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Intraday Price Formation in US Equity Index Markets 

Abstract / Summary 

 The market for US equity indexes has traditionally comprised floor-traded index 

futures contracts and the individual markets for the component stocks.  This picture has 

been altered by the advent of exchange-traded funds (ETFs) that mirror the indexes, 

electronically-traded, small-denomination (“E-mini”) futures contracts, and (for the S&P 

500) a family of sector ETFs that break the index into nine components.  This paper 

empirically investigates price discovery (price leadership) in this new environment.  The 

specifications are estimated at very fine (up to one second) time resolution.  The principal 

findings are as follows. 

• For the S&P 500 and Nasdaq-100 indexes, the index market comprises an ETF, a 

regular floor-traded futures contract and an E-mini futures contract.  The paper 

finds that most of the price discovery for both indexes occurs in the E-mini 

markets: price changes in the E-mini futures prices generally lead those in the 

regular futures contracts and the ETFs.  

• The market in the S&P 400 MidCap index comprises only the ETF and the 

regular futures contract.  Both securities contribute substantially to price 

discovery, but the ETF appears to dominate. 

• The sector ETFs can closely replicate the S&P 500 ETF.  Nevertheless, trading 

activity across the sector ETFs varies considerably.  The most actively traded 

sector (technology) contributes a modest amount to price discovery in the overall 

index.  The other sector ETFs play only a minor role. 
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1. Introduction 

 This paper is an empirical study of the short-run price dynamics in three 

important US equity index markets (S&P 500, S&P MidCap 400, and Nasdaq-100).  The 

statistical analysis attempts to quantify the contribution of each index-related security to 

the evolution of an implicit “optimal forecast” index price.  From an economic 

perspective, these contributions measure the information production in the various 

markets, which may in turn be related to security and market characteristics. 

 The market for US equity indices has traditionally been viewed as comprising the 

futures contract for the Standard and Poor’s 500 index (traded on the floor of the Chicago 

Mercantile Exchange) and the underlying spot or cash market, consisting of the 

individual markets for the component stocks.  This definition could arguably have been 

broadened to encompass the markets for futures options and index options (both 

exchange-traded and over the counter), but in terms of visible trading activity, the spot 

and futures markets have stood as preeminent.  In this context, the paper is motivated by 

the relatively recent emergence of: 

• Exchange-traded index mutual funds, which permit the direct purchase or sale of 

a portfolio in a single trade at any time during regular exchange trading sessions. 

• Electronic trading in index futures contracts, which facilitates market participation 

by off-floor traders. 

• Exchange-traded S&P 500 index sector funds, which facilitate trading in a small 

number of S&P 500 industry-aligned components (technology, financial, energy, 

etc.). 

Each of these developments has carried the possibility of altering pre-existing patterns of 

information- and liquidity-motivated trading. 

 An exchange-traded fund (ETF) is most closely related to a closed-end mutual 

fund in that it is exchange traded continuously (during regular trading hours) and allows 

no cash investments or redemptions.  Creations and redemptions only occur in kind, and 

involve swapping fund units and index stock portfolios. The first of these, the S&P 500 
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fund, began trading in 1993.  This is the Standard and Poor’s Depositary Receipt (SPDR 

or “spider”), traded on the American Stock Exchange.  Elton et al. (2000) discuss the 

investment and tracking performance of this fund.  Following on the SPDR’s success, 

similarly-structured basket products were introduced for the NASDAQ-100 and S&P 

MidCap 400 indexes, both of which are also analyzed in this paper. 

 Each of the three indexes analyzed here underlies a futures contract traded on the 

floor of the Chicago Mercantile Exchange.  The S&P 500 and Nasdaq-100 indexes 

underlie, in addition, “E-mini” contracts.  These are sized to be one-fifth of the value of 

the regular contracts, making them more accessible to traders of modest capital.  More 

importantly for present purposes, they are traded on an open electronic limit order book 

system (Globex) that is accessible in real time worldwide.  A number of brokers have 

constructed interface systems to the Globex system.  As a result, outside customers can 

obtain electronic access to the market for purposes of viewing the best bid and offer, 

recent trade prices and order entry, similar to the screens that an online equity trader 

might possess. 

 The third development is the introduction of exchange-traded S&P 500 sector 

funds.  There are nine of these funds.  They are constructed to reflect broad industrial 

sectors, and can closely replicate the S&P 500 index.  Like the SPDR, they can be traded 

intraday and are exchangeable in kind.  A natural clientele for these funds would consist 

of liquidity traders motivated by special diversification needs.  Given the existence of 

liquidity trade, one might expect other traders to find it advantageous to produce and 

trade on sector-related private information, as suggested by the models of Admati and 

Pfleiderer (1988),  Foster and Viswanathan (1990), and Subrahmanyam (1991). 

 All of these developments are interesting by virtue of their close connection to the 

index price formation process.  Additional importance arises, however, because each 

development is in some sense representative or prototypical.  The SPDR was the 

prototype for what is now a large class of exchange-traded funds based on existing 

indexes.  The shift of electronic trading in futures contracts will be seen to mirror in 

many respects a transition that has occurred in other markets.  The sector index products 
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represent an attempt to complete a market by offering an enriched set of spanning 

possibilities. 

 This paper assesses the importance of these developments by a detailed 

examination of price discovery in the index markets.  The methodology attempts to 

quantify price dominance in related markets.   Pre-existing studies, for example, have 

generally found that the regular (floor-traded) index futures contract is the price leader.   

To what extent has this role shifted to the electronically-traded futures contract or the 

exchange-traded fund?  Furthermore, in view of the expanded range of trading 

possibilities in S&P 500 components, to what extent are sector fund prices informative 

about movements in the broad index? 

 Briefly, the results suggest that for the S&P 500 and Nasdaq-100 indexes, the 

electronically-traded futures contracts (the E-minis) are the new price leaders.  The 

corresponding ETFs play a smaller informational role.  The pattern is different for the 

S&P 400 index, however, where no E-mini contract trades.  For this index, the ETF 

provides substantial price discovery.  The contribution of the sector funds to S&P 500 

pricing, however, is very small (about 10% by the paper’s metric).  This modest role is 

surprising because trading activity in some of these funds (typically technology) is 

substantial, and because media reports often depict market moves as being led or driven 

by a particular sector (typically technology). 

 The paper is organized as follows.  The next section reviews the literature related 

to the paper’s principal economic themes.  Section 3 presents a preliminary look at the 

data.  The following two sections describe the econometric framework of the analysis.  

Section 4 discusses the time series representation of the data and the derived measures of 

price discovery.  The models used here are vector error correction specifications. The 

information measures are those proposed in Hasbrouck (1995), and are based on Stock 

and Watson (1988) common-trend (random walk) components.  Section 5 discusses 

estimation and the modifications and extensions to standard procedures that are employed 

to capture more closely the economic features of the data.  The paper then turns to the 

estimation results.  Section 6 presents estimations for systems consisting of the index 
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basket, the pit-traded futures contract, and (when available) the electronically-traded 

futures contract.  Section 7 presents estimates for the S&P 500 and sector indexes.  A 

brief summary concludes the paper in Section 8. 

2. Related work 

 The present paper is related to three principal themes in the literature.  The first 

theme loosely falls under the rubric “stock index futures vs. cash”; the second concerns 

the competition between floor- and electronically-based trading systems; the third deals 

broadly with the relationship between liquidity trading and information production in 

individual and basket securities. 

a. Stock index futures vs. cash 

 As noted in the introduction, the cash market for stock indices has traditionally 

consisted primarily of the markets for the individual component stocks.  Most economic 

analyses of trading and arbitrage motivated by this market structure, therefore, feature 

multiple stocks and a single basket security.  The model of Subrahmanyam (1991) 

features a one-factor structure of returns and private information.  Kumar and Seppi 

(1994) consider the cross-market information differentials induced by lagged 

dissemination of information.   Both of these factors may be present in the present 

paper’s setting.  From a trading perspective, however, the electronically-traded futures 

contract and the exchange-traded basket security are much closer substitutes for the 

regular futures contract than the individual stocks.  Accordingly, models in which a 

single security trades in multiple markets are also relevant (Chowdhry and Nanda 

(1991)). 

 From an empirical perspective, a substantial academic and practitioner literature 

explores the dynamics of US stock index and index futures prices with the aim of 

determining which market is dominant, characterizing and quantifying this dominance, 

and (in some cases) apportioning blame for market crashes.   The methodologies of these 

studies vary widely, reflecting the diverse characteristics of the data and aims of the 
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analyses.  The conclusions of these studies are mostly similar and are not highly sensitive 

to methodology.  The consensus finding is that the dominant influence runs from the 

futures market to the cash, and weaker (though still measurable) effects in the reverse 

direction.1 

 Simple inferences about futures/cash price dynamics may be drawn from the 

serial and cross correlations of the two return series.  Most studies, however, employ 

some sort of time series modeling.  The early papers in this area employ lead-lag 

regressions in which each return (in separate specifications) is regressed against leads and 

lags of the other. These specifications support tests against the null hypothesis of “no 

causality”.  They can roughly characterize the time horizon of the dependencies.  They do 

not, however, provide an obvious metric for assessing relative importance of the two 

markets. 

 Later studies tend to characterize the two return series by joint models, which 

treat the two securities in a unified, symmetric fashion and clarify the role of innovations.  

Cash and futures prices are generally viewed as impounding a single common random 

walk component.  This implies that the price difference (the basis) is stationary, which 

suggests a cointegrated specification, typically a vector error correction model (VECM). 

