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Intransitive competition is widespread in plant communities and maintains their 1 

species richness 2 
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Abstract 57 

Intransitive competition networks, those in which there is no single best competitor, 58 

may ensure species coexistence. However, their frequency and importance in 59 

maintaining diversity in real-world ecosystems remains unclear. We used two large 60 

datasets from drylands and agricultural grasslands to assess: 1) the generality of 61 

intransitive competition, 2) intransitivity-richness relationships, and 3) effects of two 62 

major drivers of biodiversity loss (aridity and land-use intensification) on intransitivity 63 

and species richness. Intransitive competition occurred in >65% of sites and was 64 

associated with higher species richness. Intransitivity increased with aridity, partly 65 

buffering its negative effects on diversity, but was decreased by intensive land use, 66 

enhancing its negative effects on diversity. These contrasting responses likely arise 67 

because intransitivity is promoted by temporal heterogeneity, which is enhanced by 68 

aridity but may decline with land-use intensity. We show that intransitivity is 69 

widespread in nature and increases diversity, but it can be lost with environmental 70 

homogenization.   71 
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INTRODUCTION 72 

Species coexistence is made possible by a range of mechanisms including differential 73 

resource uptake, frequency-dependent enemy attack or limited dispersal (Chesson 2000; 74 

HilleRisLambers et al. 2012). Most of these mechanisms reduce competitive exclusion; 75 

however, such reduction is not required for species coexistence because the absence of a 76 

competitive hierarchy may allow species coexistence even if they compete strongly 77 

(Gilpin 1975; Wootton 2001). This lack of competitive hierarchy within a community is 78 

nature’s equivalent to the rock-paper-scissors game: species A excludes B (A>B), B 79 

excludes C (B>C) but C excludes A (C>A; e.g., Kerr et al. 2002). Such networks of 80 

interactions are termed intransitive competition networks and may enhance species 81 

coexistence because no species is a universally weak competitor (Laird & Schamp 82 

2006, Rojas-Echenique & Allesina 2010).  83 

Intransitivity can emerge and allow species coexistence via different 84 

mechanisms. Niche differentiation can generate intransitivity if species compete for the 85 

same nutrients but have differential competitive abilities depending on their balance 86 

(e.g., N/P ratios) or on the presence of a third species (e.g., Huisman et al. 2001; Borer 87 

et al. 2007). Such intransitivity can be enhanced by temporal resource heterogeneity 88 

and/or spatial heterogeneity among different interaction neighborhoods (Allesina & 89 

Levine 2011). Alternatively, intransitivity may arise if the hierarchy in species’ ability 90 

to exploit resources differs from their ability to prevent resource uptake by others (Buss 91 

1980; Laird & Schamp 2006). Intransitive competition networks may be common in 92 

nature, although studies empirically demonstrating them have generally focused on 93 

species-poor assemblages of, e.g., bacteria (Kerr et al. 2002), lizards (Sinervo & Lively 94 

1996), or intertidal organisms (Buss 1980). 95 
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Mathematical models have provided further insights into the underlying 96 

mechanisms and ecological implications of intransitive competition networks (Gilpin 97 

1975; Laird & Schamp 2006; Allesina & Levine 2011). However, modelling studies 98 

alone cannot reveal how frequent intransitivity is or how many species in natural 99 

communities are maintained by it. Indeed, the role of intransitive competition in 100 

structuring plant communities remains unclear despite years of research devoted to 101 

answering this question. Some studies have found that intransitivity is an important 102 

mechanism structuring plant communities (e.g., Freckleton et al. 2000), but others have 103 

suggested the opposite (e.g., Grace et al. 1993). A potential explanation for these 104 

contrasting results is that the degree of intransitivity depends on the species pool 105 

considered. As with many measures of community organization, considering an overall 106 

metric for all species in the community can render very different results than more 107 

detailed analyses of a particular subset of species (e.g., Stone & Roberts 1992; Ulrich & 108 

Gotelli 2007). Similarly, if competition is intransitive amongst dominant or amongst 109 

rare species, but strongly hierarchical (i.e., transitive) between such groups, 110 

communities would be organized by nested intransitive networks. Such nestedness 111 

could increase coexistence, but would result in no overall signal of intransitivity for the 112 

whole community. To test this idea field assessments quantifying intransitivity for 113 

different groups of species within a community are necessary. 114 

 The degree of intransitivity in plant communities might also be altered by two 115 

of the major global change drivers (GCDs hereafter) threatening biodiversity in 116 

terrestrial ecosystems: land-use intensification and climate change (Sala et al. 2000). 117 

