
 
 

      

     

ECOLE DES HAUTES ETUDES COMMERCIALES DE PARIS 
Ecole Doctorale « Sciences du Management/GODI » - ED 533 

Gestion Organisation Décision Information 
 

" Intraorganizational Networks, Interorganizational Collaboration and Firm Innovation " 

 

THESE 

présentée et soutenue publiquement le 5 septembre 2014 

en vue de l'obtention du 

DOCTORAT EN SCIENCES DE GESTION 
Par 

 

Mattheus Cornelis GOOSSEN 
 

JURY 
 
 
Président du Jury :  Monsieur Stéphane SAUSSIER 

    Professeur des Universités, 

    IAE - Université de Paris I Panthéon-Sorbonne – France 

 

 

Co-Directeurs de Recherche : Monsieur Pierre DUSSAUGE  

    Professeur, HDR  

    HEC Paris – France 
 

    Monsieur Corey C. PHELPS  

    Professeur Associé, 

    Desautels Faculty of Management, McGill University – Canada 
 

 

Rapporteurs :    Monsieur Emmanuel LAZEGA 

    Professeur des Universités, 

Institut d'Etudes Politiques de Paris – France 
 

Monsieur Srikanth PARUCHURI 

    Professeur Associé, 

    Smeal College of Business,  

The Pennsylvania State University, Pennsylvania – USA 
 

 

Suffragant :    Madame Denisa MINDRUTA 

Professeur Assistant,  

    HEC Paris – France 

  



1 
 

 

 

 

 

 

Ecole des Hautes Etudes Commerciales 

  

  

  

  

  

  

  

Le Groupe HEC Paris n'entend donner aucune approbation ni improbation aux  

opinions émises dans les thèses ; ces opinions doivent être considérées  

comme propres à leurs auteurs. 

 

  



2 
 

TABLE OF CONTENTS 

Table of Contents ....................................................................................................................... 2 

List of Figures ............................................................................................................................ 5 

List of Tables ............................................................................................................................. 6 

Introduction ................................................................................................................................ 7 

Study 1: Interorganizational Networks, Intraorganizational Networks and Innovation .. 12 

Study 2: Intraorganizational Network Structure and Firm Innovation ............................ 14 

Study 3: Interorganizational Collaboration, Intraorganizational Networks and Firm 

Innovation ........................................................................................................................ 16 

Setting and Data ............................................................................................................... 18 

Chapter 1: Interorganizational Networks, Intraorganizational Networks and Innovation ....... 21 

Abstract ................................................................................................................................ 21 

Introduction .......................................................................................................................... 21 

Conceptual Model ................................................................................................................ 24 

Theoretical Background and Concept Development ........................................................... 28 

Boundary Spanners and Knowledge Transfer ................................................................. 28 

Intraorganizational Networks and Knowledge Diffusion ................................................ 30 

Interorganizational Knowledge Transfer ............................................................................. 32 

Microlevel Knowledge Transfers .................................................................................... 33 

Macrolevel Knowledge Transfer ..................................................................................... 36 

Intraorganizational Knowledge Diffusion and Innovation .................................................. 41 

Microlevel Knowledge Diffusion .................................................................................... 42 

Macrolevel Knowledge Diffusion.................................................................................... 44 

Discussion ............................................................................................................................ 47 

Innovation and Multilevel Networks ............................................................................... 47 

Microfoundations of Interorganizational Learning .......................................................... 48 

Absorptive Capacity and Recombinant Ability ............................................................... 49 

Limitation and Opportunities for Future Research .......................................................... 50 

Conclusion ........................................................................................................................... 53 

Chapter 2: Intraorganizational Network Structure and Firm Innovation: The Mediating 

Processes .................................................................................................................................. 54 

Abstract ................................................................................................................................ 54 

Introduction .......................................................................................................................... 54 

Theory and Hypotheses ........................................................................................................ 58 

Role of Networks ............................................................................................................. 59 

Role of Reach ................................................................................................................... 63 

Role of Clusters ............................................................................................................... 67 

Role of Knowledge Diversity and Transfer ..................................................................... 71 

Methodology ........................................................................................................................ 73 

Setting and Data Collection ............................................................................................. 73 

Intrafirm Networks .......................................................................................................... 74 



3 
 

Sample ............................................................................................................................. 76 

Measurement .................................................................................................................... 77 

Estimation Method ........................................................................................................... 81 

Results .................................................................................................................................. 82 

Robustness Checks .......................................................................................................... 84 

Robustness Checks at the Level of Patents and Citations ............................................... 87 

Discussion ............................................................................................................................ 88 

Contributions ................................................................................................................... 92 

Conclusion and Limitations ................................................................................................. 93 

Chapter 3: Interorganizational Collaboration, Intraorganizational Networks, and Firm 

Innovation ................................................................................................................................ 96 

Abstract ................................................................................................................................ 96 

Introduction .......................................................................................................................... 96 

Theory and Hypotheses ...................................................................................................... 100 

Interorganizational Collaboration and Boundary Spanners ........................................... 101 

Intraorganizational Networks and Firm Innovation ....................................................... 104 

Hypotheses Development .............................................................................................. 107 

Methodology ...................................................................................................................... 111 

Sample Selection and Data Collection ........................................................................... 111 

Measurement .................................................................................................................. 114 

Estimation Method ......................................................................................................... 119 

Results ................................................................................................................................ 119 

Robustness Checks ........................................................................................................ 121 

Discussion .......................................................................................................................... 125 

Contributions ................................................................................................................. 127 

Conclusions and Limitations .............................................................................................. 131 

Conclusion ............................................................................................................................. 133 

Contributions ................................................................................................................. 135 

Managerial Implications ................................................................................................ 140 

Limitations and Future Research ................................................................................... 142 

References .............................................................................................................................. 144 

Tables ..................................................................................................................................... 153 

Robustness Checks for Chapter 2 .................................................................................. 160 

Robustness Checks for Chapter 3 .................................................................................. 170 

Appendix A – Sample Selection ............................................................................................ 178 

Appendix B – Variables and Data Collection ........................................................................ 181 

Firm Data ....................................................................................................................... 182 

Patent Data ..................................................................................................................... 183 

Publication Data ............................................................................................................. 183 

Product Data .................................................................................................................. 184 

M&A Data ..................................................................................................................... 185 



4 
 

Intrafirm Network Data ................................................................................................. 185 

Interfirm Network Data ................................................................................................. 186 

Appendix C – Robustness Checks at Patent and Citation Level ........................................... 189 

Patent-level Robustness Checks .................................................................................... 189 

Citation-level Robustness Checks ................................................................................. 191 

Acknowledgements ................................................................................................................ 195 

Résumé Général en Français .................................................................................................. 197 

Introduction .................................................................................................................... 197 

Chapitre 1: Réseaux Inter-organisationnels, Réseaux Intra-organisationnels et Innovation

 ....................................................................................................................................... 201 

Chapitre 2: Structure de Réseau Intra-organisationnel et Innovation de l'Entreprise .... 206 

Chapitre 3: La Collaboration Inter-organisationnelle, Réseaux Intra-organisationnels et 

Innovation de l’Entreprise.............................................................................................. 210 

Contributions ................................................................................................................. 213 

 

 

  



5 
 

LIST OF FIGURES 

Figure 1 Dissertation structure ................................................................................................. 11 

Figure 2 Coleman's boat model of interorganizational collaboration ...................................... 25 

Figure 3 Two multilevel models of interorganizational collaboration .................................... 32 

Figure 4 Theoretical model for intraorganizational network structure and firm innovation ... 63 

Figure 5 Reach and clusters in networks ................................................................................. 67 

Figure 6 Examples of intrafirm networks ................................................................................ 76 

Figure 7 Theoretical framework ............................................................................................ 107 

Figure 8 Effect of R&D alliances on firm innovation ........................................................... 121 

Figure 9 Structure de thèse .................................................................................................... 201 

Figure 10 Le modèle en bateau de Coleman pour collaboration inter-organisationelle ........ 204 

Figure 11 Modèle théorique des reseaux, connaissances et innovation................................. 208 

 

 

 

 

  



6 
 

LIST OF TABLES 

Table 1 Sample descriptive statistics and correlations .......................................................... 153 

Table 2 GEE regressions predicting knowledge transfer and diversity ................................. 154 

Table 3 GEE regressions predicting firm innovation ............................................................ 155 

Table 4 Sobel-Goodman mediation tests ............................................................................... 156 

Table 5 Sample descriptive statistics and correlations .......................................................... 157 

Table 6 Fixed-effect negative binomial regressions predicting firm innovation ................... 158 

Table 7 Incident-rate ratios of negative binomial regressions predicting firm innovation .... 159 

Table 8 Robustness checks for network reach and clusters ................................................... 160 

Table 9 Robustness checks for knowledge transfer, diversity and lagged variables ............. 161 

Table 10 Robustness check for firm innovation .................................................................... 162 

Table 11 Robustness checks for estimation methods ............................................................ 163 

Table 12 Robustness checks for mediation effects ................................................................ 164 

Table 13 Robustness checks for network size ....................................................................... 165 

Table 14 Robustness checks for outliers ................................................................................ 166 

Table 15 Robustness checks for interaction effects ............................................................... 167 

Table 16 Robustness checks for knowledge transfer at patent level ..................................... 168 

Table 17 Robustness checks for knowledge transfer at citation level ................................... 169 

Table 18 Robustness checks for non-linear effects ................................................................ 170 

Table 19 Robustness checks for R&D alliances .................................................................... 171 

Table 20 Robustness checks for intrafirm networks and small worlds ................................. 172 

Table 21 Robustness checks for firm innovation ................................................................... 173 

Table 22 Robustness checks for outliers ................................................................................ 174 

Table 23 Robustness checks for estimation method .............................................................. 175 

Table 24 Robustness checks for intrafirm network size ........................................................ 176 

Table 25 Robustness checks for potential endogeneity ......................................................... 177 

Table 26 Sample of fifty North-American medical device firms .......................................... 178 

Table 27 Alliance announcements by data source ................................................................. 188 

 

  



7 
 

INTRODUCTION 

Innovation is core to firm financial performance and long-term organizational survival 

(Cefis & Marsili, 2005; Roberts, 1999). Increasing levels of competition in industrial 

environments drive organizations into a continuous cycle of efficiency improvements and 

cost reduction, but innovation provides an opportunity to break this sequence. The 

introduction of new products or production processes gives firms an opportunity to improve 

their financial performance (Schumpeter, 1942). A firm's innovative capability – the 

capability to successfully pursue innovation – is therefore an important antecedent for firm 

competitive advantage (McGrath, Tsai, Venkataraman, & MacMillan, 1996). 

A vast body of literature has revealed the importance of collaboration among actors to 

explain firm innovative performance (Borgatti & Foster, 2003; Brass, Galaskiewicz, Greve, 

& Tsai, 2004; Phelps, Heidl, & Wadhwa, 2012; Swan, Newell, Scarbrough, & Hislop, 1999). 

This literature has shown how various characteristics (number, type, strength, structure) of 

collaborative relationships among actors influence their ability to obtain, preserve and exploit 

knowledge and information, which is reflected in creativity and innovativeness (Van Wijk, 

Jansen, & Lyles, 2008). The large majority of this literature falls within three types of studies. 

First, scholars from the field of organizational behavior have focused on the impact of 

interpersonal networks on individual-level performance (e.g. Burt, 2000; Obstfeld, 2005). 

Second, scholars from the field of management and organization have looked at the 

consequences of business unit relationships for the performance of teams, departments or 

business units (e.g. Hansen, 1999; Tsai, 2001). Third, strategic management scholars have 

extensively investigated the effects of interorganizational relationships on organizational 

performance and innovation (e.g. Ahuja, 2000a; Phelps, 2010). 

Whereas this research has provided a comprehensive understanding of the networks 

and innovation relationships at each level – individual, team/unit, and firm – very few studies 
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have assessed potential multilevel effects. This is an important limitation to this line of 

research since innovation is ultimately the outcome of multilevel processes, i.e. individual 

and collective processes occurring at a microlevel and a macrolevel (Kozlowski, Chao, 

Grand, Braun, & Kuljanin, 2013; Payne, Moore, Griffis, & Autry, 2011; Rothaermel & Hess, 

2007). In a multilevel network conceptualization, actors at a lower level form a network that 

itself becomes a node at a higher level (Harary & Batell, 1981; Moliterno & Mahony, 2011). 

For instance, persons form social ties with their colleagues at the individual level, which 

results in an intraorganizational network, while their firm participates in alliances and joint 

ventures at the interorganizational level, which results in an interorganizational network. In 

such nested networks, nodes are no longer cohesive entities but become networks themselves. 

Applying a multilevel lens to networks and innovation research challenges past studies in 

three important respects. 

To begin, the majority of studies on network structure and innovation have limited 

themselves to a microlevel analysis: the effects of network structure on a single actor in that 

network. While one may expect that effects at the microlevel (i.e. for the individual actor) are 

similar at the macrolevel (i.e. for all actors combined), there are reasons to question this 

assumption. For instance, a network brokerage position is often related to increased 

innovation. In such a position, where an employee connects otherwise unconnected 

colleagues, s/he can combine diverse knowledge from different sources (Burt, 2000; Fleming, 

Mingo, & Chen, 2007). However, network brokerage has strong adverse effect on a broker's 

colleagues and reduces their performance (Bizzi, 2013). So what may be good for individual 

performance, at the microlevel, may not automatically be advantageous for organizational 

performance, at the macrolevel. 

Second, there is an incomplete understanding of the processes mediating intrafirm 

network structure and firm innovation. A small number of studies have empirically 
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investigated the effects of macrolevel network structure on macrolevel innovation (Provan, 

Fish, & Sydow, 2007). These studies demonstrate that connections increase firm innovation, 

but also obtained confounding results regarding the effects of network clusters and network 

cohesion. For instance, while Carnabuci and Operti (2013) find positive effects for network 

cohesion on the reuse of knowledge in new innovations, Guler and Nerkar (2012) conclude 

that global cohesion hurts firm innovation. Similarly, organizational learning literature 

obtained varying results regarding the role of network clusters. Whereas some studies find 

that network clusters increase organizational learning (e.g. Cowan & Jonard, 2004), other 

studies do not confirm this role of clusters (Fang, Lee, & Schilling, 2010). One plausible 

explanation for these inconsistent results may be related to competing mediating processes. 

Two important processes that mediate the relationship between network structure and firm 

innovation are knowledge sharing and retention. If network characteristics have varying or 

opposing effects on knowledge sharing and retention, the final effect on firm innovation 

becomes unpredictable. 

Third, research on networks and innovation has not yet explored potential joint-level 

network effects. Joint-level effects are the combined effects of a lower-level and a higher-

level network on an actor's innovation. For firm innovation, this refers to the characteristics 

of its intraorganizational collaboration network among its employees and its interfirm 

collaboration network of alliances and joint ventures (Brass et al., 2004). Both networks have 

independent consequences for firm innovation, but it is very likely that there are also 

multilevel and joint-level effects since organizations are nested systems (Hitt, Beamish, 

Jackson, & Mathieu, 2007). Thus, one should examine both networks simultaneously to fully 

grasp their influence on firm innovation (Phelps et al., 2012). For example, a well-connected 

intraorganizational network may stimulate intrafirm knowledge sharing and reduce a firm's 

dependency on other firms. Conversely, collaborating with other organizations may be more 
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effective if the focal firm has a stronger intraorganizational network. Multilevel research on 

networks and innovation is essential to better comprehend the effects of networks, how they 

jointly influence innovation, and when they are complementary and substitutionary. 

In short, past literature on networks and innovation has not adequately addressed the 

importance of levels of networks and their individual and joint effects on firm innovation. 

First, the effects of network structure on innovation may depend on the level of observation: 

individual actors or entire networks. Second, the effects of networks on innovation are poorly 

understood because mediating processes are hardly examined. Third, organizations are part of 

a multilevel network that is like to have joint effects on firm innovation. The aim of this 

dissertation is to address these limitations by integrating networks at various levels and 

assessing their effect on processes that explain the network and innovation relationship. I do 

so by answering the following question: how do firm intraorganizational and 

interorganizational networks, independently and jointly, influence firm innovation? 

To answer this question, I focus on two levels of networks: intraorganizational 

networks of employees within firms and interorganizational networks between firms. These 

intraorganizational networks consist of collaboration networks among scientists working in 

the research and development departments of an organization. Their collaboration on R&D 

projects leads to communication and interaction that facilitate the flow of information and 

knowledge, and ultimately affects to innovation (Brown & Duguid, 1991; Paruchuri, 2010; 

Singh, 2005). Interorganizational networks are composed of organizations that establish 

interfirm partnerships for innovative purposes. Such interorganizational collaboration leads to 

knowledge spillovers between firms and forms an important source of innovation (Ahuja, 

2000a; Hamel, 1991; Shan, Walker, & Kogut, 1994). The motivation for these two levels is 

twofold. First, innovation is the outcome of a recombinant search process, i.e. a process in 

which existing knowledge components (expertise, skills, technologies, etc.) are put into new 
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combinations or configurations (Fleming, 2001). Since each employee has at least some 

unique knowledge or expertise, individual employees perform a critical function in the 

recombinant innovation process (Grant, 1996; Ployhart & Moliterno, 2011). Second, whereas 

knowledge and information are frequently shared among employees within an organization, it 

is less eagerly shared between employees of different firms. Competitive concerns are absent 

when information is shared between teams or business units of one organization, but present 

when knowledge crosses organizational boundaries (Bouty, 2000). Since interfirm 

agreements alleviate these concerns (Berends, Van Burg, & Van Raaij, 2011), I select 

interorganizational networks as a second level of study. 

To understand how both networks influence firm innovation, I adopt a nested system 

approach (Harary & Batell, 1981). In this view, an actor at a higher level consists of one or 

more lower-level actors. Here it means that a node in the interfirm network is actually a 

network of individuals on itself. When two firms establish a collaboration, employees of both 

organizations will cooperate via joint project teams. This results in new interpersonal ties that 

cross organizational boundaries. Interfirm ties are thus reflected at a lower level by the 

creation of new interpersonal ties among (some) individuals from both firms. 

 
Figure 1 Dissertation structure 
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Figure 1 visually displays the theoretical model of my dissertation. Each chapter will 

deal with one part of this model, as indicated by the different boxes. 

 

Study 1: Interorganizational Networks, Intraorganizational Networks and Innovation 

The first study is motivated by a lack of integration between interorganizational and 

intraorganizational network literature. Most research on networks and innovation only deals 

with a single level of analysis and overlooks potential influences form networks at higher or 

lower levels (Moliterno & Mahony, 2011). Ignoring this multilevel nature of networks 

reduces our comprehension in two manners. 

First, the literature on interorganizational networks perceives firms as individual, 

'atomistic' entities. Firms may vary in their characteristics, but are considered to be internally 

homogeneous. This means that collaborations between any two organizations lead to similar 

levels of knowledge spillovers and innovation. As a consequence, it assumes that each firm is 

affected equally by the structure of, and its position within an organizational network. 

However, intraorganizational network literature has shown that firms are actually networks of 

individuals that all have their own characteristics. Because organizations are internally 

heterogeneous, the effects of interorganizational collaboration will vary by firm. To better 

comprehend when interfirm networks influence firm innovation, the role of individuals and 

their intraorganizational networks needs to be included. 

Second, the literature on interorganizational networks has paid little attention to the 

role of individuals in this process. Most interorganizational network studies simply relate the 

number, structure and type of interfirm alliances directly to organizational learning and firm 

innovation (Van Wijk et al., 2008). However, interorganizational learning and knowledge 

transfer are ultimately individual-level processes that occur among employees of both partner 

organizations (Janowicz-Panjaitan & Noorderhaven, 2009). To understand how and when 
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interorganizational collaboration leads to firm innovation, the role of employees and their 

personal networks needs to be incorporated further. 

The first chapter therefore asks the question: how do interorganizational and 

intraorganizational networks jointly influence firm innovation? It aims to develop a 

conceptual model of interorganizational collaboration and firm innovation by integrating the 

intraorganizational networks. Specifically, it differentiates between microlevel processes at 

the level of individual employees and macrolevel processes at the level of an organization. 

An investigation into the relationship between interorganizational collaboration and firm 

innovation suggests this is two-step process. First, interfirm knowledge transfer takes place if 

an organization's boundary spanners, i.e. employees that are involved in interfirm projects, 

learn new knowledge and information via their interaction with employees from a partner 

firm. Second, intrafirm knowledge diffusion happens when these boundary spanners share 

this new knowledge and information with other colleagues via a firm's intraorganizational 

network.  

The impact of interorganizational collaboration on firm innovation depends on the 

efficacy of these two processes. At the microlevel, interfirm knowledge transfer depends on 

the human and social capital of focal and partner firms' boundary spanners as well as the 

strength of their connections. Intrafirm knowledge diffusion is determined by the position of 

a boundary spanner in his/her intraorganizational network. At the macrolevel, interfirm 

knowledge transfer depends on the number and quality of boundary spanners of both firms as 

well as the number and strength of their connections. Intrafirm knowledge diffusion is 

determined by the structure of a firm's intraorganizational network. 

This theoretical article primarily contributes to the literature on multilevel networks 

(Contractor, Wasserman, & Faust, 2006; Moliterno & Mahony, 2011). By elucidating how 

intraorganizational networks and interorganizational relationships jointly influence firm 
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innovation, this study provides a foundation for further theoretical development in multilevel 

networks and innovation. Secondarily, it speaks to the literature on microfoundations and 

absorptive capacity by identifying the role of boundary spanning individuals and their 

personal networks for interorganizational learning and innovation. 

 

Study 2: Intraorganizational Network Structure and Firm Innovation 

Ample research has discussed the consequences of interpersonal network structure on 

individual creativity and innovativeness (Carpenter, Li, & Jiang, 2012; Phelps et al., 2012). 

However, less is known about the macrolevel effects of intrafirm network structure, i.e. the 

effects of the structure of an entire network on firm innovation. This is an important issue for 

two reasons.  

First, several studies indicate that there is a micro/macro paradox between network 

structure at the individual and organizational level (Operti & Carnabuci, 2012). This means 

that network structures favoring the performance of one employee may do so at the cost of 

other persons in the firm and eventually decrease firm innovation. For example, Burt (1992) 

proposes that persons improve their performance by bridging structural holes. However, 

Bizzi (2013) argues that more brokers of structural holes are detrimental to employee social 

capital and demonstrates that more brokerage actually reduces employee performance. This is 

a relevant issue in management research that tries to explain firm-level innovation. 

Second, existing research using macrolevel network structure has provided 

incomplete results. In the organizational learning literature, Fang et al. (2010) show that 

organizational learning and thereby firm performance improve with efficiently connected 

networks. However, this finding is not supported by Cowan and Jonard (2004) who find no 

significant effect or Lazer and Friedman (2007) who find a negative effect. There is a similar 

puzzling finding in the networks and innovation literature. Carnabuci and Operti (2013) 
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confirm that intraorganizational networks are an important mechanism for knowledge sharing 

by showing that network connectedness increases knowledge reuse. However, Guler and 

Nerkar (2012) conclude network connectedness reduces firm innovation, which would imply 

that knowledge sharing hurts firm innovation. To understand how network structure 

influences firm innovation, one should identify the mechanisms that mediate this relationship.  

The second chapter therefore asks: how does intrafirm network structure influence 

firm innovation? It aims to create theoretical and empirical clarity by identifying processes 

that mediate the structure-performance relationship. Specifically, I focus on two dominant 

characteristics of intraorganizational networks, namely network reach and clusters (Provan et 

al., 2007). Network reach refers to the degree that all employees are connected via relatively 

short paths and is the macrolevel equivalent of closeness centrality. I argue that network 

reach will facilitate knowledge transfer among employees via knowledge sharing, informal 

communication and joint problem-solving, but this will diminish knowledge diversity among 

employees. Network clusters refers to the presence of densely connected groups of 

employees in an organization and is the macrolevel equivalent of network closure. Clusters 

are effective mechanisms for developing new fields of expertise and increasing knowledge 

diversity, but have a dual effect on knowledge transfer among employees. Subsequently, a 

firm's knowledge diversity and transfer enhance firm innovative performance. However, 

contrary to these expectations, the empirical results indicate that both interfirm network reach 

and clusters reduce knowledge transfer and diversity in an organization and ultimately reduce 

firm innovation. 

This study contributes to our understanding of networks and innovation in two ways. 

First, it provides a better understanding about the relationship between network structure and 

innovation by identifying knowledge transfer and diversity as mediating processes. Second, it 

provides further insights in potentially diverging micro/macro effects of network structure by 
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examining the macrolevel effects of employee closeness centrality, or network reach, and 

employee ego-network closure, or network clusters, on firm innovation. 

 

Study 3: Interorganizational Collaboration, Intraorganizational Networks and Firm 

Innovation 

The third study relates intraorganizational networks to interorganizational 

collaboration and firm innovation. Interorganizational collaboration via alliances and joint 

ventures leads to interfirm learning and knowledge spillovers (Hamel, 1991; Lavie, 2006). 

The inflow of new knowledge and information via interfirm partnerships also stimulates firm 

innovation (Shan et al., 1994). Extant literature on interorganizational collaboration networks 

has shown significant effects of network size, structure, and composition on firm innovation 

(e.g. Ahuja, 2000a; Phelps, 2010). Despite the extensive body of literature in 

interorganizational collaboration, it has paid little attention to the role of intraorganizational 

networks. This is surprising since intraorganizational networks fulfill a different, though 

highly related role for firm innovation. Collaboration networks within organizations enable 

knowledge transfer and diffusion among employees (Brown & Duguid, 1991). These 

personal relationships between employees form the foundation for knowledge flows within 

an organization (Paruchuri, 2010). Performance of individual employees is therefore strongly 

influenced by the number and structure of their ties (Fleming, Mingo, et al., 2007). The 

number and structure of connections among employees also has a profound effect on an 

organization's ability to turn its knowledge and resources into innovation (Carnabuci & 

Operti, 2013). 

Interfirm and intrafirm collaboration networks thus perform very similar roles by 

acting as conduits of knowledge that stimulate creativity and innovation. Few studies have 

examined the joint effect of interorganizational and intraorganizational networks and 
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demonstrate that both networks influence the performance of individual employees (Lazega, 

Jourda, Mounier, & Stofer, 2008; Lazega, Mounier, Jourda, & Stofer, 2006; Paruchuri, 2010). 

However, research has not yet assessed how interorganizational and intraorganizational 

networks simultaneously influence organizational innovation, which is a key issue in 

management research. Therefore, the third chapter of this dissertation asks: how do 

intraorganizational networks and interorganizational collaboration jointly influence firm 

innovation?  

I argue that interorganizational collaboration via alliances and joint ventures shape a 

firm's opportunity for knowledge absorption whereas its intraorganizational network forms its 

ability to absorb this knowledge and apply it in new products and processes. Cooperation 

with other organizations gives access to knowledge and capabilities of partner organizations 

(Hamel, 1991; Lavie, 2006). Initially, boundary-spanning employees learn new information 

and skills from a partner organization via their involvement in joint projects. Subsequently, 

they can share their knowledge and experience with other colleagues in their firm via its 

intraorganizational network. This results in a process of knowledge diffusion throughout the 

firm. The degree of diffusion will then depend on the number and structure of connection in a 

firm's intraorganizational network (Lazer & Friedman, 2007). As a result, the influence of 

interorganizational collaboration on firm innovation is moderated by structure of a firm's 

intraorganizational network. 

This study makes contributions to the literature on networks and innovation, to the 

literature on complementarities of alliances, and to absorptive capacity research. First, by 

considering the joint effects of individual and organizational networks, this study reveals that 

firm innovation is the outcome of an interaction between inter- and intraorganizational 

networks. In particular, the connectedness of a firm's intraorganizational networks 

strengthens the positive effect of interorganizational networks on firm innovation. This study 
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also contributes to research on alliance complementarities (Rothaermel, 2001) by examining 

how intrafirm networks complement interfirm alliances in pursuing innovation. Finally, this 

paper further unpacks the concept of absorptive capacity. A firms ability "to recognize the 

value of new, external information, assimilate it, and apply it" (Cohen & Levinthal, 1990: 

128) is partially explained by an firm's intraorganizational network that diffuses new 

knowledge throughout the firm. 

 

Setting and Data 

The setting of all studies in this dissertation is the North-American medical devices 

industry. The medical devices industry is a fast-growing and rapidly developing industry with 

$300 billion annual worldwide sales and industry growth far above the general economy 

(Frent, 2011). Medical device firms develop and produce products for diagnostic imagining 

and devices in six major categories: cardiovascular, ophthalmology, neurology, orthopedics, 

dental, and urology. Initially this industry was dominated by innovative start-ups aiming to 

capitalize on a new invention, large pharmaceutical firm using their expert knowledge on 

medical conditions, and diversifying entrants that had identified medical applications for their 

technology. Over the past twenty-five years the industry has seen significant consolidation 

through substantial M&A and firm exits (Karim & Mitchell, 2000). Nowadays the industry is 

dominated by nine major corporations, accounting for 40% of the market, and many small 

and medium-sized companies. Industry giants include diversified corporations like Johnson 

& Johnson, but also focused organizations like Medtronic. 

This industry is selected for three reasons. First, the medical devices sector is a 

technology and innovation-driven industry (Danneels, 2002). Innovation has a direct effect 

on firm financial performance and new product development has a strong impact on firm 

survival (Karim & Mitchell, 2000; Wu, 2013). Whereas the larger firms focus on incremental 
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innovations, smaller start-ups often bring radical innovations into the industry (Chatterji, 

2009). The industry also shows high levels of entrepreneurship by medical or technological 

experts establishing their own organization to develop and market a new product. 

Second, interpersonal and interorganizational collaboration networks are important 

instruments for innovation in the medical devices industry (Joseph, Chatterji, & Cunningham, 

2013). Medical devices are complex products requiring medical expertise (physiology, 

biology, life sciences) and technological knowhow (mechanical engineering, electrical 

engineering, materials sciences) to design, develop and produce safe and effective tools and 

products (Wu, 2013). New products therefor often combine various types of technological 

expertise and practical experience that are held by different persons. Hence, collaboration is 

required for successful knowledge recombination (Chatterji, 2009).  

Third, collaboration and innovation are highly observable in the medical devices 

industry. Medical device firms rely strongly on patents to protect their intellectual property 

and are subject to stringent product registration requirements (De Vet & Scott, 1992). In 

addition, their licensing and alliance agreements are regularly discussed in industry reports 

and news articles. These detailed archival data provide precise records of innovation 

activities and outcomes. 

At the start of my research I performed over thirty interviews with experts in this 

industry: business development directors, alliance managers, and R&D scientists. This gave 

detailed insights in various aspects of the innovation process, like the role of collaboration 

among scientists and the management of R&D alliance projects among different firms. 

Thereafter, I collected data on collaboration and technological innovation by individuals and 

firms of a sample of fifty firms from 1990 till 2005. First, patent and product data were 

collected from the USPTO and the Food and Drug Administration to measure firm innovative 

performance. Second, patent and publications data were retrieved to observe interpersonal 
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collaboration via co-patenting and co-publication by R&D scientists. This constitutes the 

intraorganizational networks in my studies. Third, I scanned a larger number of newspaper 

articles, company reports and industry databases to obtain public announcements of licensing 

agreements, alliances, and joint ventures. These interorganizational collaborative activities 

form the ties in a firm's interorganizational network. The final panel dataset allowed for 

empirical testing of the earlier derived hypotheses. 
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CHAPTER 1: INTERORGANIZATIONAL NETWORKS, 

INTRAORGANIZATIONAL NETWORKS AND INNOVATION1 

 

ABSTRACT 

By integrating the literature on interorganizational and intraorganizational networks, 

we discuss the need for multilevel logic of interorganizational collaboration to explain firm 

innovation. We argue that processes of interfirm knowledge transfer, intrafirm knowledge 

diffusion and firm innovation are jointly determined by both interfirm and intrafirm 

networks. We develop a micro/macro framework that combines aspects of interorganizational 

and intraorganizational networks to explain how interfirm collaboration influences firm 

innovation. In particular, we identify the pivotal role of boundary spanning individuals in 

absorbing external knowledge as well as the major role of intraorganizational networks in 

diffusing new knowledge internally. Collectively, our propositions develop a multilevel 

network perspective that aids to our understanding of how both organizational and personal 

networks simultaneously influence firm innovation. 

 

INTRODUCTION 

A large body of research indicates that firm innovation is influenced by two levels of 

networks, namely interorganizational and intraorganizational (Borgatti & Foster, 2003; Brass 

et al., 2004; Phelps et al., 2012). Interorganizational networks consist of organizations that 

are connected via contractual agreements to perform collaborative projects (e.g. alliances, 

joint ventures, technology licensing deals, research consortia). Intraorganizational networks 

consist of individuals, teams, or business units that are connected via personal relations. At 

both levels, creativity and innovativeness of actors are affected by the number, structure and 

                                                 
1 This chapter is co-authored with Corey C. Phelps and Srikanth Paruchuri 
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strength of these connections (Van Wijk et al., 2008). Despite the abundant literature on both 

levels, it falls short in two important respects. 

To begin, inter- and intraorganizational network research on innovation developed 

along two separate lines (Borgatti & Foster, 2003; Phelps et al., 2012). Intraorganizational 

network research has shown how intrafirm networks constitute important mechanisms for 

knowledge diffusion and learning (Borgatti & Cross, 2003; Singh, 2005). Little attention is 

paid to the characteristics of organizations hosting these networks or their position in 

interorganizational networks. Instead, firms are often considered to be closed environments. 

Conversely, interorganizational network research has demonstrated that such interfirm 

networks are a major source of new knowledge, but considers organizations to be 'atomistic 

entities'. That is, interorganizational network studies consider organizations as unique, 

indivisible entities that are internally homogeneous. 

However, recent research on multilevel networks has recognized that an organization 

is simultaneously part of two networks: internally it is host to an intraorganizational network 

and externally it is part of an interorganizational network (Lazega et al., 2008; Moliterno & 

Mahony, 2011; Paruchuri, 2010). Harary and Batell (1981) describe this network-of-networks 

phenomenon as a 'nested structure' in which networks at one level constitute a node at a 

higher level. In such a context, the effects of networks at one particular level are contingent 

upon higher and lower level networks (Moliterno & Mahony, 2011). Therefore, to understand 

firm innovation, it is important to consider the simultaneous effects of interorganizational and 

intraorganizational networks. 

Moreover, literature on interorganizational networks has paid little attention to the 

processes that explain how interfirm collaboration influences firm innovation. While it is 

argued that interorganizational collaboration results in interfirm knowledge transfer (e.g. 

Mowery, Oxley, & Silverman, 1996), the mechanisms of interfirm learning have largely 
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remained a black box. This is surprising since there is substantial evidence that organizations 

benefit differently from interfirm alliances (Hamel, 1991; Khanna, Gulati, & Nohria, 1998; 

Rothaermel & Hess, 2007). One potential explanation for this effect is found in the origins of 

organizational learning, namely individuals and their personal networks (Liebeskind, Oliver, 

Zucker, & Brewer, 1996; Ployhart & Moliterno, 2011).  

Thus, adding intraorganizational networks to the analysis of interorganizational 

networks can help to explain how firms learn new knowledge from their partners externally 

and subsequently exploit it internally. Interpersonal networks affect knowledge transfer 

between firms as well as diffusion of new knowledge within a firm afterwards. When 

studying R&D laboratories, Allen and Cohen (1969) already noted that employees who learn 

more external knowledge are also considered as valuable sources of information and advice 

by their colleagues. Similarly, Hargadon and Sutton (1997) describe how new projects benefit 

when employees actively share and transfer their experiences from prior interorganizational 

collaboration via the intrafirm network. To understand how firms benefit from 

interorganizational collaboration, we need to better incorporate the role of intraorganizational 

networks in research on interorganizational networks. 

In this article, we suggest that intrafirm networks complement interfirm collaboration. 

We limit ourselves to dyadic interorganizational partnerships to gain a deeper comprehension 

of processes that explain interfirm knowledge transfer and to develop more refined 

propositions. In order to explain multilevel processes, we draw upon Coleman's boat model to 

identify the microfoundations of interorganizational learning. This model describes how 

actions and consequences at one level are explained by mediating processes at a lower level 

of analysis, or, its microfoundations. This directs our focus to the unique role of boundary 

spanners, i.e. employees from both organizations who collaborate on joint teams and thereby 

share knowledge and information (Aldrich & Herker, 1977; Tushman & Scanlan, 1981a). 
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Accordingly, we develop a conceptual model that incorporates both macrolevel processes at 

the firm level and microlevel processes at the individual level. We combine theories of social 

capital, in particular the heterogeneous diffusion model and the boundary spanners literature, 

to develop propositions about the efficacy of this process of knowledge absorption, that is, 

the process of acquiring and exploiting new knowledge. We suggest that this process consists 

of two parts, namely interorganizational knowledge transfer and intraorganizational 

knowledge diffusion. In the first part, we explain how knowledge transfer between firms 

depends on the characteristics of boundary spanners of both organizations. In the second part, 

we explain how diffusion and innovation depend on the characteristics of intraorganizational 

networks and the position of boundary spanners within this network. 

 

CONCEPTUAL MODEL 

To understand how interorganizational collaboration leads to innovation, we use 

Coleman's boat model (Coleman, 1994). This model helps us comprehend and analyze 

multilevel effects, in particular how macrolevel causes have macrolevel consequences via 

microlevel processes. Alliance formation and firm innovation is such a macrolevel 

relationship that rests on microlevel processes (Felin, Foss, Heimeriks, & Madsen, 2012). 

Alliances are essentially just contractual agreements among two or more organizations and it 

is only via their effects on individual employees that these agreements spur innovation. 

Knowledge spillovers and interorganizational learning are a function of formal and informal 

communication and cooperation among employees of two organizations (Janowicz-Panjaitan 

& Noorderhaven, 2008). Davis and Eisenhardt (2011) also note the importance of individual 

and team dynamics that go beyond alliance structure to realize innovation. Embracing this 

macro-micro-macro reasoning, we argue that interorganizational networks influence firm 

innovation via a four-step process (see Figure 2 below). 
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Figure 2 Coleman's boat model of interorganizational collaboration 

 

In a multilevel network perspective, the actions by a macrolevel node influence the 

nodes at a microlevel. In our model, tie formation between two organizations leads to tie 

formation among a subset of the employees. For instance, two organizations may establish an 

alliance agreement at the organizational level. The implementation of such an agreement 

occurs at the lower level by creating joint project teams that involve employees from both 

organizations (Davis & Eisenhardt, 2011). However, only a subset of all employees will be 

involved in these joint project teams. For these employees, joint project teams lead to new 

interpersonal ties that cross their organizational boundaries. So, macrolevel network changes, 

like alliance formation, influence microlevel networks by forming boundary-crossing ties for 

a subset of all employees. 

At the microlevel, individuals from two organizations who collaborate as part of an 

alliance are organizational boundary spanners (Van de Ven, 1976). These individuals have 

the potential to transfer knowledge across organizational boundaries (Tushman, 1977). Since 

their interactions with the partner organization are directed towards achieving a joint goal, 

they involve the frequent exchange of knowledge and information (Berends et al., 2011; 

Bouty, 2000). Interpersonal collaboration also involves unintended and unnecessary 

knowledge sharing among employees which provides additional learning benefits for the 
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receiving organization (Lavie, 2006). But while alliances simply create an opportunity for 

knowledge sharing, it depends on boundary spanners to realize these benefits. Actual 

knowledge transfer between two boundary spanners is a function of the characteristics of 

each boundary spanner as well as the social relationship between them (Greve, Strang, & 

Tuma, 1995; Keller & Holland, 1975; Tortoriello & Krackhardt, 2010; Tushman & Scanlan, 

1981b). 

Afterwards, boundary spanning individuals may share their experiences from 

interorganizational collaboration with their colleagues within their own firm. This happens in 

two ways. Via communication and collaboration with colleagues, a firm's boundary spanners 

may pass on new information and knowhow that they obtained from the partner organization 

(Allen, James, & Gamlen, 2007; Allen & Cohen, 1969). In addition, colleagues may turn 

toward a boundary spanner to actively ask for advice and learn about new information that 

this boundary spanner acquired from interorganizational collaboration (Tushman & Scanlan, 

1981a). The likelihood of knowledge diffusion from a boundary spanner to another employee 

within the same organization is again a function of their individual characteristics and the 

relationship between them (Greve et al., 1995; Nebus, 2006). 

In the final step, we argue that intraorganizational knowledge diffusion affects firm 

innovation. Literature on knowledge recombination has described how individuals or teams 

innovate via a recombinant search process. In this process, employees aim to solve problems 

by combining multiple knowledge components (expertise, skills, technologies, etc.) in novel 

ways (Fleming & Sorenson, 2001; Fleming, 2001). New knowledge and information 

absorbed from a partner organization allow employees to create such combinations. To begin, 

boundary spanners can increase their innovative performance by applying their new 

knowledge and skills in other projects. In addition, other employees may become more 

innovative when boundary spanners share their new knowledge. At the macrolevel, this 
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affects firm innovation in two ways. First, firm innovation increases with the degree of 

recombinant search and innovation by its employees (March, 1991). Second, the structure of 

collaboration and communication among employees influences a firm's ability to turn 

knowledge and resources into different types of innovation (Carnabuci & Operti, 2013; Lazer 

& Friedman, 2007). 

As the above model has shown, adding a multilevel network perspective and 

microfoundational focus helps us to better understand the role of individuals in 

interorganizational collaborations. Primarily, it has displayed the importance of boundary 

spanners in realizing knowledge transfer between two organizations. Their ability to learn 

external knowledge and diffuse it within an organization is critical for knowledge absorption 

in interorganizational collaboration. Secondary, it has revealed how intrafirm networks play a 

central role in the relationship between interorganizational knowledge transfer and firm 

innovation. The ability of a firm to exploit new knowledge relies on the ability of 

intraorganizational networks to disperse this information to all employees. 

The effect of alliance formation on organizational innovation is therefore a real 

macro-micro-macro process. First, alliance formation leads to boundary spanning ties among 

subsets of employees in both organizations. Second, these ties facilitate interorganizational 

knowledge transfer and interactive knowledge recombination among boundary spanners. 

Third, knowledge diffuses within an organization from boundary spanners to other 

employees. Finally, intraorganizational knowledge diffusion increases individual and 

collective knowledge recombination. We argue that the impact of alliance formation on 

organizational knowledge recombination and innovation depends on the effectiveness of each 

of these processes. To do so, we build upon the concept of boundary spanners as well as the 

heterogeneous diffusion model which we first explain and develop further. 
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THEORETICAL BACKGROUND AND CONCEPT DEVELOPMENT 

Boundary Spanners and Knowledge Transfer 

In our theorizing on interorganizational collaboration, boundary spanners are all 

employees involved in projects that are part of interorganizational agreements (Tushman & 

Scanlan, 1981a). These projects involve collaboration and communication of employees 

belonging to two different organizations and involve extensive knowledge sharing. Though 

employees also share knowledge and resources with colleagues outside their organization, it 

is not to the same degree as within interfirm partnerships (Berends et al., 2011; Bouty, 2000). 

If knowledge or resources are crucial for an organization's competitive position, employees 

will not share these (Bouty, 2000) but aim to formalize the relationship via a contractual 

agreement that permits such collaboration (Berends et al., 2011). Boundary spanners are thus 

in a unique position to share and transfer knowledge and resources across organizational 

boundaries (Tushman & Scanlan, 1981a; Tushman, 1977). 

A boundary spanner bridges two otherwise unconnected groups of employees that 

each have their own knowledge and expertise. Therefore, boundary spanners function both as 

knowledge brokers and gatekeepers. On the one hand, their position as bridges allows them to 

take advantage of unique opportunities (Zhao & Anand, 2013). Boundary spanners can 

increase their individual creativity and performance by drawing upon complementary 

knowledge and information from two organizations (Burt, 1992). On the other hand, 

boundary spanners act as gatekeepers and control the inflow of new information in an 

organization (Allen & Cohen, 1969). Because boundaries have access to knowledge outside 

firm boundaries, they can turn into important sources of new information for their colleagues 

(Tushman & Scanlan, 1981a). 

We use the heterogeneous diffusion model to explain the extent by which boundary 

spanners learn and share new knowledge. This model, introduced by Strang and Tuma 
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(1993), describes under which conditions innovations diffuse and can easily be adapted to 

describe how knowledge and information from one employee in an organization will reach 

another employee in another organization. It recognizes three factors, namely the likelihood 

of the source to share information (infectiousness), the probability that the recipient will learn 

and use this information (susceptibility), and the characteristics of their relationship 

(proximity). 

At the source, the likelihood of a person to share information and knowledge is a 

function of the quality and diversity of knowledge s/he possesses or can access (Borgatti & 

Cross, 2003; Nahapiet & Ghoshal, 1998). A person with unique expertise and knowhow is a 

significant source of information for its peers. Collaboration and communication with these 

knowledgeable employees allows for colleagues to learn this expertise (Simonin, 1997). In 

addition, more colleagues will turn to this employee via the referral network within an 

organization (Argote & Ren, 2012). Besides possessing knowledge, social capital also shapes 

learning opportunities. When a partner's boundary spanner has access to unique information 

possessed by others, it increases opportunities for knowledge transfer (Nahapiet & Ghoshal, 

1998). 

At the recipient, the probability that a person receiving information will accept, 

remember and use it, depends on his/her ability to recognize its value and his/her opportunity 

to apply it (Cohen & Levinthal, 1990; Matusik & Heeley, 2005). The ability to recognize the 

value of new knowledge depends on how related that knowledge is to an employee's current 

knowhow and expertise (Cohen & Levinthal, 1990). When an employee obtains new 

knowledge related to his/her current or past projects, it is easier to assess the relevance and 

quality of this new knowledge. In this situation it is also easier to envisage how and where 

this new knowledge could be used. Individual absorptive capacity is therefore an important 



30 
 

determinant for receiving, remembering and using new information (Ter Wal, Criscuolo, & 

Salter, 2011). 

The characteristics of the relationship between source and recipient are equivalent to 

tie strength between boundary spanners. The likelihood of knowledge being shared between 

two persons increases with the strength of their relationship, i.e. the duration, intensity, 

intimacy and reciprocity of their relation (Granovetter, 1973). First, stronger personal ties 

create trust and foster reciprocity in a relationship. This stimulates employees' willingness to 

share knowledge (Coleman, 1988; Krackhardt, 1992). Second, stronger ties increase the 

mutual understanding of colleagues and improve their efficiency of communication and 

collaboration (Postrel, 2002). Third, stronger ties allow for the transfer of complex, tacit 

knowledge between individuals (Aral & Van Alstyne, 2011; Hansen, 1999). Whereas weaker 

ties are sufficient to pass on simple and explicit information (Granovetter, 1973), transferring 

tacit knowhow and expertise requires stronger interpersonal relations (Hansen, 1999). 

 

Intraorganizational Networks and Knowledge Diffusion 

The literature on social capital has shown that intraorganizational networks are 

important mechanisms for knowledge sharing and diffusion in an organization (Brass et al., 

2004; Phelps et al., 2012). Social ties among employees act as channels for knowledge and 

information. First, individuals share their experiences and information with their colleagues 

via informal conversation and collaboration (Brown & Duguid, 1991). This uncontrolled 

process supports the fast diffusion of information throughout a firm. Second, employees often 

rely upon specialized expertise and knowhow to perform their roles. If a person lacks such 

expertise, s/he may turn to a colleague to learn it or ask for help (Nebus, 2006). 

Intraorganizational networks are an important mechanism for providing referrals, i.e. the 

introductions to the right colleague that possesses this knowhow (Borgatti & Cross, 2003). 
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Whereas the heterogeneous diffusion model explains knowledge sharing in dyadic 

relationships, it does not take macrolevel network structure into consideration. Macrolevel 

network structure refers to the pattern of ties among all employees within an organization 

(Wasserman & Faust, 1994) and has strong consequences for intrafirm knowledge transfer 

and firm knowledge recombination (Carnabuci & Operti, 2013; Guler & Nerkar, 2012; Lazer 

& Friedman, 2007). For the purpose of this article, we focus on one important macrolevel 

characteristic of network structure, namely network cohesion. Intrafirm network cohesion 

refers to the degree that employees are all, directly or indirectly, connected via social ties 

(Wasserman & Faust, 1994). In cohesive networks, all employees are (in)directly connected, 

whereas fragmented networks display disconnected (groups of) employees. Recent studies 

have shown that intrafirm network cohesion has a strong effect on firm innovation. 

Particularly, cohesive networks are more likely to stimulate knowledge sharing and 

incremental innovation (Carnabuci & Operti, 2013; Chang, Lee, & Song, 2014). 

In addition to their direct effects on firm innovation, we argue that intraorganizational 

networks also exhibit strong joint effects with interorganizational collaboration. Interfirm 

networks are important means to obtain new knowledge from other organizations whereas 

intrafirm networks are important mechanisms to diffuse new knowledge among employees in 

a firm (Brown & Duguid, 1991; Paruchuri, 2010). When new information enters a firm via 

one person, it may spread to other colleagues via their social connections. This process occurs 

erratically because "knowledge is imperfectly shared over time and across people" (Hargadon 

& Sutton, 1997: 716). The extent of diffusion then strongly depends on the cohesiveness of 

intraorganizational networks. With stronger connections, shorter paths and little 

fragmentation, new knowledge will diffuse faster and further. Cohesive intrafirm networks 

are thus more effective in diffusing information obtained from interorganizational 

collaboration. 
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Figure 3 Two multilevel models of interorganizational collaboration 

 

INTERORGANIZATIONAL KNOWLEDGE TRANSFER 

We argue that the amount of knowledge an organization learns from its partner firm 

depends on the characteristics of the source and recipient boundary spanners and the 

connections among them. As we modeled interorganizational knowledge transfer as a 

multilevel process, we distinguish between microlevel and macrolevel knowledge transfer. At 

the microlevel, we develop propositions about the effects of boundary spanner and tie 

characteristics on individual learning from a partner organization. At the macrolevel, we 
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develop propositions about the role of boundary spanners for the total amount of learning by 

an entire organization from a partner organization. Figure 3 above provides two models to 

illustrate each proposition. 

 

Microlevel Knowledge Transfers 

When an organization forms a collaborative agreement with a partner, one or more 

employees in the focal organization will become boundary spanners. They develop 

interpersonal ties with one or more employees in the partner organization and have an 

opportunity to learn new knowledge and information from the partner firm. The amount of 

knowledge a boundary spanner will learn from a partner organization is a function of the 

characteristics of the source (i.e. the partner's boundary spanners), the recipient (i.e. the focal 

boundary spanner), and their social proximity (i.e. their tie). 

We argue that a partner organization's knowledge available to a boundary spanner is a 

combination of the human and social capital of boundary spanning employees in the partner 

firm. In particular, a boundary spanner will learn more new knowledge from a partner 

organization if s/he establishes a relationship with a more knowledgeable and more central 

employee in the partner (Allen & Cohen, 1969; Ployhart & Moliterno, 2011). First, 

interorganizational communication and collaboration may give a boundary spanner access to 

the knowhow and expertise of a partner firm's boundary spanner. Via observation and 

interaction during their joint projects, a boundary spanner can learn new skills from the 

partner firm (Janowicz-Panjaitan & Noorderhaven, 2008; Liebeskind et al., 1996). The 

opportunity to learn is then limited by the human capital of the partner's boundary spanner. 

For example, if a boundary spanner collaborates with a highly knowledgeable, senior 

employee of a partner firm (e.g. star scientist), the learning opportunities are much larger than 

if s/he collaborates with a junior employee of that partner firm. 
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Second, a boundary spanner of the focal firm may also learn from a partner firm via 

the social capital of a partner's boundary spanner (Kostova & Roth, 2003; Nahapiet & 

Ghoshal, 1998). When faced with a particular issue or looking for more information, a 

boundary spanner can turn to his/her partner boundary spanner. If this partner boundary 

spanner does not have the relevant knowledge, s/he can turn to other employees within 

his/her organization to ask for advice. The partner boundary spanner may then pass on this 

information to the focal firm or provide a referral to the right person (Berends et al., 2011). 

The personal network of a partner boundary spanners is thus an important source of 

knowledge and information. The extent to which a boundary spanner can access the partner's 

knowledge then depends on the social capital of the partner boundary spanner. Specifically, 

the opportunity to learn from the partner firm increases with the centrality of the partner's 

boundary spanner within his/her intrafirm network. An illustrative case is shown in Figure 3 

above by comparing a1 and c1: while a1 is connected to peripheral b2, c1 has a boundary-

spanning tie with the more central d1 and has indirect access to knowledge and expertise of 

d7, d8, and d9. We therefore argue that a boundary spanner's opportunity for learning is 

larger if s/he is connected to a more knowledgeable and more central boundary spanner in the 

partner organization. 

P1: A boundary spanner will learn more from a partner organization when s/he is 

connected (a) to a boundary spanner with more human capital, and (b) to a boundary 

spanner that is central in the partner's intraorganizational network. 

 

In addition to characteristics of the source, the characteristics of the focal boundary 

spanner also influence his/her potential to learn from a partner organization. We argue this 

increases with the level of a boundary spanner's human capital, in particular the motivation 

and ability to learn. Willingness to learn is an individual-level attitude that strongly defines 

an employee's motivation to engage in search and exploration (March, 1991). The 'not-
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invented-here' syndrome has shown that not all employees are eager to learn and adopt new 

practices (Katz & Allen, 1982). 

In addition, employees vary in their ability to recognize the value of new knowledge 

and absorb it, i.e. employees vary in their individual absorptive capacity (Lane, Koka, & 

Pathak, 2006; Ter Wal et al., 2011). This ability is largely shaped by the boundary spanner's 

knowledge and experience: individuals with a broader diversity of knowledge learn new 

knowledge faster and see broader opportunities to employ it elsewhere (Cohen & Levinthal, 

1990). Moreover, cognitive similarity allows for efficient communication between boundary 

spanners and enables a boundary spanner to recognize the usefulness of new knowledge and 

information (Aral & Van Alstyne, 2011; Cohen & Levinthal, 1990). Since mutual 

understanding is based on overlap in education and experience (Postrel, 2002), the likelihood 

of cognitive similarity increase with a boundary spanner's ability and experience. 

Consequently, a boundary spanner will learn more from a partner organization if s/he has 

more human capital, that is, a higher motivation and ability to learn. 

P2: A boundary spanner will learn more from a partner organization when s/he has 

more human capital. 

 

Finally, the characteristics of a relationship between two boundary spanners influence 

their likelihood of knowledge transfer. The quality of their personal relationship has a strong 

effect on the degree of communication, the extent of knowledge sharing, and their readiness 

to collaborate (Huang, Luo, Liu, & Yang, 2013). Their ability to develop stronger relations 

depends on the boundary spanners themselves as well as their environment, like the 

characteristics of their interorganizational relationship. The frequency, intensity and 

reliability of communication and collaboration between two boundary spanners are 

influenced by the structure and policies of interorganizational agreements (Mohr & Spekman, 

1994). Structural arrangements can enable or inhibit collaboration and communication among 
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employees. For instance, physical proximity of R&D scientists allows more intensive 

interactions (McKelvey, Alm, & Riccaboni, 2003). But strict policies about personal 

communication can seriously constrain individual employees to learn from their colleagues at 

a partner organization. 

In interfirm collaboration, tie strength is particularly important because these 

interpersonal relationships cross organizational boundaries. This puts certain constraints on 

the level to which knowledge and resources could be shared (Berends et al., 2011; Bouty, 

2000). Particularly if knowledge is proprietary, sharing it with potential competitors can harm 

an organization's competitive position (Lavie, 2006). Trust and reciprocity are then essential 

to facilitate knowledge sharing (Janowicz-Panjaitan & Noorderhaven, 2009). Therefore tie 

strength will have a strong effect on the quantity and quality of information that boundary 

spanners are willing to share. 

P3: A boundary spanner will learn more from a partner organization when s/he 

develops a stronger relationship with a partner organization's boundary spanner. 

 

Macrolevel Knowledge Transfer 

Individual-level knowledge transfer by boundary spanners constitutes firm-level 

knowledge transfer in interorganizational collaboration (Janowicz-Panjaitan & 

Noorderhaven, 2008). Organizational-level knowledge transfer, however, is not simply the 

aggregate of new knowledge and information acquired by employees, because there may be 

substantial diversity or overlap in their newly acquired skills and knowhow. Instead, we 

elevate the characteristics of the source, the recipient, and their relationship to the macrolevel 

to understand firm-level learning. 

At the source, the opportunity for an organization to acquire knowledge from its 

partner depends on the extent to which it can access the partner's knowledge base (Lavie, 

2006). This opportunity is shaped by the human and social capital of boundary spanners in a 
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partner organization (Janowicz-Panjaitan & Noorderhaven, 2009). If a partner organization 

involves more employees in alliance projects, the focal organization may be able to access 

more of their unique knowledge and knowhow via its own boundary spanners. This effect is 

stronger if a partner firm involves more senior and knowledgeable employees in their 

alliance, particularly when these specialists have more diverse fields of expertise. When a 

partner firm's alliance team consists of boundary spanners with heterogeneous expertise (e.g. 

organizations A and D in the figure above), the direct ties among boundary spanners will 

transfer more diverse knowledge and increase interfirm learning. 

P4: An organization will learn more from a partner organization when its partner 

organization involves (a) more employees and (b) employees with more diverse 

human capital as boundary spanners. 

 

An individual boundary spanner's opportunity for learning is also shaped by the social 

capital of his/her connection to a partner organization. We argue that social capital also 

matters at the level of organizations. Specifically, cohesiveness of a partner's 

intraorganizational network changes the opportunities for the focal firm to access and learn a 

partner firm's knowledge. Employees in cohesive networks are generally connected to all 

their colleagues via relatively short paths. This stimulates knowledge sharing and transfer 

among them (Carnabuci & Operti, 2013; Lazer & Friedman, 2007). If a partner firm has such 

a cohesive intraorganizational network, the focal firm may not only learn knowledge from the 

partner's boundary spanners, but potentially also from non-boundary spanning employees. 