 There remain, however, unresolved issues concerning the specification and 

interpretation of cointegrated models in these applications.  Different approaches to 

model specification arise from differing views of the sense in which the basis is 

considered “stationary”.   Alternative interpretations arise because VECMs are inherently 

reduced-form models, and they usually feature a very large number of parameters.  To 

                                                 
1 Representative studies include: Kawaller, Koch, and Koch (1987), MacKinlay and 

Ramaswamy (1988), Stoll and Whalley (1990), Wahab and Lashgari (1993), Harris, 

Sofianos, and Shapiro (1994), Choi and Subrahmanyam (1994), Fleming, Ostdiek, and 

Whalley (1996), Chu, Hsieh, and Tse (1999).  The last study also examines the SPDR, 

concluding that it is dominated by the regular index futures contract.  The Chu et al. 

methodology also differs from that in the present paper.  
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map these parameters into a manageably small summary set of price discovery measures, 

the analyst must identify structural features of the model that are economically 

meaningful.  The basis stationarity and identification issues are discussed more fully later 

in the paper. 

b. Electronic vs. floor-based markets 

In the S&P 500 and Nasdaq-100 index markets, there exist simultaneous floor and 

electronic markets for substantially similar contracts.  A number of empirical studies 

analyze the competition that arises when closely substitutable securities trade on 

electronic and floor-based markets.  Surveying studies of comparative market quality, 

Domowitz and Steil (1999) find that electronic markets tend to offer liquidity similar to 

that of floor markets, but at lower cost.  These cost advantages suggest an eventual 

displacement of floor markets.2  

At all times, the CME’s E-mini contracts trade only on the Globex system.  

During normal trading hours, the regular index futures contracts are traded only on the 

floor of the CME.  At all other times, they may be traded on Globex.  Coppejans and 

Domowitz (1999) compare the nighttime Globex market and daytime floor markets for 

regular contracts.  They find that the Globex system performs well during a period (the 

night) when the flow of liquidity traders is likely to be relatively low.  Their comparisons 

are across disjoint time periods as well as across the two market systems.  The present 

paper takes the perspective that the regular and E-mini contracts are close substitutes, and 

                                                 
2 Of particular noteworthiness is the recent experience of competing markets in German 

government bond futures contracts.  Similar contracts were traded on the London 

(LIFFE) floor and the German (DTB) electronic book.   There was a prolonged period 

when the two markets coexisted.  At least one commentator suggested that this 

coexistence constituted an equilibrium.  In 1997, however, the market dramatically 

“tipped” in favor of the DTB electronic book, leading London to abandon expansion 

plans and eventually close its trading floor.  
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analyzes the joint dynamics during normal trading hours, when the former are floor-

traded and the latter are electronically traded.  It is emphasized that the dynamics studied 

here are joint, i.e., conditional on both markets being simultaneously open.  The analysis 

does not support formal inferences about how either mechanism might behave if it were 

the sole operating market (the focus of Coppejans and Domowitz). 

c. Baskets vs. individual securities 

 This paper’s analysis of the joint dynamics of the SPDR and the S&P sector ETFs 

is connected to several themes in the literature.  Most directly relevant are Gorton and 

Pennacchi (1993) and Subrahmanyam (1991), who present basket/multiple security 

models with asymmetric information.  The equilbria in these models generally exhibit 

both informed and uninformed trading in both the basket and individual securities.  A key 

feature of these models is that private information is diversified in the basket security.   

This mitigates adverse selection in the basket market.  The resulting increase in basket 

liquidity induces uninformed agents to trade this security.   Subrahmanyam concludes 

that this diversification effect is strong.  It supports trade in the basket even when 

informed traders possess private information about the common factor, and even in the 

absence of nondiscretionary liquidity traders who are required to trade the basket. 

 The present situation differs from these models in an important respect.  

Specifically, while sector portfolios are baskets of individual securities, they are also 

themselves components of the broader index. The sector portfolios might therefore be 

considered to offer an intermediate level of aggregation.  It might be conjectured that the 

sector baskets provide a private-information diversification effect similar to (but smaller 

than) that of the market basket, and that this effect would support liquidity trading in the 

sector baskets.    

 Within such a model, however, discretionary liquidity traders (in the 

Subrahmanyam model) in the sector baskets would view as substitutes not only the 

individual component securities, but also the overall market basket.  The diversification 

in the sector baskets is by design, however, incomplete, since they are constructed to load 
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on a single “sector” factor.  A discretionary trader desiring broad diversification, 

therefore, would naturally prefer the market basket. This suggests that nondiscretionary 

liquidity traders might be more important for the viability of the sector basket markets 

than they are for the existence of trade in the overall basket.   

 Whence might sector-specific nondiscretionary uninformed trading needs arise?  

In the Gorton and Pennachi model, uninformed trading arises from endowment shocks.  

Along these lines, there might exist agents who are subject to shocks in their endowments 

of nonmarketable assets.  A person newly employed in the finance sector, for example, 

might prefer might prefer a reduced exposure to that sector’s factor risk in her marketable 

portfolio.  To the extent, however, that this human capital is associated with proximity to 

the firm or sector (e.g., managerial equity stakes or compensation), such traders are 

unlikely to be viewed as uninformed. 

 One source of liquidity trading in the overall market basket arises from portfolio 

managers who pursue indexed strategies.  The S&P 500 index is the most commonly 

accepted index for this purpose, and is furthermore a widely used benchmark for 

performance evaluation.  The sector indexes, in contrast, do not appear to fulfill target or 

benchmark roles.  Liquidity trading can arise in any market, of course, from noise traders, 

irrational traders or traders who incorrectly believe that they possess information.  The 

characteristics that induce such agents to concentrate on one security rather than another, 

however, are not known.  There is accordingly no reason to suspect that noise traders 

might play particularly influential roles in the sector markets. 

 Security-design considerations suggest another perspective. From the viewpoint 

of the sponsor, an exchange-traded fund is like any other mutual fund in that the revenue 

derives from management fees.  From the viewpoint of the listing exchange, however, the 

exchange-traded fund is like any other listing in that revenue derives from trading 

activity.  Both objectives are important in the present case due to the close relationship 

between the exchange and the sponsor.  Essentially, the American Stock Exchange is the 

sponsor of the S&P 500 and S&P 400 trusts.  The sponsor of the Nasdaq-100 trust is 

Nasdaq, but this trust was initiated when the Amex and Nasdaq were merged entities.  
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The sector basket securities are legally constituted as mutual funds; the Amex has no 

sponsorship role.  The Amex computes, however, the indexes on which these funds are 

based. 

 These remarks carry no suggestion of conflict of interest or impropriety.   They 

are instead advanced in support of the view that the economic position of the Amex is 

similar to that of a futures exchange designing a new contract, wherein trading volume 

enters strongly into the objective.  Duffie and Jackson (1989) model the introduction of 

futures contracts by a volume-maximizing exchange.  The desire for trade in their model 

is driven by endowment differentials.  The optimal contracts are those that facilitate 

exchange by being maximally correlated with the differential, or by being maximally 

correlated with the component of the differential that is not spanned by previously 

introduced contracts.  Corkish, Holland, and Vila (1997) provide some empirical 

evidence consistent with this model. 

3. A first look at the data 

a. Description of the instruments 

Table 1 reports summary statistics for the ETF index products.  (Here and 

henceforth, the SPDR is identified by its ticker symbol SPY.)  Although the American 

Stock Exchange is the primary listing venue for these securities, substantial trading 

activity occurs away from the Amex, on the regional exchanges and over-the-counter.  

The pattern is similar to that found in NYSE-listed securities in that the listing exchange 

(Amex) accounts for the preponderance of activity measured by share volume, but much 

less activity measured by number of trades.  Like other listed securities, payment for 

order flow and other inducements appear to divert smaller (typically retail) trades away 

from the Amex.  Furthermore, trading volume in the S&P 500 sector funds is 

substantially lower than that in the overall index fund.   

Table 2 reports summary statistics for the index futures contracts.  Of particular 

note here is the fact that contract volume in the electronically-traded contracts is roughly 
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comparable to that in the corresponding regular contracts.  The regular contracts are five 

times as large as the E-minis, however, so in terms of dollar-value of the underlying, the 

regular contracts clearly dominate.   

That noted, it must be emphasized that since the pit and electronic markets are 

fundamentally different, trading volume figures may not be directly comparable.  The pit 

resembles a dealer market, wherein one outside customer order may lead to multiple 

trades as the order gets passed to multiple dealers and eventually an outside counterparty.  

An electronic limit order book, in contrast, favors direct interaction of customer orders 

without intermediation.  

b. Trading costs 

Table 3 provides some rough estimates of one-way trading costs in the index 

instruments.  The smallest regular trade is one contract for the futures products and 100 

shares for the baskets.  In terms of dollar value of underlying the baskets are by far the 

smallest.  A round lot trade in SPY, for example, corresponds to roughly $14,000; the 

corresponding E-mini, $71,000; the regular contract $355,000.   

In estimating the trading cost, the half-spread is assumed to be one-half of the 

minimum tick for the futures contract, and one-half of the estimated average spread for 

the baskets.  In addition, a fixed commission of $10 per trade is assumed.  (This is an 

estimate of the commission charge for online equity and futures brokers.)  In absolute 

terms, the one-way costs are roughly comparable.   The differences in relative trading 

costs are therefore primarily reflect the differences in underlying dollar values.  By this 

measure, the trading cost of the basket product is an order of magnitude larger than that 

of the futures contracts. 

Note, however, that the net trading costs over a given investment horizon are not 

necessarily twice the estimated one-way cost.  The near-maturity futures contract lives 

for at most three months.  An investor wishing to maintain the position must then roll 

over the contract, incurring further trading costs.  The roll-over may also lead to 
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unavoidable taxation on short term capital gains.  Most of the capital gains taxes on the 

ETF, in contrast, are realized when the position is liquidated. 

c. The basis 

The basis is generally defined as the difference, t tF S− , where Ft is the price of 

the index futures contract and St is the price of the underlying index.  This definition is 

adequate for analysis of the futures and ETFs, subject to two qualifications.  First, ETFs 

are generally scaled so that their per share prices are similar to those of other stocks (see 

Table 1).  Thus, St is to be interpreted as the ETF price scaled up by the appropriate 

factor.   

The second qualification is that the portfolio underlying the ETF includes not only 

the stock, but also a cash component.  The latter consists of the dividends that have 

accrued on the portfolio since the ETF’s most recent ex dividend date, less trading costs 

of the fund and management fees.  It is therefore convenient to write 

 stock
t t tS S C= +  (1) 

where Ct is the cash component, and stock
tS is the implied market value of the stock 

portfolio. 

The principle of forward-spot parity normally asserts the equivalence of the basis 

and the cost of carry.   Applying this to the stock component of the ETF gives: 

 stock
t t tF S c= +  (2) 

where ct is the cost of carrying the stock position until maturity of the futures contract 

(interest expense less dividends anticipated between t and maturity).  Equations (1) and 

(2) imply that forward-spot parity, when expressed in terms of the ETF’s market price, 

yields: 

 t t t tF S c C− = − . (3) 
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That is, the cash component of the ETF can be viewed as an offset to the cost of carry.  

