

Intramolecular Aza-Anti-Michael Addition for the Synthesis of 2-Iminothiazolidines

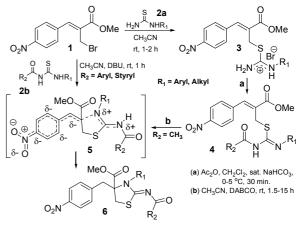
Misael Ferreira^{*} and Marcus Mandolesi Sá

Universidade Federal de Santa Catarina, Departamento de Química, Florianópolis/SC, 88040-900 Brasil *Corresponding author. Tel.: +55-48-37219967; fax: +55-48-37216850; e-mail: misagmc@yahoo.com.br Keywords: Allylic bromides, thioureas, 2-iminothiazolidines.

INTRODUCTION

Allylic bromides 1 (derived from the Morita-Baylis-Hillman adducts) are versatile intermediates for the preparation of cyclic compounds.¹ In addition, substituted thioureas 2 are widely used in reactions with molecules having more than one electrophilic center allowing the synthesis of heterocycles with biological properties.²

As part of our research interest in synthetic transformations involving allylic bromides 1 with ambident compounds,³ herein we report the intramolecular aza-anti-Michael reaction of allylic bromides 1 with thioureas 3 as a new methodology for the synthesis of 2-iminothiazolidine derivatives.


RESULTS AND DISCUSSION

Allylic bromides **1** were obtained in high yields by treating α -methylene- β -hydroxyesters (Morita-Baylis-Hillman adducts) with LiBr/H₂SO₄ in acetonitrile (75-90% yield).4

The reaction of allylic bromides 1 with Nsubstituted thioureas 2a in acetonitrile furnished isothiuronium salts **3** (66-97%, Scheme 1). Subsequent acetylation reactions of N-substituted salts 4 with acetic anhydride under basic medium at temperature furnished а mixture low of monoacetylated isomers^{3b} where **4** was the major product (60-80%, conversion, determined by NMR 400 MHz, CDCl₃, Scheme 1).

Monoacetylated isomer 4a ($R_1 = C_6H_5$, $R_2 = CH_3$) was purified by column chromatography. Subsequent treatment of 4a with base (DABCO) in acetonitrile allowed the unexpected formation of 2iminothiazolidine 6a through the conjugate addition at the α -position of the alkenoate acceptor known as the anti-Michael reaction (91% yield). Complete structural elucidation of compound 6a was achieved by X-ray crystallography analysis (Scheme 1, Table 1). Cyclization reaction of crude mixtures of Nacetylated products 4 in basic medium without prior purification also furnished the corresponding 2iminothiazolidines 6 in reasonable yields (Scheme 1, Table 1).

In a more convergent synthetic approach, 2iminothiazolidines 6 could also be obtained in good yields from a one-step reaction of N-benzoyl-Nsubstituted thioureas 2b with allylic bromides 1 in the presence of DBU (Scheme 1, Table 2).

Scheme 1

Table 1. 2-Iminothiazolidines 6 from isothiouronium salts 3.

6 ^a	R ₁	Time (h)	Yield (%) ^b	Mp (°C)	
6a	C_6H_5	1.5	73	151.5-153.0	
6b	$4-CH_3C_6H_4$	4	47	174.5-176.0	
6c	$4-CH_3OC_6H_4$	4	30	167.5-168.5	
6d	CH₃	15	54	135.0-136.0	
6e	CH_2 = $CHCH_2$	4.5	70	126.5-127.5	
^a $R_2 = CH_3$. ^b Isolated yield.					

hla 2 2 Iminathiazalidinaa 6 from allulia hramidaa

Table 2. 2-Infinitionazolidines 6 from allylic bromides 1.						
6	R ₁	R ₂	Yield (%) ^a	Mp (°C)		
6a	C_6H_5	C_6H_5	95	234.0-235.0		
6b	(CH ₃) ₂ CH	C_6H_5	84	131.5-133.5		
6c	$C_6H_5CH_2$	$4-CH_3C_6H_4$	91	179.5-180.5		
6d	CH ₂ =CHCH ₂	$4-CH_3C_6H_4$	88	141.0-142.0		
6e	$4-CH_3C_6H_4$	C ₆ H₅CH=CH	82	152.5-154.5		
^a Isolated yield.						

CONCLUSION

A simple protocol for the synthesis of 2iminothiazolidines 6 in goods yields via intramolecular aza-anti-Michael addition of Morita-Baylis-Hillman derivatives under mild conditions was developed.

ACKNOWLEDGEMENTS

CAPES, CNPq, INCT-Catálise

- Batra, S.; Singh, V. Tetrahedron 2008, 64, 4511.
 (a) Gorczynski, M. J.; Leal, R. M.; Mooberry, S. L.; Bushweller, J. H.; Brown, M. L. Bioorg. Med. Chem. 2004, 12, 1029. (b) Jawale, D. V.; Pratap, U. R.; Rahuja, N.; Srivastava, A. K.; Mane, R. A. Bioorg. Med. Chem. Lett. 2012, 22, 436.
- ³ (a) Sá, M. M.; Fernandes, L.; Ferreira, M.; Bortoluzzi, A. J. Tetrahedron Lett. 2008, 49, 1228. (b) Sá, M. M.; Ferreira, M.; Bortoluzzi, A. J. Fernandes, L.; Cunha, S. Arkivoc 2010, xi, 303.
- ⁴ Ferreira, M.; Fernandes, L.; Sá, M. M. J. Braz. Chem. Soc. 2009, 20, 564.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil