 

 if prediction is up and prediction > trigger 

 then trigger = prediction(now-1) 

 position = buy; 

 

 else if prediction is down and prediction < trigger 

 then trigger = prediction(now-1) 

 position = sell; 

After the implementation of the above ANFIS system, further experiments had to be 
performed in order to optimise the results obtained from the above system. One important 
test that has been conducted involved varying the number of epochs and step sizes in 
each run on the system. In adaptive networks theory, an epoch is defined as a single pass 
through the entire dataset (each set of data is evaluated once). This means that the more 
epochs we have, the more evaluations we get. However, this also takes longer. 

One epoch is one sweep through all of the records in the dataset. This does not mean 
that the more epochs we have, the better will be the results. Our experiments have proven 
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that a threshold exists at which point a system will reach saturation, and no matter how 
many epochs are used, the performance will not improve. In fact, a too large number of 
epochs would result in overtraining for the system, causing a decrease in performance 
(see Figure 6a and 6b). The initial setup included an 80-epoch system that took  
18.4 seconds to execute during each run.1 Experiments for various numbers of epochs 
have been used, which in turn have caused a change in the learning rate that can be 
analysed in the panels in Figure 6. The step size is considered as a variable that is 
corrected after every fourth epoch, counting from the epoch in which the previous 
correction has been done. It is realised on the basis of the following rules: 

1 if the error undergoes four consecutive reductions, then increase the step size by 10% 

2 if the error successively goes through a combination of increases and decreases, then 
decrease the step size by 10%. 

Finally another variable is allocated to store the last change, which stores the index of the 
epoch in which the variable step size has been previously changed. 

In general, there is no conclusive theory to decide the number of epochs in neural 
networks literature. However, it is a general rule to avoid the problem of overfitting when 
increasing the number of epochs. Practically, it is observed that the higher the number of 
training epochs the better is the classification performance but this worsens the ability of 
the generalisation by the network hence the ability to correctly predict the future 
processing data not seen before. This is confirmed by the results in Table 2 in the 
empirical section below, hence we choose 80 as an optimal epoch size [for a brief 
discussion on the choice of epoch numbers, see also Yezioro et al. (2008) and Chelani 
and Hasan (2001)]. 

Figure 6 Error curves and step size update for various epochs: (a, b) 180 epochs  
(c, d) 100 epochs (e, f) 50 epochs (g, h) 10 epochs (see online version for colours) 
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Figure 6 Error curves and step size update for various epochs: (a, b) 180 epochs  
(c, d) 100 epochs (e, f) 50 epochs (g, h) 10 epochs (continued) (see online version  
for colours) 
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(e)     (f) 
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2.3 Intraday seasonality 

As trading activities are observed in real-time, common approaches to measure volatility 
such as the standard deviation can not be applied due to the inhomogeneous data structure 
of the time series. Therefore, an Intraday Seasonality Observation Model (ISOM) as an 
event-based concept to measure market activity will be used in this study as a proxy for 
volatility as it can map the times of day with their respective volatility. This is viewed 
from an event-based perspective, where each ‘directional change’ with a specific 
threshold is an event. The aim is to use the ISOM to filter and clean this data by pointing 
out periods of the day when the volatility has exceeded a certain range (number of 
events). The idea here is to take the number of observations per intraday sampling 
interval in order to produce a model that would estimate the number of average 
observations that occur for the targeted time of day window (see also Bauwens et al., 
2005). 

In financial trading, directional-change (dc) events are understood as price 
movements, where a total-price move between two extreme price levels, expressed as a 
relative price jump of threshold size dx(%), can be decomposed into a price reversion 
(i.e., the directional-change itself) and an overshoot sections (Glattfelder et al., 2010). 
The ISOM for a particular time of day t at a particular threshold dx is equal to the total 
number of directional change events that occurred at that time window tbin in the entire 
dataset: 
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( ) ( )
1

,
n

bin day
day

ISOM t dx N dc t t
=

= ∈∑  (12) 

where n is the total number of days in the dataset, and N(dc) is the number of directional 
changes (events). In its simple definition, the ISOM is a model that takes into 
consideration a certain threshold dx(%) and will observe the timings where the directional 
changes dc occur. It would iteratively and consecutively parse through the entire dataset 
of prices and save the observations into their respective time bins. This would ultimately 
give a horizon of seasonalities, pointing out the exact times of day when these 
observations were made. This indicates the times of day when the volatility was high or 
low. The idea is that the data will be viewed from a scaling law perspective of directional 
changes (events), where each up/down percentage change within a pre-specified 
threshold is observed, the time stamps and relative price are marked, and all data is 
iteratively stored in bins of time value, which will then be analysed further. 