For the remainder of this paper, “basis” refers to the left-hand side of (3), and  “cost of 

carry” refers to the right-hand side. 

Model specification and interpretation in this paper depend crucially on whether 

(and in what sense) the basis is stationary.  Assuming that arbitrage drives the basis 

toward the cost of carry, then, stationarity of the basis is equivalent to stationarity of the 

cost of carry. 

 Starting at its highest value when the contract is introduced, the cost of carry 

normally declines, reaching zero at maturity due to forward-spot convergence.  For any 

given contract, therefore, the time path of the basis approximates a declining trend, which 

is nonstationary.  The approximation arises because quite apart from pure time-to-

maturity effects, the expected cost of carry might also change due to new information 

regarding prospective changes in the index composition, expected dividends over the 

remaining life of the contract, and expected interest expense.   

 Figure 1 depicts the daily averages of the basis (constructed at one-minute 

intervals) for the S&P 500 (price of the regular futures contract less the price of SPY).  

The time path of these daily averages is dominated by the declining trend.  There are two 

breaks in this path.  The first (March 9) reflects roll-over from the March contract to the 

June contract.  The second break (March 17) occurs when the SDPR goes ex dividend.3  

The figure also demarcates (with vertical bars) two-standard-error bounds on the daily 

means.  (For the S&P 500, these bars are generally so small as to be obscured by the 

plotting symbol.) 

 Figure 2 graphs the basis for the Nasdaq-100 index.  The pattern resembles that of 

the S&P 500.  It is somewhat noisier, however, evincing greater variation around the 

                                                 
3 For the first six days of the sample, prior to the roll-over and the ex-dividend day, the 

basis is negative, i.e., the spot price lies above the futures price.  This is a consequence of 

accrued dividends in the cash component of the ETF. 
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trend.  Figure 3 depicts the basis for the S&P 400 index, which is even more irregular.4  

In all cases, however, the distinguishing feature is the downward trend predicted by 

forward-spot convergence. 

 The behavior of the basis is somewhat different, however, at a finer level of time 

resolution.  Figure 4 depicts the bases for the three indexes at one-minute intervals on a 

representative day (the first day of the sample).  Each series appears to be mean reverting, 

with no obvious trend.   The figures are typical of most days in the sample.  Unit root 

tests applied to each day’s basis path uniformly and overwhelmingly rejected the null 

(unit root) hypothesis.  The basis paths in Figure 4 furthermore exhibit both substantial 

variation and rapid reversion to the mean. 

Intraday stationarity of the basis is consistent with the fact that the main 

components of the cost of carry (dividends and interest) do not accrue intraday.  That is, 

interest is paid only on overnight positions, and dividends are paid only to the holder of 

record at the end of the day prior to the ex-dividend day.  As noted above, trading costs 

on the ETF are also impounded into the cash component (and the cost of carry).  The cash 

component is only reported once per day, however, shortly before the market opening. 

In principle, of course, forward-spot parity reflects the expected cost of carry over 

the life of the contract.  These expectations could change within the day, even though the 

accruals were overnight.  Such changes might reflect shifts in interest rates or dividend 

                                                 
4 The relative volatility in the S&P 400 basis may be due in part to the greater turnover of 

its components.  During the sample period (March 1, 2000 through May 31, 2000), the 

S&P 400 had 19 replacements; the S&P 500, 8.  Since the liquidity of the component 

stocks is relatively low, frequent index changes would lead to high (and variable) trading 

costs. 
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expectations.  The results of the unit root tests, however, suggest that these changes do 

not constitute a major component.5 

4. Methodology: Representation 

 Most of this paper’s claims and attributions of contributions to price discovery  

are based on an innovations representation for price changes. Implicit in such a 

representation are forecasts for each of the security prices.  The changes to a given price 

forecast are linear in the innovations, i.e., forecast updates are linear in the newly-arrived 

information.  To the extent that an innovation can be identified with a particular security 

or market, the contribution of this innovation to the forecast price update measures price 

discovery attributable to that security or market.  The approach is based on random-walk 

decompositions of integrated time series first developed and applied to macroeconomic 

modeling (Beveridge and Nelson (1981), Watson (1986), Stock and Watson (1988)), and 

later applied to microstructure data (Hasbrouck (1991), Hasbrouck (1995)).  This section 

discusses model specification and representation.  Estimation is the subject of the next 

section.  

a. The innovations representation 

Let pt denote a column vector of n security prices.  At the present level of generality, 

pt might comprise bids, asks and/or trade prices for one or more securities. An 

innovations representation for the prices, also called the vector moving average (VMA), 

may be written: 

 1 1 2 2t t t tp u A u A u− −∆ = + + +…  (4) 

                                                 
5 One likely source of changes in expected dividends is changes in index composition.   

Standard and Poor generally announces revisions, however, after normal trading hours, 

and with a one-week lead time. 
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where ut is the vector of zero-mean innovations with ( )tVar u = Ω  and 

0 for t sEu u t s′ = ≠ .  The Ai are n n× coefficient matrices. 

 This representation implies that the total (cumulative) impact of innovation ut on 

prices through k periods ahead is the cumulative impulse response function given by: 

 ( ) 1 2
0

k

t t t t t k t i t
i

D k E p p p p u A u+ + +
=

 ≡ ∆ + ∆ + ∆ + + ∆ =    
 
∑"  (5) 

where A0 is understood to be the identify matrix.  Plots of these functions are useful in 

summarizing price dynamics.   

Denote the limiting cumulative price impact by 

 ( )
0 0

lim  where t t i t t ik i i
w D k A u Au A A

∞ ∞

→∞
= =

 = = = = 
 
∑ ∑  (6) 

This quantity possesses a useful interpretation.  Suppose that traders are primarily 

interested in the model’s predictions about the conditional expectation of prices in the 

infinitely distant future, 1lim , ,t k t tk
E p p p+ −→∞

  … .   This is analogous to the conditional 

expected end-of-trading security value that underlies most theoretical microstructure 

models.   When new information arrives at time t in the form of the innovation ut, the 

model identifies the cumulative impact on pt as tAu .  This quantity, then, must be the 

amount by which the conditional expectation is revised.  Since the ut are serially 

uncorrelated, so too are the wt. 

b. Analysis of ( )tVar w  

 The variance in the revision of conditional expectations can be decomposed into 

constituents attributable to the individual components of the innovation vector.  To 

illustrate this, consider the bivariate case [ ]1 2t t tp p p ′= .  Formally, 

 ( )
2

1 11 12 11 121 12
2

2 21 22 21 2212 2

t
t

t

w a a a a
Var w Var A A

w a a a a
σ σ
σ σ

′        ′= = Ω =        
       

, (7) 

where A and ( )tVar uΩ =  are presented in full form.  The elements of ( )tVar w are the 

variances and covariances of the revisions for the two prices.  Now consider the variance 

of the revision for the first security: 
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 ( ) [ ]
2

111 12
1 11 12 2

1212 2
t

a
Var w a a

a
σ σ
σ σ

   
=    

  
. (8) 

If the innovation covariance matrix is diagonal ( )12 0σ = , then equation (8) implies a 

clean decomposition of the long-run variance into components explained by or 

attributable to each of innovations: 

 ( ) 2 2 2 2
1 11 1 12 2tVar w a aσ σ= +  (9) 

The relative size of these contributions indicates the importance of the series.  As in 

Hasbrouck (1995), the information share of security or market j in ( )itVar w  is defined as 

 
( )
ij

ij
it

I
Var w

σ
=  (10) 

If the innovation covariance matrix is not diagonal, the information share is not exactly 

identified.  In this case, one can examine alternative factor rotations for the innovations 

that either minimize or maximize the contribution of an innovation.  This permits 

computation of bounds for the information share.  This approach is used in De Jong, 

Mahieu, and Schotman (1998b), Huang (2000), Martens and Kofman (1998), and 

Martens (1998). 

c. Cointegration 

 Certain characteristics of the joint price dynamics have important implications for 

model structure.  For example, in the bivariate case the long-term dynamics of p1t and p2t 

are governed by their random walk components.  Two random walks will generally 

diverge over time, even if their increments are correlated.  It may happen, however, that 

the economic structure and logic dictates that two random walks are in fact identical.  

This would be expected to occur if the two prices represented the bid and ask on the same 

security, or a stock index and an index futures contract (over a sample where the cost of 

carry is stationary).  If there exists a linear combination of the two prices that is 

stationary, then the two prices are said to be cointegrated (Engle and Granger (1987)).  
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More generally it is assumed  that all components of pt are integrated, but that m<n linear 

combinations of pt  given by tpα′  (where is n mα × )  are stationary. 

 In the bivariate case, where both prices refer to the “same” underlying security 

(e.g., bid and ask or index and index futures prices), economic logic suggests that the 

combination be formed as the difference between the two prices, i.e., [ ]1 1α′ = − .  In the 

general case, when all n prices refer to the same security, [ ]1 1n nIα ι − −′ = − , where ιn-1 is a 

column unit vector of size n-1 and In-1 is the identity matrix of order n-1.  Microstructure 

applications of cointegration have exclusively (to my knowledge) involved situations of 

this “same-security” type.  The present analyses that involve futures contracts and their 

corresponding exchange-traded funds are of this form. 

 Same-security cointegration implies a regularity in the model.  In equation (6), it 

implies that all rows of A are identical, and therefore that all components of wt are 

identical.  It further implies that information share calculations are identical for any price. 

