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Abstract

Treatment options for stroke remain limited. Neuroprotective therapies, in particular, have 

invariably failed to yield the expected benefit in stroke patients, despite robust theoretical and 

mechanistic background and promising animal data. Insulin and insulin-like growth factor 1 

(IGF-1) play a pivotal role in critical brain functions, such as energy homeostasis, neuronal 

growth, and differentiation. They may exhibit neuroprotective properties in acute ischemic stroke 

based upon their vasodilatory, anti-inflammatory and antithrombotic effects, as well as 

improvements of functional connectivity, neuronal metabolism, neurotransmitter regulation, and 

remyelination. Intranasally administered insulin has demonstrated a benefit for prevention of 

cognitive decline in older people, and IGF-1 has shown potential benefit to improve functional 

outcomes in animal models of acute ischemic stroke. The intranasal route presents a feasible, 

tolerable, safe, and particularly effective administration route, bypassing the blood–brain barrier 

and maximizing distribution to the central nervous system (CNS), without the disadvantages of 

systemic side effects and first-pass metabolism. This review summarizes the neuroprotective 

potential of intranasally administered insulin and IGF-1 in stroke patients. We present the 

theoretical background and pathophysiologic mechanisms, animal and human studies of intranasal 

insulin and IGF-1, and the safety and feasibility of intranasal route for medication administration 

to the CNS.
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Introduction

Stroke is the 4th leading cause of death in the USA and the leading cause of long-term 

disability, affecting 795,000 people in the country [1]. It has significant global impact, being 
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the 2nd most common cause of death and the 3rd leading cause of disability worldwide [2, 

3]. Despite significant advances in the care of stroke patients in the last two decades, the 

only intervention with proven benefit in the acute phase is intravenous tissue plasminogen 

activator [4]. Catheter-based endovascular interventions have shown promise, and although 

prior randomized controlled trials failed to yield the expected benefit [5–7], four very 

recently published multicenter randomized trials have yielded significantly positive 

breakthrough results, adding endovascular management to our armamentarium for acute 

stroke management in select patients [8–10] (and SWIF T-PRIME, NCT01657461, results 

announced by Dr Jeffrey Saver at the International Stroke Conference, Nashville, TN, 

February 2015).

In addition to reperfusion-oriented therapies, neuroprotection has attracted significant 

attention in acute ischemic stroke (AIS). Neuroprotection in AIS refers to mechanisms, 

strategies, and interventions aiming to limit the extent of neuronal injury that ensues after 

AIS and results in attenuating the detrimental effect of stroke, reducing mortality, and 

improving functional outcome for stroke victims.

AIS consists of the irreversibly damaged neuronal tissue (referred to as “core infarct”) and 

an additional “at-risk” area, known as the ischemic penumbra. The penumbra is defined as a 

brain area with decreased blood flow that is at risk for permanent damage [11, 12]. 

Maximizing penumbral salvage is thought to lead to improved outcome. Therefore, many 

neuroprotective therapies target different deleterious mechanisms such as inflammation [13–

16], excitotoxicity [14, 17], and apoptosis [18–21] that may contribute to neuronal death 

after an ischemic insult. Despite robust theoretical and mechanistic background and 

promising animal data, neuroprotective therapies have invariably failed to yield the expected 

benefit in human subjects: studies of N-methyl-D-aspartate (NMDA) receptor non-

competitive [22] and competitive [23–26] antagonists, calcium channel blockers [27], free 

radical scavengers [28–31], cellular membrane stabilizers (citicoline) [32, 33], and 

monoclonal antibodies blocking intercellular adhesion molecule-1 [34] either did not result 

in functional improvement or were prematurely terminated due to adverse events and safety 

concerns.