For illustration purpose, when applied with a dx = 0.05% change for 30 minutes 
windows for the foreign exchange (FX) pair EUR-USD observed from 04/04/2006 to 
04/04/2008. The ISOM resulted in the seasonality pattern shown in Figure 7. The plot 
reveals that most of the directional change events occur between 12:00 and 14:00 GMT. 
This confirms the fact that these are the times when the announcements are made and the 
market’s reaction to these announcements takes place. It is also the time when the US 
markets open; hence, the volatility of the markets increases. Other times of high volatility 
occur between 7:00 and 8:00 GMT, which is usually the time before the European 
markets open. 

Figure 7 ISOM for a threshold of dx = 0.5% price move observed every 30 minutes for the  
FX pair EUR/USD from 04/04/2006 to 04/04/2008 (see online version for colours) 

 

The ISOM shows that when considering observations every 30 minutes, the period with 
the highest volatility is between 12:30 and 13:00 GMT, which is again the time when all 
of the announcements that were made at 12:00 have been absorbed by the markets and 
the traders have started to act on them. The period of highest trading activity occurs 
between 12:00 and 16:00 GMT, i.e., the times that include the announcements, the 
opening of the US markets until the close of the European markets. The above results 
have confirmed real-life events that are known to increase markets volatility. They can 
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also help the trader or the system to ignore the periods that experience a low number of 
events. 

It must be noted that the ISOM can be applied to any threshold and any time 
frequency (daily, half daily, quarter daily, five minutes, etc.). We have taken a threshold 
of dx = 0.05% for the scope of this illustration; the concept can be applied freely to any 
threshold or time frequency (additional figures illustrating the intraday seasonality for 
other threshold values are shown in Figure 10 in the Appendix). 

The next step is now to use ISOM to filter and clean this data by pointing out periods 
of the day when the volatility has exceeded a certain range (number of events). The 
ISOM model has been redesigned to cater to five-minute data instead of hourly or  
30-minute data, as previously shown. We now have bins of five-minute data, and we will 
capture the directional changes as they occur within these bins, where the counter of 
events will increase according to the number of events and the number of times that the 
threshold has been exceeded. In this study, ANFIS was fed data from the times of day 
when the number of observations exceeded ten events. After being trained on data with 
higher volatility (stress training), ANFIS will perform prediction of a set of checking 
data. The pseudo-code is shown in Figure 8. 

Figure 8 Optimising ANFIS with ISOM 

Function Collect-ISOM-Times 
BEGIN 
 for i = 2 to end(in-sample-data) 
 calculate the percentage directional changes 
 dc(i) = (price(i) - price(i-1) * 100)/ price(i-1) 
 
 if abs(dc(i))> 0.05% 
 save time bin observation (T) 
 count number of observations for respective time bin (Tcount) 
 Observations_Per_Day = Tcount/length(in-sample-data) 
 if Observations_Per_Day > 5 
 Valid_ISOM_Time_Bin = T 
 end if 
 end if 
 end for 
END 
 
 
Function Use-ISOM-for-Training-ANFIS 
BEGIN 
 for k = 1 to end(out-of-sample data) 
 if time = Valid_ISOM_Time_Bin 
 train ANFIS 
 perform predictions 
 else 
 proceed to next time bin 
 end if 
 end for 
END 
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3 Empirical data and results 

The FX market is a 24-hour worldwide market with high liquidity and volatility, 
especially in the three major financial centres with international influence: New York, 
London and Tokyo. Volatility is highest during the early morning in New York time 
because exchanges in London and New York are open and simultaneously trading. 
Stylised facts such as gain-loss asymmetry and heavy tails are observed in FX return 
distributions (Bauwens et al., 2005). Commercial banks, corporate, funding and retail 
institutions from around the globe participate in FX trading. The price at the FX market is 
formed by buying and selling currencies to institutions, traders, exporters, importers, 
portfolio managers and tourists. Nowadays, orders are electronically matched via 
automated brokerage terminals. Yoon et al. (1994) state that approximately 85% of all 
FX trading occurs between market makers. This creates an opportunity for speculation. 