 The cointegration specification used in same-security models is not appropriate in 

the joint specification of the S&P 500 ETF and its nine sector portfolios.  Here, 

cointegration arises from replication.  Denote the price vector by 
SPDR
t
Sector
t

p
p

 
 
 

 where Sector
tp  is 

the ( )9 1× vector of sector portfolio prices.  If  “on average” SPDR Sector
t tp a p= , where a is a 

vector of replication weights, then the appropriate stationary linear combination is 
SPDR Sector
t tp a p− , i.e., [ ]1 aα′ = − . 

d. Representations useful for estimation 

 The innovations representation given in (4) is useful for interpretation.  An 

alternative form that is more amenable to estimation is the vector error correction model 

(VECM) of order M:  

 ( )1 1 2 2 3 3 1t t t t M t M t t tp B p B p B p B p p E p uγ α α− − − − −′ ′∆ = ∆ + ∆ + ∆ + + ∆ + − +"  (11) 

where the term in parentheses is the deviation (“error”) between 1tpα −′ and its long-run 

value tE pα′ .  There is no intercept term in the specification, which essentially forces the 
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drift to zero.  The γ  matrix contains the error correction coefficients.  There are a number 

of procedures for obtaining (4) from (11).  Perhaps the easiest and most intuitive 

approach involves stepping the system forward in response to a unit innovation 

(Hamilton (1994), pp. 318-323). 

e. Alternative interpretations of the VECM 

The information share is but one of the quantities derived from the VECM that 

have been proposed to measure price discovery.  One group of studies focuses on the 

error correction coefficients, the γi in equation (11).  These can be interpreted as 

measuring as the rates of adjustment or convergence in the price differences occurring in 

one step (e.g. from  to 1t t + ).  The γi cannot by themselves, however, be reworked to 

give meaningful multi-step adjustment rates, because the latter depend on the full set of 

VECM coefficients.  Studies that feature the error-correction coefficients include He 

(1997), Kofman and Moser (1977), and Pizzi, Economopoulos, and O'Neill (1998). 

 The “target” price series underlying the information share measures is an implicit 

optimal forecast of the future price.  It has also been suggested, however, that the target 

price series be constructed as a weighted average of current market prices, and that price 

discovery be measured by the size of these weights.  (This weighted average is identified 

by the additional restriction that differences between this average and each of the 

component prices are orthogonal to changes in the average.)  Studies adopting this 

perspective include Ding and et al (1999).  

5. Estimation 

 The last section discussed models and information shares, the functions of model 

parameters that are used here to assess price discovery.  The present section discusses 

estimation.  Estimation is mostly standard and straightforward, employing ordinary least 

squares applied to specification (11).  There nevertheless arise in the present application 

certain noteworthy details and issues. 
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a. Cointegration in futures/spot specifications 

 The analysis of the time series properties of the index bases in section 3.c 

concluded that the bases are trending (and therefore nonstationary) between days, but 

stationary within days.  In terms of specification (11), this implies that tE pα′  is constant 

only intraday.  This in turn suggests estimating specification (11) separately for each day 

in the sample, using the daily average of tpα′  as an estimate of tE pα′ .  This paper 

follows this procedure.  Summary statistics for the whole sample are formed from the full 

set of daily estimates. 

 This practice represents a departure from the procedure used in other studies, 

however, and so warrants further discussion.   In most studies, the sample consists of 

intraday spot (“St”) and near-maturity futures prices (“Ft”), usually spanning several 

expiration cycles.  The cointegrating vector is taken to be t tF S− .  This is included in a 

VECM, together with a constant term, and the specification is estimated over the full 

sample  (see Pizzi, Economopoulos, and O'Neill (1998), Chu, Hsieh, and Tse (1999), 

Booth, So, and Tse (1999)). 

 The price dynamics implied by this specification, however, force t tF S−  to 

converge to its overall sample mean.  There is certainly a sense in which this occurs.  In a 

sample that consists of multiple near-maturity rollovers, a plot of t tF S− will resemble a 

saw tooth, centered at the sample mean, jumping at the rollover points, and trending 

downwards between rollover points (cf. Figures 1, 2 or 3).6   The adjustment of t tF S−  

towards its sample mean, however, is driven essentially by the time trend.  It does not 

                                                 
6 These remarks apply to specifications of futures prices and contemporaneous spot prices 

that motivated by forward-spot parity.   Cointegration also arises in models of futures 

prices and spot prices as of contract maturity.  In these studies, cointegration arises from 

some form of the expectations hypothesis.  See Chow (1998) and the references therein. 
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capture or reflect the adjustment due to arbitrage.  Arbitrage drives the basis toward its 

current fair value, not the fair value averaged over the life of the contract.7,8  

b. Statistical properties of model estimates 

 Assuming covariance stationary price changes, model residuals are 

homoskedastic and serially uncorrelated.  This ensures the asymptotic consistency of 

OLS coefficient and residual covariance estimates.  The distribution of these estimates, 

however, is not easily characterized.  The asymptotic sample distributions of these 

parameters are known only when the model disturbances are i.i.d. normal.  Given price 

discreteness and the irregular timing of price updates, normality is unlikely. Furthermore, 

the statistics of principal interest here are impulse response functions and information 

shares, which are nonlinear functions of the model parameters. 

 As noted above, nonstationarity of the futures-spot bases across days motivates 

estimation of the model in daily subsamples.  From a statistical viewpoint, this practice 

conveys an additional benefit in that the properties of the daily estimates (e.g., mean, 

standard deviation, etc.) may be easily computed from the full sample of daily estimates.  

For example, let ˆd
ijI denote the information share of j to i, i.e., the contribution of price j’s 

innovations to the long run variance of price i, implied by the model estimated on day d’s 

                                                 
7 All of the cited papers report statistical tests for t tF S−  that invariably reject the unit 

root null hypothesis.  It is not difficult to see why these tests fail to indicate that anything 

is amiss.  When a series possesses a unit root, it tends to diverge without bound as the 

sample size increases.  The divergences in a repeating saw-tooth pattern, however, are 

only local.  Nor are tests for global trend stationarity likely to be more revealing because 

the basis more closely resembles a step function.  Trend stationarity is only likely to be 

detected in daily-averaged data spanning a single expiration cycle. 
8 In connection with Booth, So, and Tse (1999), Yiuman Tse writes (personal 

communication), “We check that if we use residuals from OLS regressions (with trend 

included), the results are qualitatively the same as reported in the paper.” 
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sample.  The overall sample estimate of ijI  is the simply the mean 

( )ˆ ˆd d
ij ijd

I I N= ∑ where dN is the number of days in the sample ( )64dN = .  Assuming 

independence across days, the standard error of this mean may be computed in the usual 

fashion.  Estimates of impulse response functions are formed in a like manner.  The 

general approach here, construction of an overall sample estimate as the mean of 

subsample estimates, was advocated in time series analysis by Bartlett (1950). 

c. Choice of price variables 

 The securities traded in this paper are traded in electronic, futures pit and equity 

exchange markets.  Different trading protocols give rise to different data, both in real 

time and for purposes of historical analysis.   These differences force the analysis to 

accommodate various kinds of prices. 

 The data are most comprehensive for the exchange-traded basket securities, 

comprising last sale prices, and bid and offer quotes.  While the econometric 

specification should incorporate all of these prices in principle, computational 

considerations dictate otherwise.  For these securities, I rely on the quote midpoint.  

Quotes are used in preference to trade prices because they are more timely.  Furthermore, 

the quotes should reflect the information contained in the trades.  The E-mini contracts 

are traded on the electronic Globex system.  Anyone can view a real-time data feed that 

contains the bid, ask, sizes at the bid and ask, and recent trade prices.  The available 

historical data, however, are somewhat more limited, containing only trade prices. 

d. “Nonsynchronous” prices 

 The specifications are estimated for time series in which t indexes intervals of 

wall-clock time that are (in different estimations) one-, five- or ten-seconds wide.  When 

pt is composed of prices described in the preceding section, therefore, it will often include 

prices that were set prior to the start of interval t.   For example, pt for t=10:05:01 might 

include a quote midpoint based on a bid and ask that were first set at 10:01 (and are still 

prevailing as of 10:05:01), the price of an E-mini trade that occurred at 10:02 and a tick 
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price on the futures contract that occurred at 10:03.  Thus, pt reflects prices that were not 

set contemporaneously and are in a sense “stale” as of t=10:05:01. 

 This practice is common in empirical studies where t indexes intervals of a day or 

longer.  CRSP daily closing prices are widely used, for example, irrespective when 

during the day the last trade actually occurred.  The practice is less orthodox in 

microstructure studies, however, and so some discussion is in order. 

 Use of non-contemporaneous last-sale or last-tick prices can be justified on both 

informal and formal grounds.  The informal argument rests on the point that even though 

a last-tick price time-stamped somewhat prior to t is in a sense stale, it still represents the 

most recent datum available to market participants.  A VECM may accordingly be 

motivated as an ad hoc forecasting device that represents the best linear prediction based 

on current data. 

 More formally, the statistical justification for the existence of a VECM 

representation usually rests on the premise that the data are covariance stationary.9  A 

last-sale price will satisfy this requirement under some fairly reasonable and 

straightforward assumptions.   

 Specifically, suppose that there is a “true” unobserved price process, { }tp and an 

associated observation process { }tq , where { }0,1tq ∈ , with “1” corresponding to the 

event that pt is observed (“a trade occurs”).  The most recently observed (“last sale”) 

price is given recursively by ( )* *
11t t t t tp q p q p −= + − .  Appendix A shows that sufficient 

conditions for the covariance stationarity of *
tp are that { }tq is stationary and that { }tp is 

conditionally covariance stationary.  The first condition admits the possibility that qt is 

serially correlated, e.g., that trades occur in “waves”.  The second condition admits the 

                                                 
9 By the Wold theorem, a non-deterministic covariance-stationary stochastic process 

possesses a VMA representation corresponding to (4) (see, e.g., Hamilton (1994), p. 

108).  To obtain the VECM representation in (11), an invertibility assumption is also 

necessary. 
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possibility that trades are more frequent when price changes are large.  The principal 

substantive restriction is that covariance terms not depend explicitly on t. 

 Other studies have employed a number of approaches to the problem of 

nonsynchronous prices.  One approach is to simply use long intervals of time 

aggregation.  For example, if it can be assumed that a security trades at least once per 

minute, then the last-sale price in any sixty-minute interval is likely to be “close” to the 

end of the interval.  The drawback, of course, is that time aggregation over long intervals 

obscures the short-term dynamics that are of primary interest.   

 Other approaches may be broadly classified as sample-thinning or statistical 

adjustment procedures.  Sample-thinning aims at approximate synchronization by 

deleting data points (times) when a trade did not occur in any of the markets under 

consideration, where non-occurrence is operationally defined relative to some window 

(e.g., one minute).  Thinning is applied in Harris et al. (1995), Chu, Hsieh, and Tse 

(1999) and Booth, So, and Tse (1999). 

 Like any censoring, however, thinning reduces the information in the sample.  