Brief Overview of Cellular and Molecular Mechanisms of Neuronal Death in Ischemic 
Stroke

Brain ischemia and oligemia trigger a cascade of events eventually leading to neuronal 

death: oxygen and glucose depletion causes ATP reduction, production and release of 

reactive oxygen species (ROS), and eventually catastrophic energy failure [35]. Excitotoxic 

mechanisms play a central role: NMDA receptor-mediated calcium entry into the neurons is 

increased, leading to ROS and reactive nitrogen species (RNS) production, protease 

activation, and mitochondrial dysfunction [36]. Inflammation is a significant secondary 

mechanism, and the deleterious cascade is further fuelled by the release of ROS and other 

cytotoxic cytokines by the microglia [37–39]. In addition to immediate cytotoxicity and 

neuronal death, brain ischemia triggers apoptotic mechanisms resulting in further neuronal 

damage [19–21, 40]. Insulin’s pleiotropic effects in the CNS can affect all the 
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aforementioned mechanisms. Figure 1 depicts a summary of the mechanisms implicated in 

the ischemic cascade and potential targets for insulin in response to acute ischemia.

In this review, we summarize the neuroprotective potential of intranasally administered 

insulin and insulin-like growth factor 1 (IGF-1) in AIS patients. We present the theoretical 

background and pathophysiologic mechanisms of AIS that can be modulated by insulin and 

IGF-1, summarize the results of studies of intranasal insulin and IGF-1 administration in 

animals and humans with central nervous system (CNS) conditions, and provide a brief 

synopsis of the safety and feasibility of intranasal route for medication administration to the 

CNS.

Insulin, a Key Neuromodulator in the Brain

Insulin Transport, Localization of Insulin Receptors in the CNS

Insulin and IGF-1 belong to a superfamily of structurally related proteins [41]. Insulin’s role 

in the brain differs from its peripheral actions. Insulin in the adult CNS is primarily derived 

from pancreatic β-cells and is dependent upon transport from the periphery through the 

blood–brain barrier (BBB) [42, 43], via transporter-mediated and saturable transport [44]. 

De novo insulin synthesis in the brain has also been proposed as an alternative source of 

insulin in the CNS [45]. Insulin receptors are abundant throughout the CNS, mostly in 

neurons, whereas the IGF-1 receptors are detected in both neurons and glia [46–48]. They 

are expressed in numerous brain regions, namely in the olfactory bulb, hypothalamus, 

cerebral cortex, cerebellum, and hippocampus [44, 47, 48]. Even wider insulin receptor 

distribution overlaps with expression of downstream proteins and isoforms in insulin-related 

pathways [44, 49]. The insulin/IGF-1-mediated signaling pathways play a central role in 

several critical processes including cognition [50, 51], energy homeostasis [52, 53], food 

intake [54], neuron-astrocyte signaling [55, 56], synapse formation, and neuronal survival 

[50].

Cellular and Molecular Mechanisms—Targets of Insulin

Anti-Inflammatory Effect, Moderator of Oxidative Stress—Insulin has been shown 

to suppress the pro-inflammatory transcription factors, such as nuclear factor κB early 

growth response-1 and activator protein-1 and their regulated gene products, indicated by a 

decrease in plasma concentration of matrix metalloproteinase-9 (MMP-9), vascular 

endothelial growth factor (VEGF), tissue factor (TF), and plasminogen activator inhibitor-1 

(PAI-1) [57–59]. The suppressing effects on MMP-9 and VEGF by insulin may decrease the 

disruption of the blood–brain barrier, preventing cerebral edema, leakage of plasma proteins, 

and inflammatory cells during ischemia [60] thereby attenuating the detrimental effect of the 

inflammatory cascade.

Antithrombotic and Vasodilatory Effects—Insulin-mediated decrease in plasma TF 

and PAI-1 levels may inhibit thrombosis and promote fibrinolysis during acute ischemia, 

producing an anticoagulant effect [60]. Moreover, insulin has also been shown to suppress 

ROS generation [57], increasing the release of endothelial nitric oxide (NO) and the 

expression of NO synthase in the endothelial cells [61]. Insulin receptors are widely 
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distributed within the neurons, capillaries, and small vessel walls, modulating signaling 

within the neurovascular unit to regulate regional perfusion and neuronal activity [46, 47]. In 

the setting of cerebral ischemia, insulin administration increased phosphorylation of protein 

kinase B (PKB; also known as Akt) and endothelial NO synthase protein that are responsible 

for initiating several cellular effects, including improvement of synaptic plasticity and 

neuronal survival following ischemic brain injury [62, 63]. Insulin-related activation of 

endothelial Akt and NO production led to reduction of sympathetic nerve activity, activation 

of ATP-dependent K+ channels and release of vasodilator adenosine, resulting in 

vasodilation [62, 64], thereby increasing blood flow and cell survival [62, 64, 65]. As a 

result, cerebral infarct size and neurologic functional deficit both can be decreased [62]. 