Both GCDs alter heterogeneity and productivity, which in turn are likely to affect 118 

intransitive competition networks. Intransitivity might be more common and important 119 

for coexistence in productive environments, because environmental filtering is relaxed 120 
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and competition may be more important than disturbance or abiotic stress in structuring 121 

communities (e.g., Gilpin 1975; Bowker et al. 2010). Productivity increases with 122 

fertilization (Suding et al. 2005; Manning 2013), which would suggest more 123 

intransitivity at higher land-use intensity.  Modelling and empirical evidence suggest 124 

that intransitive competition is more likely to occur in heterogeneous environments 125 

(Huisman et al. 2001). In these cases, niche specialization coupled with different 126 

limiting resources across local interaction neighbourhoods can generate, or interact 127 

with, intransitive competition enhancing species coexistence (Allesina & Levine 2011). 128 

In this regard, GCDs can modify the level of intransitivity in a community by altering 129 

not only the spatial, but also the temporal heterogeneity in resources. High land-use 130 

intensity (fertilization or overgrazing) can reduce variation in biomass over time (Osem 131 

et al. 2002; Grman et al. 2010), suggesting that temporal heterogeneity is reduced at 132 

high land use intensity. On the other hand, climate change could increase temporal 133 

heterogeneity, especially in drylands, where water availability is often more variable in 134 

drier than wetter environments (Whitford 2002). The well-known negative effects of 135 

GCDs on diversity may therefore be buffered or enhanced depending on their indirect 136 

effects on the degree of intransitivity (Fig. 1). However, the interrelationship between 137 

GCDs and the competitive hierarchy amongst coexisting species is poorly understood. 138 

To address these research gaps we used a recently developed method to measure 139 

the degree of intransitivity from observational data (Ulrich et al. 2014a) using two large 140 

datasets describing plant diversity responses to changes in land use or aridity. We tested 141 

the following hypotheses: i) intransitive competition is frequent in plant communities, 142 

ii) intransitive networks are more common amongst species similar in dominance, but 143 

transitive competition (i.e., strong hierarchy among competitors) prevails between 144 

species with contrasting dominance levels (i.e., intransitive competition networks are 145 
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nested), iii) the degree of intransitivity in plant communities is positively related to their 146 

species richness, and iv) increases in intransitivity in response to more temporally 147 

heterogeneous or fertile environments mitigate the impact of increasing aridity and 148 

intensive land uses on plant richness.  149 

 150 

MATERIALS AND METHODS 151 

Study sites 152 

We used two large-scale datasets: the occurrence of plant species in European 153 

grasslands along land-use intensity gradients (the German Biodiversity Exploratories; 154 

Fischer et al., 2010), and the occurrence of plant species along aridity gradients in 155 

global dryland ecosystems (the BIOCOM project; Maestre et al., 2012). These two 156 

datasets complement each other and allow us to assess the overall frequency and drivers 157 

of intransitivity across a wide range of communities varying in habitat type, species 158 

pool and environmental conditions as well as across datasets with different sampling 159 

methods (see details below). 160 

The Biodiversity Exploratories include 1500 grassland plots, varying in land use 161 

and situated in three regions of Germany (Fischer et al., 2010; Blüthgen et al. 2012; 162 

Socher et al. 2013). In each of these 4 m × 4 m grassland plots, the relative cover of all 163 

plant species was recorded. In the center of each plot, a 10 cm-depth soil sample was 164 

taken to measure total soil nitrogen and soil organic carbon concentrations (Fischer et 165 

al. 2010). Information on land use was obtained via questionnaires sent to land owners; 166 

these asked about grazing type (permanent, rotational, none), livestock type (sheep, 167 

cattle or other), fertilization (fertilized or unfertilized), mowing (number of cuts per 168 

year), and the presence of water drainage or water retention structures (see Fischer et 169 

al., 2010; Blüthgen et al. 2012 for full methodological details). This classification 170 
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resulted in 40 different levels of land-use intensity and management types. Hereafter, 171 

we refer to this dataset as “grasslands”. 172 

Data from the BIOCOM project were gathered in 224 dryland sites (all with 173 

aridity index values [precipitation/potential evapotranspiration] < 0.65) scattered across 174 

all continents except Antarctica. These sites include a variety of habitat types 175 