In this study, high-frequency FX data sampled from 04/04/2006 to 04/04/2008 has 
been fed into the trading system. For the analysis, we compute the mid-price from the 
quote data (Dacorogna et al., 2001). As we are trading in FX, the half-spread, which is 
the only transaction cost traders need to consider in this type of market, is already 
implicitly taken into account in all reported strategies. The system has been tested on five 
FX rates, which are: EUR-USD, AUD-USD, GBP-USD, USD-CHF, and USD-JPY. 
Figure 9 shows the different time series that has been used in this study. 

Figure 9 Time series of all five FX currency pairs observed from 04/04/2006 to 04/04/2008, 
normalised to 1USD (see online version for colours) 

 

This original dataset of five-minute price data is split into (non-overlapping) sub-datasets 
comprising m = 500 data points, for each of the FX rates. A too small m (say 100 points) 
might not be enough to build momentum and achieve a desired number of observations 
(events) as the threshold might not be exceeded. Similarly, a larger number might include 
more observations that we desire for one run of the system which would cause 
overtraining and overfitting (Yeh et al., 2011). As all high-frequency FX rates have a 
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different amount of data points, m was chosen such that the all series have reasonably 
comparable sub-datasets. 

For each FX rates series, the first 500 ‘in-sample’ data points in each subset are used 
for system training. The subsequent 500 data points are considered as ‘out-of-sample’ 
and used for validating the system’s performance and updating the network structure 
using the output error. The 500 data points that were used for validation at one simulation 
can be reused for retraining the system in the next simulation, thus creating a rolling 
window approach for training and validating the system, making full use of all the 
available data. 

In order to evaluate the performance of the proposed model, we will compare the 
ANFIS with the standard strategies that are commonly applied in the industry, such as 
buy and hold [e.g., Yeh et al., (2011), p.796, Section 2.2] or linear forecasting using trend 
following or trend reverting signals [e.g., Schulmeister (2009), pp.191–194, Section 2]. 
We use different measures for assessment, such as 

a the wining rate 

b the profit factor 

c the return of investment (ROI) 

d the Sharpe ratio 

e the Sortino ratio. 

The winning rate simply describes the number of winning trades against the overall 
number of trades. The profit factor mainly describes the historic profitability of a series 
of trades on an investment. The break-even of the profit factor is 1 meaning an 
investment that generates trades with a 50% chance of the gross sum of winning trades 
and a 50% chance of the gross sum of losing trades. Normally, investors pick investments 
with the profit factor higher than one. The ROI is used to evaluate the efficiency of an 
investment or compare returns on investments. That is, ROI is the ratio of profit gained or 
lost on an investment in relation to the amount of cost invested. The Sharpe ratio is used 
to the measure risk-adjusted return of an investment asset or a portfolio, which can tell 
investors how well the return of an asset compensates investors for the risk taken. The 
Sharpe ratio is defined as 

 ,p f

p

R R
Sharpe ratio

σ
−

=  

where Rp denotes the expected return, Rf the risk-free interest rate and σp the portfolio 
volatility. Technically, this ratio measures the risk premium per each unit of total risk in 
an investment asset or a portfolio. Investors often pick investments with high Sharpe 
ratios because the higher the Sharpe ratio, the better its risk-adjusted performance has 
been. As there is no risk-free interest rate for intraday maturities, we use the mean return 
from the training sub-dataset as a substitute. Similarly, the Sortino ratio is defined as 
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where σneg denotes the standard deviation of only negative asset returns. The main 
difference between the Sharpe ratio and the Sortino ratio is that the Sortino ratio only 
penalises the downside volatility, while the Sharpe ratio penalises both upside and 
downside volatility. Thus, the Sortino ratio measures the risk premium per each unit of 
downside risk in an investment asset or a portfolio. 

When training the ANFIS, it has been noticed after running initial experiments that 
the larger the numbers of epochs, the more stable the system will be because of damping 
oscillation (see Figure 6). Furthermore, the larger the size of the step, the faster the errors 
will decrease, although there will be more oscillations. When designing a system that will 
trade in high frequency, a major category that has to be satisfied along with high 
performance and optimum results is high speed or run-time and execution. As it can be 
seen from the Figure 6 and Table 2, a low (high) number of epochs results in a system 
that is rather fast (slow). On the other hand, a low number of epochs produces very poor 
results compared to a higher number of epochs, which produces a system with very high 
performance rates. However, it was also observed from the experiments that as the 
number of epochs increases, there may be a stage where the performance does not 
increase as much as required, whereas the time of execution increases drastically. Hence, 
it is a matter of compromise between speed and performance. This issue can be resolved 
by choosing a system with 80 epochs, where it has been found to produce the highest 
performance for the smallest amount of time after conducting extensive experiments  
(see Table 2). Furthermore, since the system trades on five-minute intervals, a time of 
25.15 seconds cannot be considered a long execution time, given the complexity of the 
ANFIS design. 

Having determined the number of epochs to be considered, ANFIS was fed data from 
the times of day when the number of observations exceeded ten events. After being 
trained on data with higher volatility (stress training), ANFIS will perform prediction of a 
set of checking data. 
Table 2 Out-of-sample evaluation of the ANFIS system using various numbers of epochs 

Num. of 
epochs 

CPU time 
(secs) 

Winning 
rate 

Profit 
factor ROI Sharpe 

ratio 
Sortino 
ratio 

10 3.72 0.40 1.9 0.07 0.13 0.12 
50 12.53 0.55 2.1 0.15 0.14 0.19 
80 25.15 0.65 2.3 0.27 0.19 0.20 
100 28.31 0.65 2.3 0.27 0.19 0.21 
180 50.27 0.64 2.4 0.26 0.18 0.20 

As mentioned before, all sub-datasets used for validation of the implemented trading 
system is considered as the ‘out-of-sample’. The performance measures introduced above 
are computed for each validation sub-dataset. Table 3 reports the overall average 
performance measure for 

1 the buy and hold 

2 the momentum (trend following) 

3 the contrarian (trend reversal) 

4 the Intraday ANFIS trading strategy. 
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Table 3 Comparison of the average performance measures in the out-of-sample for all 
implemented trading strategies 

FX pair Winning rate Profit factor ROI Sharpe ratio Sortino ratio 

EUR-USD      
 Buy and hold 0.42 1.1 0.09 –0.07 –0.05 
 Momentum 0.58 1.7 0.21 0.12 0.10 
 Contrarian 0.39 0.8 0.07 0.09 0.09 
 Intraday ANFIS 0.71 2.7 0.33 0.22 0.20 
AUD-USD      
 Buy and hold 0.51 0.9 0.11 0.03 0.01 
 Momentum 0.59 1.1 0.14 0.02 –0.02 
 Contrarian 0.53 1.2 0.18 –0.05 –0.06 
 Intraday ANFIS 0.56 1.4 0.17 0.01 –0.01 
GBP-USD      
 Buy and hold 0.51 1.3 0.11 0.04 0.05 
 Momentum 0.47 0.7 0.08 –0.01 –0.03 
 Contrarian 0.55 0.9 0.06 0.02 –0.02 
 Intraday ANFIS 0.50 0.9 0.07 –0.08 –0.09 
USD-CHF      
 Buy and hold 0.43 0.8 0.07 –0.02 –0.04 
 Momentum 0.57 1.3 0.10 0.09 0.04 
 Contrarian 0.54 1.0 0.12 0.07 –0.01 
 Intraday ANFIS 0.65 1.2 0.19 0.11 0.07 
USD-JPY      
 Buy and hold 0.29 0.4 0.01 –0.14 –0.17 
 Momentum 0.44 0.7 0.05 –0.02 –0.00 
 Contrarian  0.47 1.3 0.09 0.01 0.01 
 Intraday ANFIS 0.52 1.8 0.12 0.03 –0.01 

With respect to the winning rate, Table 3 shows that in most cases, the ANFIS system 
outperforms the standard strategies in the overall number of wins. In terms of the profit 
factor, which indicates the actual profitability of a series of trades on an investment, the 
results show that the ANFIS system also has a profit factor higher than 1 in most cases. 
Table 3 also reveals that ANFIS generally obtains a higher ROI than the conventional 
strategies, i.e., it has a higher ratio of profit gained on a trade in relation to the amount of 
cost invested. Last not least, the Sharpe ratio and Sortino ratio, which measure the 
investment per unit of risk, also indicate a better performance of the ANFIS model, but 
less consistent as compared to the other benchmark values. Positive Sharpe and Sortino 
ratios imply that the trading strategy has not taken high risk. 