These vasodilatory and antithrombotic effects could enhance the collateral vessel network 

and improve cerebral perfusion in the oligemic (ischemic penumbra) area, resulting in 

smaller final infarct volume and better long-term functional outcomes [62].

Antiapoptotic Effect—Activation of neuronal insulin-receptor-mediated signaling 

pathways (phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase-3β (GSK-3β), 

and the Src homology-2 domain-containing (SHC)/extracellular signal-regulated kinases 

(ERK) 1/2) signaling cascades by insulin has been shown to have a neuroprotectant effect by 

preventing neuronal apoptosis following oxidative stress, and stimulate the synthesis of 

proteins involved in neuronal antioxidant [45, 66].

Modulator of Energy Use—Prevention of Energy Failure—Previous studies 

reported the downregulation of cerebral glucose transporters (GLUTs) after ischemic injury 

[67]. Insulin is known to increase the glucose uptake in the brain, stimulating global cerebral 

glucose metabolism especially in the human brain cortex [53]. Insulin also inhibits the 

neuronal nor-epinephrine uptake, with subsequent activation of glial β-adrenoreceptors, 

converting the glycogen stores in astrocytes to glucose [41, 45] and providing additional 

energy for neurons. However, a recent study did not demonstrate increase of membranous 

GLUT 1 protein level and glucose uptake after insulin treatment in diabetic rats subjected to 

cerebral ischemia [62], suggesting the beneficial action of insulin upon ischemic stroke 

might be independent of cerebral glucose uptake.

Long-Term Regeneration Effects—Other proposed mechanisms of insulin in the brain 

include the increase of neurite outgrowth [68], regeneration of small myelinated fibers [41, 

45], survival of sympathetic and sensory neurons [50], enhancement of neurotransmission 

[69], and improvement of cognitive functions by increasing perfusion [70, 71] and resting 

state functional connectivity of the brain [72].

The Intranasal Route—Feasibility for Insulin

The blood–brain barrier (BBB) protects the brain by allowing the entrance of only specific 

molecules and proteins, but at the same time, it presents an important obstacle for the 

delivery of medications to the CNS. The presence of tight junctions and a characteristic low 

rate of pinocytosis create a seal between opposing endothelial membranes, resulting in a 

very low permeability that favors passage of only very small lipophilic molecules [73], 

significantly limiting brain penetration of systemically administered medications. As a 
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result, intranasal (IN) delivery has attracted the attention of researchers and clinicians as an 

alternative, non-invasive, and effective route for medication delivery. IN drug administration 

presents remarkable advantages: it is painless, non-invasive, easy, and does not require 

sterile preparation [74]. In addition, it allows BBB bypass, systemic absorption reduction, 

and a decrease in first-pass metabolism, reducing potential side effects [75].

The nasal cavity is unique, as it brings the CNS in direct contact with the external 

environment via the olfactory and trigeminal neural pathways [76, 77]. Bipolar olfactory 

sensory neurons project axons that form aggregates, which enter the CNS across the 

cribriform plate; these axons synapse with mitral and tufted cells in the olfactory bulb of the 

brain [76] (Fig. 2).

It was initially proposed that IN drug absorption occurs through the nasal epithelium, with 

subsequent brain delivery via blood vessels [78, 79]. However, recent research suggests that 

paracellular transport, or endocytosis by nerve processes or by olfactory sensory neurons, 

accounts for the majority of drug absorption [73]. Given the rapidity of molecule 

transmission (detected within 1 h from administration), paracellular transport is likely the 

dominant mechanism; endocytosis would result in slower transmission [75]. Areas of 

maximum brain concentration following intranasal administration suggest a rostral–caudal 

direction of transmission [75], with the olfactory and trigeminal pathways being the main 

vectors of transport [75]. Following IN administration of radiolabeled IGF-I in rats, 

nanomolar range concentrations of the substance could be identified in the olfactory bulb, 

frontal cortex, hippocampal formation, cerebellum, brainstem, and trigeminal nucleus [80] 

(Fig. 2). Though the concentration seems to be higher in these areas, it is not restricted to 

them, as there is evidence of more diffuse spread in other cerebral regions [75].