(grasslands, shrublands and open woodlands). In each habitat type, the sites were placed 176 

spanning a natural gradient of aridity (full details in Maestre et al. 2012). At each site 177 

plant species and their relative cover were recorded in four 30m-long quadrats, divided 178 

into 80 1.5 m × 1.5 m quadrats. Climatic variables were extracted from the WorldClim 179 

database (Hijmans et al. 2005), and were used to derive an aridity index 180 

(precipitation/potential evapotranspiration). To ease interpretation, we use the 181 

complement of the aridity index (1-aridity index) so that higher levels of this metric 182 

indicate drier environments (Delgado-Baquerizo et al. 2013). Hereafter, we refer to this 183 

dataset as “drylands”. 184 

 185 

Data organization and measurement of the degree of intransitivity 186 

We measured the degree of intransitivity in the grassland and dryland datasets by using 187 

the Markov chain approach of Ulrich et al. (2014a). Under the assumption that observed 188 

species abundances represent the equilibrium abundances of the species forming the 189 

community, the method allows us to assess 1) to what degree competition predicts 190 

observed species abundances, and 2) the degree of intransitivity within a given 191 

competition network. As a measure of species abundances, we used the cover of each 192 

species within each quadrat (drylands) or plot within a cluster (grasslands; see how 193 

clusters were assembled below). Thus a single metric of intransitivity was calculated by 194 

each site (drylands) or cluster (grasslands). At equilibrium, observed species 195 
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abundances should be equal to the dominant eigenvector of a hypothetical species × 196 

species transition matrix (i.e., the matrix that contains the probability that one species 197 

replaces another in a given quadrat [drylands] or plot [grasslands]); as used in Markov 198 

chain models. 100,000 patch-transition species by species matrices are randomly 199 

generated, of which the 100 best fitting ones (i.e. matrices where the dominant 200 

eigenvector is closest to the observed species abundances) are chosen. The match (R2) 201 

between simulated and observed abundances informs about the importance of 202 

competition, with higher values meaning higher importance of competition for 203 

community assembly. We used for further analyses those sites or clusters with match 204 

levels (R2) > 0.60, as their metrics of intransitivity are reliable. Results using a higher 205 

threshold (R2 > 0.70) were qualitatively similar to those presented here and are not 206 

shown. 207 

If competition is fully transitive then one species will always have a higher 208 

probability of displacing the rest (represented as high transition coefficients between 209 

species in the matrix columns vs those in the matrix rows; Fig. 1). If however, there are 210 

competitive reversals (species in the rows displace species in the columns, blue numbers 211 

in Fig. 1) then this indicates intransitivity. The degree of intransitivity can be measured 212 

as the number of competitive reversals found in the best-fitting matrices (see also Laird 213 

& Schamp 2006). Our intransitivity metric (I) is the normalized count of these 214 

competitive reversals in the patch-transition matrix (equation 1; Ulrich et al. 2014a):  215 

ܫ ൌ 1 െ 	߬௉ ൌ
ଶேሺ௣೔ೕழ௣ೖೕሻ

௠ሺ௠ିଵሻሺ௠ିଶሻ
 (i < k and i, k ≠ j)   (1) 216 

where pij is the probability that species i (in the column) replaces species j (in the row) 217 

in a given patch; j ranges from 1 to m (total number of species), i from m to m-1, and k 218 

from i+1 to m. Increasing values of I indicate higher levels of intransitivity within the 219 
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community. Our metric (I), therefore, ranges from 1 (fully intransitive community) to 0 220 

(fully transitive community; Fig. 1). 221 

Although spatial heterogeneity between local neighbourhoods may enhance 222 

intransitive competition by providing more opportunities for niche differentiation, it 223 

may also complicate its measurement and make competition ranks more difficult to 224 

estimate from the observed abundances (e.g., Ulrich et al. 2014a). Thus, for our method 225 

to yield reliable results, quadrats within a given site (drylands) or plots within a given 226 

cluster (grasslands) should be as homogeneous as possible. To meet this requirement, 227 

and according to their different structure, the two datasets were organized differently 228 

(henceforth we refer to them as grassland clusters and dryland sites). As the grasslands 229 

dataset lacked within-plot replication, we organized the 1500 plots into 190 plot clusters 230 

with the same land-use type and region to have enough replication to calculate I. The 231 

high number of species found in the grasslands (318–365, depending on the region; 232 

Socher et al. 2013) made it impossible to produce clusters of plots which were relatively 233 

homogenous in their environmental conditions and contained a sufficient number of 234 

plots to analyze all possible interactions between species pairs. Therefore, we only 235 

considered the five dominant species within each cluster and divided the dataset in 236 

clusters of ~ 6–10 plots (always greater than 5, the number of species considered). 237 