Other descriptive statistics of performance measures in the ‘out-of-sample’ such as 
the standard deviation, skewness and kurtosis are listed in Table 4 in the Appendix. It can 
be seen that in general the performance measures for ANFIS have a lower standard 
deviation (higher accuracy), higher skewness (higher outperformance) as compared to the 
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benchmark models. Comparisons for the kurtosis are rather inconsistent, allowing no 
particular conclusion. 

Finally, in order to statistically test the performance of a benchmark model (either 
buy and hold, momentum or contrarian) compared to the proposed ANFIS model,  
Table 5 in the Appendix lists the test-statistics of the (one tailed) t-test with the  
null-hypothesis that average measure for the benchmark is better than that for the  
ANFIS. A negative test-statistic with a value lower than –1.6649 indicates a rejection of 
the null-hypothesis at a 5% significance level, implying a statistically significant 
outperformance of the ANFIS strategy. Furthermore, a low positive value of the  
test-statistic would imply that a particular benchmark model is not significantly better 
than ANFIS (e.g., Sortino ratios for AUS-USD or USD-JPY). 

4 Conclusions 

The distinctive area of soft computing and artificial intelligence was addressed in this 
project by revisiting and improving the performance of the ANFIS by manipulating the 
number of epochs and the learning rate. It was concluded that a certain number of optimal 
epochs should not be exceeded, since this would not drastically improve the system. The 
ISOM proposed in this project has been tested on various threshold levels. The 
observation of a directional change within a threshold leads to taking the time stamp and 
its consequential addition to all of the observations that have been made during that time. 
The power of this method lies in the fact that any threshold can be used for any time 
frequency. This leads to the observation of events for the entire data series from a new 
perspective. The above concepts of event-driven volatility have proven to be consistent 
with ANFIS if sufficient data is present to perform the ISOM. A comparison of the 
proposed model against the standard trading strategies that are commonly applied in the 
industry shows an outperformance of the Intraday ANFIS. 
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Notes 
1 Simulations have been performed on a Toshiba Tecra A9-11M Laptop PC. CPU type: Intel 

Core 2 Duo, CPU speed: 2.4 GHz, internal memory: 2048 MB, hard drive size: 160.0 GB. 

Appendix 

Figure 10 ISOM for alternative thresholds: (a) threshold = 0.2% (b) threshold = 0.4%  
(c) threshold = 0.6% (see online version for colours) 
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Table 4 Descriptive statistics for the performance measures in the out-of-sample for all 
implemented trading strategies 
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Table 5 t-tests on significance of the outperformance of the Intraday ANFIS compared to the 
benchmark models 

 Winning rate Profit factor ROI Sharpe ratio Sortino ratio 

EUR-USD      
 Buy and hold –25.1390 –87.7696 –9.1041 –5.6101 –8.0404 
 Momentum –25.2152 –44.1580 –9.9627 –5.0338 –3.3665 
 Contrarian –44.1665 –67.5499 –17.5153 –4.7709 –2.5080 
AUD-USD      
 Buy and hold –5.8162 –83.9129 –4.3898 –0.8362 0.9140 
 Momentum 6.5559 –41.3212 –4.3607 –0.5586 –0.3871 
 Contrarian –9.9370 –61.0892 1.0640 –5.0704 –1.5031 
GBP-USD      
 Buy and hold 0.6132 46.9026 1.9547 5.7761 5.6225 
 Momentum –4.2883 –75.8641 –0.7037 3.0029 3.5683 
 Contrarian 11.2452 1.9371 –1.4116 2.2437 2.5437 
USD-CHF      
 Buy and hold –18.3256 –32.8665 –8.4406 –3.5630 –7.4428 
 Momentum –49.3637 38.8532 –11.3662 –1.2525 –1.6518 
 Contrarian –32.5415 –50.9244 –9.7339 –2.1374 –7.0753 
 Intraday ANFIS –18.3256 –32.8665 –8.4406 –3.5630 –7.4428 
USD-JPY      
 Buy and hold –18.8390 –72.8580 –10.0507 –4.7790 –5.1781 
 Momentum –20.3472 –10.5751 –4.6689 –1.0293 0.3112 
 Contrarian –15.1101 –41.5113 –2.3427 –0.5362 0.5320 

Notes: This table lists the test-statistics of the (one-tailed) t-test with the null-hypothesis 
that the average performance of a benchmark model (either buy and hold, 
momentum or contrarian) is better than that of the ANFIS model, i.e.,  
H0: µBENCHMARK ≥ µANFIS. A negative value lower than –1.6649 indicates a  
rejection of the null at a 5% significance level. 