Besides bypassing the systemic circulation and eliminating the side effects, IN 

administration offers significantly higher CNS penetration: administering radiolabeled 

IGF-1 intranasally and intravenously, IN administration resulted in over 100-fold higher 

brain concentration compared to intravenous administration [80], a feature of paramount 

importance in clinical practice, given the fact that poor CNS penetration is the key 

disadvantage limiting the clinical efficacy of many medications targeting CNS processes 

(e.g., antibiotics, antiretrovirals).

Several medications that are currently being investigated for IN delivery for CNS indications 

have shown encouraging results: IN interferon-beta has been studied as a non-invasive 

treatment for multiple sclerosis, targeting the CNS and cervical lymph nodes [81]. IN insulin 

administration was first evaluated as an alternative to subcutaneous insulin injections in 

patients with diabetes mellitus, but research demonstrated a low bioavailability and a high 

rate of therapeutic failure [82]. Instead, current research supports the use of IN insulin as a 

potential treatment to improve memory and cognition not only in healthy participants [83] 

but also in patients with Alzheimer’s disease (AD) [71, 84] and diabetes [70].
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Human and Animal Studies of Intranasal Insulin to the CNS

Given its pleiotropic neuromodulatory effects, insulin has been tested in several human and 

animal studies; the majority of which focus on cognitive performance in cognitively intact 

healthy or diabetic subjects, as well as patients with previously established cognitive 

impairment [51, 83, 85–95]. Despite its promising potential as neuroprotectant in older 

people at risk for cognitive decline, there is a marked lack of both animal and human 

researches in acute stroke. We therefore present a synopsis of studies with primary focus on 

cognition. Although not directly applicable, those can be particularly helpful for designing 

future stroke studies by providing useful information regarding dosing, safety, tolerability, 

and efficacy for a CNS indication. It should also be noted that vascular risk factors (diabetes, 

hypertension, atherosclerosis, hyperlipidemia) associated with AD [96, 97] are also major 

risk factors of cerebrovascular disease, and besides resulting in AIS and intracerebral 

hemorrhage, they also cause cerebral dysfunction in more overt ways, such as subclinical 

decreased cerebral blood flow [98] and silent strokes [96].

Animal Studies

AD is characterized by a series of changes in brain microstructure including depositions of 

β-amyloid peptides, abnormal hyperphosphorylation of tau protein and glycogen synthase 

kinase-3β, which are considered to be the pathologic substrate and biomarkers of 

neurodegeneration and are linked to most of the cognitive deficits found in AD patients [99–

102]. In a study of AD rat models comparing IN with subcutaneous insulin administration 

for 4 weeks, the level of protein kinase B and glycogen synthase kinase-3β normalized and 

those of hyperphosphorylated tau were significantly reduced in the IN group [103].

Human Studies

Beneficial effects of insulin on cognition and brain function are summarized in Table 1.

IN administration of insulin plays an important role in improving mood [109] and cognitive 

task performance in healthy [71, 83, 86] and in memory-impaired individuals [51, 71]. IN 

administration of insulin increased the feeling of well-being and self-confidence and 

decreased anger in a cohort of healthy participants acutely and after 8 weeks of daily 

treatment with 40 IU [83], which supports the results of previous studies evaluating the 

effects of IN insulin on mood [110]. In healthy adults, prolonged intranasal insulin intake 

improved long-term declarative memory [83, 86], as well as verbal working memory 

performance [106]. Similarly, important improvements have been found in patients with 

mild cognitive impairment (MCI) and AD after intranasal insulin administration: a study 

measuring cognitive tasks after administering 20 IU of daily IN insulin in patients with early 