First, new information diffuses further and faster in cohesive networks (Fang et al., 2010). 

Boundary spanners are then more likely to learn new information, even when it originates 

from colleagues they are not directly connected to. Second, the search for information via 

personal referrals is more effective in cohesive networks (Singh, Hansen, & Podolny, 2010). 

Thus, the probability that a piece of information, possessed by a non-boundary spanning 

employee in the partner firm, reaches the focal firm is larger if the partner's intrafirm network 
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is more cohesive. For example, knowledge from person d7 (see the figure above) may still 

reach employees within organization C via boundary spanners d1 and d2, but this is less 

likely for knowledge possessed by b7 that is relevant to organization A. 

Non-cohesive networks display higher levels of fragmentation, i.e. the presence of 

groups of employees that are not connected via social ties (Wasserman & Faust, 1994). Such 

fragmentation forms a barrier for knowledge and information sharing (Lawrence & Lorsch, 

1967). If a partner organization has a fragmented intrafirm network, the opportunity for 

knowledge transfer depends on the relative position of the partner's team of boundary 

spanners (Kostova & Roth, 2003). When a partner firm has strong functional silos but 

includes one employee from each function in the alliance, the focal firm may still have an 

opportunity to access and learn all of its partner's knowledge. For example, organization A in 

the model above has a strong degree of fragmentation, but creates a team of boundary 

spanners that represents each unit with its unique expertise. Thereby organization B still has 

access to all employees of organization A. Alternatively, if only employees from one single 

group are included (like organization B), there is no such opportunity. 

P5: An organization will learn more from a partner organization when its partner 

organization (a) has a more cohesive intraorganizational network, or (b) involves 

boundary spanners from different parts of a less cohesive network.  

 

At the recipient side, the ability of an organization to learn from its partner during 

interorganizational collaboration depends on its boundary spanning employees involved in 

this relationship. Particularly, learning from a partner organization depends on the number of 

boundary spanners and their human capital (Kostova & Roth, 2003; Marrone, 2010). The 

degree of interaction and communication will rise if the number of boundary spanners 

increases (Liebeskind et al., 1996). Since each employee has an ability to recognize and 

absorb valuable knowledge during collaboration, the probability of learning amplifies with 

the number of boundary spanners (Zhao & Anand, 2013).  
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We claim that this effect is stronger when a firm's boundary spanners possess more 

diverse human capital, i.e. more diverse knowledge and expertise. This argument for 

absorptive capacity at the level of an organization differs slightly from the individual level. 

At the microlevel, individual learning increases with a boundary spanner's ability to 

understand and value new knowledge. In this case, a boundary spanner with broader, more 

generic knowledge will learn more than a specialist because s/he can assess and evaluate new 

information better. But at the macrolevel, organizational learning depends on their collective 

human capital (Ployhart & Moliterno, 2011). In this case, it is not only the human capital of 

boundary spanners, but also their relative diversity that is important (Dahlin, Weingart, & 

Hinds, 2005). Cohen and Levinthal (1990) also point out that an organization's ability to learn 

new knowledge is not simply the sum of individual abilities, but depends on their relative 

differences. For example, a team of boundary-spanning specialists will learn more than a 

team of boundary-spanning generalists if their fields of expertise vary. Each specialist then 

has an opportunity to identify and acquire knowledge relevant to his/her field during interfirm 

collaboration. In the illustration above, organizations A and D will learn more than their 

alliance partners B and C because their alliance teams comprise all types of expertise. 

Therefore, interfirm knowledge transfer increases with the diversity of knowledge and 

expertise among all boundary spanners of an organization. 

P6: An organization will learn more from a partner organization when it involves 

more employees with more diverse human capital as boundary spanners. 

 

Regarding the relationship, organizations can structure their collaboration differently 

in the number and strength of ties among boundary spanners (Tortoriello & Krackhardt, 

2010; Zhao & Anand, 2013). Within an alliance, each boundary spanner from the focal 

organization can form one tie to a colleague in the partner firm (see A-B in the figure above) 

or more ties to several colleagues in the partner firm (see C-D in the figure above). Whereas 
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fewer ties may result in less, more efficient communication and reduces interdependencies in 

collaboration, it also limits the opportunity for sharing information and knowledge. Therefore 

Zhao and Anand (2013) argue that fewer ties are sufficient in cases where knowledge is 

simple, but more ties among boundary spanners are needed to transfer complex knowledge 

between groups. Interfirm knowledge transfer will thus increase when collaborations are 

structured as teams with many ties. 

Besides the number of connections among boundary spanners, the strength of these 

ties is also relevant. Stronger ties with more frequent, intense, and reliable communication 

allow for a richer flow of information and knowledge. Tortoriello and Krackhardt (2010) 

argue that strong ties are useful for boundary-crossing knowledge sharing by individuals who 

bridge different units. Hansen (1999) reveals that strong ties are a prerequisite to transfer 

complex, tacit knowledge across boundaries. Only the trust and mutual understanding present 

in strong ties allow for sharing and understanding such information. Tie strength among 

boundary spanners is affected by the structure and implementation of interorganizational 

agreements (Mohr & Spekman, 1994). Alliance structure shapes the extent of interaction 

among boundary spanners and can enable or inhibit knowledge sharing among employees. 

Alliance structure determines how closely boundary spanners will work together, how 

frequently they will interact, and to what extent they are allowed to share information 

(Janowicz-Panjaitan & Noorderhaven, 2009; McKelvey et al., 2003). Additionally, 

organizations can increase tie strength by keeping the set of boundary spanners stable over 

time because rotation of employees disrupts interorganizational relationships and reduces 

interfirm learning (Aldrich & Herker, 1977). 

P7: An organization will learn more from a partner organization when its boundary 

spanners develop more and stronger ties with boundary spanners to the partner 

organization. 
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In summary, interorganizational knowledge transfer depends on boundary spanners 

both at the focal and a partner organization. At the source, the partner's number of boundary 

spanners and its intraorganizational network shape the opportunity to access a partner's 

knowledge and information. At the recipient, the focal organization's number and diversity of 

boundary spanners shape its ability to learn from a partner firm. Regarding the ties, the 

number of relationships and their average strength increase knowledge flows. 

 

INTRAORGANIZATIONAL KNOWLEDGE DIFFUSION AND INNOVATION 

Organizations initially learn via their boundary spanners. Through their interactions 

with employees in a partner organization, boundary spanners learn new knowledge and 

information that are valuable for their interfirm projects as well as other projects within their 

firm. This improves their creative performance and increases innovation within an 

organization (Subramanian, Lim, & Soh, 2013; Tushman & Scanlan, 1981a). However, 

boundary spanners are also an important source of information for non-boundary spanning 

colleagues (Tushman, 1977). We argue that interorganizational knowledge transfer is 

followed by a process of intraorganizational knowledge diffusion via intrafirm networks. 

New knowledge may be shared between boundary spanners and non-boundary spanning 

employees so that these non-boundary spanning employees can also learn from 

interorganizational collaboration. If they see opportunities to employ this knowledge, non-

boundary spanning employees also become more creative. This increases overall innovation 

of an organization. We rely again on the heterogeneous diffusion model to make predictions 

about this process of knowledge diffusion at the level of individuals and organizations. 
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Microlevel Knowledge Diffusion 

At the level of the individual, non-boundary spanning employees can learn from 

interorganizational collaboration via boundary spanners. The probability of diffusion depends 

on the characteristics of the boundary spanner sending the information, the non-boundary 

spanner receiving the information, and the social distance between them. The role of sender 

and recipient characteristics are fairly similar to these for interorganizational knowledge 

transfer. 

Regarding the source, the opportunity for non-boundary spanners to learn from 

boundary spanners depends on how much information these boundary spanners absorbed 

from a partner firm. If a firm's boundary spanners were limited in learning new skills and 

expertise from a partner, then the opportunity for intraorganizational knowledge diffusion are 

also limited and non-boundary spanning employees will learn less. Thus, knowledge 

diffusion from a boundary spanner to a non-boundary spanner increases with the amount of 

information the former obtained from a partner firm. 

At the recipient, non-boundary spanning employees are more likely to learn from 

boundary spanners if they have more human capital, i.e. a stronger motivation and ability to 

learn. The motivation to learn is largely related to their individual openness to new ideas and 

willingness to accept new information (Katz & Allen, 1982; March, 1991). The ability to 

learn is influenced by the relatedness of his/her current knowledge and expertise compared to 

that of the boundary spanner (Postrel, 2002). Larger similarity in field of expertise increases 

their mutual understanding and facilitates efficient transmission of knowledge, particularly 

when this is tacit and complex (Aral & Van Alstyne, 2011). Therefore, the probability of a 

non-boundary spanning employee learning from a partner firm increases with that employee's 

human capital. 
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Social proximity between boundary spanners and other employees shapes the 

opportunity to share and diffuse knowledge. Non-boundary spanning employees are more 

likely to learn a partner organization's knowledge if they have more, stronger and shorter 

connections to boundary spanning colleagues (Tortoriello & Krackhardt, 2010; Zhao & 

Anand, 2013). A stronger relationship between employees increases the likelihood that a 

boundary spanner will share his/her information. First, stronger ties create trust and 

reciprocity which are necessary to share valuable knowledge among employees (Coleman, 

1988). Second, stronger ties improve mutual comprehension and efficiency of 

communication since employees will have more shared experience and expertise (Aral & Van 

Alstyne, 2011; Singh et al., 2010). 

The likelihood of a non-boundary spanning employee to learn from a partner 

organization also grows with the number of boundary spanners s/he is connected to in his/her 

own organization. As not all boundary spanners may share their new information with their 

colleagues (Schilling & Fang, 2013), being connected to more boundary spanners increases 

the probability of learning from a partner organization. In addition, each boundary spanner 

may have acquired different types of knowledge and expertise. When boundary spanners 

acquired different knowledge from a partner organization, non-boundary spanning employees 

can learn more if they are connected to multiple boundary spanners in their own organization. 

For example, in the illustrative figure above, person b4 is less likely to obtain new 

information from organization A than c4 from organization D because of their connections to 

boundary spanners. 

Finally, non-boundary spanning employees may rely upon indirect ties to learn from 

their colleagues in boundary spanning positions. If there are no direct ties, indirect ties can 

function as channels of knowledge and information. Shorter indirect ties result in a stronger 

diffusion process for new information because knowledge is shared quicker and more 
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precisely (Freeman, 1977). Shorter indirect ties also increase the chances of finding the right 

expert within an organization (Jarvenpaa & Majchrzak, 2008). Non-boundary spanning 

employees can then effectively contact boundary spanners who acquired relevant information 

from the partner firm. For instance, c5 may obtain relevant information from organization D 

if it is passed on from c3 via c4 or if c4 refers c5 directly to c3. 

P8: A non-boundary spanning employee of the focal organization will learn more 

from a partner organization when s/he has more, stronger, and shorter ties to the 

focal organization's boundary spanners. 

 

Creativity of individuals is strongly linked to the variety of knowledge and 

information they possess or can access (Fleming, Mingo, et al., 2007; Fleming, 2001). So 

when both boundary spanning and non-boundary spanning employees learn new knowledge 

from another organization, it increases their potential to identify and exploit new 

opportunities. In summary, the likelihood for a boundary spanner to become more creative 

depends on his/her characteristics, the characteristics of the boundary spanner in the partner 

organization, and the relationships between them. For non-boundary spanning employees, 

more learning and increased creativity depend on their social connections to boundary 

spanners. 

 

Macrolevel Knowledge Diffusion 

At the level of an organization, the ability to turn newly acquired knowledge into new 

innovation depends on its ability to get this new knowledge from its boundary spanners to the 

employees who can use it. We identify three paths via which interorganizational knowledge 

transfer can increase innovation. First, firm innovation increases directly with the success of 

projects that are part of interfirm cooperation. Knowledge learned via interorganizational 

collaboration is controlled by boundary spanners. If this new information is relevant for their 

joint projects, the performance and innovativeness of these projects improve (Krishnan, 
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Martin, & Noorderhaven, 2006). Second, boundary spanners can use their newly acquired 

knowledge and skills in other projects (Criscuolo, 2005). The reuse of this experience helps 

these projects to move quicker and enhances their performance. The third, and potentially 

largest, effect stems from the diffusion of newly acquired knowledge and information 

throughout the organization. If this information is actively shared, non-boundary spanning 

employees also have a chance to use it in their projects. 

Knowledge diffusion from boundary spanners to other employees within an 

organization is strongly influenced by the structure of a firm's intraorganizational network 

(Allen, 1966). To start, the position of boundary spanners in their intraorganizational network 

affects their opportunity to share information with colleagues. If boundary spanners work in 

an isolated project team, knowledge is less likely to diffuse to other employees. In the 

illustration above, non-boundary spanning employees b4 to b12 in organization B are 

unlikely to receive any knowledge stemming from partner A because the boundary spanners 

in B are separated from the remainder of the organization. Instead, knowledge is shared more 

extensively if boundary spanners are well-connected and have central positions in an 

intraorganizational network. Another example is given in organizations C and D in the figure 

above where organization C's boundary spanners are at the periphery of their intrafirm 

network while D's boundary spanners are at the core. Knowledge diffusion from boundary 

spanners to other colleagues will thus increase with their centrality in their intraorganizational 

network. 

P9: A focal organization will learn more from a partner organization when the focal 

organization's boundary spanners occupy central positions in its intraorganizational 

network. 

 

Moreover, intrafirm network structure influences knowledge diffusion. First, cohesive 

intraorganizational networks increase the likelihood of knowledge transfer. Such networks, 

without disconnected groups, reduce social barriers of knowledge sharing. Shorter paths 
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among employees also help to diffuse knowledge faster. For example, non-boundary 

spanning employees in organization C may still learn from organization D, but it is less likely 

for employees b4 to b12 to learn from partner organization A because B's intrafirm network is 

not cohesive. 

Second, knowledge disperses faster if boundary spanners belong to different parts in 

their intraorganizational network. Even when intrafirm networks are non-cohesive and 

consist of disconnected groups of employees, knowledge may still diffuse if boundary 

spanners belong to each of these different groups. If an interfirm project team consists of 

experts from each of these isolated units (like organization A), each boundary spanner 

becomes an informant for their respective unit and knowledge still spreads to all employees. 

P10: An organization will learn more from a partner organization (a) when it has a 

more cohesive intraorganizational network, or (b) when it involves boundary 

spanners from different parts of their intraorganizational network. 

 

We argue that firm innovation increases with the effectiveness of interorganizational 

knowledge transfer and intraorganizational knowledge diffusion. Innovation is the creation of 

new combinations of components, i.e. types of knowledge, skills, expertise, etc. (Fleming, 

2001). Since each employee possess partially unique, non-overlapping knowledge (Kogut & 

Zander, 1992), each employee has the potential to identify new combinations. This potential 

for innovation by an employee grows with him/her receiving new knowledge and information 

(Fleming & Sorenson, 2001). Initially, firm innovation increases with the degree of 

interorganizational knowledge transfer from a partner to the focal organization. Boundary 

spanners can draw upon this knowledge and increase their performance. Afterwards, firm 

innovation rises further with the extent of intraorganizational diffusion of this new 

knowledge. In that case, non-boundary spanning employees can also employ it in their 

projects and increase their creativity. 
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DISCUSSION 

In this chapter, we have proposed a multilevel perspective on interorganizational 

collaboration and firm innovation. Using a network-of-networks analogy, we conceptualized 

an organization as an actor embedded in an interorganizational network as well as a network 

of employees itself. We suggest that firm innovation is the outcome of both levels of 

collaboration, independently and jointly. Whereas the interorganizational network offers 

opportunities for obtaining new knowledge and skills, an organization's ability to learn this 

knowledge will depend on the employees appointed as boundary spanner. An organization's 

capability to share, transfer, and recombine this knowledge internally largely depends on its 

intraorganizational network. Our model therefore adds to three different groups of innovation 

management literature. 

 

Innovation and Multilevel Networks 

First, we integrate two streams of networks and innovation literature that had 

remained largely unconnected, namely the individual and the organizational. While both 

build upon the same theoretical arguments and use similar empirical methods, their 

intersection remained rather narrow (Phelps et al., 2012). We argue that it is necessary to 

combine networks at both levels to understand firm innovation. 

The mechanism linking networks to innovation is the flow of knowledge and 

resources. This is primarily an individual activity and therefore requires a deeper assessment 

of the role of employees. If we were to overlook their pivotal role in interfirm knowledge 

transfer, we could not explain part of the variance in the effect of interfirm collaboration on 

innovation (Smith, Carroll, & Ashford, 1995). Alternatively, reducing a macrolevel entity 

entirely to its microlevel components would also be incorrect. When an interorganizational 

network would be reduced entirely to an interpersonal network, it would ignore the role of 
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organizations. However, several studies have shown that organizational boundaries still help 

to preserve knowledge and expertise within organizations and are only shared beyond firm 

boundaries if organizational arrangements are present (Berends et al., 2011; Bouty, 2000). 

Thus, we state that multilevel theory building and testing is necessary to comprehensively 

understand and foresee how networks influence recombination. 

Such a multilevel logic is fundamentally different from extant single-level reasoning 

(Klein & Kozlowski, 2000). In particular, the effects of actions at one level are contingent 

upon the characteristics of other levels. In our case, we identify how intraorganizational 

networks within firms moderate the effect of interorganizational ties on firm innovation. 

Whereas interorganizational networks provide a firm with an opportunity to learn new 

information, its ability to employ it depends on how many employees can draw upon this new 

information. This varies with the structure of its intrafirm network that diffuses new 

information among all employees. 

 

Microfoundations of Interorganizational Learning 

Second, our conceptualization of interfirm learning via alliances is a specification of 

the microfoundations of interorganizational learning. We apply Coleman's (1994) boat model 

to explain the relationship between interorganizational learning and firm innovation at the 

macrolevel via interpersonal learning at the microlevel. Specifically, we argue that alliances 

lead to interorganizational learning via a social exchange processes among boundary-

spanning individuals of both organizations. Alliance agreements shape the structure and 

processes for interfirm collaboration, but it is the quantity and quality of employee 

interactions that stimulate learning. Only their personal interactions allow complex 

knowledge transfer across organizational boundaries (Hansen, 1999; Nonaka, 1994). This 

results in personal learning among boundary spanners. 
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Our model also points out a second microlevel process of interorganizational learning, 

namely intraorganizational knowledge diffusion. Individual-level network and diffusion 

literature pays little attention to the origin of new information, but its findings are a 

complement for the interorganizational network literature that visualizes organizations as 

'atomistic entities'. Drawing on the heterogeneous diffusion model (Greve et al., 1995), we 

show that intrafirm diffusion depends on the characteristics of boundary spanners, non-

boundary spanning employees, and their social ties. Initially, this explains the transfer from 

boundary spanners towards their direct colleagues. Ultimately, this model explains 

knowledge diffusion from boundary spanners throughout the entire organization. 

The combination of both processes allows us to answer major questions in the alliance 

and innovation literature. First, we identify new factors that moderate the impact of alliances 

on organizational performance. In addition to an alliance's structural characteristics, the 

human and social capital of boundary spanners are important success factors. Second, we 

recognize the role of intraorganizational networks in complementing the work of boundary 

spanners. The effects of interfirm collaboration on firm innovation augment if boundary 

spanners possess central positions within cohesive intrafirm networks. 

 

Absorptive Capacity and Recombinant Ability 

Third, we contribute to the absorptive capacity and recombinant ability literatures by 

specifying the sources of both organizational capabilities (Cohen & Levinthal, 1990; Garud 

& Nayyar, 1994). With regard to absorptive capacity, our multilevel model specifies the 

structures and processes that support the assimilation and application of new external 

knowledge. First, interorganizational collaboration via alliances and joint ventures influences 

the level and diversity of new knowledge entering an organization. Second, 

intraorganizational network structure and dynamics determine diffusion and application in 
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new products and processes. Cohen and Levinthal (1990: 132) already discussed the 

importance of "individuals who stand at the interface of either the firm and the external 

environment or at the interface between subunits within the firm" for outward-looking 

absorption and inward-looking transmission to colleagues. Absorptive capacity starts with the 

individual capabilities of boundary spanners in an organization followed by their colleagues 

who apply this knowledge in new products and processes. 

An organization's ability to turn knowledge into innovations is grounded in its ability 

to share and transfer this knowledge among its employees (Garud & Nayyar, 1994; Grant, 

1996). Connections among employees create an efficient system for informal knowledge 

sharing and referrals. The number, structure, and dynamics of such ties determine the 

likelihood and speed of diffusion (Fang et al., 2010; Lazer & Friedman, 2007). We argue that 

intraorganizational networks can complement interorganizational networks. The structure of 

an intrafirm network sustains the diffusion and exploitation of new knowledge obtained via 

interorganizational collaboration. Thereby it fulfills the second part of a firm's absorptive 

capacity, namely applying it for commercial purposes. 

 

Limitation and Opportunities for Future Research 

Theoretical extensions. One limitation and opportunity for further research is related 

to the scope of this article. The model presented here only deals with dyadic 

interorganizational collaboration. Reducing the model to only two organizations allowed us 

to be more detailed about the microlevel processes and mechanisms mediating interfirm 

collaboration and innovation. However, most firms are part of a larger interorganizational 

network and it is not only the number of interfirm relations, but also their structure that 

influences firm innovation (Phelps et al., 2012; Van Wijk et al., 2008). Further research on 

multilevel networks could address this by linking the structure of interorganizational and 
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intraorganizational collaboration networks to firm innovation. To begin, such research could 

explore the multilevel nature of interorganizational network structures like closure and 

brokerage. In addition, further research could look at the dynamics of multilevel networks. 

Moreover, we strongly simplified our model by only considering two levels of 

networks: individuals and organizations. While this greatly helped us in specifying structures 

and processes, it ignored a more complex reality of teams, departments and business units. 

Each of these levels creates and sustains their own boundaries that inhibit knowledge transfer. 

Tsai (2001), for instance, looked at formal relationships among business units of large 

corporations. Their structure is similar to interorganizational alliances, but their 

implementation is different because there are no fears for unintended knowledge spillovers. 

Similarly, Oh et al. (2004; 2006) explore the role of multilevel nature of networks in teams. 

They demonstrate that both internal and external ties affect team performance. From our 

current model, it is unclear how these extra layers change the mechanisms of knowledge 

transfer and diffusion, and eventually could affect the propositions. In addition, one could 

conceptualize a multilevel network model involving three different levels. Such networks are 

a better representation of reality, but three-level nested network will make theorizing much 

harder. Lastly, assuming that each level of networks consists of the same mechanisms 

underlying knowledge flows, one may aim to develop a meta-model of multilevel networks, 

similar to Moliterno and Mahoney (2011), with regard to knowledge recombination. 

Further work is also needed regarding the structure versus agency debate at different 

levels of networks. Questions regarding structure and agency have been important in many 

network studies, but are particularly pertinent in multilevel network setting because of cross-

level interactions. In this study, we have assumed that organizations have full agency at 

finding alliance partners in their interorganizational network. While this is a common 

assumption, Dhanaraj and Parkhe (2006) argue that hub firms reduce agency for other actors 



52 
 

in the interorganizational network. Similarly, we have assumed that management can foster, 

but not force tie creation and persistence among employees, so that individuals have 

substantial, though not full, agency in the intraorganizational network. This may seem 

realistic since Sasovova et al. (2010), for instance, observe high levels of agency in their 

medical setting. But the degree of agency will eventually be determined by industry and 

setting. 

Empirical testing. This study can also strengthen empirical research on networks and 

innovation, for instance by testing some of the proposition derived from our multilevel 

model. While network research has already provided us with a strong set of quantitative tools 

for assessing network dynamics and results, we propose two alternatives.  

First, hierarchical linear modelling is very suitable for testing the effects of multilevel 

networks on knowledge recombination. This statistical method, also known as random 

coefficient models, permits researchers to simultaneously estimate the effects of network 

structures at different levels (Klein & Kozlowski, 2000). A first benefit is that it estimates the 

explanatory power of each level upon the dependent variable. A second advantage is that is 

relaxes the fixed intercept and slopes assumptions of traditional regressions. While fixed-

effect regressions in panel data already relaxed intercept assumptions, the coefficients for 

network measures can now also vary among groups. Hierarchical linear modelling would 

allow to test how interfirm and intrafirm jointly influence innovation. 

A second interesting method for empirical examination is large-scale simulations. 

Simulation studies are useful in environments of independent, but interdependent agents. As 

Coleman (1994) showed when developing his model, changes in such settings often lead to 

unexpected results. Secondly, simulation studies are useful to observe bottom-up effects in 

multilevel research (Davis, Eisenhardt, & Bingham, 2007). Current quantitative methods are 

applicable in testing joint-level and top-down effects, but fail in capturing and testing the 
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effects from a lower upon a higher level. Simulations, however, allow for investigating 

bottom-up or emergent processes (Kozlowski et al., 2013). A third reason why simulation is 

especially useful for this situation is related to knowledge recombination. Over time, 

sophisticated algorithms have been developed that allow for personal, interpersonal and 

organizational learning (Fang et al., 2010; Fleming, 2001; March, 1991). A good example of 

such work is Kim et al. (2014) who simulate the impact of collaborative structure on the 

transfer of complex knowledge. Such models could easily be adapted and integrated in a 

multilevel networks setting. 

 

CONCLUSION 

Networks and innovation literature have gained major interest in management 

research (Phelps et al., 2012), and yet it has mainly revolved along two axes: 

interorganizational and interorganizational. Our article advances networks and innovation 

theory by integrating both streams of studies. We do so by combining interorganizational 

collaboration and intraorganizational networks into a multilevel network model for 

knowledge recombination and innovation. Specifically, we focus on knowledge absorption 

from interorganizational collaboration and identify the role of boundary spanners and 

intraorganizational networks in this process. Recognizing this multilevel nature of 

organizational networks aids to developing more sophisticated and accurate models of 

knowledge recombination. This article suggests new avenues for extending multilevel 

network theory as well as empirically assessing its validity. 
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CHAPTER 2: INTRAORGANIZATIONAL NETWORK STRUCTURE AND FIRM 

INNOVATION: THE MEDIATING PROCESSES 

 

ABSTRACT 

Extant literature assessing the effect of intrafirm network structure on firm-level innovation 

paid little attention to the mechanisms explaining this relationship. In this chapter, I propose 

to clarify this matter by investigating processes that mediate network structure and 

innovation. I argue that structural characteristics of an intrafirm network affect a firm's 

knowledge base which, in turn, influences firm innovation. In particular, I examine the 

impact of reach (i.e. a network being well-connected via short paths) and clusters (i.e. a 

network with densely connected groups) on knowledge transfer and knowledge diversity, 

which both stimulate firm innovation. Analyses on a longitudinal dataset of fifty firms in the 

medical devices industry provide interesting results. Intrafirm network reach reduces 

knowledge transfer and also decreases firm knowledge diversity. Clusters in an intrafirm 

network have a similar effect upon a firm's knowledge base. This ultimately diminishes firm 

innovation. 

 

INTRODUCTION 

A large section of the literature on social network has investigated how networks 

influence creativity and innovation (Borgatti & Foster, 2003; Phelps et al., 2012). Ties 

between individuals, teams, and organizations provide access to more and newer information, 

knowledge, and resources (Burt, 1992; Tsai & Ghoshal, 1998). This increases an actor's 

opportunity to identify and ability to exploit new opportunities (Fleming, 2001). The number, 

structure and strength of connections have a direct effect on an actor's creativity and 

innovativeness (Van Wijk et al., 2008). Despite the large number of articles examining the 
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relationship between network structure and innovation, current literature falls short in three 

important respects. 

First, the networks and innovation literature is subject to a micro/macro divide 

(Moliterno & Mahony, 2011). Here, micro denotes using an individual actor (or node) as 

level of analysis whereas macro denotes using the entire system (or network) as level of 

analysis (Molloy, Ployhart, & Wright, 2011). A vast majority of the existing studies are at the 

microlevel and investigate the influence of ego-network characteristics on actor 

innovativeness. For example, Fleming et al. (2007) show that closure in an inventor's 

collaboration network reduces its creativity while Ahuja (2000a) demonstrates that centrality 

in a firm's alliance network increases its innovativeness. A small number of studies have 

revealed that macrolevel network structure also influences actor innovativeness (Provan et 

al., 2007). For example, Schilling and Phelps (2007) demonstrate that the structure of 

industry alliance networks significantly changes firm innovativeness. But with few 

exceptions (Carnabuci & Operti, 2013; Guler & Nerkar, 2012), there is no literature studying 

the effect of macrolevel network structure and macrolevel innovativeness, i.e. the aggregate 

innovation of all actors in a network. This is a pertinent issue within organizational studies 

because firms do not aim to increase microlevel performance of individuals, but aim to 

maximize macrolevel performance by their entire set of employees. While current social 

network research has shown the effect of networks on microlevel innovation, it is yet unclear 

whether different network structures have a real effect on macrolevel innovation or only 

changes the distribution of innovation over employees. 

Second, extant networks and innovation literature has hardly examined the 

mechanisms explaining the connection between network structure and innovation (Phelps et 

al., 2012). Many studies have theoretically argued about social and informational processes 

that mediate this relationship. For example, sparsely connected networks could give actors 
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access to more diverse information and thereby increase actor performance (Burt, 1992). 

Alternatively, such an ego-network structure may result in a lack of trust and solidarity that 

motivates actors to exchange this information (Coleman, 1988). At the macrolevel, Guler and 

Nerkar (2012) argue that the social costs of creating and maintaining distant ties outweigh 

their informational benefits and demonstrate how clusters, i.e. groups of strongly connected 

actors, in an intrafirm network drive firm innovation. Carnabuci and Operti (2013) argue that 

connections facilitate information sharing and demonstrate that this increases knowledge 

reuse, particularly under conditions of knowledge diversity. While the former argue that only 

connections within clusters help in sharing and reusing information, the latter argue that 

knowledge reuse increases with the number of connections beyond clusters. A more refined 

explanation for this result could be gained by considering the effects on all dimensions of 

organization's knowledge base: while certain network structures support the creation of 

specific knowledge, it may simultaneously obstruct the reuse of other knowledge and vice 

versa. Therefore it remains unknown how global intrafirm network structure influences total 

firm innovation. 

Third, related research on exploration and exploitation in the organizational learning 

literature has shown opposing results. These simulation studies have examined the impact of 

small-world network structures (the simultaneous presence of short paths and clusters) on 

firm performance. For example, Cowan and Jonard (2004) find that fewer clusters reduce 

knowledge diversity and firm performance. But alternative studies show a smaller impact of 

clusters (Lazer & Friedman, 2007). For instance, the simulation performed Fang et al. (2010) 

indicates that fewer clusters hardly reduces knowledge diversity or network performance. 

Similarly, whereas one study has found that a higher network reach reduces knowledge 

diversity (Fang et al., 2010), it also concludes that shorter paths decreases the network's 

overall performance. Cowan and Jonard (2004), on the contrary, found no substantial effects 
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of reach on either knowledge heterogeneity or organizational performance. And finally there 

is evidence that higher network reacher hurts firm performance considerably (Lazer & 

Friedman, 2007). In short, simulation studies have delivered inconclusive findings 

concerning network structure, organizational knowledge base, and firm performance. 

This study aims to explain the relationship between intrafirm network structure and 

firm innovation by analyzing the mediating processes. Drawing upon macrolevel network 

literature, I focus on two fundamental macrolevel network characteristics, namely network 

reach and network clusters (Provan et al., 2007; Watts, 1999). These network concepts are 

similar to network centrality and ego-network closure, which are key concepts in microlevel 

network research. In particular, I argue that network reach fosters knowledge transfer while 

network clusters assist in retaining knowledge diversity. Both knowledge transfer and 

diversity improve firm innovation. The model is empirically tested on a longitudinal panel of 

the scientific collaboration networks in fifty medical device firms. The results contradict my 

earlier expectations and find that networks with shorter paths actually reduce firm innovation. 

This effect is fully mediated by the negative effects of reach on knowledge transfer and 

diversity. Likewise, clusters in an intrafirm network have a negative effect on firm 

innovation. This effect is partially mediated by a negative effect on diversity. These results 

remain significant under a larger number of alternative measures and methodological 

specifications. 

This paper primarily contributes to the literature on networks and innovation. By 

exploring the processes that mediate network structure and innovation, this study questions 

the oft-assumed mechanism explaining the relation between network structure and firm 

innovation (Guler & Nerkar, 2012; Uzzi & Spiro, 2005). Contrary to the common 

assumptions, network reach and clusters do not seem to improve firm innovation. Instead, 

this study reveals that reach reduces knowledge transfer among R&D scientists and that 
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clusters do not help to keep a firm's knowledge base diverse. In addition, the results do not 

support the small world idea that reach combined with clusters increases creativity and 

innovation. Secondarily, this article sheds new light upon the role of intrafirm networks for 

firm recombinant ability (Carnabuci & Operti, 2013; Garud & Nayyar, 1994). In particular, it 

calls into question the idea that intrafirm network are effective mechanisms for knowledge 

transfer and recombination. Therefore this study calls for further examination of processes 

explaining the relationship between network structure and innovation. 

 

THEORY AND HYPOTHESES 

This article builds upon two complementary streams of research to apprehend how 

intrafirm network structure influences firm innovation, namely the recombinant innovation 

and network diffusion literatures. Recombinant innovation studies conceptualize innovation 

as a purposeful search process for a particular solution by combining different components 

(Fleming, 2001; Henderson & Clark, 1990). Components refers to knowledge, skills, abilities 

and other elements related to materials, technologies, and methods (Fleming, 2001; Ployhart 

& Moliterno, 2011). Innovation occurs when new combinations of components are created or 

when existing combinations are structured in a new configuration (Henderson & Clark, 1990; 

Schumpeter, 1939). This recombinant search process is normally performed within an 

organization by one R&D scientist or a team of collaborators (Fleming, 2001). 

Fleming and Sorenson (2001, 2004) describe how the recombinant potential is an 

arithmetic function of the number and diversity of components R&D scientists have at their 

disposal. Not all new combinations or configurations are equally successful (Dosi, 1982). 

According to March (1991), R&D projects focusing on the reconfiguration of existing, 

known combinations will sustain existing technological trajectories and refine their current 

knowledge and expertise. The outcomes of such local search, or exploitation, are stable and 
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more predictable, but seldom radical. Alternatively, R&D scientists can learn about new 

components and creating new combinations. Such distant search, or exploration, is more 

erratic and has a lower success rate, but it offers a larger opportunity for radical or break-

through innovation (Fleming, 2001). March (1991) concludes that organizations with both 

types of employees – these that explore and these that exploit – outperform those that only 

look for new combinations or new configurations. 

In an organization's R&D unit, scientists face cognitive limitations in their 

recombinant search activities (Hussler & Rondé, 2007). As a result, they are able neither to 

familiarize themselves with each relevant component nor examine each potential combination 

during their search process. Instead, they will rely on human and social factors to optimize 

their recombinant search efforts. Particularly, there is a tendency to reuse knowledge and 

expertise R&D scientists are already familiar with (Katz & Allen, 1982). In addition, they are 

more likely to learn related expertise instead of searching for distant, unfamiliar solutions 

(Cockburn & Henderson, 1998). Finally, they use their personal network of ties with 

colleagues to access and absorb new components more efficiently (Hussler & Rondé, 2007; 

Singh, 2005). 

 

Role of Networks 

Social networks in an organization form a major source of knowledge, information, 

and resources for employees (Ibarra, 1993; Obstfeld, 2005). Social ties among employees in 

an organization allow them to efficiently learn about new technologies or quickly obtain 

relevant resources. Past studies have therefore regularly found that employee behavior, 

whether performance, creativity, or mobility, is influenced by the number of his/her 

connections, their structure and their strength (Brass et al., 2004; Pittaway, Robertson, Munir, 

Denyer, & Neely, 2004). In a research and development setting, an intrafirm network consists 
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of R&D scientist that form social ties based upon past communication and collaboration 

(Singh, 2005). Allen (1966) already described the importance of personal ties among 

scientists and technologists in R&D laboratories for sharing and transferring knowledge and 

information. Paruchuri (2010: 65) therefore describes such intrafirm networks as "the 

backbone of knowledge flows within the firm". Such a network creates and sustains 

knowledge transfer and diffusion among R&D laboratories. 

At the microlevel, intrafirm network structure influences R&D scientist performance 

in two ways. First, connections among R&D scientists facilitate the transfer of new 

knowledge and knowhow that have entered the organization (Brown & Duguid, 1991). This 

information is passed on among scientists during planned and unplanned encounters. As 

described in ethnographic work by Orr (1996) and Latour and Woolgar (2013), this often 

occurs in an informal and untargeted manner such as corridor walk-ins and lunch breaks. 

Second, intrafirm networks influence the knowledge and resources available to R&D 

scientists via their social connections (Singh et al., 2010). When scientists are faced with 

particular issues, they will turn to their current and past colleagues for help and assistance 

(Orr, 1996). Both mechanisms were corroborated in exploratory interviews with R&D 

scientists2. As two scientists put it: 

"One of my greatest sources of information is my colleague, [name], who owns more than twenty-five 

patents on this topic. He's one of the major experts in the field and worked in various departments." 

(R&D scientist #4)  

"I can always contact people in [another R&D laboratory]. Of course, I know a large number of 

people there because I spent time with them, there, and met them in person." (R&D scientist #10) 

Alternatively, most of the R&D scientists described how they rely on the knowledge and 

expertise of colleagues to solve issues they sometimes encounter. Their connections provide 

them access to knowledge and resources that improves their performance. For example: 

                                                 
2 I performed over thirty semi-structured interviews with managers and scientists in the health industry to gain a 
deeper understanding of the antecedents of innovation. For confidentiality reasons, all quotes are paraphrased. 
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"I was able to define the manufacturing process for the medical device before we had even started the 

project by taking advantage of my colleagues and the expertise around me. People also know what my 

expertise and knowledge is and I'm able to make the same contributions to their projects in their 

departments." (R&D scientist #6)  

"For every problem, the first thing people do is start talking with a colleague. The first thing we do is 

discuss things internally and then usually the problem can be fixed by the organization itself without 

turning to literature, databases, etc." (R&D scientist #12) 

At a microlevel, the creativity of R&D scientists is therefore affected by his/her 

connections within the organization (Nerkar & Paruchuri, 2005). The number and diversity of 

colleagues a scientist can reach out to, is largely determined by the number and structure of 

network connections. For example, Fleming et al. (2007) found that the productivity of 

inventors increased with their number of connections, the lack of connections among their 

peers, and their diversity in expertise. In addition, the structure of an entire 

intraorganizational network and a scientist's position within network also influences his/her 

creativity and innovation (Ibarra, 1993). 

At a macrolevel, network literature suggests that intrafirm network sustain firm 

innovation and performance by facilitating the flow of information and resources (Phelps et 

al., 2012). Social networks overcome barriers and fragmentation created by organizational 

structure and geographical dispersion (Chang et al., 2014; Lahiri, 2010). In terms of 

Lawrence and Lorsch (1967), intrafirm networks are a mechanism for knowledge integration 

in organizations that apply structural separation. Intraorganizational networks lead to direct 

communication and lateral knowledge flows in a highly efficient manner (Van Wijk & Van 

Den Bosch, 1998). This was clearly mentioned by R&D scientists and managers who noticed 

how social networks cross divisional boundaries and spatial distances: 

"There are a lot of events for skill improvements that I try to participate in. That's where I get to meet 

people from different sides of the company and learn about what they are doing. […] And I have 
established relationships with colleagues in other departments. For example, there is a senior engineer 

I know and when it comes to design, I can ask him who would be the best person to talk to." (R&D 

scientist #6) 



62 
 

"When I encounter a problem, first I discuss it with my peers, within my own group of engineers. If that 

fails, we contact our colleagues in the larger company [in geographically distant R&D labs]." (R&D 

scientist #15) 

As a result, the structure of intrafirm networks may not only affect individual 

performance, but potentially also the entire organization. Assuming that firm innovation is 

the aggregate of successful knowledge recombination by individual employees and teams, 

macrolevel network structure influences firm innovation. However, Bizzi (2013) and Operti 

and Carnabuci (2012) have demonstrated that this relationship is not straightforward but 

subject to cross-level fallacies. Specifically, they demonstrate that network structures 

boosting performance of individual R&D scientists can reduce their joint productivity, e.g. 

firm innovation.  

The number of ties in an intrafirm network has a dual effect on information sharing 

and firm innovation. Initially, each additional connection offers access to novel knowledge 

and resources (Paruchuri, 2010). At the macrolevel, more connections accelerate knowledge 

diffusion and improve the effectiveness of referrals (Carnabuci & Operti, 2013; Singh et al., 

2010). However, creating and maintaining such ties requires substantial time and attention. 

These immaterial costs may reduce the benefits of connections (Zhou, Shin, Brass, Choi, & 

Zhang, 2009). In addition, the marginal benefits in information and resources decrease with 

each extra connection (Burt, 1992). When R&D scientists gain more ties, there is more 

redundancy in knowledge and resource flows. Furthermore, R&D scientist could have 

accessed this information or expertise via their indirect connections. In short, intrafirm 

network density has both positive and negative effects on knowledge transfer, diversity and 

firm innovation (Lazer & Friedman, 2007; Zhou et al., 2009). 

Given this dual effect of the number of connections in intrafirm networks, I contend 

that innovation is more likely to be influenced by the structure of connections in intrafirm 

networks. Prior research that examined the effect of intrafirm network structure on firm 
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innovation has not been conclusive. Therefore I aim to identify the mechanisms that mediate 

the relationship between network structure and innovation. With regard to network structure, 

I focus upon network reach and clusters. Two arguments underpin this choice. First, these 

macrolevel concepts that reflect important microlevel network notions, namely closeness 

centrality and ego-network closure (Wasserman & Faust, 1994). Second, macrolevel network 

literature has argued that these two network characteristics are strong determinants for 

performance and innovation (Provan et al., 2007; Wasserman & Faust, 1994; Watts, 1999). In 

the next paragraphs, I build upon knowledge transfer and recombination literature to predict 

how reach and clusters influence a firm's knowledge base which then affects firm innovation. 

A summary of the processes mediating network structure and innovation is presented in 

Figure 4 below. 

 
Figure 4 Theoretical model for intraorganizational network structure and firm innovation 

 

Role of Reach 

Intrafirm network reach captures two elements of network structure, namely the 

presence and length of ties among all R&D scientists in a firm (Wasserman & Faust, 1994). 

The first element gauges whether a network lacks unconnected (groups of) R&D scientists 
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whereas the second part measures path length, i.e. the number of steps between each pair of 

scientists. If reach is high, each R&D scientist is connected to all colleagues via relatively 

short paths. In less cohesive networks, paths are much longer and there may be substantial 

fragmentation (e.g. unconnected components). Three illustrative examples, included in Figure 

5 below, demonstrate how networks with the same number of persons and connections can 

still differ largely in network reach. I argue that intrafirm network reach has a dual effect on a 

firm's knowledge base: while it increases knowledge transfer, it reduces knowledge diversity.  

Knowledge transfer refers to each instance in which one R&D scientist shares 

information, knowledge, and knowhow with another scientist (Argote & Ingram, 2000). 

Since knowledge in R&D settings is largely tacit and embodied, transfer occurs via social 

interaction and collaboration among employees (Kogut & Zander, 1992). Network reach 

increases knowledge transfer among R&D scientists for two reasons.  

First, from a perspective of information diffusion, reach increases the extent, speed 

and reliability of knowledge transfer. Since "knowledge is imperfectly shared over time and 

across people" (Hargadon & Sutton, 1997: 716), the macrolevel network structure has a 

strong impact on knowledge dissemination. In a well-connected network, new information 

will spread to a larger number of R&D scientists (Freeman, 1977). The absence of 

fragmentation, that is, socially isolated (groups of) scientists, means there are no barriers that 

limit information sharing to just a subset of all employees in a cohesive intrafirm network. 

The shorter paths in cohesive networks also stimulate transfer because each extra step 

between two scientists increases the risk of knowledge not being dispersed. Since each R&D 

scientists could decide not to share new information, longer paths in a network reduce the 

likelihood of transfer. Regarding speed, communication among R&D scientists is an irregular 

process with substantial time intervals between receiving and passing on new knowledge. In 

such a case, networks with short paths increase the pace of information diffusion among 
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scientists (Cowan & Jonard, 2004; Lazer & Friedman, 2007). Concerning reliability, each 

time information is transferred between employees, there is a risk of deletion, modification, 

or addition that can distort the value of knowledge (Freeman, 1977). Shorter paths among 

scientists then decrease the risks posed by alteration of information. 

Second, from an active perspective of knowledge search, a higher network reach 

makes knowledge search via a firm's referral network more effective. R&D scientists 

frequently turn to their colleagues when they encounter a particular issue or are looking for a 

specific solution (Orr, 1996). While these direct connections may not be able to help them, 

they can refer them to other R&D scientists with the right expertise or skill (Jarvenpaa & 

Majchrzak, 2008; Singh et al., 2010). The number of peers a scientist can contact is therefore 

a combination of the number and structure of his/her connections. In particular, intrafirm 

networks lacking fragmentation and with short paths increase the likelihood of finding the 

right person. Two R&D scientists described this very clearly: 

"I'm very lucky to know who the experts in my organization are. And if I don't, I ask who would know, 

who may have that information or maybe can refer me to whoever has that information. That's how it's 

done usually." (R&D scientist #3) 

"I think the largest challenge in an business the size of ours is to actually know who to contact when it's 

outside the normal day-to-day activities. But there is usually somebody you can find who knows 

somebody else you can get the answer from." (R&D scientist #11) 

In short, I expect that intrafirm networks with less fragmentation and shorter average 

path length, i.e. a higher degree of network reach, are more efficient and effective in 

knowledge transfer among R&D scientists. 

H1: The higher the reach of an intrafirm network, the higher the knowledge transfer 

among R&D scientists. 

 

Organizational knowledge diversity refers to the overall variety of knowledge and 

beliefs held by R&D scientists (Fang et al., 2010; March, 1991). This is a combination of 

each R&D scientist's breadth of expertise corrected for overlap of expertise among R&D 
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scientists. Organizational knowledge diversity captures both breadth and depth of knowledge 

of all its employees. Network reach may not only increase knowledge transfer among R&D 

scientists, it may also engender a negative effect on knowledge diversity. Two arguments 

underpin this proposition.  

To begin, disconnected components in a non-cohesive intrafirm network act as 

'pockets' for different types of knowledge and technologies. The lack of communication and 

collaboration among R&D scientists from different units or laboratories reduces knowledge 

sharing (Carnabuci & Operti, 2013). As a result, these diverse groups of scientists will 

develop and refine their own technological trajectories (Dosi, 1982). This gives rise to more 

diverse knowledge and experience within an organization. For example, Chang et al. (2014) 

simulate that reduced fragmentation in Samsung's intrafirm network has a positive effect on 

knowledge transfer, but a non-linear effect on recombination. They argue that more cohesive 

networks function better as knowledge integrators, but worse as knowledge reservoirs. 

In addition, networks with shorter paths lead to faster knowledge transfer and the 

adoption of new technologies and practices (Lazer & Friedman, 2007). Though this initially 

increases the performance of scientists, there is a long-term cost of discarding other, less 

effective technologies and practices. These seemingly inferior components may have a large 

potential for improvement (Fang et al., 2010; Lazer & Friedman, 2007). March (1991) has 

shown that such diversity is especially useful under changing environmental conditions. 

When environments change, previously inadequate technologies may find a new use and 

improve knowledge recombination (Adner & Zemsky, 2005; Christensen, 1997). 

Alternatively, in fragmented networks, R&D scientists face more difficulties in obtaining 

new knowledge. Instead, they will continue using their existing knowledge and knowhow. 

Repetitive use of the same knowledge components results in more minor enhancements and 

develops the full potential of each component (March, 1991). This process reveals alternative 
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applications of a component and will sustain and increase organizational knowledge 

diversity. Therefore I pose that network reach has a negative effect on knowledge diversity. 

H2: The higher the reach of an intrafirm network, the lower the knowledge diversity 

among R&D scientists. 

 

 
Figure 5 Reach and clusters in networks 

 

Role of Clusters 

Intrafirm social networks usually contain multiple clusters: groups of R&D scientists 

that are more strongly connected among themselves than with other R&D scientists 

(Wasserman & Faust, 1994). Network clusters tend to have a strong effect on knowledge 

recombination, though results have been confounding (e.g. Cowan & Jonard, 2004; Fang et 
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al., 2010; Lazer & Friedman, 2007). I hypothesize that clusters have a twofold effect on 

knowledge transfer and a positive effect on knowledge diversity. 

On the one hand, clusters facilitate the efficient transfer of knowledge and 

information among R&D scientists within a cluster. First, members of a cluster communicate 

and collaborate frequently or work on related projects (Brown & Duguid, 1991). Because of 

that, these scientists have a larger degree of shared and overlapping knowledge. This 

increases their mutual understanding and eases knowledge sharing among individuals 

(Postrel, 2002). Besides mutual understanding, the frequent interaction in clusters also 

indicates stronger ties among R&D scientists. These stronger ties allow for richer and more 

diverse information transfer among scientists, even when shared knowhow is very different 

from existing knowledge, when it is more complex, or when it is more tacit (Aral & Van 

Alstyne, 2011; Hansen, 1999). Easy access and a shared understanding of clusters are 

confirmed by the interviewed R&D scientists: 

"[About solving problems.] First you ask people. I think that's an aspect that is often overlooked. But 

on a daily basis, for every problem, the first thing people do is start talking with a colleague." (R&D 

scientist #12) 

"First, of course, I discuss it with my peers, within my own group of engineers. Only if that fails, I 

contact colleagues in the larger company." (R&D scientist #15) 

Moreover, clusters create a social environment in which knowledge sharing is 

fostered. Because of the strong ties among scientists within a cluster, they develop higher 

degrees of trust and reciprocity (Uzzi, 1996). Stronger monitoring of social behavior by 

colleagues and joint enforcement of social norms reduces the risks of opportunistic behavior 

(Coleman, 1988). For example, Oldroyd et al. (2012) describe how team members jointly 

react in case of opportunistic knowledge hoarding by a single member. Clusters also 

stimulate reciprocity by allowing temporal and scope differences of exchanging and returning 

favors. For instance, Uzzi (Uzzi, 1996: 679) describes how entrepreneurs provide favors 

within the cluster without expecting reciprocity immediately or from the same partner. As a 
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consequence of shared trust and reciprocity, R&D scientists within a cluster will share more, 

and more valuable, knowledge and resources.  

On the other hand, clusters impede knowledge transfer among R&D scientists 

between clusters and lead to similarity in knowledge and expertise. As one scientist said: 

"[When I learn], it is mainly outside the organization. In the organization, we are a small specialized 

group and there is not a lot I can learn from them [the colleagues]." (R&D scientist #13) 

These strongly connected groups of employees tend to develop strong professional and social 

norms (Brown & Duguid, 1991). Socialization processes undergone by newcomers to 

particular units or laboratories tend to reinforce these shared norms (Fang, Duffy, & Shaw, 

2011). Such strong professional norms are often a barrier against the adoption of new 

practices and the acceptance of new knowledge (Fang et al., 2011; Katz & Allen, 1982). 

Burcharth and Fosfuri (2012) study the effect of employee socialization and the not-invented-

here syndrome, that is, the tendency of groups to disregard information from outsiders. They 

find that stronger socialization practices in R&D settings instigate negative attitudes towards 

external knowledge. Intrafirm networks with strongly connected clusters may thus reduce the 

knowledge transfer. These opposing arguments lead to a dual hypothesis about the effect of 

network clusters on knowledge transfer. 

H3a: The stronger the clusters of an intrafirm network, the higher the knowledge 

transfer among R&D scientists. 

H3b: The stronger the clusters of an intrafirm network, the lower the knowledge 

transfer among R&D scientists. 

 

While the effect of clusters on knowledge transfer is ambiguous, there is a clearer 

logic explaining their consequences for knowledge diversity (Cowan & Jonard, 2004). 

Initially, scientists within a cluster tend to develop more similar knowledge and knowhow 

among (Lazer & Friedman, 2007). Rapid interpersonal learning among scientists reduces 

diversity and differences among them (March, 1991). Stronger enforcement of social and 

professional norms also reduces deviant behavior and the pursuit of different R&D projects. 
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As a result, employees that are part of a cluster tend to become more homogenous over time, 

to exploit their existing knowledge and expertise, and to continue technological trajectories 

(Dosi, 1982; Uzzi, 1997). Since new employees undergo a socialization process via which 

they get acquainted with specialized knowledge and learn relevant skills, employee turnover 

does not immediately improve knowledge diversity (Burcharth & Fosfuri, 2012).  

Whereas a single network cluster has negative effects for knowledge diversity, having 

multiple clusters in a firm has a positive effect upon knowledge diversity. To start, multiple 

professional communities are less likely to converge and become one homogenous group 

(Fang et al., 2010). Mutual learning within clusters strengthens the similarity of knowledge 

among scientists, but this reduces the likeness among R&D scientists belonging to different 

clusters (Cowan & Jonard, 2004). Because of the knowledge and information benefits, 

individual scientists face strong benefits by aligning themselves with a single cluster. In order 

to maintain and preserve their ties, actors adapt therefore to their direct colleagues (Lee, Lee, 

& Lee, 2006). Such professional conformity within a community reduces their ability to 

connect and learn from other groups in a firm. 

In addition, network clusters foster the development of new knowledge and expertise 

(Brown & Duguid, 1991). As argued above, scientists with similar knowledge and expertise 

can easily communicate, exchange complex knowledge, and collaborate on various projects. 

This does not only increase knowledge sharing, but also leads to further development and 

refinement of this knowledge and expertise (Knorr-Cetina, 1999). Well-connected 

communities are wellsprings of learning and innovation and often develop unique 

technological trajectories (Dosi, 1982). Clusters in an intrafirm network means that groups of 

scientists specialize in different areas and develop skills in different directions, which 

increases the diversity of knowledge in an entire network. This is shown by Chang et al. 
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(2014), who find that the decay of clusters in a network reduces their potential as 

organizational knowledge reservoirs. 

In short, I expect that intrafirm networks with more clusters are better in preserving 

heterogeneity of knowledge and may continue to increase diversity by developing new skills 

and expertise. 

H4: The stronger the clusters of an intrafirm network, the higher the knowledge 

diversity among R&D scientists.  

 

Role of Knowledge Diversity and Transfer 

Firm innovation is positively influenced by knowledge diversity and knowledge 

transfer. Performance of each scientist depends on its motivation, opportunity, and ability in 

its recombinant search process. Whereas knowledge diversity creates a scientist's opportunity 

for successful recombination, knowledge transfer shapes their ability to access and apply 

diverse knowledge. 

The opportunity for innovation is largely determined by the diversity of knowledge 

and expertise present among scientists (Fleming, 2001). Since innovation involves the 

recombination and reconfiguration of various components of knowledge, opportunity rises 

when there are more diverse components present in an organization. In an arithmetic fashion, 

the number of combinations increases exponentially with the degree of diversity in 

knowledge and expertise (Sorenson & Fleming, 2004). A firm's homogeneous knowledge 

base provides scientists with little opportunity for finding new combinations, but 

heterogeneity in knowledge and expertise increases chances for innovation (Garcia-Vega, 

2006). Therefore I expect that firm innovation increases significantly with the diversity of 

knowledge and skills possessed by its R&D scientists. 

H5: The higher the knowledge diversity among R&D scientists, the higher firm 

innovation. 
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The ability for R&D scientists to integrate diverse knowledge depends on the 

availability of this knowledge to all of them. This is a combination of their human and social 

capital (Fleming, Mingo, et al., 2007; Hansen, 1999). In firms characterized by high levels of 

knowledge sharing and rapid dispersion of new information, R&D scientists have access to a 

larger quantity and variety of knowledge possessed by their colleagues. They can build upon 

this larger knowledge base in their R&D projects and thereby increase their chances for 

success. On the contrary, if a firm is rich in knowledge held by specialists, but they are 

unable to share or collaborate, there is little integration and recombinant search is likely to 

fail. Therefore I argue that firm innovation increases further with the degree to which R&D 

scientists share their knowledge and expertise. 

H6: The higher the knowledge transfer among R&D scientists, the higher firm 

innovation. 

 

Altogether, this study proposes that knowledge base characteristics mediate the 

relationship between intrafirm network structure and firm innovation. Higher network reach 

increases the transfer of knowledge among R&D scientists in an organization because 

scientists are all connected in an efficient manner. The flow of knowledge improves each 

scientist's access to knowledge, skills and capabilities possessed by others. This increases 

their productivity which results in higher firm innovation. Alternatively, networks with 

shorter paths tend to reduce the diversity of knowledge held by R&D scientists. Faster 

diffusion and adoption of new practices harms the heterogeneity of technologies and skills. 

Therefore I expect the effect of network reach on firm innovation to be mediated by 

knowledge transfer and diversity. 

H7: The relationship between intrafirm network reach and firm innovation is 

mediated by knowledge transfer and knowledge diversity. 
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Network clusters have a dual effect on firm innovation via knowledge transfer. Where 

clusters provide an organization with a transmission capacity for rich information, clusters of 

scientists may also obstruct the transfer of knowledge beyond their own group. Network 

clusters augment knowledge diversity in a firm's scientific community. This increase in 

heterogeneity of skills and expertise improves recombinant search by R&D scientists. 

Through clusters, scientists now have a larger number of knowledge components at their 

availability. Thus I argue that network clusters have an indirect effect on firm innovation via 

knowledge transfer and diversity. 

H8: The relationship between intrafirm network clusters and firm innovation is 

mediated by knowledge transfer and knowledge diversity. 

 

METHODOLOGY 

Setting and Data Collection 

The hypotheses are tested in the medical devices industry. This industry is selected for 

three reasons. First, this is an R&D intensive industry where firm performance and survival 

are strongly linked to a firm's innovative successes (Wu, 2013). Most innovation relates to 

new product development that incorporates novel materials and technologies, so there is a 

clear recombinant search process (Joseph et al., 2013). Second, innovation activities in this 

industry are highly observable. The medical devices industry relies heavily on patents to 

protect their intellectual property rights (De Vet & Scott, 1992) and the Food and Drug 

Administration (FDA) keeps detailed records of all devices introduced, leaving precise 

records of innovation efforts and outcomes. Third, knowledge and expertise in this industry 

are largely held by individuals, thereby making interpersonal collaboration relevant for 

knowledge recombination (Chatterji, 2009).  

I selected the fifty largest public American medical device firms in 1990 by ranking a 

self-computed factor score that included their annual sales in medical devices, the number of 
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patents they held in this field, and the number of FDA approvals (PMA and 510(k) requests). 

The sample was limited to the North-American market since I rely on USPTO patent data, 

which may introduce biases for non-US firms. Only public firms are included because details 

about corporate structure and operations are often not available for privately-held companies. 

Since the US are by far the largest market for medical devices and all major players are 

publicly listed (Frent, 2011), these constraints are unlikely to bias the results. The sample 

(included in Appendix A, p. 178) consists of three types of firms: pure-player medical device 

firms (like Medtronic and Stryker), diversifying pharmaceutical firms (like Eli Lilly and 

Wyeth) and diversifying technology firms (like GE and Kodak). 

Data for each firm were obtained from a variety of sources. First, firm financial and 

operational data were obtained from the WRDS Compustat North America database and any 

missing values were obtained from Thomson One Banker. Based on SEC 10K filings and 

Moody's Industrial Manual, I created detailed family trees for all firms for the period 1985-

2010. These are then used to obtain all USPTO patents these firms obtained by matching firm 

and subsidiary names to patent assignees in the NBER Patent Data Project (Hall, Jaffe, & 

Trajtenberg, 2001) and Harvard Patent Dataverse (Lai et al., 2011). Using an advanced 

USPTO technology concordance (USPTO Patent Technology Monitoring Team, 2012), non-

medical device patents were excluded for further analysis. In a similar fashion, I extracted all 

scientific publications by medical device firms in Elsevier Scopus based on the author 

affiliation field. 

 

Intrafirm Networks 

Intrafirm networks are based upon co-invention and co-authorship among R&D 

scientists focused on medical devices (Singh, 2005). Participation in an R&D project involves 

intense interaction among scientists for a longer period of time. This includes extensive 
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information exchange and knowledge transfer among collaborating scientists. Furthermore, 

scientists often remain in touch with each other after a project has finished, so the exchange 

of information continues (Paruchuri, 2010). Several of the interviewed R&D scientists 

remarked this as well. For example: 

"So, it is somewhat based on your personal relationships. Who you remain in touch with after a 

project. There are a few people you remain in touch with even though you did not collaborate for five 

years. […] You talk with them once a month, just because you like to discuss what they are working on 
now." (R&D scientist #2) 

"I have a network of experts that I can call upon. Often because you have been working with them." 

(R&D scientist #8) 

Moreover, scientists learn about others' field of interest and expertise via collaboration. This 

creates transactive memory in an organization, that is, a mental map of who knows what 

(Jarvenpaa & Majchrzak, 2008). Collaborative ties are therefore strong proxies for social ties 

among R&D scientists. 

To construct intrafirm networks, I consider medical device patents and scientific 

publications of the sample firms. Nodes in these intrafirm networks are all inventors 

mentioned on medical device patents. Since there is no simple criterion to demarcate medical 

device publications from non-device publications, authors are only included when they are 

also mentioned on a patent. In short, nodes in an intrafirm network consist of all medical 

device inventors in a firm and ties are all co-patenting and co-authoring instances among 

them. In line with the existing literature, I construct undirected, dichotomous intrafirm 

networks based upon co-authors and co-invention ties using five-year moving windows (e.g. 

Funk, 2013). Exemplary intrafirm network graphs are shown below. 
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Figure 6 Examples of intrafirm networks 

 

Sample 

Data for the fifty firms were collected from 1990 till 2005. The industry was subject 

to substantial merger and acquisition activity during the 1990s and several diversified firms 

divested their medical device activities. Therefore, the number of firms reduced from fifty at 

the start to seventeen at the end of the period. I further excluded firm-year observations with 

fewer than five R&D scientists in an intrafirm network since network characteristics are not 

meaningful for such small networks (e.g. Carnabuci & Operti, 2013; Funk, 2013). Finally, 

some knowledge characteristics cannot be measured in years with zero successful patent 

applications and are therefore excluded in some or all regressions. The final sample is an 

unbalanced panel of 50 firms with 484 firm-year observations. 

 

 

U.S. Surgical Corp (1995) Collagen Aesthetic Inc (1995) 

Eastman Kodak (1995) 

(a) Intrafirm network with high reach (little fragmentation) (b) Intrafirm network with high reach (short path lengths) 

Medtronic Inc (1995) 

(c) Intrafirm network with many clusters (high transitivity) (d) Intrafirm network with few clusters (low transitivity) 
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Measurement 

Dependent variable. Firm innovation is measured as a citation-weighted patent count 

(Hall, Jaffe, & Trajtenberg, 2000; Trajtenberg, 1990). For each firm-year, I counted the 

number of patents a firm successfully applied for and added the number of non-self-citations 

these patents received over a five-year period after their application. The choice for 

application year is deliberate since patents can be cited from the moment of application 

(before being granted) and using grant year would introduce right censoring because my 

observations run until 2005. A robustness check revealed that using application or grant year 

measures correlate at 0.986, meaning any bias is negligible. 

Mediating variables. Knowledge diversity is measured as a Blau's index of the main 

technological classes of a firm's successful patent applications in a particular year. This 

measure (one minus a Herfindahl concentration index) combines the technological diversity, 

revealed by the number of technological classes of a firm's patents, with the relative spread 

over different classes. 

Knowledge transfer is measured as the percentage of patents and citations during the 

focal year that is reused by other inventors, who have not cited these patents before, in the 

subsequent three years. Patent citations are a common proxy for measuring knowledge 

transfer (e.g. Singh, 2005). Despite their flaws, citations are a pretty robust indicator that is 

more likely to underestimate than overestimate real transfer (Roach & Cohen, 2013). I only 

count the reuse of knowledge by other scientists because transfer assumes passing on 

information between inventors and excludes re-using knowledge by the same (team of) 

inventor(s). A three-year window is used since knowledge search, transfer, and application 

processes do not occur immediately, but only when relevant opportunities arise. 

Independent variables. Network reach is measured via intrafirm network 

compactness. Compactness combines two elements of network connectedness, namely the 
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lack of fragmentation and presence of short paths (Wasserman & Faust, 1994). While 

fragmentation indicates the number of disconnected scientists in a network, path length 

indicates the average number of steps between two connected R&D scientists. It is calculated 

as the average inverse path length which equals zero for disconnected pairs: 

 𝑅𝑒𝑎𝑐ℎ = 1𝑁∙(𝑁−1) (∑ ∑ 1𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖,𝑗𝑁𝑗𝑁𝑖 )  𝑓𝑜𝑟 𝑖 ≠ 𝑗  

This variable is limited between 0 and 1. It is independent of the number of R&D scientists in 

a network and generally independent of network density. 

Network clusters is measured via intrafirm network transitivity. Transitivity indicates 

the likelihood of actors j and k being connected given that both j and k are connected to i 

(Wasserman & Faust, 1994). This ratio variable gauges the potential and actual triadic 

closure in a network. It signifies the tendency of actors to be part of strongly connected 

clusters in a network and is calculated as: 

 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 3 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑑𝑠𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑙𝑒𝑠  

with a triad being a closed triangle (i, j and k all connected) and a triple being two 

connections to a same node (j and k both connected to i). This variable is limited between 0 

and 1. It is independent of network size and density and more robust than alternative 

measures. 

Control variables. Various firm and network characteristics are added to control for 

alternative explanations. 

Firm size has diverse effects on firm innovation (Hansen, 1992). Therefore firm size 

is controlled for by measuring the natural log of sales (in millions) in medical devices. I 

specifically measure medical device sales only as some highly diversified firms earn just a 

fraction of their revenues in this industry. 

Medical device focus indicates the relevance of a firm's medical device units among 

all business segments of a firm. Firms spread R&D activities disproportionally among 
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business units (Baysinger & Hoskisson, 1989). So in order to capture the importance of 

medical devices, I calculate the share of a firm's medical device sales to its overall sales. 

Firm performance has a positive influence on firm innovation since profitable firms 

have more resources and fewer constraints for R&D. Therefore return on sales (EBIT ÷ total 

sales) has been added. 

Firm leverage reduces managerial discretion and tightens budgetary constraints, 

which is likely to influence R&D activities. For that reason I compute firm leverage as a 

debt-to-assets ratio (total debt ÷ total assets). Debt-to-assets was preferred over debt-to-

equity, which provided extreme values for highly leveraged firms. 

Firm slack has a two-sided effect on innovation: it increases resources available for 

research and development, but simultaneously reduces the need or urgency for innovation 

(Nohria & Gulati, 1996). Slack, measured as the current ratio (current assets ÷ current 

liabilities), is added to control for this effect. 

Acquisitions will have a positive effect on firm innovation since firm growth leads to 

a larger R&D expenditure and an increased scientific workforce. A firm's acquisition 

intensity in a year is measured as the amount spent on acquisitions of medical device firms 

scaled by a firm's annual medical device sales. 

Divestments of medical device units will reduce firm innovation since a firm loses 

human and intellectual capital. In a similar fashion to acquisitions, I compute the total value 

of divestments divided by the total sales in medical devices to capture this effect. 

R&D scientists directly contribute to firm innovation. A larger R&D workforce 

increases recombinant efforts and firm productivity. The number of R&D scientists is 

obtained from the firm's patents using a five-year moving window. This is, of course, the 

same as the number of nodes observed in an intrafirm network.  
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R&D recruitment increases a firm's R&D workforce and leads to inflow of new 

knowledge (Song, Almeida, & Wu, 2003). Recruitment is observed via the number of 

scientist first appearing in the firm (via patents) during the focal year as a percentage of the 

total number of scientists. 

R&D concentration relates to the geographical dispersion of a firm's R&D activities. 

This is an important variable since spatial proximity influences network tie formation as well 

as knowledge transfer (Lahiri, 2010). This is calculated as a Herfindahl concentration index 

based on the R&D scientists most recent address, as observed on patent applications, grouped 

by US state or foreign country. 

R&D intensity is measured as a firm's R&D expenditures divided by its sales. It 

indicates the amount of resources available for R&D activities and proxies their strategic 

importance, which positively influences firm innovation (Cohen, Levin, & Mowery, 1987). 

R&D team size influences the likelihood and quality of recombinant search efforts 

(Singh & Fleming, 2010). Since it also affects clusters in intrafirm networks, I add the 

average number of inventors on each patent as a control variable. 

Network density, as a structural characteristic of intrafirm networks, influences 

knowledge transfer and recombination (Lazer & Friedman, 2007). Since the usual density 

measure is highly correlated with the number of R&D scientists, I measure network density 

in this study via the average degree centrality of scientists in an intrafirm network. 

Network isolate ratio corrects for the number of 'lone scientists' (unconnected 

scientists) whose innovativeness is significantly different from connected scientists (Singh & 

Fleming, 2010). It is computed as a percentage of the total number of R&D scientists. 

A number of control variables were initially added but eventually excluded for 

multicollinearity problems. First, total annual sales correlated highly with the annual sales in 

medical devices. Second, firm age was added since it generally reduces innovation (Hansen, 
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1992), but it also correlated strongly with firm size. Third, firm diversification had to be 

excluded since it is negatively correlated with a firm's medical device focus. Fourth, the depth 

and breadth of firm patent stock (Park & Park, 2006) were excluded since depth was already 

captured by the number of R&D scientists and breadth by firm size. 

 

Estimation Method 

The three dependent variables have two different shapes. While firm innovation is a 

non-negative count variable, knowledge transfer and knowledge diversity ratios are bounded 

between 0 and 1. Therefore I opted to use a generalized estimating equations (GEE) 

specification to test the hypotheses. This is a generalized linear model (GLM) relatively 

robust to unknown or misspecified correlation structure. In particular, a GEE specification 

allows defining the distribution of a regressand for each regression and corrects for non-

independence caused by repeated observations over time (Hardin & Hilbe, 2003). I use 

Stata's xtgee command with an exchangeable correlation structure and Huber-White (robust) 

standard errors. An exchangeable correlation structure is applied to capture autocorrelation 

among repeated observations (Hardin & Hilbe, 2003: 59). Year dummies are added to capture 

temporal variance. Finally, to address reverse causality concerns, dependent variables are all 

observed at a one-year lead (t+1). 

Hypotheses 7 and 8 are tested using a Sobel-Goodman mediation test with efficient 

standard errors (Stata's sgmediation command). This approach is preferred for several 

reasons. First, Baron and Kenny's (1986) method for mediation using a traditional Sobel test 

is generally considered over-restrictive (Shaver, 2005). This results in high type I error rates 

and underestimates significance. Second, the Sobel-Goodman mediation test uses a non-

parametric approach. Unlike other mediation tests, it does not impose a particular distribution 

on any of the variables to gain meaningful results (Preacher & Hayes, 2004). This is relevant 
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since the mediating variables are ratios while the dependent variable is a count variable. 

Third, it can correctly estimate mediation effects even when there are multiple mediators 

working in opposing directions. Fourth, it applies a bootstrapping procedure to correct for 

correlations in standard errors. This is useful for panel data research. 

 

RESULTS 

Table 1 below displays the descriptive statistics and correlations of variables of the 

final sample. It reveals there is substantial variation in firm innovation, knowledge 

characteristics and network structure. Unfortunately knowledge transfer and diversity could 

not always be calculated as they demand at least one successful patent application during 

prior and focal year, respectively. Because of that, the number of observations slightly varies 

in different regressions. Some high correlations among network control variables warn for 

potential multicollinearity issues. I extensively check for high VIF values of independent 

variables in any of the regressions (Allison, 2012a). This revealed several issues with key 

control variables like firm size. In cases where they exceeded 10, models were re-run leaving 

out on or more correlated variables. In all cases, this reduces VIF values to acceptable levels, 

but had no impact on the direction or significance of other regression coefficients. 

Table 1 – Descriptive statistics and correlations of sample (p. 153) 

Table 2 presents the regression results of network structure on knowledge transfer 

(models 1 to 4) and knowledge diversity (models 5 to 8). With regard to transfer, 

geographical concentration of R&D activities increases knowledge transfer among R&D 

scientists (model 1). Model 2 shows that network reach has a significant negative effect on 

transfer, thereby rejecting hypothesis 1. Network clusters also has a negative, though 

insignificant effect on knowledge transfer (model 3). So it provides no support for H3a or 

H3b. Knowledge diversity increases strongly with a firm's R&D intensity, the recruitment of 



83 
 

new R&D scientists and network density (model 5). Network reach, however, has a negative 

impact on knowledge diversity (model 6). This supports hypothesis 2. Model 7 demonstrates 

that network clusters significantly decreases knowledge diversity, rejecting hypothesis 4. 

Table 2 and Table 3 – Regression results for knowledge and firm innovation (p. 154) 

Table 3 displays the regression results of knowledge characteristics and network 

structure on firm innovation. Looking at the control variables, firm innovation increases 

significantly with the size of a firm, its performance and its acquisition activity. R&D 

intensity, R&D geographical concentration, and R&D workforce also have a positive effect. 

Network density has no significant effect, but many isolates seem to reduce innovation. 

Models 2 to 4 show that both knowledge transfer and knowledge diversity increase firm 

innovation, thereby supporting H5 and H6. 

Table 4 – Results of Sobel-Goodman mediation tests (p. 156) 

Concerning hypotheses 7 and 8, regarding the mediating effects of knowledge transfer 

and diversity, I first checked for direct effects. Model 5 in Table 3 shows that network reach 

has a strong negative effect on firm innovation. This is in line with earlier results: reach has a 

negative effect on diversity and transfer, which both positively relate to firm innovation. The 

analysis for network clusters shows similar results: it negatively affects diversity as well as 

innovation (model 6).  

Table 4 shows the results of Sobel-Goodman mediation tests of all four possible 

mediation effects. Even though this method incorporates the effects of control variables, it 

only provides coefficients and standard errors for the direct and mediated effects of focal 

variables. In addition, it also provides non-parametric bootstrapping estimates of confidence 

intervals. The first two models show that the effect of network reach on firm innovation is 

fully mediated. First, network reach has a negative effect on knowledge transfer, which itself 
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has a positive effect on innovation. Second, network reach has a negative effect on 

knowledge diversity, which itself also has a positive effect on innovation. The next two 

models show that the effect of network clusters on firm innovation is partially mediated by 

knowledge diversity. Network clusters has a negative effect on the firm's knowledge base, 

which itself has a positive effect on firm innovation. 

 

Robustness Checks 

A large number of robustness checks have been carried out to confirm the above 

findings. To begin, I use alternative measures for each of the independent, mediating, and 

dependent variables. First, alternative measures are used to measure network reach and 

clusters. Instead of one measure for reach, I use two different components: network 

fragmentation (e.g. the percentage of the R&D scientists which are not (in)directly 

connected) and absolute path length (e.g. how many steps are there on average among all 

connected R&D scientists). For clusters, I use the clustering coefficient, or average ego-

network density, similar to Guler and Nerkar (2012). Results, included in Table 8 (p. 160), 

are consistent with earlier findings. Most noticeably, the more fragmented an intrafirm 

network and the longer the paths, the more knowledge transfer. Other variations of reach, like 

the size of the largest component and the component ratio (regressions not included), 

provided similar significant results. The effects for clusters are slightly weaker, but still 

indicate a negative effect on knowledge transfer and firm innovation. 

Second, I used slightly different measures for knowledge characteristics. Knowledge 

transfer was also measured by solely using patents (the percentage of patents applied for at [t-

1] recited by others during [t0;t+2]). Knowledge diversity is also measured at the level of 

technological subclasses. The new measures are only moderately correlated with prior 

measures (ρ>0.5). Regressions of networks on knowledge and knowledge on innovation 
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showed similar results (columns 1 to 3 in Table 9 on p. 161), but the negative effect from 

network clusters on knowledge transfer now becomes significant. One might also think that 

network clusters and reach may inhibit transfer and increase exploitation by the same R&D 

scientists. However, network reach and clusters also had negative effects on general recitation 

rates (the percentage of citations at [t-1] recited during [t0;t+2] by any scientist, including 

self-citations). In addition, I repeated the regressions of network structure on knowledge 

transfer and diversity by including the lags of dependent variables. While lagged variables 

were highly significant, network reach and clusters remained negative and significant (see 

columns 4 to 7 in Table 9 on p. 161). Similar stable results were obtained when the lagged 

variable of firm innovation was added to the regressions of network structure and knowledge 

characteristics on firm innovation. 

Third, I also measure firm innovation by the number of new or technologically 

improved medical devices. Firm and subsidiary names were matched against applicant names 

for FDA medical device approvals in PMA and 510(k) procedures. For each firm-year, I 

counted the number of new or technologically improved medical devices a firm registered. 

Though the number of products is normally correlated with the number of patents, the new 

measure is slightly weaker since some firms do not commercialize their own inventions. The 

new products variable is lagged by two years to correct for the time gap between invention 

and implementation. Results are included in Table 10 (p. 162). The results are weaker than 

earlier results: though coefficients remain in the same direction, only network reach 

(negative) and knowledge diversity (positive) remain significant. 

In addition to alternative measures, I use alternative estimation methods to check the 

significance of the results. First, the regressions in Table 3 were repeated using alternative 

specifications. I repeat the results with a fixed-effect negative binomial regression (Stata's 

xtnbreg command) and a fixed-effect Poisson quasi-maximum likelihood model (Stata's 
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xtpoisson command). The earlier method provides stronger controls for unobserved 

heterogeneity via conditional firm-fixed effects, while the latter provides unconditional fixed 

effects without the incidental parameter problem (Wooldridge, 1999). The regressions are 

included in Table 11 (p. 163) and show similar significant results. 

Second, the mediation check was repeated using a two-stage least squares approach as 

advised by Shaver (2005). I use a panel data GMM estimator (Stata's xtivreg2 plug-in) in 

which network reach and clusters are used as instruments for knowledge diversity and 

transfer. The regressions are included in Table 12 (p. 164). For knowledge transfer (model 3), 

the instruments are considered exogenous (Hansen J: p=0.42), but the first-stage model is 

only marginally significant (p=0.09). The results are still significant and provide support for a 

mediated relationship. For knowledge diversity (model 6), the instruments are also exogenous 

and this model converges correctly (first-stage model p<0.001; Hansen J: p=0.64). Results 

prove that diversity mediates the relationship between network structure and firm innovation. 

When testing each of the instruments individually, the effects of knowledge transfer and 

diversity seems to be driven more by network reach. The results become weaker when double 

mediation is tested simultaneously.  

As well as alternative specifications, I also repeat the analysis on subsamples of the 

dataset. First, I exclude smaller networks since some network measures may be influenced by 

network size. Instead of using five R&D scientists as minimum network size, the analyses are 

repeated when networks have at least fifteen or fifty R&D scientists. Though the sample size 

drops considerably (by 20% and 50%, respectively), the results (see Table 13, p. 165) are 

very similar to the main findings above. Second, though the GEE estimation method is 

normally robust against outliers, I carefully check for their effect since the dependent variable 

firm innovation is strongly skewed. The regressions of Table 3 are repeated by (a) leaving out 
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the 5% highest observations and (b) winsorizing the 5% highest observations. Both strategies 

provide results that are almost identical to the earlier findings (see Table 14, p. 166). 

Finally, research on small world networks has indicated that the combination of high 

reach with many clusters increases performance and innovation (Fang et al., 2010; Schilling 

& Phelps, 2007; Uzzi & Spiro, 2005; Watts & Strogatz, 1998). Therefore I repeat all earlier 

analysis by including the interaction effect of mean-centered network reach and network 

clusters. The results, included in Table 15 (p. 167), do not provide any evidence of small 

world effects. While the individual effects of reach and clusters on knowledge transfer, 

knowledge diversity, and firm innovation remain significant, the interaction term of reach and 

clusters does not gain significance. 

 

Robustness Checks at the Level of Patents and Citations 

Whereas knowledge diversity is a firm-level characteristics, knowledge transfer can 

be measured at various levels. I use this opportunity to replicate the above results of network 

reach on knowledge transfer at the level of individual patents and individual citations. The 

detailed procedures for these robustness checks are included in Appendix C (p. 189). 

At the level of the patent, I estimate the likelihood of a patent being cited by new 

patents from other inventors within the same organization in the subsequent three years. Such 

a citation indicates that an R&D scientist builds upon the work of his/her colleagues and is a 

proxy for knowledge transfer (Singh, 2005). The results indicate that collaborative networks 

among R&D scientists are a significant determinant for citing each other's patents. The 

findings show that knowledge transfer increases with the centrality of its inventors within an 

intrafirm network (similar to Paruchuri, 2010). However, if an intrafirm network has shorter 

paths, the likelihood of knowledge transfer reduces (see Table 16, p. 168). An extra check 

reveals that this effect is particularly strong for patents with central inventors (model 3). In 
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summary, intrafirm network reach reduces the likelihood of each patent to be reused or 

incorporated in new inventions. 

At the level of citations, I estimate the likelihood of future patents citing the focal 

patent. This method, adapted from Singh (2005), estimates the likelihood of a patent being 

cited by each patent developed by the same firm in the subsequent three years. The results 

(see Table 17, p. 169) indicate that social connections among R&D scientists are a significant 

determinant for patent citations and thus knowledge transfer. Specifically, the regression 

reveals that citations between two patents are more likely if inventors have had collaborative 

ties, but this positive effect turns negative for longer indirect ties. This negative effect occurs 

when the number of steps increases beyond two, that is, when there is no common 

acquaintance between inventors but a longer path from the existing patent to the new 

invention. With over 70% of all patents being connected via these longer paths, this is by far 

the largest group. In conclusion, compared to non-connected R&D scientists, scientists with 

short paths are more likely to transfer and exchange knowledge but those with longer paths 

are less likely. 

 

DISCUSSION 

In settings where complex, tacit knowledge is largely held by individuals, firm 

innovation is the product of their communication and collaboration structures. Intrafirm 

networks are major determinants for knowledge sharing, transfer, recombination, and 

ultimately innovation. However, despite an abundant academic literature on intrafirm social 

networks, there has been little coherence in the effects of macrolevel network structure on 

firm innovation. This study aimed to clarify some of these results by identifying mediating 

effects on knowledge diversity and transfer. Drawing upon the key concepts of macrolevel 

network literature, I argued that network path length and clusters would indirectly influence 
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firm innovation via knowledge transfer and diversity. Using a longitudinal sample of the fifty 

largest medical device firms, this study provided results contrary to the expectations. 

Specifically, it revealed that reach and clusters in an intrafirm network have significant 

negative effects on knowledge transfer and diversity, and thereby firm innovation.  

The intrafirm network structure has an unexpected negative effect on knowledge 

transfer. While the number of connections in a network has no significant effect on 

knowledge transfer or innovation, shorter paths in intrafirm networks strongly reduces it. 

Various robustness checks using alternative measures consistently demonstrate this negative 

effect. In particular, I find that both cohesion (the lack of fragmentation) and efficiency (short 

paths) have negative effects on knowledge transfer. At the level of individual patents, the 

results indicate that reach only works for very short paths. Longer paths, on the other hand, 

make knowledge transfer and reuse less likely compared to the absence of a connection. This 

finding both challenges and confirms earlier studies: while these studies argue that any tie 

increases knowledge sharing, some studies (e.g. Singh, 2005) also find that the effects are 

different within the same organization. Similarly, Guler and Nerkar (2012) also argued that 

distant connections often offer only limited benefits: whereas they provide novel knowledge, 

this information is often too distant and less relevant. This also reduces the likelihood of re-

using this knowledge. In addition, distant connections indicate weak ties between R&D 

scientists (Granovetter, 1973). Weak ties are very useful for passing simple information, but 

not effective for sharing complex knowledge (Hansen, 1999). In such circumstances, shorter 

and stronger ties are more powerful because the willingness and ability to share increase. 

R&D scientists are more willing to spend time and efforts on sharing information with their 

closer peers. In addition, their mutual understanding increases the likelihood of success (Aral 

& Van Alstyne, 2011). 
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In line with existing research, networks with a higher reach decrease knowledge 

diversity. Lazer and Friedman (2007) revealed that efficient networks may share information 

extensively but also weed out diversity in a network. Creative deviance is reduced because 

strongly connected networks increase socialization among R&D scientists. This decreases the 

diversity of skills and expertise among R&D scientists. Instead, firms with such networks are 

more likely to continue along similar technological trajectories by reconfiguring existing 

knowledge combinations instead of pursuing new knowledge combinations (Carnabuci & 

Operti, 2013). 

The presence of clusters in intrafirm networks has no significant effect on knowledge 

transfer. As argued in the hypothesis, the effect of clusters on information sharing is 

ambiguous: while scientists within a cluster tend to readily share information, they are less 

likely to obtain and use knowledge from other clusters. Fang et al. (2010) also noticed this 

effect in their simulation of organizational learning where learning among individuals 

increased with the size of the individual clusters. The citation-level robustness check 

confirmed this once more: knowledge transfer increases with short connections, which are 

more likely to occur within a cluster, but is much lower for distant connections, which span 

clusters. 

Unexpectedly, network clusters reduce firm knowledge diversity in a network. Small 

world network literature has argued that clusters in a network help in maintaining knowledge 

heterogeneous (e.g. Cowan & Jonard, 2004; Schilling & Phelps, 2007; Uzzi & Spiro, 2005). 

Limited isolation of groups of R&D scientists would deliver more 'pockets of knowledge'. 

But the results here do not support this argument. On the contrary, it reveals that clusters tend 

to increase in exploitation instead of exploration. A potential explanation could be related to 

the effects of clusters on the knowledge diversity among R&D scientists within a cluster. 
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Stronger socialization processes reduces their heterogeneity (Burcharth & Fosfuri, 2012; 

Fang et al., 2011) and may ultimately reduce knowledge diversity in an organization. 

As predicted, knowledge transfer and knowledge diversity increase firm innovation. 

More diverse knowledge increases the opportunities for knowledge recombination. More 

diverse technological resources boost the potential for knowledge exploitation (Fleming, 

2001). In addition, more diverse knowledge facilitates the absorption of other knowledge 

(Cohen & Levinthal, 1990). This is shown in a rise in the number of new patents and new 

products produced by these firms. Similarly, firms that share more knowledge internally 

show a higher number of new patents and new products. Overall, this confirms earlier 

research regarding the importance of knowledge for innovation (Cohen & Levinthal, 1990; 

Fleming, 2001; Grant, 1996). 

Intrafirm network reach has a significant negative effect on firm innovation. While 

the absolute number of connections among R&D scientists has no effect on firm innovation, 

their structure has a strong effect. Specifically, the more efficient an intrafirm network, the 

lower the aggregate innovation by all R&D scientists. This sheds new light on earlier findings 

by Guler and Nerkar (2012) who concluded that global network density reduces firm 

innovation. Here it is shown that it is not the number of connections per se, but their 

efficiency that reduces firm innovation. Mediation tests also show that this effect is fully 

mediated by the negative effect of network reach on knowledge transfer and diversity. 

Intrafirm network clusters also have a negative effect on firm innovation. Groups of 

well-connected R&D scientists in a network reduce the number of new patents. This result 

opposes Guler and Nerkar's (2012) finding that clusters increase firm innovation. In this 

study, the negative effect is partially mediated by knowledge diversity. A potential 

explanation given by Chang et al. (2014) is that larger clusters in a network reduce the 
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heterogeneity of knowledge held by each individual. In addition, clusters also have a direct 

negative effect on firm innovation that is not mediated by knowledge processes. 

 

Contributions 

The findings of this study primarily speak to the large literature on networks and 

innovation (Phelps et al., 2012) It assesses the mechanisms via which intrafirm network 

structure influences firm-level innovation. Literature on macrolevel network structures 

argued that cohesive network "enable the creative material in separate clusters to circulate to 

other clusters" (Uzzi & Spiro, 2005: 449) and network clusters "become important structures 

for creating and preserving the requisite variety of knowledge in the broader network that 

enables knowledge creation" (Schilling & Phelps, 2007: 1115). This study puts these 

mechanisms to a test. By shifting the level of analysis from micro (the node) to macro (the 

network), I can measure knowledge transfer and diversity. This is normally not possible for 

individual-level studies, but I am able to examine these effects by taking an organizational-

level approach.  

The results, however, contradict these presumed mechanisms. With regard to network 

reach, Carnabuci and Operti (2013: 1594) argue that a well-connected intrafirm network 

"increases a firm's ability to innovate through recombinant reuse". This study reveals that 

networks with shorter paths and less fragmentation actually reduce knowledge transfer 

among R&D scientists. Similarly, Fleming et al. (2007) estimate the effect of inventor 

networks on regional innovation and find that both less fragmentation and shorter paths 

increase regional innovation, but the robustness checks of this study obtained the exact 

opposite results. With regard to network clusters, Guler and Nerkar (2012: 546) state that 

"local cohesion [clusters] helps as scientists benefit from the close interaction". This is not 

supported by the results of my analysis that reveal that clustered networks do not increase 
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knowledge transfer. Finally, several studies have obtained a positive small world effect for 

creativity and innovation (e.g. Schilling & Phelps, 2007; Uzzi & Spiro, 2005) but this effect 

is not corroborated by robustness checks in this study. In summary, this study questions the 

mechanisms that mediate the relationship between network structure and innovation. 

Secondary, this study contributes to management research by bridging the 

micro/macro divide in social network studies (Moliterno & Mahony, 2011; Molloy et al., 

2011). While the majority of the network studies considered the microlevel of individual 

employees and their creativity, only few network studies have taken a macrolevel view and 

considered aggregate innovation. This distinction is important because microlevel network 

structures may increase the performance of one employee at the cost of others' (Operti & 

Carnabuci, 2012). This study increases our understanding in various ways. First, the number 

of connections generally increases the number and impact of innovations for individual R&D 

scientists (Fleming, Mingo, et al., 2007; Paruchuri, 2010; Singh & Fleming, 2010), but not 

global firm innovation (Guler & Nerkar, 2012). This study's findings also support this idea 

since coefficients for network density remain insignificant. Second, many studies have shown 

that brokerage increases an individual's performance (Phelps et al., 2012) but potentially at 

the cost of others (Bizzi, 2013). This study contributes to the brokerage/closure debate by 

revealing that the macrolevel effect for a firm is still positive. Third, closeness centrality is 

normally positively related to an individual's creative performance (Ibarra, 1993). However, 

at a macrolevel it turns out that higher degrees of closeness centrality for all employees, i.e. 

network reach, actually have a negative influence on innovation. 

 

CONCLUSION AND LIMITATIONS 

In R&D intensive industries, firm performance is often directly linked to firm 

innovation. Nevertheless, innovation remains a largely serendipitous process performed by 
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individuals or teams. This study looks how the intrafirm social network structure, which is 

created and sustained at the interpersonal level, influences innovative performance at the firm 

level. This study reinforces the idea that interpersonal connections have a major impact on 

knowledge sharing, diffusion and recombination within organizations. However, contrary to 

extant research, the results of this study suggest that high-reach networks with strong clusters 

are actually detrimental for firm innovation. Instead, networks with low reach and fewer 

clusters are able to share and transfer knowledge more effectively. Such networks also sustain 

higher levels of knowledge diversity and successively increase the firm's number new patents 

and products. Therefore this study calls for further research on the mechanisms that mediate 

network structure and innovation. 

This study is subject to several limitations that could also give lead to new research. 

First, I have assumed that network nodes have large agency in tie formation, that is, R&D 

scientists have substantial freedom in choosing who they like to collaborate with. This was 

noticed in earlier research in similar R&D settings (Dahlander & McFarland, 2013; Sasovova 

et al., 2010) and my interviews with R&D managers have confirmed it. As one manager 

described the formation of R&D project teams: 

"More often than not, it's usually political about who is chosen. Because they want to be chosen and 

they force their way in. That's just a very honest answer." (Manager #12) 

In addition, though managers may influence microlevel structures by composing project 

teams, there is little reason to assume firms actively influence macrolevel network structure. 

Still, new research could investigate what firm characteristics influence network structure. 

Second, this study relies on archival data to measure networks, knowledge and 

innovation. I aimed to overcome the limitations of patent data by adding publication data and 

also considering the number of new products. Still, a part of all interpersonal connections, 

knowledge flows and creativity will not be captured by this process. In addition, I am unable 

to observe unsuccessful recombinant efforts: in case R&D projects do not lead to new patents 
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or products, the processes of transfer and diversity are also unobservable. Further qualitative 

research could overcome these issues. 

Third, the medical devices industry is a specific setting. Similar to other high-tech 

industries, the medical device industry is very R&D intensive. But contrary to other settings, 

the medical devices industry draws upon a large number of different scientific disciplines 

from both the medical and technical sciences. Most knowledge, skills and abilities are 

possessed by individual scientists and not by firms, making interpersonal collaboration even 

more important. The effects of social network structure on innovation may be weaker in 

settings with less specific and more common knowledge. 
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CHAPTER 3: INTERORGANIZATIONAL COLLABORATION, 

INTRAORGANIZATIONAL NETWORKS, AND FIRM INNOVATION 

 

ABSTRACT 

This study investigates how firm innovation is jointly influenced by two levels of 

collaboration. At the interorganizational level, collaboration via interfirm alliances and joint 

ventures is an important method for accessing external knowledge and information. At the 

intraorganizational level, intrafirm collaboration among R&D scientists is a significant 

mechanism for knowledge transfer and diffusion. Both forms of collaboration stimulate firm 

innovation, but little is known about their joint impact. I argue that interorganizational 

collaboration provides an opportunity for absorbing new knowledge while intraorganizational 

collaboration networks shape a firm's ability to use and exploit this information. A 

longitudinal study on almost fifty medical device firms over a fifteen year period shows that 

the positive effect of interfirm R&D alliances on firm innovation is stronger for firms with 

better connected intrafirm collaboration networks, whereas the presence of strongly-

connected groups within a firm weakens this relationship. These results suggest that firm 

innovation is the outcome of a multilevel network process in which interfirm ties are 

complemented by intrafirm networks. 

 

INTRODUCTION 

Individual and organizational collaboration networks are a core theme in innovation 

research (Phelps et al., 2012). These studies are primarily guided by social network research, 

which meticulously examines the effects of network size, structure and strength on individual 

performance (Brass et al., 2004; Pittaway et al., 2004). Management researchers have 

intensely investigated the effects of interfirm collaboration networks on firm innovation or 
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intrafirm social networks on individual creativity. Despite this large body of work, there is 

still a lack of understanding on how collaboration changes innovation. 

First, traditional interorganizational network research in the field of innovation largely 

overlooks firms contingencies for interfirm collaboration effects. These studies control for the 

direct effects of firm characteristics on innovation, but they spend little attention to potential 

interaction effects of firm and network characteristics. However, recent research has shown 

that the rise in innovation after alliance formation depends upon characteristics of a firm. For 

example, Rothaermel and Hess (2007) reveal that the effects of alliance formation on firm 

innovation are contingent upon human and financial capital within a firm. Similarly, Chen 

(2004) demonstrates that knowledge transfer in alliances increases with firm absorptive 

capacity. Despite these studies on the role of a firm's human capital in interorganizational 

collaboration, only few studies considered the role of a firm's social capital (e.g. Holmqvist, 

2003; Moreira & Markus, 2013). In particular, no studies have considered the interactive 

effect of interorganizational alliances and intraorganizational collaboration networks on firm 

innovation. This is an relevant issue since intrafirm network constitute an organization's 

recombinant capability (Carnabuci & Operti, 2013). 

Second, innovation scholars have generally treated interfirm and intrafirm 

collaboration independently (Brass et al., 2004). Interorganizational network research has 

carefully analyzed how interfirm alliances influence interorganizational knowledge spillovers 

and innovation. In particular, much attention has been paid to the size, structure and 

composition of ego and global networks (Phelps et al., 2012). Intraorganizational network 

research closely looked at the impact of social network structures on employee creativity and 

performance, in particular the effects of size, strength and structure of their connections (Van 

Wijk et al., 2008). This body of work has also addressed the consequences for aggregate 

network performance at the level of the firm (e.g. Carnabuci & Operti, 2013; Guler & Nerkar, 
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2012). Though it considered how intrafirm networks help in sharing new knowledge, it 

generally pays little attention to where this new knowledge originates from. One potential 

source, interorganizational knowledge spillovers, are not considered. Overall, little attention 

has been paid to the joint effects of inter- and intrafirm networks. Noticeable exceptions are a 

some individual-level studies. Lazega et al. (Lazega et al., 2008, 2006) have shown how 

productivity of medical researchers is influenced by their personal networks as well as the 

network of their institutions. In a similar fashion, Paruchuri (2010) finds that inventor 

productivity is changed by both interpersonal and interfirm networks. However, to my best 

knowledge, no studies have yet investigated how interfirm and intrafirm collaboration jointly 

influence firm innovation. This is a relevant issue since collaboration structures benefiting 

one R&D scientist may harm the performance of their peers or the entire organization (Bizzi, 

2013; Operti & Carnabuci, 2012). So network structures that benefit a single employee may 

not help an entire organization. Therefore, a multilevel approach could greatly contribute to 

research on networks and innovation by providing a more sophisticated view on knowledge 

sharing, transfer and recombination. 

Third, research on the structure of intraorganizational collaboration network often 

considered firms to be isolated environments. These studies argue that organizations aim to 

balance knowledge diversity and knowledge sharing via their collaborative structure. Their 

models consists of employees learning via diffusion and recombination (Chang et al., 2014; 

e.g. Cowan & Jonard, 2004; Fang et al., 2010; Lazer & Friedman, 2007). In these 

simulations, new knowledge enters an organization via autonomous exploration or random 

turnover by employees (March, 1991). Despite the advances made by this line of research, it 

overlooks the increasingly important role of interorganizational collaboration. 

Interorganizational networks are a source of learning and knowledge absorption, and may be 

an important source of knowledge diversity (Khanna et al., 1998). Therefore, the effects of 
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intraorganizational networks structure on firm innovation may depend on interorganizational 

collaboration. This could challenge the search for 'optimal' network structures and instead 

foster a multilevel network logic. 

This study aims to address these theoretical gaps by asking how interorganizational 

collaboration and intraorganizational networks mutually influence firm innovation. I argue 

that interfirm R&D alliances provide a firm with opportunities to access and absorb external 

knowledge while their ability to turn it into innovation depends on their intrafirm network. In 

larger organizations, only a subset of all employees becomes boundary spanners via their 

involvement in alliance activities. This means that knowledge may cross organizational 

boundaries, but is not instantly available to all employees (Hargadon & Sutton, 1997). 

Nevertheless, R&D scientists not involved in an alliance may still receive new information 

via the intrafirm network that connects them to these boundary spanners. I draw upon earlier 

studies exploring the effects of macrolevel network structures – that is, the structure of an 

entire network – to identify relevant concepts (e.g. Fang et al., 2010; Lazer & Friedman, 

2007; Provan et al., 2007; Watts & Strogatz, 1998). These studies highlighted the importance 

of network connectedness (i.e. the number of connections), clustering (i.e. the presence of 

strongly connected groups) and efficiency (i.e. short paths among all members). These 

macrolevel network concepts represent important microlevel network structures – that is, the 

characteristics of ego-networks of individual actors – namely actor centrality and ego-

network closure (Wasserman & Faust, 1994). I expect that these intrafirm networks 

characteristics moderate the effect of interfirm collaboration on innovation. This proposition 

is tested on a longitudinal dataset of 49 North-American firms in the medical devices industry 

between 1990 and 2005. This is an R&D intensive setting where knowledge and expertise are 

mainly possessed by individuals and interpersonal collaboration is key to recombinant 

success. These firms collaborate externally with other organizations via R&D alliances and 
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internally via a collaboration network including all R&D scientists. The results show that 

R&D alliances and intrafirm network structure jointly increase firm innovation, implying that 

better connected intraorganizational networks complement external R&D alliances. 

This study contributes to several lines of research, including research on networks and 

innovation, the alliance literature, and the microfoundations of firm absorptive capacity. By 

demonstrating how firm innovation is jointly influenced by interfirm and intrafirm 

collaboration, this study illustrates the relevance for a multilevel conceptualization of 

innovation networks. For example, the effect of networks on innovation at one level may 

hinge upon a network structure at a higher or lower level. In a similar vein, this study shows 

how firms differ in innovation benefits they obtain from R&D alliances. Their intrafirm 

networks can facilitate or hamper the inflow and recombination of new information and skills 

obtained from interorganizational collaboration. Intraorganizational networks are an 

additional factor explaining how organizations gain asymmetrically from an R&D alliance. 

Lastly, this study identifies intrafirm networks as fundamental mechanisms for firm 

absorptive capacity. The origins and processes that build a firm's capability to recognize, 

absorb and exploit external knowledge have largely remained unexplored. This study reveals 

that a firm's absorptive capacity is partially determined by connectedness of a firm's intrafirm 

network. 

 

THEORY AND HYPOTHESES 

To understand how interorganizational collaboration and intraorganizational networks 

jointly influence firm innovation, I use three related literatures: recombinant innovation, 

boundary spanners in interfirm collaboration, and intrafirm collaboration networks. The 

literature on recombinant search explains innovation as a purposeful process of 

recombination and reconfiguration of knowledge components (i.e. technologies, materials, 
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skills, etc.) (Fleming, 2001; Schumpeter, 1934). R&D scientists, individually or in teams, use 

their personal skills and expertise to find solutions for existing problems or pursue new ideas 

(Fleming, 2001; Sorenson & Fleming, 2004). In each occasion, R&D scientists could either 

build upon their existing knowledge and experience or learn about new technologies and 

techniques (March, 1991). Recombinant search efforts by individuals are often uncertain and 

have unpredictable results, but chances for success increase with the knowledge components 

at their availability. The more novel and diverse their experience and expertise, the larger the 

potential to identify new combinations or configurations. Creativity and innovativeness of 

R&D scientists is therefore a function of the knowledge components they possess or could 

access (Fleming, Mingo, et al., 2007; Singh & Fleming, 2010). Firm innovation is then the 

aggregate of successful recombinant search efforts by its R&D workforce. 

The value of knowledge components in organizations reduces over time. Initially, 

organizations can continue building upon their existing knowledge by improving and refining 

their expertise (Dosi, 1982). However, the opportunities for reconfiguration of the same set of 

knowledge components are limited (Fleming & Sorenson, 2004). In addition, the magnitude 

of such improvements tends to decrease over time (March, 1991). Therefore organizations 

aim to learn new knowledge components. Since internal development of new knowledge is a 

costly and time-consuming endeavor, organizations also rely on interorganizational alliances 

and knowledge sharing agreements for organizational learning (Chesbrough, 2003). 

 

Interorganizational Collaboration and Boundary Spanners 

Interorganizational collaboration is an important source of organizational learning and 

firm innovation (e.g. Ahuja, 2000a; Powell, Koput, & Smith-Doerr, 1996; Shan et al., 1994). 

Collaboration between organizations via alliances and joint ventures is an efficient method 

for using complementary, non-transferable resources owned by multiple organizations (Dyer, 
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1997). But when it comes to innovation, the largest benefits of interfirm collaboration are 

related to intended and unintended knowledge spillovers between partner organizations 

(Inkpen, 2000; Lavie, 2006). Alliances and joint ventures function as conduits for the flow of 

knowledge and knowhow between partnering firms (Owen-Smith & Powell, 2004). Such 

knowledge spillovers, or the transfer of knowledge and knowhow between organizations, are 

an important source of learning and innovation because this knowledge is new to an 

organization. Interfirm alliances are often preferred over internal capability development 

because it is faster and cost-efficient (Ahuja, 2000a). The idea that interorganizational 

collaboration results in valuable knowledge spillovers, especially when they exceed the 

official purpose of the alliance, was supported during my interviews with alliance managers.3 

As two managers and one scientist explained it: 

"When we develop new things, internally or in collaboration, there is obviously always an intent to 

gain new knowledge. […] We always want to gain a solid knowledge and background." (R&D scientist 
#6) 

"It inevitably leads to learnings and knowledge sharing from both sides. Ultimately, the idea is that 

cross-company work is highly encouraged: the more information that is shared, the quicker we can get 

to the end goal." (Alliance manager #5) 

"For example, the engineers learned a lot of things that they wouldn't understand because they don't 

want to go to school again. But in this project they did learn it from the partner firm." (Alliance 

manager #7) 

One manager even explained how learning was an implied, but never formalized objective of 

interorganizational collaboration: 

"Of course we like to learn the technology and knowledge that or partner organization owns. That is 

one of the unofficial objectives. […] Our alliance with the supplier is to get their technology. Then we 

will modify it and take advantage of their innovations. We then bring our own product to other markets 

where they are not active." (Alliance manager #13) 

A large body of literature has identified factors that facilitate or hinder the effect of 

interorganizational collaboration on firm innovation (for a review, see Easterby-Smith, Lyles, 

& Tsang, 2008). First, the degree of knowledge spillovers is influenced by structural 

                                                 
3 I performed over thirty semi-structured interviews with managers and scientists in the health industry to gain a 
deeper understanding of the antecedents of innovation. For confidentiality reasons, all quotes are paraphrased. 
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characteristics like scope and governance mode (Mowery et al., 1996; Oxley & Sampson, 

2004). Second, the relational characteristics of alliance partners influence knowledge sharing 

(Tsai & Ghoshal, 1998). Especially, trust and reciprocity in interfirm relationships are 

important determinants for knowledge spillovers (Ahuja, 2000a; Inkpen, 2000; Uzzi, 1997). 

Third, certain organizational capabilities also sustain knowledge spillovers from interfirm 

cooperation. An organization's absorptive capacity, i.e. the ability to learn new external 

knowledge, increases firm innovation via R&D alliances (Chen, 2004). And firm innovation 

via alliances is stronger if organizations have more collaborative experience (Rothaermel & 

Deeds, 2006). 

Less attention has been paid to the processes that lead to interorganizational 

knowledge spillovers. This is surprising since alliances are essentially no more than 

contractual agreements between two organizations (Gulati, 1995). Though these interfirm 

agreements are often related to firm innovation, the processes that explain this relationship 

occur at a lower level (Felin et al., 2012). It are individual scientists working in R&D 

alliances that learn new knowledge and skills from an alliance partner (Berends et al., 2011; 

Janowicz-Panjaitan & Noorderhaven, 2008; Oliver & Liebeskind, 1997). When an 

organization commences alliance activities, a number of R&D scientists of this organization 

will be dedicated to these joint R&D projects. Teams of employees from both organizations 

are actively involved in collaborative activities for a longer period of time (Davis & 

Eisenhardt, 2011). As such, these employees will become organizational boundary spanners 

(Allen, 1966; Tushman, 1977). 

Communication and collaboration of boundary spanning R&D scientists leads to the 

exchange of knowledge and information (Tushman & Scanlan, 1981a). Boundary spanners 

are able to learn new knowledge and skills by forming new connections to their colleagues in 

a partner firm (Zhao & Anand, 2013). This interpersonal contact is particularly relevant for 
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learning more valuable complex, tacit knowledge that could not be shared otherwise among 

organizations (Hansen, 1999). Therefore R&D scientists in alliances fulfill an important 

function by scanning, selecting and absorbing external information. As some of the 

interviewed managers described this process of knowledge spillovers: 

"There are some technical skills that our scientists are learning based on the technology that the 

partner has and some of the technologies they use that our scientists haven't used in the past." 

(Alliance manager #1) 

"On the technical side, we learn of the polymer for pharmaceutical application which was also useful 

for the medical device application that we shared." (Alliance manager #3) 

Consequently, learning by boundary spanning employees, at the individual level, is crucial to 

learning at the organizational level. The interviewed R&D scientists mentioned frequent 

communication via e-mail, phone calls, conference meetings or site visits as an important 

source of new information. The alliance managers recognized the role of open collaboration 

and emphasized the importance of direct communication between boundary spanners: 

"Well, there is a lot of unstructured communication of just people writing e-mails and picking up the 

phone and talking to their counterparts. There is formal communication, but there is a lot of informal 

and day to day communication afterwards." (Alliance manager #6) 

"Learning happens primarily by letting people work together. We have the experts from our suppliers 

sitting together with our experts and decide to work on solutions. So it's not so much we tell you what 

we need and then you need to execute, it's really working together." (Alliance manager #9) 

In summary, interorganizational collaboration leads to knowledge spillovers between 

organizations because teams of employees of both firms collaborate and exchange knowledge 

and information. These knowledge spillovers increase an organization's opportunity for 

knowledge recombination and innovation. 

 

Intraorganizational Networks and Firm Innovation 

Firms also rely on intraorganizational collaboration to pursue technological 

innovation. By integrating skills, knowledge and expertise of their employees, organizations 

create new or improved products and processes (Grant, 1996; Kogut & Zander, 1992). R&D 
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scientists in these firms, individually or in teams, use their personal skills to find solutions for 

existing problems or pursue new ideas (Fleming, 2001; Sorenson & Fleming, 2004). Social 

capital literature has shown that the productivity of scientists in R&D laboratories is not 

solely determined by their human capital (e.g. Borgatti & Cross, 2003; Ibarra, 1993; Tsai, 

2001). Instead, a scientist's productivity is also influenced by personal connections to other 

scientists. Personal ties among R&D scientist lead to sharing of information in a largely 

informal and unorganized manner (Brown & Duguid, 1991; Gupta & Govindarajan, 2000). 

Personal interaction is also an important condition for the transfer of complex, tacit 

knowledge (Hansen, 1999; Nonaka, 1994). The stronger the connections between employees, 

the larger and richer the information and resources they exchange (Borgatti & Cross, 2003; 

Granovetter, 1973; Tsai & Ghoshal, 1998). Extant research on interpersonal networks has 

consistently shown that larger and more diverse connections increase an individual's 

performance and creativity (Van Wijk et al., 2008). Besides, the number and strength of ties, 

their structure is an important determinant of performance (Burt, 1992). Employees 

embedded in densely-connected subgroups benefit from a larger communication bandwidth, 

but suffer from reduced novelty and diversity in their network of peers (Aral & Van Alstyne, 

2011).  

In an R&D setting, interpersonal connections contribute significantly to sharing 

information about new technologies, materials and methods (Allen, 1966). Central actors in a 

network have faster access to new knowledge, resources and other components, which is 

critical for their recombinant search (Fleming, 2001). They are not only accumulators of 

information, but also hubs of knowledge: they actively collect, share and distribute 

information. Their role as knowledge hub in an R&D laboratory improves their individual 

performance, the performance of their peers and ultimately the entire organization (Grigoriou 

& Rothaermel, 2014). 
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Because interpersonal networks lead to knowledge flows at the individual level, the 

structure of intrafirm networks affects innovation at the organizational level (Guler & Nerkar, 

2012). Structural characteristics of networks influence the likelihood, speed and extent of 

diffusion (Freeman, 1977). Structure also influences the diversity of knowledge among actors 

(Lazer & Friedman, 2007). For example, Carnabuci and Operti (2013) demonstrate that a 

larger fraction of connected scientists in a firm's R&D department has positive effects on 

innovation via knowledge recombination and that this partially depend on the heterogeneity 

of skills and expertise of scientists. 

Network connections, network clustering and network efficiency are three network-

level characteristics of intrafirm networks that have received considerable attention in social 

network literature (Phelps et al., 2012; Provan et al., 2007). Network connections, or density, 

refers to the number of connections among employees (Wasserman & Faust, 1994). At the 

level of individual R&D scientists, the number of connections is related to receiving more 

information, more diverse information and more novel information (Freeman, 1977). As a 

result, R&D scientist performance increases with their number of connections (Fleming, 

Mingo, et al., 2007; Operti & Carnabuci, 2012). At the level of an organization, intrafirm 

network density is related to information diffusion and knowledge transfer (Lazer & 

Friedman, 2007). In particular, better connected networks transfer new knowledge and 

information faster and to a larger part of the network. 

Intraorganizational networks are also characterized by clustering, that is, the presence 

of strongly connected groups of employees within an organization (Wasserman & Faust, 

1994). Such clusters serve to store knowledge and gain support for new initiatives. Strong 

clustering helps in gaining support and mobilizing resources to use it in new products and 

processes (Schilling & Phelps, 2007). Clustering also helps in storing diverse and different 

types of knowledge and expertise (Fang et al., 2010). They constitute an organization's 
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'pockets of knowledge' and are therefore very relevant for innovation. In addition, clustering 

helps to resist convergence on a unique technology or trajectory (Lee et al., 2006).  

Finally, intraorganizational networks vary in their degree of efficiency (Funk, 2013). 

Efficiency refers to the presence of relatively short paths among employees, that is, 

employees are either directly connected or via few common acquaintances. In organizational 

learning, short paths assist in a quick transfer of knowledge and information. If information is 

passed on informally via a diffusion process, network path length has a direct effect on the 

speed by which it diffuses (Lazer & Friedman, 2007). And if a scientist is looking for a 

colleague with some particular expertise or experience on a topic, s/he is more likely to find 

the right person if path lengths are short (Singh et al., 2010).  

 
Figure 7 Theoretical framework 

 

Hypotheses Development 

The above discussion on interorganizational collaboration and intraorganizational 

collaboration networks has shown that both forms of collaboration lead to innovation via the 

efforts of individuals. Therefore I argue that both forms of collaboration are complementary 

means for firm innovation. R&D alliances provide an opportunity for absorbing novel 

external knowledge. Communication and collaboration among R&D scientists from 

cooperating organizations help in transferring complex knowledge and technologies across 
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organizational boundaries (Janowicz-Panjaitan & Noorderhaven, 2008). A firm's ability to 

use and exploit this new information depends on the capability of its intrafirm network to 

diffuse knowledge and facilitate scientists in employing it. As a result, an interfirm and an 

intrafirm network perform different but highly complementary roles. Providing a firm enters 

into an R&D alliance, I argue that the magnitude of its increase in innovation is contingent 

upon its intrafirm network characteristics.  

First, only a fraction of all scientists are involved in a firm's R&D alliances and have 

direct access to knowledge and resources of a partner firm. Other scientists in a firm may still 

learn from a partner firm's knowledge if they are (in)directly connected to one of the 

boundary spanners. Via conversations or collaboration on other R&D projects, they will 

know what is going on in an alliance. Boundary spanners may also actively share their 

experiences with their colleagues. The interviews confirmed that this occurs regularly: 

"Our employees also apply these experiences in other projects that they are involved in. They have 

done or they've shared them with colleagues that are working on similar projects." (Alliance manager 

#1) 

"Sometimes we try to isolate alliance teams working with competitors [two competing alliance 

partners]. But if two people are friends and they see each other in the lunch room, then they do talk 

about what they do in their alliance projects." (Alliance manager #12) 

However, one R&D scientist remarked that spillovers could be exploited further if there were 

institutional mechanisms supporting this: 

"[About knowledge spillovers.] I think we should do more with that then we do now. At the end of the 

project, we are supposed to have a sharing exercise where we look back at the project, but what 

typically happens is that it gets missed. The learning, by and large, does tend to stay with the 

individuals that were directly involved in that project." (R&D scientist #6) 

This confirms that the further sharing and circulation of new information gained by boundary 

spanners largely depends on their individual initiatives via their personal connections to other 

R&D scientists. 

The larger the number of interpersonal ties in a network, the further and faster newly 

absorbed knowledge from a partner firm will diffuse. More connections imply that new 



109 
 

information is passed on more frequently and more extensively. As a result, better connected 

networks show a fast diffusion of novel information (Lazer & Friedman, 2007). In addition, 

more connections also reduce the risk that information will not reach all R&D scientists of a 

firm. Therefore I propose that the positive effect of R&D alliances depends upon an 

intrafirm's network connections: 

H1: The positive effect of R&D alliances on firm innovation is stronger for intrafirm 

networks with more connections. 

 

Second, intrafirm network clustering has a dual effect of the adoption of new 

information. On the one hand, a group of acquainted employees will frequently share 

knowledge and information. Because of their frequent communication and information 

sharing, there is a larger overlap in their individual knowhow. This enables the efficient 

transfer of tacit and complex knowledge among employees (Aral & Van Alstyne, 2011). 

Furthermore, clustering leads to higher levels of trust and reciprocity. The willingness to 

share new information is much higher in such environments since individuals are less 

concerned about opportunistic behavior (Coleman, 1988; Uzzi, 1997). If R&D alliances allow 

a firm to learn about new techniques, they will diffuse faster throughout an organization if its 

intrafirm network has strong clusters that efficiently share this new information. When 

discussing this with R&D managers, one interviewee explained how clusters helped her 

organization to share new information efficiently: 

"We have therapeutic area centers. Representatives of organizational groups get together once a 

month to share the latest and greatest about that therapeutic area and then they are supposed to spread 

it to their groups." (Alliance manager #12) 

On the other hand, clustering creates strong professional norms that may resist the 

adoption of new practices and demotivate sharing particular knowledge (Fang et al., 2011; 

Katz & Allen, 1982). Strong socialization processes in a laboratory increases the not-

invented-here syndrome in which employees are unwilling to learn and employ new 
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techniques and skills developed outside an organization (Burcharth & Fosfuri, 2012). One 

alliance manager explained how these clusters obstruct information sharing and reduce 

learning from alliances: 

"Because no matter how small the company is, there are functional silos. Due to that, it's never very 

easy to have a clear communication between different groups in an organization." (Alliance manager 

#15) 

Instead, scientists within clusters will stick to their own knowledge and expertise and 

potentially doubt others' findings (Latour & Woolgar, 2013). In this line of argumentation, 

the inflow of new information from R&D alliances will have a weaker effect on innovation if 

a firm's network is strongly clustered. Given these two opposing arguments about the role of 

clusters in adopting and diffusing information, I state the following dual hypothesis: 

H2a: The positive effect of R&D alliances on firm innovation is stronger for intrafirm 

networks with stronger clustering. 

 

H2b: The positive effect of R&D alliances on firm innovation is stronger for intrafirm 

networks with weaker clustering. 

 

Third, the efficiency of intraorganizational networks will moderate the effect of R&D 

alliances on firm innovation. The length of paths among R&D scientists has consequences for 

the likelihood, speed and reliability of information transfer (Freeman, 1977). In a passive 

sense, information is less likely to diffuse from person A to B if A and B have no direct 

connections: it will then depend on common connections to pass on information. Since 

intermediary persons may forget, take time, or alter information (Hargadon & Sutton, 1997; 

Schilling & Fang, 2013), longer paths between persons reduces diffusion. In an active sense, 

if person A needs expertise or resources possessed by B, it can use its social capital to 

approach B. Person A can simply ask B for a favor if they are directly connected, but A might 

need to use a common intermediary for a referral if they are not directly connected. Singh et 

al. (2010) have shown how employees within a consulting company vary significantly in their 

centrality and path lengths and therefore their access to others' knowledge and expertise. With 
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regard to alliances, one R&D manager noted that his scientists involved in alliances were 

approached by their colleagues for their relevant information: 

"Even employees that themselves are not directly involved, are able to follow what is ongoing [in an 

R&D alliance]. And if they would need some of this technology development or problem solving for 

their own projects, then they are able to contact these people who can help them." (Alliance manager 

#13) 

This mechanism of introductions and referrals to obtain relevant information is more 

effective if the path between the source and recipient is shorter. 

Changing from an individual to a network level, efficient networks have a positive 

effect on knowledge diffusion (Lazer & Friedman, 2007). I therefore argue that intrafirm 

networks with shorter paths are superior in diffusing new knowledge. Innovation after the 

inflow of knowledge from R&D alliances will be stronger if an intrafirm network is more 

efficient: 

H3: The positive effect of R&D alliances on firm innovation is stronger for intrafirm 

networks stronger efficiency. 

 

METHODOLOGY 

Sample Selection and Data Collection 

The setting for this study is the North-American medical devices industry (SICs 3841-

3851). Firms active in this industry produce a variety of devices used in the healthcare 

industry, ranging from syringes to pacemakers to MRI scanners. Despite their diversity, all 

firms have in common that their products harbor complex technological knowledge. This 

industry was selected for three reasons. First, it is an R&D intensive industry (Wu, 2013). 

The average R&D expenses count for 7% to 13% of total costs, which is well beyond average 

(Frent, 2011), and firm's technological innovation has an immediate effect on firm 

performance (Wu, 2013). Second, knowledge in this industry is mainly possessed by 

individuals (Chatterji, 2009). Recombinant success thus largely depends on employee search 

efforts, either independent or in teams (Fleming, 2001). Firm innovation is then directly 
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related to interfirm and intrafirm collaboration among R&D scientists. Third, collaborative 

activities as well as innovative performance are highly observable in this industry (De Vet & 

Scott, 1992). Medical device firms tend to patent intensively which leaves a paper trail of 

their R&D activities. Moreover, interfirm R&D collaborations are quite common and 

publicly announced in this industry. 

The initial sample consists of the fifty largest public North-American medical device 

firms in 1990 based on their annual medical device sales, patents and products. The sample 

was limited to public firms to ensure sufficient data availability. These firms were observed 

from 1990 till 2005, though strong M&A activity within the industry as well as divestment by 

diversified firms meant the final sample is unbalanced (for an overview of the period of 

observation for each firm, see Appendix A on p. 178). 

Data were collected from 1985 till 2010 since some measures are computed over five-

year windows starting before 1990 or finishing after 2005. Firm financial and operational 

data were obtained from the firm and segment sections of WRDS Compustat. Missing data 

were added from firm annual reports accessed via Thomson One Banker. Based on SEC 10K 

filings, I created detailed corporate trees to find all names under which a corporation is doing 

business. Matching these against the patent assignee fields, I obtained all medical device 

patents these firms were granted by the USPTO. Bibliographic details for patents were 

obtained from Harvard's Patent Network Dataverse (Lai et al., 2011). In a similar fashioned I 

obtained all publications of the fifty sample firms from the Elsevier Scopus database. 

Intrafirm networks were constructed using patent and publication data. R&D 

scientists in the field of medical devices are observed as inventors on medical device patents 

of the sample firms. Collaboration ties among these scientists are observed via co-patenting 

and co-publication. In line with existing literature (e.g. Fleming, King, et al., 2007), I use a 
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five-year moving window to construct unweighted, undirected networks for each firm-year. 

Network measures are calculated using the iGraph package in the R console. 

Finally, I collected firm alliance data from three different sources. To start, I extracted 

relevant alliances from the SDC Platinum Alliance database and the Recombinant Capital 

(ReCap) dataset. While the earlier has a bias towards larger firms, the latter focuses more on 

biotech alliances than medical devices. In addition, I searched for any mention of 

interorganizational collaboration in around 1,500 annual reports and SEC 10K statements 

filed by the sample firms. Lastly, I searched for any announcement of alliances in the Factiva 

and LexisNexis databases. Using a detailed keyword search for alliances in combination with 

firm and subsidiary names led to over 120,000 hits. These articles were then manually 

scanned and, if relevant, coded. After manually eliminating all non-medical device alliances, 

the final sample consists of almost 2,300 unique interfirm agreements. Around 40% of these 

are partially or fully focused on R&D activities. Exact details regarding this procedure are 

included in Appendix B (p. 181). 

A sample was constructed for the fifty medical device firms starting in 1990. A 

number of firms dropped out of the sample early because of mergers and acquisitions or by 

divesting their medical device units, while a part survived until the end of the observation 

period in 2005. This reduced the number of observations and led to an imbalanced panel. In 

addition, I excluded firm-year observations with fewer than five R&D scientists in their 

intrafirm network: network structures are not meaningful for these organizations (following 

Carnabuci & Operti, 2013). Lastly, because I use a fixed effects method to control for 

unobserved heterogeneity, each firm has to appear in the sample at least twice. The final 

sample therefore consists of 49 firms observed during 483 firm-years. 
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Measurement 

Dependent variable. Firm innovation is measured via a citation-weighted patent 

count. Since medical device firms rely strongly on intellectual property rights to protect their 

innovations, patents are a robust proxy for innovative performance (Hall et al., 2000). These 

patents are weighted by their forward non-self-citations to correct for quality differences 

among inventions (Trajtenberg, 1990). Firm innovation in a given year is the number of 

patents a firm successfully applied for plus the number of citations these patents received in 

the next five years. This five-year window is based on application year since patents are cited 

from their application onwards and using grant year would introduce right censoring. 

Independent and moderation variables. R&D alliances is the number of unique 

R&D alliance partners a firm is connected to in a particular year. This measure is based on 

the logic that interfirm collaborations give access to partner firms' knowledge base during 

their lifespan (Ahuja, 2000a; Lavie, 2006). This means multiple simultaneous alliances are 

only counted as one while multipartner alliances count for multiple. Alliances are considered 

from their announcement or start until their termination. If terminations were not publicly 

announced, I assumed a three-year duration (comparable to Schilling & Phelps, 2007) unless 

better approximations could be made based on announced extension or continued existence. 

Intrafirm connections captures the number of ties among R&D scientists. Each 

connection leads to the flow of knowledge and information between scientists. It is measured 

as the average degree centrality of R&D scientists, that is, the number of collaborative 

partners over a five-year window. Network density (actual ÷ potential ties) was considered as 

an alternative measure, but it correlates highly with network size. 

Intrafirm clustering is measured as the average ego-network density of all R&D 

scientists corrected for a similar density in a random network (Guler & Nerkar, 2012; Watts 

& Strogatz, 1998). It measures to what extent a scientist's acquaintances are also acquainted 
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(Burt, 1992). This indicates that a scientist is part of a strongly connected group in which 

collaborative partners of individuals overlap substantially. The measure is scaled for 

clustering caused by network size and density: 

 𝐼𝑛𝑡𝑟𝑎𝑓𝑖𝑟𝑚 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝐶𝐶𝑅𝑎𝑛𝑑𝑜𝑚 𝐶𝐶 = (∑ [∑ ∑ 𝑑𝑖𝑗𝑘𝑘𝑗 (.5𝑗(𝑗−1))⁄ ]𝑁𝑖 ) 𝑁⁄𝑘 𝑁⁄   

with N being the number of R&D scientist and k the intrafirm network connections. The 

numerator computes intrafirm clustering in the observed network while the denominator 

calculates clustering in a random network of similar size and connections. 

Intrafirm efficiency is measured as the reverse of average shortest distance among all 

scientist corrected for network size and connections (Watts & Strogatz, 1998). When R&D 

scientists are indirectly connected, their access to each other's knowledge and expertise 

reduces with the number of steps between them. Average shortest path length strongly 

influences the likelihood and speed of diffusion (Freeman, 1977). This measure is scaled to 

control for differences in network size and connections, and is reversed so that a higher score 

means a more efficient network: 

 𝐼𝑛𝑡𝑟𝑎𝑓𝑖𝑟𝑚 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝐿𝑅𝑎𝑛𝑑𝑜𝑚 𝑃𝐿 =  − (∑ (∑ 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖𝑗𝑁𝑗 ) 𝐽⁄𝑁𝑖 ) 𝑁⁄ln (𝑁) ln (𝑘)⁄   

with N being the number of R&D scientist and k intrafirm connections. The numerator 

calculates the average of all shortest paths for each scientist to all its colleagues and then 

averages it for the entire network. The denominator is an equal path length in an entirely 

random network of similar size and connections. 

Control variables. Several variables at the level of the firm, the intrafirm network 

and interfirm collaboration are added to control for alternative explanations. 

Firm size has diverse effects on firm innovation (Hansen, 1992). To control for the 

effects of size, the log value of a firm's sales (in millions) is added as a control variable. Since 
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some sample firms are large and heavily diversified conglomerates, only sales in the medical 

devices industry are considered. 

Firm medical device focus indicates the relative importance of medical device units to 

other business units. Baysinger and Hoskisson (1989) noted that corporations focus their 

R&D activities on their dominant business units and increase their R&D budgets. It is sales of 

medical device business units as a fraction of total firm sales. 

Firm performance is measured as the firm's return on sales (EBIT ÷ total sales). It is 

added as a control variable since well-performing firms are financially less constrained and 

can invest more in riskier R&D projects. 

Firm leverage is the firm's debt-to-assets ratio. Highly leveraged firms have less 

discretionary resources at their availability and reduce their focus on R&D activities 

(O’Brien, 2003). 

Firm slack influences the resources available for, and strategic necessity of innovation 

(Nohria & Gulati, 1996). I proxy firm slack via its current ratio (current assets ÷ current 

liabilities) to control for this effect. 

Firm technological diversity implies the diversity of technological resources a firm's 

R&D scientists can draw upon for knowledge recombination (Sampson, 2007). It is measured 

as the diversity of a firm's patent stock via one minus a Herfindahl concentration index of 

patents grouped by their technological main class. 

Acquisitions result in the inflow of new knowledge and resources that affect firm 

innovation (Karim & Mitchell, 2000). To limit this effect, I calculate the amount a firm 

spends on acquisition of medical device firms scaled by a firm's annual sales. 

Divestments, on the other hand, result in a loss of knowledge and resources which 

reduces innovation. To limit this effect, I calculate the amount a firm receives from sales of 

medical device assets scaled by a firm's annual sales. 
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R&D intensity is the amount spent on R&D as a percentage of total annual sales 

(Cohen et al., 1987). It indicates the amount of resources dedicated to perform R&D projects 

as well as the importance of innovation in a firm's strategic positioning. 

R&D scientists constitute the firm's R&D work force. In settings where knowledge is 

complex and owned by individuals, the number of R&D scientists has a direct positive effect 

on firm innovation (Liebeskind et al., 1996). Therefore I observe the size of a firm's R&D 

workforce by the number of unique medical device inventors over a five-year period. This is 

the same as the number of nodes in an intrafirm network. 

R&D recruitment is the number of new R&D scientists as a fraction of the total R&D 

workforce. Hiring new employees leads to the inflow of new skills and expertise (Song et al., 

2003). This can influence both firm innovation and intrafirm networks, so it is controlled for 

via the number of scientists first observed on patents in the focal year. 

R&D geographic concentration indicates the spatial proximity of R&D sites. While 

some firms concentrate all their R&D activities in a single location to benefit from 

knowledge spillovers (Alcacer & Chung, 2007), others spread their R&D activities 

geographically to tab into local expertise (Lahiri, 2010). I calculate geographic concentration 

based as a Herfindahl concentration index of all R&D scientists in a firm by US state and/or 

foreign country. 

R&D team size is the average number of collaborators on R&D projects. The number 

of scientists involved in an R&D project has a significant effect on project performance 

(Singh & Fleming, 2010), but also influences intrafirm network connections. Therefore it is 

added as a control. 

R&D alliance duration is the average duration of a firm's on-going R&D alliances. 

Age of an alliance may effect interorganizational learning in two ways. On the one hand, trust 
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and mutual understanding are built over time (Gulati, 1995). On the other hand, the potential 

for learning new knowledge and skills will decrease over time. 

R&D alliance strength is the average strength of ties a firm has with its R&D 

partners. To start, I measure individual tie strength as the number of R&D collaborations 

between a firm and its alliance partner scaled by the number of partners in each alliance (two 

divided by the number of alliance partners). Then, I computed interfirm alliance strength as 

the average tie strength of a firm's alliances: 

 𝐼𝑛𝑡𝑒𝑟𝑓𝑖𝑟𝑚 𝑎𝑙𝑙𝑖𝑎𝑛𝑐𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = (∑ ∑ 2 𝑃𝑎𝑟𝑡𝑛𝑒𝑟𝑠𝑖𝑗⁄𝑗𝑁𝑖 ) 𝑁⁄   

with N being the number of a firm's alliance partners and j being the number of collaborations 

of the focal firm with each partner i. 

R&D alliance structure is the percentage of alliances that are structured as joint 

ventures, i.e. if it involves a newly created entity of which alliance partners are joint owners. 

Note that this joint ownership is different from taking a minority equity stake in a partner 

firm at certain milestones, which is not uncommon in the medical devices industry. Joint 

ventures increase the intensity of collaboration and thereby the amount of interfirm 

knowledge transfer (Mowery et al., 1996). 

Several common control variables had to be excluded for their high correlations with 

other control variables. This could have caused multicollinearity issues in the regressions. 

Firm age normally reduces innovation (Hansen, 1992) but is omitted because it correlates 

highly with firm size. Firm diversification provides opportunities for knowledge spillovers 

(Miller, Fern, & Cardinal, 2007), but it negatively correlates with a firm's medical device 

focus. Firm patent stock implies the depth of technological resources a firm can draw upon, 

but is strongly correlated with the number of R&D scientists. 
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Estimation Method 

The dependent variable in this study, firm innovation, is a non-negative count 

variable. Since such a variable is limited and often heavily skewed, linear regression could 

not be used. Instead, I use a negative binomial regression which is suitable for non-negative 

count variables and indifferent to potential overdispersion (Hilbe, 2011). Because the sample 

is a panel dataset, observations are not independent and unobserved heterogeneity may cause 

estimation biases. To choose between fixed and random effects parameters, I performed a 

Hausman test which is marginally significant (χ2 = 41.7; p = 0.076) (Hausman, Hall, & 

Griliches, 1984). Consequently I selected a negative binomial model with a fixed effects 

specification (Stata's xtnbreg command). The fixed effects in this model are conditional and 

do not suffer from the incidental parameter bias in unconditional fixed effects (Allison & 

Waterman, 2002; Allison, 2012b). To correct for potential multicollinearity, independent and 

moderation variables were mean-centered before interaction terms are computed. To reduce 

concerns about reverse causality, the dependent variable is measured at a one-year lead (t+1). 

 

RESULTS 

Table 5 below displays the descriptive statistics and correlations of the 483 

observations in the final sample. The number of R&D alliance partners in a given year ranges 

from zero to twenty-six, but averages around four. R&D scientists in intrafirm networks have 

on average just over three collaborative connections, but this varies significantly in a range 

from almost zero to over seven. Average intrafirm clustering is almost thirty, indicating that 

intrafirm clustering is much higher than what would be observed in random networks. 

Efficiency is also higher as it would have been in an entirely random network: the mean is 

almost one standard deviation above the expected value in a random network. With few 
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exceptions, correlations among independent and control variables are in an acceptable range. 

Any multicollinearity issue is addressed in the robustness checks further below. 

Table 5 – Descriptive statistics and correlations of sample (p. 157) 

Table 6 presents the results of a fixed-effects negative binomial regression and Table 

7 reports the incident-rate ratios for the same analysis. Regarding the control variables, firm 

size and R&D intensity have a positive effect on firm innovation. Hiring new R&D scientists 

also increases firm innovation, but a larger R&D workforce and larger project teams reduce 

their productivity. 

R&D alliances have a positive effect on firm innovation: each additional alliance 

increases firm innovation by a factor of 1.03 on average (model 1 in Table 7). For the 

intrafirm network, its connections have a strong positive effect on firm innovation. Clustering 

also have a positive, but much smaller effect and efficiency has no significant effect. 

Table 6 and Table 7 – Regression results for firm innovation (p. 158) 

Hypothesis 1 predicts that the effect of R&D alliances is positively moderated by 

intrafirm network connections. Model 2 in Table 6 provides support for this hypothesis 

(β=0.021; p<0.05). The advantages of interfirm networks hinge upon the connectedness of its 

intrafirm network. To see the shape and magnitude of this effect, I plot the results for 

additional R&D alliances for firms with low, moderate and high connectedness (i.e. at mean 

value and one standard deviation above/below) in panel A of Error! Reference source not 

found.. Note that these are multiplier ratios and any value above one indicates a positive 

effect. The plot indicates that R&D alliances have positive effect on firm innovation and this 

effect is much stronger for organizations with strongly connected intrafirm networks. Model 

3 in Table 6 provides statistical support for H2b at the cost of H2a (β=-0.000; p<0.001). I 

argued that clusters are superior mechanisms for information sharing, but also resistant to 
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learning outside knowledge. The evidence here indicates that the latter effect outstrips the 

former, though the effect size is minimal. As panel B of Error! Reference source not found. 

reveals, the direct effect of intrafirm network clustering is much stronger and interaction 

effects hardly change the slopes of the multiplier ratios. Hypothesis 3 predicted that the 

effects of alliances on innovation is positively moderated by intrafirm network efficiently, but 

this is not supported in model 5 of Table 6 (β=0.037; p=0.110). Panel C in Error! Reference 

source not found. demonstrates that intrafirm network efficiency has little significant direct 

or joint effects on firm innovation. In short, the regression results in Table 6 show that the 

positive relationship between R&D alliances and firm innovation is moderated by a firm's 

intraorganizational network. Specifically, network connections strengthen the relationship 

while network clustering weakens it significantly.  

   

 
Figure 8 Effect of R&D alliances on firm innovation 

 

Robustness Checks 

Various robustness checks were performed to check the validity of these empirical 

results. To begin, I check for multicollinearity issues and followed the procedure described 
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by Allison (2012a) in addressing it. Several control variables had VIF values exceeding 10, 

namely firm size, R&D scientists, and R&D team size. First, I rerun all regressions leaving 

out each of these variables individually. Second, I rerun all regressions leaving out two or 

more of these variables. Third, I replace the number of R&D scientists with the firm's patent 

stock (number of successful patent applications for medical devices in the past five years). 

This measure was earlier excluded for its high correlation with the number of scientists, but 

can now serve as a proxy with lower multicollinearity. These variations reduce the VIF for 

these models to acceptable values and provide similar significant results. 

Then, I use alternative measures for the independent and dependent variables. First, I 

look for potential non-linear effects of the independent variable, R&D alliances, on firm 

innovation. Rothaermel and Deeds (2006) demonstrated that the effect of alliances on new 

product development by high-tech ventures is curvilinear. After a certain number, the positive 

effects of R&D alliances turn into significant negative effects. To check for such non-linear 

effects, I rerun all regressions (a) using the natural log value of a firm's R&D alliance 

partners to check for decreasing marginal returns and (b) adding the squared value to check 

for curvilinear effects and. The results, included in Table 18 (p. 170), are generally weaker 

and often less insignificant compared to earlier results. Wald χ2 model fit did not improve by 

using these variables. So there is little indication for non-linear results. 

Second, I use a slightly different measure for alliances. Instead of measuring the total 

number of R&D alliance partners a firm is currently involved with, I only count the number 

of new R&D alliance partners in a particular year. While the formation of an alliance leads to 

the inflow of new information, this effect may wear out rapidly. On average, a sample firm 

gains 1.25 new R&D alliance partners each year. In the new regression results (Table 19, p. 

171), coefficients are substantially larger but less significant (at 10% or 5% significance 

levels). 
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Third, I use alternative measures for the moderation variables. Instead of intrafirm 

connections, clustering and efficiency, I use the alternative network density, transitivity and 

network largest component. The results (models 1 to 5 in Table 20, p. 172) are, however, not 

significant. I also check for potential small world effect by interacting the original clustering 

and efficiency measures (Fleming, King, et al., 2007; Watts & Strogatz, 1998): whereas the 

individual effects of connections and clustering remain, the small world factor does not reach 

significance (see model 8 in Table 20, p. 172). 

Fourth, I use an alternative measure for firm innovation. Rather than using citation-

weighted patent counts, I count the number of new or technologically improved products firm 

will bring to the market. Medical device firms are obliged to register all their products with 

the US Food and Drug Administration (FDA). This provides us with archival data on every 

newly developed or changed products. Contrary to pharmaceutical processes, this is a rather 

fast process (normally 180 days) but requires good documentation about the use and safety of 

a medical device at the moment of application. Accordingly, instead of citation-weighted 

patents at t+1, I use a firm's new products at time t+2 as dependent variable to correct for this 

lag between innovation and commercialization. The results (included in Table 21, p.173) are 

similar but much weaker when using this specification. 

Afterwards, I perform several robustness checks regarding the estimation method. 

First, I control for the potential effect of outliers since the dependent variable is heavily 

skewed. The regressions testing the hypotheses are repeated by leaving out the 5% highest 

observations (a value of over 1500) and by winsorizing this 5% highest observations (to a 

value of 1500). The results (Table 22, p. 174) are virtually similar to these obtained in Table 

6. Second, the regressions are re-run using a random-effects specification. As the Hausman 

test was marginally significant, random effects should give similarly efficient estimates. The 

results (models 1 to 4 in Table 23, p. 175) are comparable to a fixed-effects specification. 
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Third, I re-estimated the model using a Poisson quasi-maximum likelihood estimation (Stata's 

xtpoisson command with robust standard errors). Contrary to negative binomial regression, 

Poisson QMLE provides unconditional fixed effects without incidental parameter bias 

(Allison, 2012b; Wooldridge, 1999). The results (models 5 to 8 in Table 23, p. 175) show that 

the relevant coefficients are slightly smaller but equally significant.  

Moreover, the effects may depend upon intrafirm network size. The main argument of 

this study is that R&D alliances are complemented by intrafirm networks so that R&D 

scientists not involved in an alliance will still have access to any shared information. 

Macrolevel network characteristics will influence this process of diffusion. Currently, only 

firm-year observations with at least five R&D scientists are used, but these networks are still 

relatively small. Instead, I increase the cut-offs to at least 15, 30, 50 and 100 R&D scientists. 

Results are generally the same as in Table 6 above (see Table 24, p. 176), but the moderation 

effect of intrafirm network connections becomes much stronger. 

Finally, I try to control for potential endogeneity in alliance formation. Past research 

has shown that the formation of interfirm agreements is not a random phenomenon (Ahuja, 

2000b; Gulati, 1995). Taking the number of alliances at face value can thus lead to an over- 

or under-estimation of true effects (Hamilton & Nickerson, 2003). In this study, intrafirm 

network structure may influence a firm's decision to form R&D alliances: those with efficient 

intrafirm networks will build larger interfirm networks. To rule out this effect, I use the 

number of pure commercialization/non-R&D alliances as an instrumental variable. Non-R&D 

alliances are a good instrument for various reasons. To begin, downstream alliances reflect a 

firm's willingness to collaborate with other organization which also influences their 

motivation to enter R&D alliances. In addition, an intrafirm R&D network is unlikely to 

affect non-R&D alliances. Moreover, unlike upstream alliances, downstream alliances do not 

lead to the knowledge spillovers that result in innovation. Rothaermal and Deeds (2004) 
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describe how upstream alliances (those with an R&D component) fulfill a substantially 

different function from downstream alliances (those without an R&D component like 

production, distribution and marketing).  

In the first-stage model, I perform a fixed-effect linear regression of non-R&D 

alliances on R&D alliances. A negative binomial regression would have been preferred, but 

such a regression cannot provide a point estimate which is required for the second estimation 

stage. This first-stage model is valid (F=17.25; p<0.000; R2=0.36) and the instrument is 

highly significant (β=0.162; p<0.000). The predicted number of R&D alliances obtained from 

this model is then entered into the second model and interaction variables are calculated using 

this predicted value. The regression results (included in Table 25, p. 177) confirm earlier 

findings, but results are far more significant. So if anything, endogeneity was more likely to 

underestimate than overestimate the joint effects of inter- and intrafirm networks. 

 

DISCUSSION 

This study asked how interfirm and intrafirm collaboration networks jointly influence 

firm innovation. While collaboration networks at both levels have received ample attention in 

academic literature, there is little information about their combined effect. Here I argued that 

interorganizational collaboration provides a firm with access to new skills and knowhow for 

R&D alliances are conduits of knowledge and information (Owen-Smith & Powell, 2004). 

However, the extent to which a firm can turn this inflow of expertise into innovation will 

depend upon its ability to share and diffuse this to all its R&D employees, beyond the few 

that are involved as boundary spanners in the alliance itself. Intraorganizational collaboration 

networks thus complement interorganizational collaboration. 

Empirical evidence from the medical devices industry provides some interesting 

insights in the roles of both forms of collaboration. First, the results show that R&D alliances 
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have a strong direct effect: each additional R&D alliance increases firm innovation by a 

factor of 1.03 on average. Similarly, intrafirm networks also have a robust impact on firm 

innovation. If R&D scientists increase their number of collaborators by one, their combined 

innovation will generally increase by a factor 1.24. This finding supports earlier evidence on 

the role of network connectedness by Operti and Carnabuci (2012), but contradicts with the 

results of Guler and Nerkar (2012) who found a negative effect of network density on firm 

innovation. I also find that intrafirm clustering has a positive effect on firm innovation, 

supporting Guler and Nerkar's (2012) positive result for 'local density', that is, clusters. 