When 12 or more plots were found within the same land-use type and region, we 238 

divided them into two clusters according to total soil nitrogen and organic carbon 239 

concentrations to create the most environmentally homogeneous, and the highest 240 

number, of clusters possible.  241 

To allow comparison between both datasets, we also considered the five 242 

dominant species within each site in drylands. Using this database we assessed changes 243 

in our intransitivity metric as a function of the number of species considered, 244 
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progressively including a larger number of subordinate species. This allowed us to 245 

determine if the probability of detecting intransitive competition varied depending on 246 

the target species pool, and therefore if intransitive competition networks were nested 247 

(present only amongst the dominant species) or not (see full results in Appendix S1).  248 

 The methodology used here has three important assumptions to which our results 249 

are reasonably robust. First, it assumes that the sampled communities are at equilibrium. 250 

The high match between observed and predicted abundances (see results), and the 251 

consistency of match levels across all land-use intensities (Appendix S2) suggest that 252 

violations of this assumption have not affected the results. Second, we assume that 253 

species are not dispersal limited within our sites or clusters. Dispersal limitation is 254 

unlikely because the selected species are abundant across the three regions (grasslands; 255 

see also Appendix S3), and sampling quadrats were close to each other (drylands). 256 

Third, we assumed our sites to be environmentally homogeneous. To further determine 257 

that environmental variation between sites did not drive intransitivity measures, we 258 

recalculated intransitivity whilst correcting for environmental conditions and this led to 259 

similar values (see Appendix S2). 260 

Separating intransitive competition from other processes enhancing coexistence 261 

is difficult from observational, or even manipulative, studies. The main distinguishing 262 

characteristic between these mechanisms is that intransitivity relies on strong 263 

competition, i.e., it reduces co-occurrence of plant species within local interaction 264 

neighbourhoods (i.e., quadrat [drylands] or plot [grasslands] scale; Laird & Schamp 265 

2006). The latter should lead to segregation of species between sampling quadrats. 266 

Those coexistence mechanisms relying on reduced competition (e.g., differential 267 

resource uptake), instead, should allow co-occurrence of different plant species at the 268 

local interaction neighbourhood scale. When applied to the matrices of the drylands 269 
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dataset, our intransitivity metric was positively correlated with the level of species 270 

spatial segregation between quadrats (Spearman´s  = 0.59; Appendix S4). These 271 

results suggest that a high level of competitive exclusion within these local interaction 272 

neighbourhoods took place in the studied plots, and thus a strong confounding effect of 273 

other local-scale coexistence mechanisms that reduce competition in our results is 274 

unlikely.   275 

 276 

Statistical analyses 277 

-Extent of intransitive competition in nature and its relationship with species richness 278 

We evaluated whether average values of our intransitivity metric (I) differed from 0.05 279 

(indicating fully transitive communities) by using Wilcoxon’s matched pairs test. The 280 

threshold of 0.05 was obtained from simulated matrices; those with intransitive loops 281 

always had predicted values of I > 0.05, whereas the 95% confidence limits of I in test 282 

matrices with no intransitivity always included the value of 0 (Ulrich et al. 2014a). 283 

Separate tests were performed to assess whether or not metrics calculated for each 284 

dataset (clusters in grasslands or sites in drylands) differed from this threshold. To 285 

compare the level of intransitivity between the two datasets, we used Mann-Whitney 286 

rank tests because the data departed from a normal distribution. The relationship 287 

between intransitivity and species richness was evaluated by performing OLS model II 288 

regressions using the lmodel2 package (Legendre 2008) for R version 3.0.2 (R 289 

Development Core Team 2013). Wilcoxon and Mann-Whitney rank tests were 290 

conducted with SPSS 13.0 for Windows (SPSS Inc., Chicago, IL, USA). 291 

 292 

 293 

 294 
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- Relationship between intransitivity, global change drivers and diversity  295 

We used structural equation modeling (SEM; Grace 2006) to analyze the relationships 296 

between land use (grasslands) or aridity (drylands), intransitivity and species richness. 297 