AD demonstrated improved attention, functional status, and verbal information retention in 

the treated versus the placebo group after 21 days of therapy [84]. Treatment with 20 IU of 

intranasal insulin led to a significant improvement in delayed memory, enhanced the 

performance in general cognition measures in patients with AD, and improved functional 

status in both AD and MCI patients over a 4-month period [71]. In the same study, subjects 

treated with 40 IU of INI also performed better on functional metrics, as well as general 

cognition measures. Additional effects on regulation of body weight and body composition 
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were found after 8 weeks of treatment with 40 IU of insulin, with a great impact in reduction 

of weight and body fat [114], possibly linked to an increase in cerebral blood flow in the 

insular cortex [115], which could represent a potential treatment for obesity, another 

important stroke risk factor.

Following a distinctly different logic, the Stroke Hyperglycemia Insulin Network Effort 

(SHINE) trial (NCT01369069) is investigating the safety and efficacy of intensive glucose-

lowering randomizing acute stroke patients to either targeted glucose concentration with the 

use of intravenous glucose or standard of care subcutaneous insulin. The main benefit of 

insulin in this trial is expected to be exerted through its hypoglycemic action, which is 

distinctly different from the mode of action of IN insulin as described above; among other 

properties, IN insulin does not yield a hypoglycemic response which would make its 

concurrent use with intravenous insulin possible and safe.

Safety and Risk of Hypoglycemia

A very significant advantage and common denominator to all the studies using IN insulin as 

a therapeutic intervention to improve cognitive function is that none of them have 

demonstrated significant adverse effects [51, 70, 71, 83, 84, 86]. It was safe and well 

tolerated by the vast majority of subjects. The minimal risk of hypoglycemia is reinforced by 

its lack of efficacy as glucose-lowering treatment in type 1 [116, 117] and type 2 diabetes 

[113, 118]. A very small (4 %) acute lowering of serum glucose in healthy young subjects 

was attributed to systemic absorption of small amounts of insulin mainly through inhalation 

and normalized by 60 min [104]. The single dose of 40 IU of IN insulin used in clinical 

studies did not have significant effects on serum or subcutaneous glucose levels, heart rate, 

or blood pressure [93, 106], acutely or chronically [105] .

IGF-1, Animal, and Human Data

Physiology and Mechanisms of Action

IGF-I constitutes a single-chain polypeptide with structural homology to the proinsulin and 

plays an essential role in metabolic functions such as glucose metabolism. It is produced 

mainly by the liver in response to the endocrine growth hormone stimulus; its bioavailability 

is regulated by IGF-binding proteins [107, 108], and its actions are mediated by specific 

membrane receptors, abundantly expressed in the brain [108]. During the normal aging 

process, IGF-1 levels decline and low IGF-1 levels have been correlated with frailty and 

decrease in cognitive abilities [111]. It plays an important role in the development, cell 

differentiation, plasticity, and survival of the nervous system. It promotes proliferation, 

differentiation, and maturation of neuronal and glial cells across all stages of cellular 

development [108, 112, 119] and mediates neurite formation, axogenesis, synaptogenesis 

[112], and myelin formation [119, 120]. It is also critically implicated in key synaptic 

processes such as long-term potentiation and long-term depression, which underlie memory, 

learning, and neuroplasticity by regulating the synthesis and trafficking of glutamate and γ-

aminobutyric acid receptor subunits, alteration of ion channel activity and neuronal 

excitability, and structural changes in the synapse [112].
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Its neuroprotective effects are exerted largely through the same mechanisms detailed above 

for insulin: in vitro studies have shown it to protect against excitotoxicity and oxidative 

stress [121–123] and to exert a strong antiapoptotic effect [112]. In vivo studies confirmed 

protection against hypoxic–ischemic insults [124], and it is generally viewed as a neuronal 

survival factor [125]. Besides limiting the acute phase damage, IGF-I could play a major 

role in the long-term recovery process from ischemic stroke, enhancing regeneration: it 

stimulates in vitro proliferation and differentiation of neural and oligodendrocyte progenitors 

[120] and myelin expression [119], which are probably the underlying mechanisms of its 

stimulating effect on remyelination [119] and explain the beneficial effect on white matter in 

addition to neurons. Its pivotal role in neuroplasticity [112] can be particularly important for 

the recovering brain after a stroke [126, 127].