Furthermore, the effects are not uniform across markets.  A market that posts frequent, 

promptly updated prices is forced to mimic the same revision pattern as the slowest 

market in the sample.  From an economic viewpoint, prices that are reported during times 

when any other market is not reporting are viewed as having no informational value 

(Hasbrouck (2000)). 

 Statistical adjustment procedures adopt a perspective similar to the present one.   

The observed price series is viewed as arising from a latent price process, which is 

filtered through a stochastic observation mechanism to generate observed prices or 

returns.  Approaches along this line include Lo and MacKinlay (1988), Stoll and Whalley 

(1990), de Jong and Nijman (1997), de Jong, Mahieu, and Schotman (1998a), and de 

Jong and Donders (1998).  These papers have as their primary goal the characterization 

of the latent price process.  This end generally requires, however, making the strong 

assumption that observations (trade occurrences) are independent of the latent price 
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process.  This rules out, among other things, dependency between the magnitude of a 

price change and the likelihood of a trade. 

 The specifications in the present paper only attempt to use observed prices in a 

linearly optimal forecasting rule.  No characterization of the latent price is claimed or 

attempted.  The assumptions, therefore, are weaker.10 

e. Reducing the size of the parameter set using polynomial distributed lags 

 The VECM specification (11) contains coefficient matrices Bi for each lag in the 

model.  If the interval width is small and a modest span of wall clock time is required, the 

number of coefficients is extremely large.  For example, if there are three prices, t 

indexes intervals of one second, and lagged terms up to five minutes are included, the 

number of coefficients in the model is roughly 3 3 300 2,700× × = .  This is 

computationally unacceptable, so some pruning is necessary.  The expedient used here 

(and in Hasbrouck (1995)) relies on polynomial distributed lags.  This procedure  is 

conventionally used when the analyst possesses a prior that the coefficients should lie on 

a smooth curve (Greene (1993)).  The details are given below. 

f. Lag lengths 

In the futures/ETF analyses, maximal lag lengths were determined by analyses of 

the bases.  Examination of autoregressive residuals suggested that five minute lags were 

                                                 
10 The analysis of Stoll and Whalley (1990) reduces to a linear time series model which 

they approximate by a finite order autoregressive-moving average (ARMA) model.  

Other authors have followed this practice, using an ARMA model to prefilter the data 

(Grunbichler, Longstaff, and Schwartz (1994), Fleming, Ostdiek, and Whalley (1996), 

Pizzi, Economopoulos, and O'Neill (1998)).  This filter, however, can easily be 

impounded within the VAR or VECM specifications, obviating the need for separate 

estimation. 
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adequate for the S&P 500 and Nasdaq 100 models, and that a ten minute lag sufficed for 

the S&P 400 analysis. 

g. Summary 

 In alternative analyses, the time subscript t indexes intervals of one, five or ten 

seconds.  The general form of the estimated VECM is: 

 ( )1 1 2 2 1
day

t t t M t M t t tp B p B p B p p p uγ α α− − − −∆ = ∆ + ∆ + + ∆ + − +"  (12) 

where pt is the price vector.  The cointegrating vectors (more properly, a basis for the 

cointegrating vectors) is given in α .   

 The Bi in (12) are coefficient matrices.  Each set of coefficients is constrained to 
lie on a function that is piecewise quadratic.  Specifically, the coefficients of ,j tp∆  in the 

,i tp∆ equation may be written as the 1M × column vector 1 2 1
ij ij ij

ijb B B B ′ =  " .  Let 

C be the M m×  basis matrix for the piecewise quadratic function.  Then 
1 1

.ij ij
M mM m

b C β
× ××

=   

Parsimony is achieved by letting m M<< .  The same C matrix is used for all coefficient 

sets.11    

                                                 
11 For example, if the coefficients were constrained to lie on only one quadratic segment,  
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 
 
 = =
 
 
 

#
. 

In the specifications actually estimated the segments for the one-second analyses are 

defined by the breakpoints 5, 10, 30, 60, 90, 120, 150, 180, and 300 (i.e., lags up to five 

minutes); the five-second analyses used breakpoints 6, 12, 30, 60, 90 and 120 (ten 

minutes). 
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6. Results: The index ETFs and their futures contracts 

 This section discusses the estimated dynamics of the S&P 500, Nasdaq-100 and 

S&P 400 ETFs and their associated futures contracts.   

a. Price discovery in the S&P 500 index 

The price set modeled for the S&P 500 consists of the quote midpoint prevailing 

at the end of the interval for the ETF (symbol SPY), the most recently reported tick on the 

regular futures contract (SP), and the most recently reported trade on the E-mini contract 

(ES).  Specification (12) was estimated at a one-second level of resolution, with lags 

through five minutes. 

 The estimated VECM parameters are not easily interpretable, and for the sake of 

brevity are not reported.  Instead, model properties are more easily seen from the implied 

dynamics.  Figure 5 depicts the cumulative impulse response functions, i.e., cumulative 

price impacts implied by initial perturbations (cf. equation (5)).  Following the paper’s 

general practice, each point is an average of daily estimates. 

 The cumulative impulse response functions for the S&P 500 are in the first row 

(panels A, B and C).  Each column corresponds to an initial shock in a different security 

(SPY, SP and ES, left to right).  In a given graph, the three lines track the implied 

cumulative price changes for these securities. 

 Panel A tracks the cumulative impact of a unit shock in SPY (the ETF).  By 

construction at t=0, the impact is unity in the SPY, and zero in the other two securities.  In 

the long run (fifteen minutes), the impact is essentially identical for all securities.  This 

long run convergence is a consequence of cointegration.  The transient behavior suggests 

rapid reversion in the SPY price, and slow adjustment in the other securities.  The impacts 

of a shock to the regular futures contract (SP) are similar to those of the SPY innovation 

(panel B).   The effect of a unit innovation in the E-mini contract price (ES), however, is 

stronger (panel C).  The initial mean reversion in the ES equation is relatively small.  The 

impacts on the other securities are large. 
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 Table 4 presents estimates relating to the information shares.  Panel A describes 

the correlations of the disturbances.  At one-second resolution, the off-diagonal 

correlations are small.  Panel B presents the long-run impact coefficient matrix, 

corresponding to any of the identical rows of A in equation (6)).  These are identical to 

the amplitudes of the long-run cumulative price impacts shown in Figure 5. 

 Panel C in Table 4 shows the properties of the information shares.   Medians and 

means (across days) are reported, along with the standard errors of the means, which are 

relatively small.  Due to the presence of non-zero off-diagonal correlations in the 

innovations, the information shares can be estimated only up to rotations.  Because the 

correlations are small, however, the minima and maxima are close together.   The E-mini 

contract possesses by far the dominant information share, accounting for roughly 90% of 

the price discovery.  The other two securities share the remainder, with the regular futures 

contract (SP) accounting for slightly more than the ETF. 

b. Price discovery in the Nasdaq 100 index 

 An identical specification was estimated for the Nasdaq-100 securities: the basket 

(symbol QQQ), the regular contract (ND), and the E-mini contract (NQ).   The impulse 

response functions (graphed in the middle row of Figure 5, panels D, E and F) are similar 

to those of the S&P 500 set.  Innovations in the ETF (QQQ) and the regular futures 

contract (ND) are swiftly and substantially reversed, while an innovation in the E-mini 

contract (NQ) substantially persists. 

 Table 5 reports statistics related to the information shares for the Nasdaq-100 

index.  As with the S&P 500, the E-mini contract dominates, providing over 80% of the 

price discovery.  In contrast to the S&P 500, however, the contributions of the ETF 

(QQQ) and regular futures contract (ND) are roughly equal. 

c. Price discovery in the S&P 400 index 

 The specification for the S&P 400 index securities includes only the ETF (symbol 

MDY) and the regular futures contract (MD).  It is estimated with five-second resolution 
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and encompasses lags through ten minutes.  The increase in lag length (relative to the 

one-second estimates) is motivated by the somewhat slower decay in the basis.  The 

decrease in resolution (five seconds is coarse relative to one second) is necessitated by 

computational limitations. 

 The results for the S&P 400 index differ markedly from those of the other two 

indexes.  The bottom row of Figure 5 (panels G and H) depicts the cumulative impulse 

response functions.  These show that unit shocks in both the ETF (symbol MDY) and the 

regular futures contract (MD) have substantial long-run impacts.  The impact of the ETF 

shock (panel G) is somewhat higher, however. 

 Table 6 reports statistics related to the information shares.  Both securities 

contribute substantially to the price discovery, but the ETF dominates with an 

information share of slightly over 60%.  These results stand in marked contrast to those 

of the other two indices, for which the contribution of the ETF was relatively small. 

d. Discussion 

The results of this section can be summarized as follows.  In the two index 

markets where E-mini contracts exist, these contracts now provide the bulk of the price 

discovery.  This is consistent with the view of many observers (such as Domowitz and 

Steil (1999) that the lower costs offered by electronic systems portend their eventual 

displacement of floor markets.   The analysis in Section 3.b, however, suggests that the 

obvious costs (spread and commission) do not work in favor of the electronic market.  

Transaction cost estimation is subject to error, of course.  Consideration of other price 

components, such as price impacts and the human cost of order entry, might well favor 

the electronic market. 

It should also be recalled, however, that relative to the E-minis the regular futures 

contracts have larger dollar trading volume and open interest.  This suggests that many 

market participants still find the regular contract to be the cheapest vehicle.  In view of 

this, the informational dominance of the E-minis is even more striking. 
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Not only do the E-minis eclipse the regular futures contracts, but they also offer 

more price discovery than the ETFs.  It therefore appears that although the ETF is a 

superior index trading vehicle relative to the individual stocks, futures contracts are still 

preferred.  This conclusion does not imply that futures contracts are superior investment 

vehicles.  Elton et al. (2000) document the substantial investment advantages of the ETF. 

The S&P 400 midcap index market differs substantially from other two index 

markets.  There is no E-mini contract here, so price discovery is left to the ETF and the 

regular futures contract.  In this market, the ETF appears to provide most of the price 

discovery.  The reasons for this are unclear.  Since the component firms are smaller and 

have liquidity that is likely to be markedly inferior to S&P 500 firms, the ETF is likely to 

be much cheaper to trade than the individual stocks.  It is not immediately obvious why 

this would also confer an advantage relative to the futures contract.  One conjecture is 

that the ETF’s advantage relative to individual stocks serves to draw more liquidity 

trading, which supports more informational trading. 