Our a priori model followed the rationale stated in the introduction (see also Fig. 1): 298 

aridity and land use affect both species richness and intransitivity, and intransitivity 299 

affects species richness (see Appendix S5 for full details and rationale). Both datasets 300 

have strong spatial clustering (sites were sampled within regions in the grasslands and 301 

within countries in the drylands). To account for this, we introduced the geographic 302 

coordinates in the SEMs. Latitude sufficed to represent the spatial distribution of the 303 

grassland dataset (the three regions were distributed along a North-South axis) whereas 304 

both latitude and longitude were necessary to represent the spatial distribution of the 305 

dryland sites, which were globally distributed. 306 

The different land-use categories (grazing and livestock types, number of cuts 307 

per year, fertilization or water management) from the grasslands dataset were simplified 308 

with a non-metric multidimensional scaling (NMDS), which can handle categorical and 309 

continuous variables (McCune & Grace 2002). A two-dimensional NMDS solution was 310 

sufficient to represent the data. High values along axis 1 indicated the more intense 311 

land-use practices of water drainage and permanent grazing (rather than rotational 312 

grazing). High values along axis 2 were associated with grazing by livestock other than 313 

sheep (mostly cattle, which have a larger impact in terms of biomass removal and plant 314 

diversity than sheep; Blüthgen et al. 2012; Socher et al. 2013) and more frequent 315 

mowing (axis 2; details in Appendix S5).  316 

An additional set of analyses were performed as an alternative to data reduction 317 

with NMDS in the grasslands dataset. Land-use factors could vary in their effects (e.g., 318 

grazing vs. fertilization) and also in their effect within regions (Socher et al. 2013). 319 
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Thus, separate SEMs using grazing, fertilization, number of cuts and water management 320 

as different land-use predictors were performed, and the same a priori model structure  321 

was used to analyze each region separately (details and results in Appendix S6). SEM 322 

analyses were performed using AMOS for windows (SPSS Inc., Chicago, IL, USA). 323 

 324 

RESULTS 325 

Extent of intransitive competition in nature and its relationship with species 326 

richness  327 

Intransitive competition networks (those in which I > 0.05) were detected at most study 328 

sites (Wilcoxon’s test: z < -8.9; P < 0.001; N > 150 in both datasets; Fig. 2). The 329 

simulated matrices satisfactorily reflected observed abundances in 92% of the grassland 330 

and 78% of the dryland sites (R2 ≥ 0.70 in both cases, although these percentages were 331 

smaller when including environmental variables; Appendix S2).  Although the average 332 

degree of intransitivity did not change across the two datasets (Fig. 2), the frequency of 333 

sites displaying some degree of intransitivity did: 82% of grassland clusters had I values 334 

higher than 0.05, while this was the case in 68% of the dryland sites.  335 

Furthermore, the strength of intransitivity (I value) was positively related to 336 

plant richness in both datasets (Fig. 3). The presence of intransitivity increased species 337 

richness by 6 species in the grasslands and by 4 in the drylands, based on comparing the 338 

lowest (I < 0.05) and highest (0.4 < I < 0.8) levels of intransitivity within the studied 339 

communities (Fig. 3). Although the overall relationship between intransitivity and 340 

richness was consistent across datasets (Fig. 3), within both datasets the level of 341 

intransitivity and its relationship with richness varied geographically. The degree of 342 

intransitivity decreased with increasing latitude in both grasslands and drylands (Fig. 4). 343 

Intransitivity-richness relationships were either positive (Central), neutral (North-east) 344 
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or negative (South-west) depending on the grassland region considered (Fig. 3A; 345 

Appendix S6).  346 

We found an exponential decay in I values as more subordinate species were 347 

considered in our calculations (Appendix S1). This suggests strong nestedness of 348 

intransitive networks caused by high intransitivity amongst the dominant species, and 349 

strong competitive exclusion of rarer species by dominant ones. It must be noted that 350 

the positive relationship between intransitivity and species richness remained 351 

consistently positive regardless of the number of species considered (Appendix S1). 352 

 353 

Effects of global change drivers on intransitivity and diversity  354 

Land-use intensification and aridity reduced species richness, but had contrasting effects 355 

on intransitivity (Fig. 4). Aridity increased intransitivity in dryland communities (Fig. 356 

4B), and this indirectly ameliorated the negative effects of aridity on species richness. In 357 

contrast, increasing land-use intensification reduced intransitivity, and this slightly 358 

enhanced the direct negative effects of land-use intensity on diversity. More detailed 359 

analysis of the land-use effects revealed that both fertilization and mowing decreased 360 

species richness and the degree of intransitivity (Table 1). Increased grazing intensity 361 

had a similar effect: switching from rotational to permanent grazing, or from sheep to 362 

cattle grazing, substantially reduced species richness and intransitivity. Nevertheless, a 363 

clear result was that the intransitivity-mediated effect of land use intensification on 364 

species richness was much weaker and variable than its direct negative effects (Table 1). 365 