Human Epidemiologic Observations

Epidemiologic studies in humans have reported an inverse relation between plasma IGF-1 

levels and risk of ischemic stroke [128] Serum IGF-1 levels decline with age, lack of 

exercise, and in metabolic syndrome, and a low IGF-1 level is independently associated with 

increased risk of stroke [107]. Low circulating IGF-1 levels are associated with worse 

outcome after stroke [129, 130] although this correlation should be interpreted cautiously 

and not taken to necessarily imply a causative link.

Studies in Animal Stroke Models

Although no human studies in stroke have been reported, several studies have evaluated the 

effect of IGF-1 administration in experimental middle cerebral artery occlusion (MCAO) 

AIS models, using several different administration methods:

Subcutaneous administration of 200 μg/day of IGF-1 for 7 days starting 30 min after the 

insult resulted in reduced final infarct volume and a significant improvement of functional 

outcome [131]. In another study, acute administration of IGF-1 30 min before or 2 h after 

MCAO followed by 24 h reperfusion in diabetic rats decreased the lesion volume measured 

by MRI as well as the number of apoptotic cells in the cortical penumbra area [132]. A 

different study tested the IGF-1 gene transfer using adenovirus-associated IGF-1 constructs 

in mice using a Sendai virus [133]. Gene transfer proved to be neuroprotective and increased 

survival rates when applied 30 min after bilateral artery occlusion [133]. IGF-1 administered 

directly into the cerebral ventricles 30 min after stroke induction resulted in reduced infarct 

size and improved functional outcome [131], and topical IGF-1 application on the cerebral 

cortex had a similar effect of reduced infarct size and improved neuronal survival [134].

Three studies investigated the efficacy of IN administered IGF-1 in MCAO model in male 

rats: IGF-1 administered 2, 4, or 6 h following MCAO revealed a time-dependent beneficial 

effect, with 54 % (vs. 39 and 29 %, respectively) reduction in stroke volume in the animals 

treated at the 2 h time-point [135]. Reduced apoptosis and significant improvement in motor 

and sensory function were seen in the same study [135]. A similarly designed study utilizing 

the same IGF-1 dose (150 μg) in which animals where treated 10 min and 24 and 48 h 

following MCAO corroborated the potential time-sensitive effect of IGF-1, as the functional 

improvement was already evident at day 1 [76]. A pattern of dose-dependent effect also 
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emerged, with the dose of 37.5 μg providing no imaging or functional benefit [76], as 

opposed to 75 [136] and 150 μg [76, 135].

Despite the universally positive outcomes of the reported animal studies, several 

shortcomings should be acknowledged: potentially neuroprotective anesthetics such as 

halothane, isoflurane, and pentobarbital were used, potentially augmenting the effect of 

IGF-1. Most of the studies were conducted using normal adult rats, diabetes- and 

hypertension-free, both conditions highly prevalent in human subjects with stroke and 

known to influence the short-term effect and recovery in MCAO animals [137, 138]. Many 

of the studies were characterized by lack of power analysis, randomization of animals and 

blind induction of treatment [139] and especially regarding the intranasal route, lack of 

replication from independent groups [135, 136, 139]. In short, several of the criteria set forth 

by the Stroke Therapy Academy Industry Round Table (STAIR) for optimal conduct of 

preclinical research in stroke [140] were not met. However, these studies have shed light on 

some important insights regarding the usefulness of IGF-1 in animal models and its potential 

application as neuroprotective agent for human beings.

Discussion

Insulin presents an appealing candidate neuroprotectant agent for AIS. Its complex 

physiology and pleiotropic CNS effects allow it to intervene in several key pathologic 

processes that unfold in the immediate aftermath of an ischemic insult (Fig. 1). This offers a 

relative advantage compared to previously tested neuroprotectants that were mostly focused 

on singular mechanisms, which was a possibly significant reason for failure, given the 

complexity and interconnection of neuronal death mechanisms in AIS. Other compounds 

with putative neuroprotective properties considered for intranasal delivery in stroke patients 

tend have a more narrow focus on a specific step of the ischemic cascade: deferoxamine, an 

iron chelator, which has been shown to improve outcomes in rat stroke models [141] mainly 

exerts its effect by limiting the effects of iron toxicity and ensuing inflammation. IN 

caspase-9 inhibitor targets exclusively a specific step of the apoptotic pathway [142]. 