Finally, in addition to the usual caveats for an empirical analysis (sample size, 

model specification, etc.), it is worthwhile to note some overarching limitations of the 

analysis.  First, the attributions of price discovery are contingent on a sample in which all 

markets are operating jointly.  The observed dominance of the E-mini markets, for 

example, does not imply that price discovery would not be materially affected if the other 

two markets (ETF and regular futures contract) did not exist. 

Second, the present attributions of price discovery are based on subsets of 

information produced by the markets.  The Globex system on which the E-minis trade, 

for example, produces real-time bids, asks and depths.  This is a somewhat richer set of 

information than the last-trade prices used here.  Presumably, incorporation of these data 

would only increase the E-minis’ advantage.  Similarly, the ETF markets report recent 

trades, volumes and depths.  Finally, the floor markets (the futures pits, and to an extent 

the Amex floor) also produce less quantifiable information arising from floor interactions 

that precede reported trades and quote revisions.  The Amex permits cellular phones on 

the floor, which would presumably aid in the dissemination of this information.  Cellular 
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phones are not presently allowed, however, on the floor of the Chicago Mercantile 

Exchange. 

e. Robustness of the results to timing errors 

 Given the fine time resolution used in the present specifications, accuracy of the 

time stamps is important.  Synchronization in the present analysis aims in principle at 

replicating the real-time public market data stream.  The data are not, however, collected 

in real time.  Instead, synchronization relies on exchange-reported time stamps.  The S&P 

500 and Nasdaq-100 analyses comprise three securities, with market activity reported on 

three different computer systems.  Although market personnel generally attempt to set 

accurate system clocks, it must be acknowledged that any discrepancies would not be 

obvious.   Incorrect synchronization might also arise from differences in reporting system 

latencies. 

 To investigate the sensitivity of the results to timing, time-stamp errors were  

artificially introduced in the following manner.  The salient feature of the S&P 500 and 

Nasdaq-100 analyses is the informational dominance of the E-mini futures contracts.  It 

therefore makes sense to assess how this result is weakened if the E-mini price reports are 

“delayed” by some fixed time.   To investigate this, specifications analogous to those 

discussed above were estimated, but at a five-second (rather than one-second) resolution.  

For each index market, four estimations were conducted in which E-mini price reports 

were delayed by 0, 5, 10 and 15 seconds. 

 Table 7 reports the results of this analysis.  For brevity, the table contains only the 

means (across days) of the information share minima and maxima.   These bounds are 

somewhat wider than those reported in the one-second analyses (Table 4 and Table 5).  

This reflects an increase in the magnitudes of off-diagonal innovation correlations, which 

implies greater sensitivity to rotation. 

 Intuitively, a reporting delay should penalize the informativeness of a market.  

Stale prices are less valuable.  The results in Table 7 are consistent with this conjecture.  

The E-mini information shares drop as the delay increases. 
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 For the S&P 500 index market, a five-second delay weakens, but does not 

eliminate the E-mini’s dominance.  The E-mini information share is substantial even with 

a ten-second delay.  This share only becomes overshadowed by the others under a fifteen-

second delay.   Examination of information share shifts in the other two securities 

suggests that the bulk of the price discovery lost from the E-mini is picked up by the 

regular futures contract (symbol SP) rather than the ETF (SPY). 

 The E-mini dominance result for the Nasdaq 100 index is even less sensitive to 

induced reporting delays.  The information share for the E-mini contract (NQ) 

predominates even with a ten-second delay (and remains substantial with a fifteen-second 

delay).  As with the S&P 500 index, most of the lost price discovery shifts to the regular 

futures contract. 

In summary, while it must be acknowledged that large report timing errors would 

affect the results, the importance of the E-mini contracts does not seem highly sensitive 

to minor (five or ten seconds) errors. 

7. Results: The S&P 500 and sector ETFs 

 The paper turns now to price discovery among the S&P 500 index and its sector 

indexes.  The econometric specification in this section is a time series model of the full 

set of price variables, i.e., the S&P 500 ETF and the exchange-traded sector portfolios.  

The previous section established that the dominant security in the S&P 500 index market 

was the E-mini futures contract.  For purposes of the present analysis, however, the ETF 

was used as the summary price index measure due to its strong structural similarity to the 

sector funds.  The sector funds were designed to replicate the S&P 500 ETF, and so have 

the same dividend payment schedule.  Furthermore, the S&P 500 ETF is traded in the 

same venue as the sector funds (the Amex).  Clock synchronization across different 

exchanges is therefore less of a concern. 

 Can a portfolio of sector ETFs replicate the S&P 500 ETF?  This is important 

from the investor’s viewpoint because any cumulative discrepancies will affect her net 

wealth.  It is important from a short-term trader’s perspective because any discrepancies 
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in replication will give rise to arbitrage opportunities, and risk when the arbitrage is 

unwound.  Finally, replication is important from an econometric perspective.  If the S&P 

500 ETF is spanned by the sector portfolios, then the specification must reflect this 

spanning (via a cointegration restriction). 

 Replication is to some extent hampered by differing expense ratios.  The expense 

ratio of the S&P 500 ETF (currently and in the sample) is 0.12%.  The expense ratios of 

the sector funds are 0.28%.  One would therefore expect to see a cumulative shortfall in 

the replicating sector fund portfolio, even if its net holdings were identical to those of the 

S&P 500 ETF. 

 To assess tracking error, the S&P 500 ETF price was regressed against the set of 

sector fund prices.  The prices used here were the daily closing quote midpoints.  The 

relatively coarse time resolution is adequate for present purposes, because the immediate 

objective is characterization of any “long term” deviations.  Table 8 reports the 

coefficients of this regression, together with the implied average weight (by dollars and 

relative value) of each sector in the total index.  The R2 in the regression was (to five 

decimal places) unity.12  (The R2 in the corresponding regression of price differences was 

0.98, but in the presence of a cointegrating relationship, this regression is misspecified.)  

In summary, replication discrepancies resulting from cost differentials or other source, do 

not appear to be material. 

 Table 9 presents summary statistics.  The table is presented as a matrix, with the 

entry in row i and column j measuring the contribution of fund j to the price discovery of 

fund i.  For the sake of clarity, standard errors are not presented.  The first row 

decomposes price discovery in the broad index (SPY).  Approximately 80% of the price 

                                                 
12 Normally, a coefficient of determination so close to unity would imply that the analyst 

had inadvertently estimated an identity, a linear specification that held exactly by virtue 

of some accounting relationship.  This is not the case here.  The variables are market 

prices of different securities.  Furthermore, the sector fund prospectuses admit the 

possibility of tracking errors and caution against assuming exact replication. 
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discovery in SPY can be attributed to its own innovations.  The sector funds share in the 

remainder, with the largest contribution originating from XLK (technology) at nearly 

10%. 

 The second row decomposes price discovery in XLB (basic industries).  Here, 

about 22% can be attributed to XLB’s own innovations, with SPY picking up the bulk of 

the remainder.  This is typical of most rows in that most of the price discovery is shared 

by the SPY and a sector fund’s own innovations.  The SPY’s contribution is largest for 

technology fund (XLK, about 66%).   

The strong contributions from SPY and XLK’s innovations to each others’ long 

term variance is consistent with the prominence of XLK’s weight in the SPY (about 40%, 

from Table 8).   In general, however, sector fund SPY weights are not closely related to 

price discovery either from the SPY to the sector fund or in the reverse direction. 

Do price discovery contributions merely reflect the long-term return 

dependencies?  Table 10 reports the bivariate correlations for the daily changes in end-of-

day quote midpoints.  The correlation between SPY and XLK is substantial (0.811), but 

the larger still is the correlation between SPY and XLI (0.902).  Yet XLI contributes very 

little to the price discovery in SPY (about 1.9%, from the top row of Table 9). 

 These results are consistent with relatively low production of information at the 

sector level.  Many factors might account for this.  The cost of trading in these sectors 

might be a deterrent.  Even though the average bid ask spreads reported in Table 1 are not 

especially high, trade volumes are often low.   This cost is also determined by the extent 

of liquidity trading, which may also be low. 

 In light of mass media reports that over the sample period often identified the 

technology sector as the causal source of broad market movements, the XLK fund’s 

contribution to SPY price discovery of 9.7% seems small.  One possible explanation for 

this is the availability of better trading vehicles.  The Nasdaq-100 index, for example, is 

particularly technology-heavy.  However estimates based on a joint VAR analysis of the 

SPY and QQQ fund price changes found that latter’s contribution to price discovery in the 

former was at most also about 10%. 
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8. Conclusions 

 Analyses of S&P 500 stock index and index futures dynamics have generally 

found that the latter lead the former, implying that price discovery takes place in the 

futures pit.  The market characteristics have recently been changed, however, by the large 

volume of electronic trades in the futures market, the introduction of exchange traded 

index funds and the advent of exchange-traded sector funds (ETFs).  This paper employs 

high-frequency time series analysis to re-examine index price discovery in the S&P 500, 

Nasdaq-100 and S&P 400 indexes in this new environment. 

 The paper’s results suggest that for the S&P 500 and Nasdaq-100 indexes, price 

discovery is still dominated by futures trading.  The contributions of the corresponding 

exchange traded funds, though statistically significant, are small.  The results are less 

clear for the S&P MidCap 400 index.  Here, the results suggest dominance of the ETF. 

 For the S&P 500 and Nasdaq-100 indexes, the Chicago Mercantile Exchange has 

introduced E-mini’s.  The E-minis have smaller size than the pit-traded contracts, and 

trade on the CME’s GLOBEX electronic limit order book system.  By underlying dollar 

volume and size of open interest, the E-minis are dominated by the regular contracts.  

Their trading volume is substantial, however, and the present analysis suggests that they 

now account for most of the price discovery in the markets for their respective indexes. 

 The S&P 500 sector funds are ETFs that are constructed on industry lines and can 

be used to replicate the overall index.  Despite substantial trading activity in some of 

these funds, however, their contribution to price discovery in the overall index is modest.  