 366 

 367 

 368 

 369 
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DISCUSSION 370 

Extent of intransitive competition networks in natural plant communities  371 

Intransitive competition networks have previously only been demonstrated in simple 372 

three-species systems (e.g., Buss 1980; Sinervo & Lively 1996; Kerr et al. 2002) and in 373 

mathematical models (Gilpin 1975; Wootton 2001; Laird & Schamp 2006; Allesina & 374 

Levine 2011). To date there has been little empirical evidence to suggest that they are 375 

widespread in nature (but see Bowker et al. 2010; Allesina & Levine 2011; Soliveres et 376 

al. 2011). Using field data from two large datasets and a novel methodology, we 377 

provide strong evidence that intransitive competition networks are both common in 378 

natural plant communities and are associated with higher species richness. This general 379 

pattern was robust and not influenced by the biome, sampling methodology or spatial 380 

scale considered. 381 

Previous studies assessing the degree of intransitivity in plant communities have 382 

generated contrasting results and substantial debate (Aarsen 1988; Keddy & Shipley 383 

1989; Silvertown & Dale 1991; Grace et al. 1993; Freckleton et al. 2000). Generally, 384 

these studies concluded that intransitivity is uncommon in plant communities and, 385 

therefore, sharply contrast with our results (Grace et al. 1993; but see Aarsen 1988; 386 

Freckleton et al. 2000; Allesina & Levine 2011). This contrast may be explained by the 387 

differences in the methodology used and the species pool considered. Pairwise 388 

competition experiments are often performed in the greenhouse, and do not consider 389 

multispecies assemblages or the context-dependency of competition under natural and 390 

changing environments (Herben & Krahulec 1990; Silvertown & Dale 1991; 391 

Chamberlain et al. 2014). Thus, the pairwise approach to estimating competition could 392 

underestimate the occurrence of intransitive loops (Grace et al. 1993; Laird & Schamp 393 

2008; Allesina & Levine 2011). Indeed, competitive hierarchies identified using 394 
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pairwise approaches fail to predict observed abundances in the field (Aarsen 1989; 395 

Weigelt et al. 2007; Engel & Wetzin 2008). In contrast, the patch-transition matrices 396 

used here implicitly account for competition under natural conditions and in multiple 397 

species assemblages (Ulrich et al. 2014a and references therein), and thus provide a 398 

truer reflection (according to the high match levels found between simulated and 399 

observed data) of competitive hierarchies and more accurate assessments of 400 

intransitivity in natural communities.  401 

Regarding the role of the species pool when estimating intransitivity, and in 402 

agreement with our second hypothesis, we found strong nestedness in intransitive 403 

competition networks. Our results suggest high levels of intransitivity among the 404 

dominant species, but not between dominant and rare species (Appendix S1). Studies 405 

focusing on dominant species will, therefore, likely find high levels of intransitivity 406 

(e.g., Freckleton et al. 2000), whereas those including broader species pools will likely 407 

find the opposite pattern. While these contradictory results have fueled strong debate 408 

(e.g., Aarsen 1988; Grace et al. 1993), only by analyzing real-world data were we able 409 

to cast some light on the potential explanation for these contradictions. Our nestedness 410 

hypothesis requires experimental confirmation, but it suggests that coexistence of 411 

similarly abundant (or co-dominant) species could be promoted by nested intransitive 412 

competition networks. 413 

 414 

The relationship between intransitivity and species richness 415 

Our study is, to the best of our knowledge, the first to empirically show a positive 416 

relationship between the strength of intransitivity and species richness in natural 417 

communities, thus supporting previous mathematical and conceptual models (Huisman 418 

et al. 2001; Laird & Schamp 2006; Wootton 2001; Rojas-Echenique & Allesina 2010). 419 
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This relationship suggests that the degree of intransitivity among the dominant species 420 

alone could explain 4–9% of the variance observed in plant species richness, which, 421 

given the wide range of environmental conditions, habitats and sampling procedures in 422 

our study, suggests that intransitivity is an important driver of species richness. We also 423 

find that intransitive competition boosted species richness considerably (Fig. 3). Future 424 

work is needed to fully integrate intransitive competition with coexistence theory 425 

(Chesson 2000; HilleRisLambers et al. 2012) and to determine whether intransitive 426 

loops equalize fitness between species (e.g., Laird & Schamp 2006) and/or stabilize 427 

niche differences (Rojas-Echenique & Allesina 2010). However, these first empirical 428 

results on the relationship between intransitivity and diversity suggest that it may be an 429 

important, but largely overlooked, coexistence mechanism. Our results also suggest that 430 

incorporating multi-species (rather than multiple pairwise) competition dynamics and 431 

nested competition networks, which have been largely neglected before, can contribute 432 

explaining species coexistence. More studies are needed to confirm whether the patterns 433 

we find are consistent across ecosystem types and different groups of organisms; our 434 

results and the methodology employed (Ulrich et al. 2014a) pave the way for such 435 

future research. 436 

 437 

Effects of global change drivers on intransitivity and diversity  438 

Could an increase in intransitivity offset the negative effects of global change drivers 439 