Erythropoietin, which has been found to increase the efficacy of IN IGF-1 in animal stroke 

models, primarily acts through the PIK-3 apoptotic pathway [143]. Vascular endothelial 

growth factor, also shown to improve outcomes in rat stroke models, exerts its effect mainly 

through angiogenesis, although it seems to have additional neuroprotective properties, 

rendering its effect to be more diverse [144]. The neuroprotectant potential of hypothermia is 

being currently evaluated in several trials (Cooling Plus Best Medical Treatment Versus Best 

Medical Treatment Alone for Acute Ischaemic Stroke (EuroHYP-1; NCT01833312), 

Hypothermia in Acute Ischemic Stroke—Surface Versus Endovascular Cooling, (HAIS-SE; 

NCT01665885), The Intravascular Cooling in the Treatment of Stroke 2/3 Trial (ICTuS2/3; 

NCT01123161), Hypothermia in Acute Stroke With Thrombolysis Imaging Evaluation of 

Revascularization (HASTIER; NCT01778855) utilizing a similar rationale of pleiotropic 

effect on several deleterious mechanisms. It should be noted that the similarity between the 

two approaches is limited to the conceptual level, as their modes and duration of delivery, 

potential side effects, and tolerability differ significantly.
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Additionally, insulin is naturally occurring in the CNS, and therefore, its administration 

could be viewed as restoration or augmentation of physiologic processes as opposed to 

introducing novel molecules that irreversibly block or modify singular molecular pathways 

or receptors. The latter can lead to untoward consequences either in the form of side effects, 

as occurred with the NMDA competitive antagonist dextrorphan and its phenylcyclidine-like 

properties causing seizures and hallucinations [22], or more unpredictable disruption of 

potentially beneficial recovery mechanisms. As an example, it is well established that 

excitotoxicity plays a central role in neuronal death following AIS [17]. However, the same 

glutamate receptor-mediated mechanisms are also implicated in normal brain functions, 

including restorative mechanisms such as long-term potentiation [14, 145], which might be 

crucial for stroke recovery. It is likely that some of the previously tried neuroprotectants 

failed, although potentially beneficial in the acute phase, because of their interference with 

the neuroplasticity process. Data from healthy and cognitively impaired human subjects have 

not raised any concerns over the long-term effects of intranasal insulin administration on 

cognition and mood; on the contrary, all relevant studies indicate a beneficial effect [71, 83, 

84].

The intranasal route presents several considerable advantages: it is feasible, painless, and 

well tolerated by patients. It does not require special equipment, intravenous administration, 

or sterilization techniques. It has been tested extensively in human subjects without any 

safety concerns. It dramatically improves penetration to the CNS, bypassing the BBB, which 

has been a significant limitation of practically every study with systemic administration of 

medications targeting the CNS. Given that the systemic circulation is bypassed, there are no 

first-pass hepatic metabolism and no concerns of systemic side effects. In the case of insulin, 

this is particularly significant, as systemic administration would inevitably increase the risk 

of hypoglycemia, which could have detrimental effect on the injured brain [146, 147].

Despite the significant potential advantages of IN insulin in AIS, current limitations and 

gaps of knowledge should be acknowledged: although there is robust clinical data supporting 

the efficacy and safety of IN insulin in healthy adults and subjects with MCI or AD, there is 

a paucity of data from human subjects and animal models of AIS. Extrapolating the positive 

effect on cognition in otherwise healthy adults to AIS patients without prior careful in vivo 

experiments confers risks. A common reason for failure of prior neuroprotectant studies was 

escalation to phase II or phase III trials without robust preliminary and animal data. 