This suggests that information production is not occurring at the sector level. 
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9. Appendix: The time series properties of last-sale prices 

It was asserted in section 5.d that if the first differences of a latent (implicit or 

unobserved) price are covariance stationary, then the first differences of last-sale prices 

are also covariance stationary under fairly mild regularity conditions.  This appendix 

provides a formal analysis.  The strategy is straightforward.  The covariance structure of 

the observed price process is derived, and then examined to isolate the features that might 

cause a violation of covariance stationarity. 

Suppose that we have a latent price process { }tp  over the discrete times 

, 1,0,1,t = −… … .  The first differences are assumed to be zero-mean, covariance 

stationary: ( )0; .t t t j pE p E p p jγ−∆ = ∆ ∆ =    The observation process { }tq  is defined by 

the indicator variable 

 
1, if  is observed at time 
0, otherwise

t
t

p t
q


= 


 (13) 

It is assumed that { }tq is a stationary process.  It may be autocorrelated (we may have 

“waves” of trading).  The observed (“last sale”) price is defined recursively as 

 ( )* *
11t t t t tp q p q p −= + −  (14) 

It is useful to define an indicator variable to mark the time of the most recent trade: 

 ( )
1,  if the most recent observation was at time 

,   for 0,1,
0,  otherwiset

t k
I k k

−
= =


…  (15) 

Alternatively, 

 ( ) 1 1t t t t k t kI k q q q q− − + −= …  (16) 

where ( )1t tq q≡ − , the “no observation” indicator variable.  It is assumed that 

lim ( ) 1tk
I k

→∞
= , almost surely.  (We can always find a trade by going back sufficiently far.) 

With these definitions, the observed price is: 

 ( )*

0
t t t k

k
p I k p

∞

−
=

= ∑ . (17) 
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The first difference of the observed price is 

 ( ) ( )( )* * *
1 1 1 1 1

0 0
t t t t t t t k t t t t k

k k
p p p q p I k p q I k p p

∞ ∞

− − − − − − −
= =

   ∆ = − = − = −   
   

∑ ∑  (18) 

(The last equality follows because ( )0
1tk

I k∞

=
=∑ .) 

In the case where the observation and latent price processes are independent, then 

 ( ) ( ) ( ) ( )1 1 1 1 1 1 0t t t k t t t kE I k p p E I k E p p− − − − − − − −− = − =           , (19) 

implying * 0.tE p∆ =   The autocovariances of the observed prices are computed from 

 

( ) ( ) ( ) ( )

( ) ( )( ) ( )( )( )

( ) ( )( ) ( )( )( )

* *
1 1 1 1

0 0

1 1 1 1
0 0

1 1 1 1
0

t t j t t t t k t j t j t j t j l
k l

t t j t t j t t k t j t j l
k l

t t j t t j t t k t j t j l
k l

E p p E q I k p p q I l p p

E q q I k I l p p p p
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∞ ∞
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∞ ∞
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∞
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=
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1 1 1 1
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∞
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∑
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(20) 

From the stationarity of { }tq  and the covariance stationarity of { }tp , the two 

expectations in the summand depend only on ( ), ,  and  not .k l j t  

 The assumption of independence between { } { } and t tp q may be replaced by the 

weaker assumption that { }tp  is conditionally covariance-stationary, in the following 

sense: 

 

( )

1

1 1

, , 0

and

, , , , ,

t t t

t t j t t t t

E p q q

E p p q q f j q q

−

− − −

∆ =  

 ∆ ∆ = 

…

… …

 (21) 

The force of this assumption is simply to suppress explicit time dependence in the mean 

and autocovariances.  It allows, however, for effects such as heightened volatility or 

stronger autocovariances during periods of elevated trading intensity.  One might 

hypothesize, for example, ( ) ( )2
1 1 0 1 2 1, , , ,t t t t t t t tVar p q q E p q q a a q a q− − −∆ = ∆ = + +… … , for 
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some positive coefficients 0 1 2,   and .a a a   The important point here is that the conditional 

variance depends on t only through 1 and t tq q − . 

The multiperiod price changes that appear in the summand of (20) can be written 

as the sum of one-period price changes.  For example,  

 ( ) ( )1 1t t k t t t kp p p p p− − − −− = ∆ + ∆ + + ∆" .   (22) 

The conditional expectation of the product of these multiperiod price changes can 

therefore be written as  

 ( )( ) ( )1 1 1 1, , , , , , ,t t k t j t j l t t t tE p p p p q q F j k l q q− − − − − − − − − − = … …  (23) 

i.e., a function that does not depend on t.  Re-examining the autocovariances of the 

observed price changes, we obtain  
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for some function G, where (again) explicit time dependence vanishes. 
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Table 1 

Summary statistics for exchange-trade funds 

All statistics except index factor are based on TAQ data from March 1, 2000 to May 31, 2000.  The index factor indicates the scale of 

the exchange-traded fund share price.  To obtain the corresponding index level, the share price is multiplied by the index factor.  

 

Symbol 

 Average 
daily 
volume 
(1M sh) 

Average 
Amex 
vol 
share 

Average 
daily 
trades 

Average 
Amex 
share of 
trades 

Avg 
Closing 
Price 
($/share) 

Avg 
Spread 
($/share) 

Avg 
Relative 
Spread 

Tick size 
($/share) 

Index 
factor 

Closing 
level of 
index  
(5/31/2000) 

Indexes  
 

       
   

SPY       S&P 500 9,888 0.76 1,735 0.62 144 0.194 0.0013   1/32 10 1,420.60 
QQQ  Nasdaq-100 30,363 0.76 10,575 0.28 108 0.229 0.0023   1/32 40 3,324.08 
MDY S&P 400 745 0.84 245 0.56 87 0.218 0.0025   1/64 5 475.17 

Sectors 
 

       
   

XLB       Basic industries 126 0.80 42 0.61 22 0.180 0.0081   1/64   
XLE  Energy 306 0.73 71 0.61 29 0.176 0.0060   1/64   
XLF  Financial 448 0.73 191 0.43 23 0.149 0.0064   1/64   
XLI  Industrial 113 0.75 24 0.66 29 0.169 0.0059   1/64   
XLK  Technologies 848 0.74 354 0.44 55 0.194 0.0036   1/64   
XLP       Consumer staples 274 0.72 87 0.54 22 0.169 0.0077   1/64   
XLU       Utilities 80 0.76 30 0.59 27 0.177 0.0065   1/64   
XLV       Consumer services 48 0.81 24 0.82 29 0.162 0.0055   1/64   
XLY  Cyclical/Transportation  96 0.78 27 0.64 28 0.163 0.0058   1/64   
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Table 2  

Summary Statistics for index futures contracts 

All statistics are based on Chicago Mercantile Exchange data  from March 1, 2000 to 

May 31, 2000. 

 

Symbol Underlying Type Trading 

Contract 
size 

(x index) 

Tick size 
(index 
points) 

Avg daily 
volume 

(contracts) 

Avg end-of-
month open 

interest 
(contracts) 

SP S&P 500 Regular Pit 250 0.100 98,324 384,476 
ES S&P 500 E-mini Globex 50 0.250 73,779 32,331 
ND Nasdaq-100 Regular Pit 100 0.500 24,096 36,189 
NQ Nasdaq-100 E-mini Globex 20 0.500 30,991 18,247 
MD S&P 400 Regular Pit 500 0.050 1,310 12,910 
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Table 3 Transaction cost analysis 

Analysis of one-way transactions costs for the smallest regular trade for each type of index security.  A fixed commission of $10 is 

assumed on all trades. ETF=Exchange-traded fund. 

 

Index: 
 

S&P 500  Nasdaq-100  S&P 400 

Symbol  SP ES SPY  ND NQ QQQ  MD MDY 

Contract/fund type  Regular E-mini ETF  Regular E-mini ETF  Regular ETF 
Smallest regular trade  
(contracts or shares) 1 1 100  1 1 100  1 100 

Smallest regular trade ($)  355,150 71,030 14,206  332,408 66,482 16,620  237,585 9,503 
Half-spread  12.5 6.25 18.47  25 5 11.45  12.5 21.8 
Total (half-spread + $10)  22.5 16.25 28.47  35 15 21.45  22.5 31.8 
Relative trade cost  0.0001 0.0002 0.0020  0.0001 0.0002 0.0013  0.0001 0.0033 
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Table 4 

Price discovery in the S&P 500 index 

Statistics are based on a vector error correction model of prices for the exchange-traded 

fund (symbol SPY), the regular futures contract (SP) and the E-mini (ES), estimated at a 

one-second resolution.  The model is estimated for each day in the sample (March 1, 

2000 through May 31, 200, 64 trading days).  The table reports summary statistics for 

these daily estimates.  Disturbance correlations are given in panel A.  Panel B contains 

the coefficients of the disturbances in the long-run price revision.  Information shares are 

reported in panel C.  The entries in panels A and B are means of the daily estimates.  The 

statistics in panel C are over the sample of daily estimates. 

A. Disturbance correlation matrix 

 SPY SP ES 

SPY 1.000 0.003 0.002 

SP 0.003 1.000 0.052 

ES 0.002 0.052 1.000 

B. Coefficients of efficient price 

SPY SP ES 

0.167 0.199 0.612 

C. Information shares 

 Source 

 SPY  SP  ES 

 Min Max  Min Max  Min Max 

Median 0.022 0.024  0.055 0.082  0.866 0.893 

Mean 0.037 0.040  0.081 0.107  0.854 0.882 

SEM 0.007 0.007  0.010 0.012  0.012 0.011 

Std. Dev. 0.056 0.059  0.079 0.093  0.097 0.086 
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Table 5 

Price discovery in the Nasdaq-100 index 

Statistics are based on a vector error correction model of prices for the exchange-traded 

fund (symbol QQQ), the regular futures contract (ND) and the E-mini (NQ), estimated at 

a one-second resolution.  The model is estimated for each day in the sample (March 1, 

2000 through May 31, 200, 64 trading days).  The table reports summary statistics for 

these daily estimates.  Disturbance correlations are given in panel A.  Panel B contains 

the coefficients of the disturbances in the long-run price revision.  Information shares are 

reported in panel C.  The entries in panels A and B are means of the daily estimates.  The 

statistics in panel C are over the sample of daily estimates. 