(GCDs) on diversity?  This would require three conditions: i) GCDs (here, aridity or 440 

land-use intensity) directly decrease richness, ii) intransitivity increases richness, and 441 

iii) GCDs increase intransitivity. While i) and ii) were supported by our results, we 442 

found that iii) was largely dependent on the GCD studied (Table 1).  443 
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We speculate that the contrasting effects of aridity and land-use intensity on 444 

intransitivity are related to their different effects on temporal heterogeneity. We 445 

minimized the role of spatial heterogeneity on our intransitivity metric. Thus, although 446 

spatial heterogeneity across local interaction neighbourhoods would normally be an 447 

important driver of intransitivity and plant coexistence (Huisman et al. 2001; Sears & 448 

Chesson 2007; Allesina & Levine 2011), it should not affect intransitivity here. 449 

However temporal heterogeneity is still expected to increase opportunities for 450 

intransitivity. Temporal heterogeneity could enhance intransitivity in competition 451 

networks through temporal storage effects (Chesson 1983) as a given species will 452 

experience higher intra- than inter-specific competition during favorable time periods 453 

and this may hinder its ability to compete with others, enhancing the chances to form 454 

intransitive competition loops. It may also provide more opportunities for niche 455 

differentiation, where slightly different environmental conditions across time can 456 

generate different competition hierarchies and therefore enhance community-level 457 

intransitivity and allow coexistence (Allesina & Levine 2011). In this regard, aridity is 458 

known to increase temporal heterogeneity in water availability (e.g., Whitford 2002) 459 

which might explain the more pronounced effects of intransitivity in drylands. Land-use 460 

intensification (grazing and fertilization) instead, reduces temporal heterogeneity in 461 

biomass (Osem et al. 2002; Grman et al. 2010) and also asynchrony of species 462 

fluctuations in diverse communities (Hautier et al. 2014). Additionally, both grazing 463 

and mowing can compromise potential trade-offs between competition abilities (e.g., 464 

those between resource uptake and pollinator attraction) and reduce the chances for 465 

intransitive competition (Aarsen 1992). Overall, more intensive land uses can reduce 466 

temporal niche dimensionality (similarly as it does with spatial niche dimensionality; 467 

Harpole & Tilman 2007) and therefore shifts in competition hierarchy across time, 468 
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preventing intransitive competition. This may explain why increasing temporal 469 

heterogeneity in land use has been shown to increase diversity (Allan et al. 2014) as it 470 

might also increase intransitivity and other coexistence mechanisms. Overall, our results 471 

point to another means by which GCDs alter competition between plants (see Tilman & 472 

Lehman 2001 for a review) and suggest that the effects of such GCDs depend on how 473 

they impact upon the temporal heterogeneity of resources. The unique nature of our data 474 

also allowed us to shed some light on other drivers of intransitivity within natural 475 

communities, which have been largely overlooked by previous studies and also are 476 

likely to be linked to changes in temporal heterogeneity. For example, the strong 477 

latitudinal gradient in intransitivity found in the drylands could be due to rainfall 478 

variability, which decreases from north to south in the studied sites (Ulrich et al. 479 

2014b).  480 

Our results provide weak support for the notion that intransitive competition 481 

networks should prevail in more productive environments (Gilpin 1975; Bowker et al. 482 

2010). We found a higher frequency of intransitive communities in the more productive 483 

grasslands (~81%) than in the drylands (~67%; but see Appendix S2). However, 484 

productivity may not positively affect intransitivity at smaller scales: the more heavily 485 

fertilized grasslands had lower intransitivity (Table 1), as did those in the northern 486 

region in Germany, which is also the most productive (Fischer et al. 2010). Thus, it is 487 

unlikely that the negative effects of fertilization on diversity (Suding et al. 2005; Socher 488 

et al. 2013) will be counterbalanced by increased intransitivity associated with overall 489 

productivity (see Table 1). The latter result might be explained by a shift towards light 490 

competition with increased fertility and an increased dominance by some fast-growing 491 

species (Tilman & Lehman 2001; Suding et al. 2005). This is likely to increase fitness 492 
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differences between species which would be expected to result in more asymmetric and 493 