Therefore, carefully planned experiments fulfilling the Stroke Treatment Academic Industry 

Roundtable (STAIR) criteria [140] should ideally be performed before introducing the 

treatment to human AIS subjects. Given its good safety, efficacy, and tolerability profile in 

healthy adults and MCI and AD patients, a case for careful phase I trial of IN insulin in AIS 

patients could be made. It should be noted IN insulin fulfills several of the consensus 

recommendations set forth by the VII Stroke Treatment Academic Industry Roundtable 

(STAIR), regarding priorities for research on neuroprotective and/or adjunctive therapies for 

AIS [148]: as stated above, its mechanism of action is pleiotropic, conceptually akin to 

hypothermia (which is often cited as prototypical example of pleiotropic intervention in the 

STAIR recommendations). Its intranasal mode of delivery is selective and maximizes 

delivery to the CNS, while minimizing systemic exposure.
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Several other issues remain currently unaddressed: when is the optimal time for treatment 

initiation? Following the dogma “time is brain” and adopting an emergent approach similar 

to IV tissue plasminogen activator administration protocol are probably reasonable, and this 

is further supported from preliminary animal studies that indicate a time-dependent benefit 

from IN administration of IGF-1 [76]. Rapid administration as close to the stroke onset as 

possible is recommended by the STAIR committee as a measure to maximize the 

neuroprotective benefit [144] and should be incorporated in every future animal or human 

study in the acute phase of stroke. This adherence to a strict time window is considered a 

sine qua non in acute stroke neuroprotection, to maximize the possibility that the study will 

yield a benefit; non-adherence to a strict time window might solely undermine the potential 

success an otherwise promising treatment.

Duration of treatment is another area of uncertainty: the postulated physiologic effects of 

insulin suggest that it might be beneficial beyond the hyperacute phase of AIS, as it is 

implicated in neuronal regeneration. This is further supported by more prolonged use in AD 

patients [71, 84], with a clear benefit and no safety concerns. The optimal dose remains 

unknown; the 20–40 IU doses utilized in AD subjects might be efficacious in AIS, but given 

the significant differences in the pathophysiology of the two processes, a dose escalation 

study is necessary.

Lastly, an important issue that remains unclear is whether insulin or IGF-1 would yield more 

favorable results. Though closely related, they are not necessarily identical and might have 

differing or complementary effects in AIS. A detailed discussion of the differences between 

the two molecules’ structural and functional properties and CNS actions would exceed the 

scope of this review. Interestingly, IN insulin has been tested extensively in human subjects 

but with non-AIS pathology, whereas IGF-1 has been almost exclusively tested in animal 

stroke models, both with beneficial effects. Given their high structural and functional 

homologies, it would be reasonable to apply a similar research approach and logic to both 

molecules. However, significant scientific rigor and caution are necessary in evaluating 

theses strategies to avoid extrapolating assumptions from one molecule to the other and 

misattributing properties that are not robustly justified by the experimental data. Direct 

comparison studies, first in animal stroke models, appear to be a necessary future step in our 

effort to accurately characterize the efficacy of each molecule and guide the decision on 

which of the two might be more suitable for further development. In summary, intranasally 

administered insulin presents an attractive candidate therapeutic agent in AIS with 

pleiotropic neuroprotective actions, encouraging data from human and animal studies and a 

simple, safe, and well-tolerated route of administration. Further, carefully designed animal 

and human studies are required to establish its efficacy as a neuroprotectant in AIS. Lessons 

learned from prior failures of initially promising neuroprotective therapies should be taken 

into account in order to avoid methodological and study design flaws that could limit the 

performance of a promising therapeutic agent.
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Fig. 1. 
Mechanisms implicated in the ischemic cascade and potential targets for insulin in response 

to acute ischemia. “Stop” signs indicate the steps of the ischemic cascade where insulin can 

intervene to limit the extent of ischemic damage. Notice that its impact can be exerted along 

several different steps and mechanisms, indicative of its pleiotropic effect
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Fig. 2. 
The intranasal route of molecule transport to the CNS. Paracellular and axonal transport 

along the olfactory and trigeminal neurons results in increased concentrations in the 

highlighted brain areas (although not limited to those)
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