A. Disturbance correlation matrix 

 QQQ ND NQ 

QQQ 1.000 0.001 0.002 

ND 0.001 1.000 0.031 

NQ 0.002 0.031 1.000 

B. Coefficients of efficient price 

QQQ ND NQ 

0.305 0.192 0.677 

C. Information shares 

 Source 

 QQQ  ND  NQ 

 Min Max  Min Max  Min Max 

Median 0.055 0.059  0.046 0.061  0.858 0.875 

Mean 0.085 0.089  0.061 0.076  0.836 0.853 

SEM 0.010 0.011  0.007 0.008  0.012 0.011 

Std. Dev. 0.084 0.085  0.054 0.061  0.094 0.091 
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Table 6 

Price discovery in the S&P 400 index 

Statistics are based on a vector error correction model of prices for the exchange-traded 

fund (symbol MDY) and the regular futures contract (MD) estimated at a five-second 

resolution.  The model is estimated for each day in the sample (March 1, 2000 through 

May 31, 200, 64 trading days).  The table reports summary statistics for these daily 

estimates.  Disturbance correlations are given in panel A.  Panel B contains the 

coefficients of the disturbances in the long-run price revision.  Information shares are 

reported in panel C.  The entries in panels A and B are means of the daily estimates.  The 

statistics in panel C are over the sample of daily estimates. 

A. Disturbance correlation matrix 

 MDY MD 

MDY 1.000 0.014 

MD 0.014 1.000 

B. Coefficients of efficient price 

MDY MD 

1.148 0.567 

C. Information shares 

 Source 

 MDY  MD 

 Min Max  Min Max 

Median 0.661 0.680  0.320 0.339 

Mean 0.616 0.629  0.371 0.384 

SEM 0.033 0.033  0.033 0.033 

Std. Dev. 0.263 0.262  0.262 0.263 
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Table 7 

Price discovery in the equity indexes: Sensitivity to time shifts 

Entries in the table are means (across days) of minimal and maximal information shares 

implied by vector error correction models estimated at five-second resolution.  For the 

S&P 500 index, the model comprises the ETF (symbol SPY), the regular futures contract 

(SP) and the E-mini futures contract (ES); for the Nasdaq 100 index, the model comprises 

the ETF (QQQ), the regular futures contract (ND) and the E-mini contract (NQ).  In these 

estimations, the reported prices from the E-mini markets (ES and NQ) are delayed by the 

indicated amounts. 

 

S&P 500 
 SPY  SP  ES 

ES Delay (seconds) Min Max  Min Max  Min Max 

0 0.049 0.060  0.077 0.213  0.730 0.874 

5 0.049 0.092  0.197 0.472  0.452 0.752 

10 0.066 0.150  0.449 0.684  0.214 0.469 

15 0.096 0.182  0.631 0.770  0.114 0.225 

Nasdaq 100 
 QQQ  ND  NQ 

NQ Delay (seconds) Min Max  Min Max  Min Max 

0 0.117 0.131  0.042 0.103  0.769 0.839 

5 0.124 0.142  0.094 0.232  0.632 0.779 

10 0.131 0.153  0.225 0.406  0.450 0.638 

15 0.140 0.163  0.392 0.553  0.298 0.460 
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Table 8 S&P 500 ETF sector replication and weights 

Table is based on end-of-day TAQ closing quote midpoints for the S&P 500 ETF (SPY) 

and its component sector funds, March 1, 2000 through May 31, 2000.  The SPY 

coefficients are the estimated ai in the regression: 
SPY XLB XLE XLY
t XLB t XLE t XLY t tp a p a p a p e= + + + +"  

where the XLB
tp , etc. are closing quote midpoints.  (The R2 of this regression was 

essentially unity.)  The dollar components of the SPY are computed as XLB
XLBa p , etc., 

where XLBp  is the sample average price of the XLB fund.  The percentage components of 

the SPY are computed as XLB SPY
XLBa p p , etc. 

 

Symbol Description 

Average 
closing 
quote 

midpoint 

Coefficient 
in SPY 

regression 
Component 
of SPY ($) 

Component 
of SPY (%) 

SPY S&P 500  144.26    
XLB Basic industries 22.37 0.070 1.56 0.011 
XLE Energy                   29.27 0.256 7.48 0.052 
XLF Financial                23.42 0.861 20.16 0.140 
XLI Industrial               28.60 0.260 7.45 0.052 
XLK Technologies             55.07 1.053 58.01 0.402 
XLP Consumer staples 22.15 1.117 24.75 0.172 
XLU Utilities                27.31 0.261 7.14 0.049 
XLV Consumer services        29.37 0.136 3.99 0.028 
XLY Cyclical/Transportation 28.10 0.489 13.74 0.095 

    144.26 1.000 
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Table 9 

Price discovery between the S&P 500 and its component sector portfolios 

Table entry ,i jI  (ith row and jth column) is the information share of security j in the long-

term variance of security i.  Due to residual correlations, these are not unambiguously 

determined.  Table entries are information shares based on factor rotations when security 

j is assigned precedence. I.e, the entries are approximately the maximal information 

shares.  The specification is a vector error correction model estimated with five-second 

resolution.  The specification includes lags through five minutes. 

  From:          
To:  SPY XLB XLE XLF XLI XLK XLP XLU XLV XLY 

SPY  0.801 0.020 0.014 0.020 0.019 0.097 0.021 0.016 0.014 0.018 
XLB  0.216 0.661 0.014 0.020 0.018 0.029 0.023 0.019 0.019 0.017 
XLE  0.176 0.027 0.674 0.020 0.021 0.041 0.023 0.020 0.017 0.018 
XLF  0.447 0.024 0.015 0.417 0.018 0.050 0.018 0.019 0.017 0.020 
XLI  0.401 0.028 0.016 0.021 0.465 0.034 0.016 0.021 0.019 0.024 
XLK  0.658 0.018 0.016 0.020 0.016 0.244 0.023 0.019 0.014 0.018 
XLP  0.316 0.019 0.016 0.021 0.013 0.079 0.521 0.019 0.017 0.020 
XLU  0.316 0.021 0.018 0.020 0.031 0.041 0.020 0.541 0.017 0.017 
XLV  0.430 0.019 0.013 0.026 0.021 0.040 0.018 0.014 0.446 0.021 
XLY  0.427 0.024 0.015 0.024 0.022 0.044 0.017 0.015 0.030 0.429 
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Table 10 

SPY and the sector portfolios: Correlations of daily price changes 

Correlations in daily quote-midpoint price changes for the SPY and its component sector 

funds, March 1, 2000 through May 31, 2000. 

 

 SPY XLB XLE XLF XLI XLK XLP XLU XLV XLY 
SPY 1.000 0.492 0.184 0.727 0.902 0.811 0.500 0.536 0.804 0.661 
XLB 0.492 1.000 0.243 0.648 0.654 0.048 0.684 0.522 0.335 0.703 
XLE 0.184 0.243 1.000 0.286 0.177 -0.041 0.134 0.258 0.185 0.323 
XLF 0.727 0.648 0.286 1.000 0.735 0.315 0.583 0.545 0.631 0.769 
XLI 0.902 0.654 0.177 0.735 1.000 0.620 0.567 0.547 0.686 0.753 
XLK 0.811 0.048 -0.041 0.315 0.620 1.000 0.030 0.180 0.656 0.204 
XLP 0.500 0.684 0.134 0.583 0.567 0.030 1.000 0.563 0.260 0.661 
XLU 0.536 0.522 0.258 0.545 0.547 0.180 0.563 1.000 0.389 0.599 
XLV 0.804 0.335 0.185 0.631 0.686 0.656 0.260 0.389 1.000 0.626 
XLY 0.661 0.703 0.323 0.769 0.753 0.204 0.661 0.599 0.626 1.000 
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Bivariate daily return correlations  
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Figure 1  

S&P 500 Average daily basis 

The basis is defined as t tF S−  where Ft is the price of the regular (pit-traded) index 

futures contract and St is the price of the corresponding exchange-traded fund (the “spot” 

price), as of the end of minute t.  The sample is March 1, 2000 through May 31, 2000.  

The daily average is plotted as a dot.  The vertical lines (sometimes completely obscured) 

mark the range, ± twice the standard error of the mean (corrected for autocorrelation). 
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Figure 2  

Nasdaq-100 Average daily basis 

The basis is defined as t tF S−  where Ft is the price of the regular (pit-traded) index 

futures contract and St is the price of the corresponding exchange-traded fund (the “spot” 

price), as of the end of minute t.  The sample is March 1, 2000 through May 31, 2000.  

The daily average is plotted as a dot.  The vertical lines (sometimes completely obscured) 

mark the range, ± twice the standard error of the mean (corrected for autocorrelation). 
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Figure 3  

S&P 400 Average daily basis 

The basis is defined as t tF S−  where Ft is the price of the regular (pit-traded) index 

futures contract and St is the price of the corresponding exchange-traded fund (the “spot” 

price), as of the end of minute t.  The sample is March 1, 2000 through May 31, 2000.  

The daily average is plotted as a dot.  The vertical lines (sometimes completely obscured) 

mark the range, ± twice the standard error of the mean (corrected for autocorrelation). 
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Figure 4  

Intraday bases on March 1, 2000 

The basis is defined as t tF S−  where Ft is the price of the regular (pit-traded) index 

futures contract and St is the price of the corresponding exchange-traded fund (the “spot” 

price), as of the end of minute t. 

 

 

 

9:30 12:00 14:00 16:00
-4

-2

0

2
Basis for  S&P 500, 01-Mar-2000

B
as

is

9:30 12:00 14:00 16:00
0

10

20

30
Basis for  Nasdaq 100, 01-Mar-2000

B
as

is

9:30 12:00 14:00 16:00
37

38

39

40

41
Basis for  S&P 400, 01-Mar-2000

B
as

is



Page 57 

Figure 5 

Cumulative impulse response (price impact) functions 

Cumulative price impacts subsequent to initial unit shocks implied by vector error 

correction models.  The models are estimated with one-second resolution for S&P 500 

and Nasdaq 100 indexes; five-second resolution for the S&P 400 index.  The top row 

(panels A, B and C) refers to the S&P 500 market, with symbols SPY (the exchange-

traded fund); SP (the regular futures contract); and, ES (the E-mini futures contract).  The 

middle row refers to the Nasdaq-100 market, with symbols QQQ (the exchange-traded 

fund); ND (the regular contract); and NQ (the E-mini).  The bottom row refers to the S&P 

400 market, with symbols MDY (the exchange-traded fund); and MD (the regular 

contract). 
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