therefore more transitive competition.  494 

 495 

Conclusions 496 

We found that intransitive competition networks are widespread in natural plant 497 

communities and explained 4-9% of the variance in species richness across a wide 498 

variety of habitat-types and environmental conditions. Additionally, different global 499 

change drivers had contrasting effects on intransitivity: aridity increased it, while land-500 

use intensification generally reduced intransitivity. These differences are probably 501 

explained by their contrasting effects on temporal environmental heterogeneity. Thus, 502 

more intransitive competition could partially buffer diversity loss in natural 503 

communities, where the drivers of diversity loss increase this heterogeneity, but it is 504 

unlikely to buffer diversity loss resulting from environmental homogenization. Finally, 505 

we identified two properties of intransitive networks that have been previously 506 

overlooked: a strong geographical gradient and a nested structure in intransitive 507 

competition networks, both undetectable with previous modelling or local empirical 508 

studies. The latter suggests that intransitivity is prevalent between dominant species, but 509 

not between dominant and rarer species, and this could explain contrasting results 510 

between studies of differing species pool size. Forty years after its inclusion in ecology, 511 

we assessed for the first time the extent of intransitive competition in real-world plant 512 

communities. Our approach and findings pave the way for wider empirical evaluation of 513 

intransitivity in a range of systems, and highlight the links between intransitivity and 514 

other well-studied coexistence mechanisms.  515 

  516 

 517 
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Table 1. Summary results of the structural equation models performed with the 713 

different environmental factors (in rows) separately. Standardized total effects (STE; 714 

sum of direct and indirect effects) and standardized direct effects (SDE; equivalent to 715 

the path coefficient from the predictor to the response variable) for richness are shown. 716 

For intransitivity STE = SDE. Environmental factors were introduced as: Mowing 717 

(number of cuts per year), grazing (sheep/other, permanent/rotational/none) fertilization 718 

(yes/no), and water management (drainage/retention/none). Significant path coefficients 719 

are highlighted in bold.  720 

 Intransitivity Richness 

 SDE SDE STE 

Mowing -0.16 -0.29 -0.31 

Grazing 0.20 0.50 0.51 

Fertilization -0.09 -0.44 -0.45 

Water management (only NE region) 0.15 -0.46 -0.45 

Aridity 0.20 -0.28 -0.23 

  721 
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FIGURE LEGENDS 722 

Figure 1. Conceptual model outlining our theoretical framework. We address here the 723 

direct and indirect relationships between 1) global change drivers (GCDs), 2) 724 

intransitive competition networks and 3) species richness. Intransitivity is expected to 725 

increase richness. GCDs are expected to decrease species richness and have variable 726 

effects (positive = green, negative = red, unimodal = black) on intransitivity. Species-727 

by-species transition matrices with different levels of intransitivity are shown. These 728 

matrices have an associated competition network (arrow pointing from winner to loser) 729 

and their changes in abundance across time or space (represented in different columns 730 

within the grid boxes). Competitive reversals from perfect hierarchical competition are 731 

in blue (numbers and arrows) and the changes expected in our intransitivity metric (I) 732 

are shown.  733 

 734 

Figure 2. Intransitivity (measured as metric I) observed in grasslands (n = 175 clusters 735 

of environmentally similar grasslands out of a set of 1500 sites) and drylands (n = 151, 736 

sites). Box plots show the median, 25% and 75% quartiles. The intransitivity metric was 737 

not significantly different between the two datasets (Mann-Whitney´s U = 12030; P = 738 

0.16). 739 

 740 

Figure 3. Relationships between intransitivity (measured as metric I) and species 741 

richness in grasslands (A; mean for each cluster of sites) and drylands (B). Model II 742 

OLS regression results are shown. The different colors in the upper panel show the three 743 

different study regions: Southwest (red, n = 50), Central (blue, n = 54) and Northeast 744 

(green, n = 71).  745 
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Figure 4. Structural equation models  depicting effects of geographic factors (region or 746 

latitude/longitude) and global change drivers (land-use or aridity) on intransitivity and 747 

species richness for grasslands (A) and drylands (B). Composite variables are shown 748 

with the variables forming them inside. The width of arrows is proportional to the 749 

standardized path coefficient, with green and red lines for positive and negative 750 

relationships, respectively. The overall goodness-of-fit test and the R2 for each variable 751 

introduced are given. P-values are: *** = P < 0.001; ** = P < 0.01; * = P < 0.05; º = P 752 

< 0.1. Lat = latitude, lon = longitude, mds= non-metric multi-dimensional ordination 753 

axes performed with the land-use variables. 754 

 755 
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