However, the results do not confirm the earlier positive finding by Funk (2013) for 'network 

inefficiency' (longer paths in the intrafirm network). 

Second, this study shows that there are joint effects of interfirm and intrafirm 

collaboration. The moderation effect of intrafirm network structure on R&D alliances is 

especially strong for intrafirm connectedness: on average, the effect of R&D alliances is a 

factor 1.02 stronger if a firm's R&D scientists increase their professional connections by one. 

This means the rise of innovation following R&D alliances almost doubles for firms with an 

intrafirm density one standard deviation beyond the mean. It provides empirical support for 

the idea that intrafirm networks are important integration and communication mechanisms 

(Cohen & Levinthal, 1990; Lawrence & Lorsch, 1967). Boundary spanning R&D scientists 

learn new information and skills from a partner organization. If scientists in a firm are better 

connected, boundary spanners can share this new knowhow conveniently with their peers 

(Freeman, 1977; Lazer & Friedman, 2007). This increases the benefits of interorganizational 

collaboration. 

Third, the structure of intrafirm networks has little influence on how R&D alliances 

influence innovation. The results indicate that strong clusters in intrafirm network have a 

negative moderation effect and weaken the positive impact of R&D alliances. This may be 
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caused by the tendency of clusters to focus internally and pay less attention to external 

information (Burcharth & Fosfuri, 2012; Katz & Allen, 1982). If clusters also isolate 

themselves from their immediate environment, their over-embeddedness will lead them to 

ignore new practices and technologies like these stemming from R&D alliances (Uzzi, 1997). 

Nevertheless, even if the results are statistically valid, their economic significance is very 

small as displayed in Error! Reference source not found.. In addition, short paths could 

advance the speed of knowledge diffusion. Funk (2013) argues that organizations in 

information-rich locations increase their innovation if their intrafirm networks are less 

efficient, that is, have a less cohesive structure (a longer average path length). My findings do 

not support this finding since the interaction factor with intrafirm network efficiency is not 

significant. If anything, it contradicts this result since the coefficient is consistently positive. 

 

Contributions 

This study initially contributes to the literature on multilevel collaboration networks 

(e.g. Contractor et al., 2006; Oliver & Liebeskind, 1997; Ployhart & Moliterno, 2011; Wang, 

Robins, Pattison, & Lazega, 2013). Research on networks and innovation traditionally deals 

with a single level of networks like individuals, teams, business units, and organizations 

(Phelps et al., 2012), but in reality, innovation is the outcome of a multilevel process 

(Contractor et al., 2006). Individuals are embedded in teams, teams in business units, 

business units in organizations and organizations in industry networks (Harary & Batell, 

1981; Moliterno & Mahony, 2011). As argued in this study, a node at a higher level, i.e. the 

medical device firm, is on itself networks of R&D scientists. This changes our perspective on 

elements as tie formation and network structure. For example, tie formation at a higher level 

will be reflected in new ties formed at a lower level. In my case, new R&D alliances will 

result in new boundary spanning ties for R&D scientists. However, tie formation at a lower 
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level does not have to result in new ties at a higher level. For example, new ties among R&D 

scientists do not change an interorganizational network when both scientists are working for 

the same firm. Whereas this study focused on just two levels of networks, Moliterno and 

Mahoney (2011) provide a meta-perspective on cross-level effects in networks that applies to 

several possible levels. 

Interfirm and intrafirm networks have a combined effect on individual creativity and 

firm innovation. For example, Oh et al. (2004) have shown how team creativity depends 

jointly on their internal collaboration and team members' external network. This study 

contributes to the literature on multilevel effects on innovation in a different manner. Here 

networks are formed at two different levels, namely by organizations and by individuals. In 

this setting, tie formation at each level is an independent or interdependent process and not 

controlled by a single entity. In a similar setting, Paruchuri (2010) investigated how the 

impact of an R&D scientist's invention depends on the size and structure of networks at two 

different levels. And Lazega et al. (2008, 2006) observed a similar joint-level effect for 

cancer researchers in medical research laboratories. This study looks at the same two levels 

of networks, but shifts the level of analysis from individuals to organizations. That is a 

relevant addition to multilevel network and innovation research since network studies have 

regularly shown that optimal network structures for individuals may not maximize firm 

productivity (Bizzi, 2013; Operti & Carnabuci, 2012). Specifically, my analyses have shown 

that intrafirm and interfirm collaboration, independently and jointly, shape firm innovation. 

Though not the focus of this article, this study also speaks to the idea of cross-level 

and configurational effects of multilevel networks (Fiss, 2007; Gittell & Weiss, 2004). The 

results indicate that the effects of interfirm ties and intrafirm density on innovation reinforce 

each other, meaning that the two are complementary. However, for interfirm ties and 

intrafirm clustering, the results indicate substitution: though both have positive effects on 
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firm innovation, their interaction is marginally negative. This contributes to the literature on 

complementarity of different modes of innovation (Arora & Gambardella, 1990). For 

example, Cassiman and Veugelers (2006) have shown that internal R&D activities 

supplement the acquisition of external knowledge. This study refines this conclusion by 

showing that the intrafirm collaboration among R&D scientists is an important supplement 

for interfirm R&D alliances. This also reveals the importance of multilevel networks for 

organizational configuration studies (Fiss, 2007). This literature has shown that the impact of 

strategic choices may depend on environmental characteristics, including these at a higher or 

lower level (Gupta, Tesluk, & Taylor, 2007). In case of multilevel networks, firms may 

structure their R&D activities looking for an optimal combination of interfirm and intrafirm 

collaboration structures. 

This study secondarily contributes to the literature on complementarities of internal 

and external R&D activities (Cassiman & Veugelers, 2006). With regard to 

interorganizational collaboration, several studies have already identified factors that increase 

the performance of R&D alliances on firm innovation. Hoang and Rothaermel (2010) show 

how exploratory and exploitative R&D experience of internal R&D projects influences the 

results of exploration and exploitation alliances. Similarly, Rothaermel and Hess (2007) 

reveal that biotechnology alliances increase the performance of new ventures if accompanied 

by higher internal R&D expenditures, but significantly decrease with the number of non-star 

R&D scientists (e.g. scientists with ordinary research performance). In a more recent study 

(Hess & Rothaermel, 2011), they observe that the effect of R&D alliances on firm innovation 

decreases with the number of star scientists. This indicates that internal human capital could 

substitute external collaboration. This study contributes by examining the joint effects of 

internal social capital and external cooperation. In line with prior complementarity studies 

(e.g. Arora & Gambardella, 1990), I also find that internal capabilities complement external 
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collaboration: the effect of R&D alliances on innovation is much stronger for organizations 

with well-connected intrafirm networks. 

This study thirdly contributes to the microfoundations of firm absorptive capacity. 

Literature on absorptive capacity and knowledge recombination in organizations has largely 

examined firm-level characteristics. Thereby it overlooked the role of individuals in this 

process. But the microfoundations of these firm capabilities are, partially or fully, determined 

by individual employees (Felin et al., 2012; Ployhart & Moliterno, 2011). In their seminal 

article, Cohen and Levinthal (1990: 131–132) already discuss that absorptive capacity not 

only refers to knowledge acquisition, but also to intrafirm knowledge sharing to transfer 

knowledge to other units and teams. While boundary spanners and gatekeepers perform an 

important role in acquiring external knowhow, internal communication systems are required 

to transfer it to sub-units who can exploit it.  

This study proposes intrafirm collaboration networks as critical knowledge integration 

mechanisms. Originally, Lawrence and Lorsch (1967) focused on the importance of formal 

integration mechanism and Cohen and Levinthal (1990) emphasized the importance of 

related knowledge for mutual understanding. But ethnographic studies have shown that 

informal communication and collaboration are much stronger antecedents for knowledge 

sharing and interpersonal learning (Allen et al., 2007; Brown & Duguid, 1991; Orr, 1996). 

This study has shown how the number and structure of interpersonal ties within an 

organization matter for absorbing and employing external knowledge. Contrary to formal 

mechanisms and routines, intrafirm networks are not organized or controlled in a top-down 

fashion, but stem from a bottom-up process of individuals forming and sustaining 

connections (Dahlander & McFarland, 2013; Sasovova et al., 2010). The results of this 

process complement formal activities aimed at increasing the benefits from alliances, like 

alliance management and alliance portfolio structuring (Prashant & Harbir, 2009; Wassmer, 
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2010). This study shows that the results of R&D alliances depend on other collaboration 

processes by R&D scientists that cannot be fully controlled by an organization. 

 

CONCLUSIONS AND LIMITATIONS 

In this era of open innovation, firms pursue technological innovation both within and 

beyond their organizational boundaries (Chesbrough, 2003). Adding to that literature, this 

article presents intrafirm social networks among R&D scientists as an important complement 

for a firm's external knowledge search. While interfirm collaboration via joint ventures, 

alliances and licensing agreements increases a firm's opportunity to access and absorb new 

knowledge, its ability to learn, diffuse, and employ it in innovation activities is shaped by its 

intrafirm network. The results of this study reveal that the positive effects of R&D alliances 

on innovation are significantly stronger if the community of R&D scientists within a firm is 

better connected. 

Nonetheless, the results of this study should be interpreted bearing in mind its 

limitations. First, I have assumed that the number and structure of connections in intrafirm 

networks are not influenced or determined by firm strategy and managerial choice. 

Considering the strong direct and indirect effects of intraorganizational networks on firm 

innovation, one may expect managers would like to manipulate their intrafirm network 

connections and their structure. But at the microlevel, qualitative and quantitative research 

have shown that this is generally not the case in R&D settings: scientists have substantial 

autonomy in choosing their collaborators or colleagues with whom they share knowledge 

(Brown & Duguid, 1991; Sasovova et al., 2010). At the macrolevel, firms may spatially 

separate R&D activities but I explicitly control for such geographic dispersion of R&D 

activities. 
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Second, this study has taken a strict interpretation of nested networks (Harary & 

Batell, 1981), namely that scientists only collaborate with external scientists after R&D 

alliances have been formed. Some past studies have shown that boundary-spanning 

collaboration by R&D scientists also occurs without the presence of such agreements 

(Liebeskind et al., 1996; Oliver & Liebeskind, 1997). This could challenge the results 

because R&D alliances only capture a part of all interfirm collaboration. However, Bouty 

(2000) observes that scientists are less willing to share proprietary knowledge with outsiders 

and Berends et al. (2011) describe how informal relations among scientists are first 

formalized via contractual agreements between their organizations before important resources 

are exchanged. 

Finally, this study only examined joint-level effects and did so at the expense of 

cross-level effects. For example, intrafirm network structure may influence a firm's 

motivation to enter R&D alliances. If its intrafirm network lacks the ties that result in 

effective knowledge sharing and innovation, a firm may tend to establish alliances to 

compensate for this effect. While I control for causality concerns stemming from such a 

cross-level effect, their presence, size and significance represent an important topic for future 

research. 
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CONCLUSION 

This dissertation questions how intrafirm networks and interfirm collaboration, 

independent and jointly, influence firm innovation. To answer this question, I integrate the 

extant literature on networks and innovation, boundary spanners, and microfoundations to 

explore the mechanisms via which intraorganizational and interorganizational collaboration 

lead to new products and processes. Qualitative field data were collected by performing over 

thirty interviews with business development directors, R&D managers, alliance managers, 

and R&D scientists in the medical devices industry. These provided rich insights in the 

processes that lead to technological innovation. It results in a framework where firm 

innovation is conceptualized as a multilevel phenomenon affected by both R&D alliances 

externally and R&D scientist collaboration internally. Subsequently, parts of this model are 

empirically tested by assessing technological innovation on a panel of North-American 

medical device firms between 1990 and 2005. Overall, the dissertation chapters are 

complementary pieces in developing and testing how intrafirm and interfirm collaboration 

shape firm innovation. 

In the first chapter, I ask how interfirm collaboration affects firm innovation. By 

identifying the microfoundations of knowledge transfer and employing the heterogeneous 

diffusion model, I develop a framework that emphasizes the importance of boundary 

spanning individuals and intraorganizational networks. First, boundary spanners transfer 

knowledge between organizations via their communication and collaboration with the partner 

firm. At the individual level, the efficacy of this process depends on characteristics of the 

source, the recipient, and the connections between them. First, the human and social capital 

of a boundary spanner in the source firm determine his/her ability to provide valuable 

knowledge. Second, the human capital of a boundary spanner at the recipient firm determines 

his/her ability to evaluate and learn this knowledge. Third, the strength of their relationship 
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determines their ability to share tacit, complex knowledge. At the organizational level, the 

effectiveness of this process is a combination of the source organization's intrafirm network 

cohesion, which influences its internal social capital, the diversity of human capital of the 

recipient firm's boundary spanners, and the number and strength of ties among these 

boundary spanners. Subsequently, knowledge diffuses throughout a receiving organization 

via its intrafirm network. This allows all employees to use this new information and increase 

their creativity and innovation. At the individual level, the efficacy of this process depends on 

the social distance between a boundary spanner and a non-boundary spanning employee. At 

the organizational level, the effectiveness of diffusion rests on the centrality of boundary 

spanners as well as the cohesiveness of their intrafirm network. The effect of interfirm 

collaboration on firm innovation is thus a multilevel process involving both individuals and 

organizations. 

In the second chapter, I ask how intrafirm network structure influences firm 

innovation. To resolve confounding findings by past studies, I examine the mediating 

processes via which network structure leads to firm innovation. I argue that the presence of 

high reach and strong clusters in an intrafirm network change a firm's knowledge diversity 

and knowledge transfer. These are the determinants for successful knowledge recombination. 

Shifting the level of analysis from an individual to an entire network allows for testing the 

intervening processes that are unobservable at the individual level. The results reveal that 

intrafirm network structure has a strong influence on knowledge reuse by other R&D 

scientists and knowledge variety within an organization. Contrary to my expectations, 

network reach and network clusters decrease knowledge sharing and knowledge 

heterogeneity, which then reduce firm innovation. 

In the third chapter, I examine how interfirm collaboration and intrafirm networks 

jointly influence firm innovation. Interorganizational cooperation gives access to a partner's 
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knowledge base and lead to knowledge spillovers between organizations. They provide a firm 

with opportunities to absorb external knowhow. Intraorganizational networks are powerful 

mechanisms for lateral knowledge flows and information diffusion among employees of a 

firm. Thereby they shape a firm's ability to share and recombine diverse knowledge into new 

products. Firms can augment the benefits of knowledge inflows from interfirm collaboration 

if its intrafirm network is more effective in diffusing it internally. The results confirm that 

intrafirm networks complement interfirm networks: the positive effect of R&D alliances on 

innovation rises with the connectedness of its intrafirm network. 

 

Contributions 

The results of this study contribute to three related streams of literature: networks and 

innovation, microfoundational research, and the open innovation paradigm. 

Contributions to networks and innovation research. This thesis contributes firstly 

to the literature on multilevel networks by exploring the effects of internal and external 

collaborative ties on firm innovation. A large amount of literature on social network and 

innovation has recognized that networks and innovation are formed at different levels (Phelps 

et al., 2012), but most empirical studies only dealt with one level of analysis. Thereby they 

assumed the effects of network structure on innovation are independent of higher or lower 

level networks. However, multilevel research has revealed how the effects of networks at one 

level are contingent upon higher and lower networks (Moliterno & Mahony, 2011). This 

implies that there are cross-level and joint-level effects (House, Rousseau, & Thomas-Hunt, 

1995; Rousseau, 1985). Therefore, one should take a multilevel network approach in order to 

understand how networks influence firm innovation, (Wang et al., 2013). 

This thesis explores the multilevel nature of organizational networks and firm 

innovation by combining the individual and joint effects of interorganizational partnerships 
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and intraorganizational collaboration networks. In the first chapter, it is exhibited how 

individuals and their personal ties perform a fundamental task in realizing opportunities 

offered by interorganizational relationships. The effectiveness of interfirm collaboration for 

firm innovation strongly depends on intraorganizational network characteristics as well as the 

social capital of boundary spanners. The third chapter provides a preliminary test of this 

multilevel network model by combining intrafirm collaboration networks with interfirm R&D 

alliances, i.e. a firm's degree centrality in the interorganizational network. Results indicate 

that interfirm and intrafirm networks jointly shape firm innovation. This thesis therefore 

poses that future research should combine networks at different levels to examine their 

impact on firm innovation. 

Within the rich networks literature, this thesis principally added to the research on 

networks and innovation. The large majority of this literature has examined the effect of 

network size, structure and strength on the performance of an individual or organization 

(Phelps et al., 2012). Instead, this study employs two alternative approaches. First, one could 

consider the effect of network ties and structure upon an entire network instead of individual 

nodes. Such an approach allows to explicitly assess the processes mediating the relationship 

between networks and innovation. For example, the second chapter demonstrates that 

network structure affects knowledge transfer and diversity which then influence innovation. 

Such processes are much harder or impossible to measure at the level of individual nodes. 

Additionally, such an approach permits testing if particular network structures only lead to 

changes in microlevel innovation or also influence macrolevel innovation. For example, 

whereas Burt (1992) reveals how brokerage positions increase individual creativity, Bizzi 

(2013) exposes how it negatively alters the performance of those employees that are not in 

brokerage positions. By looking at the macrolevel results of network structure in the second 

chapter, it is shown that this is not a zero-sum game, but that total innovation increases with 
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bridging positions: apparently the benefits of brokers outweigh the costs for non-brokers. 

Moreover, whereas closeness centrality of an employee is conventionally related to increased 

creativity and productivity (Ibarra, 1993), this chapter indicates firm innovation decreases 

when all employees would increase their closeness centrality simultaneously. 

Second, this dissertation examines joint-level effects of collaboration networks at 

different levels. While most networks and innovations studies control for differences in nodes 

and their environment, few have looked at the interactions of the two. However, Rothaermel 

et al. (2007; 2001) observed how certain firm characteristics can complement firms' ability to 

manage and succeed in R&D alliances. Similar, Paruchuri (2010) and Lazega et al. (2008, 

2006) have shown that the impact of patents and publications depend on scientists' positions 

in their intraorganizational networks in combination with their organizations' positions in the 

interorganizational network. Here I have shown how firm innovation is the outcome of 

collaboration at a higher level, i.e. the interfirm network, as well as the lower level, i.e. the 

intrafirm network, and their combination. The main finding of the third chapter indicates that 

interfirm connections and intrafirm connections have a complementary effect on firm 

innovation. It reveals that the impact of R&D alliances is much stronger for firms that have a 

strong, informal communication and collaboration system internally. 

This also speaks to the innovation literature on complementarity and configurations. 

Whereas past studies already observed that internal and external R&D activities complement 

each other (e.g. Cassiman & Veugelers, 2006), the first chapter provides a detailed theoretical 

explanation of how this happens and the third chapter explicitly demonstrates this effect. This 

implies that the outcomes of collaborating at one level may hinge upon the collaboration 

structure at another level. For example, firms with fewer connections in their 

intraorganizational network may be less compelled to enter into R&D alliances since 

innovation advantages are only marginal and do not outweigh the costs and risks of such 
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partnerships. This reveals that firms could structure their interfirm collaborative ties 

according to their intrafirm networks to optimize innovation. 

Contributions to research on microfoundations. This dissertation also contributes 

to the growing body of literature on microfoundations in management research (Felin et al., 

2012). A microfoundational approach to management research argues that research on firm's 

actions and consequences should examine the exact processes via which a cause leads to an 

effect, including processes at a lower level of analysis. Coleman (1994) provided a helpful 

tool for microfoundational analysis and demonstrated its use in a political setting. In the first 

chapter, I apply a similar approach to R&D alliances, interorganizational knowledge transfer 

and firm innovation. Using this approach reveals the importance of boundary spanning 

individuals, their boundary crossing connections and the role of intrafirm networks. It 

demonstrates how organizational-level effects of R&D alliances rest on many individual-

level factors. The microfoundations of R&D alliances are thus individuals, and their social 

capital is essential for the success of interorganizational collaboration. 

It also sheds new light upon the concept of firm recombinant ability (Garud & 

Nayyar, 1994). Organizations are essential instruments for learning, sharing and combining 

knowledge that results in innovation (Grant, 1996; Kogut & Zander, 1992). Extant studies 

have identified the role of communication channels, integration procedures, and routines as 

underlying mechanisms in this process (Argote, McEvily, & Reagans, 2003; Cohen & 

Levinthal, 1990; Lawrence & Lorsch, 1967). However, ethnographic studies noticed that a 

large part of information and resource sharing in organizations happens informally (Brown & 

Duguid, 1991; Orr, 1996). The second chapter pinpoints intrafirm networks as important 

mechanisms for knowledge sharing and innovation. The structure of this network emerges via 

a bottom-up process and has strong effects on the transfer and diversity of knowledge and 

expertise. Hence, a firm's recombinant ability is ultimately shaped by the structure of its 
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intrafirm collaboration network that facilitates information sharing and transfer among its 

employees. 

The third chapter speaks to the literature on absorptive capacity by identifying the 

microfoundations of a firm's ability to absorb and exploit external knowledge. In their pivotal 

article, Cohen and Levinthal (1990) already argued that external knowledge and expertise 

crossing organizational boundaries is not sufficient. Instead, organizations need procedures to 

transfer absorbed knowledge to the right part(s) of the organization where it can be used and 

developed further. Most absorptive capacity studies have simply assumed the presence of 

such a mechanism or taken a rough proxy for its strength, but this study aimed to open this 

black box. It recognizes that only a few scientists of a firm will learn new knowhow and 

skills during an R&D alliance. This may lead to a small increase in innovation, but a much 

larger potential stems from the ability of these boundary spanners to share and transfer their 

new knowledge to other R&D scientists. The intrafirm network, with all its informal 

knowledge flows, is thus as an important complement for absorbed external knowledge. 

Contributions to open innovation paradigm. Likewise, this dissertation contributes 

to the paradigm of open innovation. In a setting and era where innovation is no longer the 

outcome of research and development by one organization, insights in the precise role of 

collaboration at multiple levels are a necessity. An open innovation approach emphasizes the 

importance of collaboration among various actors to spur research and development, but also 

reveals the risks involved in such strategies (Chesbrough, 2003). In the first chapter, I study 

how organizations can structure their interorganizational cooperation to influence the amount 

and diversity of knowledge inflows. It reveals a number of important elements in firm 

strategy and business policy. 

To begin, learning via open innovation directly depends on boundary spanners as well 

as the structure and policies of R&D alliances. Dedicating more resources to R&D alliances 
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by increasing the number of scientists will increase interfirm learning. In addition, allowing 

interpersonal and informal communication and collaboration, for example via colocation, 

leads to stronger ties among boundary spanners and results in more knowledge transfer. 

Moreover, interfirm alliances and intrafirm networks should not be considered 

individually to understand the effects of external and internal collaboration on innovation. 

Combining an alliance portfolio perspective with intrafirm networks is very useful to 

understand how interfirm cooperation influences firm innovation. Alliance portfolio research 

already argues that there are complementary and substitutionary effects occurring when an 

organization is involved in multiple alliances (Wassmer, 2010). Furthermore, alliance 

research identified human capital within organizations as supplements to R&D alliances for 

firm innovation (Hess & Rothaermel, 2011). This thesis adds intrafirm networks as another 

factor that complements interorganizational collaboration. In particular, it explains how 

stronger intrafirm collaboration networks strengthen the positive effects of alliances on 

innovation. This indicates that internal and external R&D collaboration are complementary 

elements of an organization's innovation strategy.  

 

Managerial Implications 

This dissertation started from a practical question, namely how innovation in the 

medical devices industry is affected by firms' interorganizational and intraorganizational 

collaboration networks. Answering this practical question has resulted in three managerial 

implications. 

First, the findings of this dissertation suggest that intrafirm networks have a strong 

effect on the diversity and transfer of knowledge in an organization. The findings indicate 

that efficiently formed intrafirm networks, i.e. these that have generally short paths among 

R&D scientists, reduce knowledge heterogeneity and reuse. Similarly, networks with strong 
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clusters also become more homogeneous and reduce innovation. On average, firms are more 

innovative when their intrafirm network is more fragmented and less clustered. Though 

intrafirm network structure is mainly emergent, firms have several levers with which they 

influence the creation or termination of interpersonal ties. For one, organizational structure 

can influence the presence of ties and intrafirm network structure. Clearly defined business 

units, departments, and laboratories reduce opportunities for cross-departmental collaboration 

and the creation of new ties. Changing the current organizational structure can also be a mean 

to influence the formation of new ties or termination or existing connections. In addition, 

firms may influence intrafirm network via geographical dispersion of their R&D laboratories. 

Spatial dispersion of R&D activities reduces the likelihood of forming interpersonal 

connections and accelerates their erosion. Similarly, firms can influence intrafirm network 

structure during mergers and acquisitions. If newly acquired companies are fully integrated, 

intrafirm networks will become more cohesive and form shorter paths. Likewise, employee 

rotation, international assignments, and recruitment of new R&D scientists provide an 

opportunity to change intrafirm network structure. 

Second, the findings of this thesis also indicate that the effect of interfirm 

collaboration strongly depends on the connectedness of its intrafirm network. In particular, 

the rise in innovation after forming R&D alliances is stronger for firms whose R&D scientists 

are better connected. This implies that managers should evaluate their firm's ability to 

communicate, share and diffuse knowledge internally before deciding to enter R&D 

alliances. Managers of firms with strongly connected intrafirm networks can enhance their 

innovative performance by increasing the number of interfirm agreements, but those of 

weakly connected intrafirm networks should reconsider the consequences of forming 

interorganizational alliances. 
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Third, the results of these studies have practical applications in the field of alliance 

management. If R&D alliances are used to learn about new technologies and techniques, 

R&D directors and alliance managers can increase learning by influencing decisions before, 

during, and after an alliance. During alliance formation, managers should aim to involve 

more central and more knowledgeable R&D scientists. These scientists are better capable to 

learn new knowledge from a partner firm and in a better position to share it within their 

organization. During the execution of an alliance contract, managers should permit free and 

open communication and collaboration between a firm's boundary-spanning scientists and the 

scientists of a partner firm. This will enable them to establish more and stronger ties which 

increase the flow of knowledge and information. After an alliance is terminated, managers 

can increase the use of newly absorbed knowledge by involving the boundary-spanning R&D 

scientists in related R&D projects. Also, by spreading boundary-spanning R&D scientists 

over multiple projects, it increases the chances that knowledge will be shared with other 

scientists in the firm. 

Though the study was performed in the medical devices industry, the practical 

insights are also useful in comparable industries. These are sectors characterized by a high 

level of technological innovation based upon complex and largely individual knowledge, like 

electrical equipment, pharmaceutics, and laboratory instruments. 

 

Limitations and Future Research 

The results of this dissertation should be interpreted taking into account its 

limitations. First, the empirical studies in the second and third chapter are entirely based upon 

secondary data. Though this permitted the study to be done on a larger scale over a longer 

period of time, it also reduces the precision of certain measures. For example, non-successful 

cooperation among R&D scientists is not observed by relying on patents and publications for 
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collaborative ties. In addition, process innovation that was not patented nor led to changes in 

a medical device also remains undetected. Though interviews were performed to gain 

qualitative insights in the industry, an in-depth study collecting first-hand data could provide 

further understandings of the interactions between interpersonal and interorganizational 

networks for knowledge diffusion and innovation. 

Moreover, while the first chapter developed a comprehensive model linking interfirm 

collaboration and intrafirm networks at the level of organizations and individuals, the last 

chapter only assessed propositions at the organizational level. Limited by the absence of 

information on boundary spanning scientists, this study could not test suggestions about the 

importance of boundary spanners. Nevertheless, this remains an important issue for future 

research as such endeavors could provide great insights in the roles of individuals for firm 

innovation. 

Lastly, the empirical level of this study is limited to macrolevel effects of intrafirm 

networks (second chapter) and the joint-level effects with interfirm ties (third chapter). In 

addition to joint-level effects, cross-level effects among different levels are likely to exist. 

For instance, while organizations create interfirm partnerships and individuals establish new 

collaborative ties, there is probably interdependence about between both levels of 

collaboration. Future research could look into these cross-level effects in multilevel 

innovation networks. 

 

 

 

  



144 
 

REFERENCES 

 

Adner, R., & Zemsky, P. 2005. Disruptive technologies and the emergence of competition. The RAND Journal 

of Economics, 36(2): 229–254. 

Ahuja, G. 2000a. Collaboration networks, structural holes, and innovation: A longitudinal study. Administrative 

Science Quarterly, 45(3): 425–455. 

Ahuja, G. 2000b. The duality of collaboration: Inducements and opportunities in the formation of interfirm 

linkages. Strategic Management Journal, 21(3): 317–343. 

Alcacer, J., & Chung, W. 2007. Location strategies and knowledge spillovers. Management Science, 53(5): 

760–776. 

Alcacer, J., & Gittelman, M. 2006. Patent citations as a measure of knowledge flows: The influence of examiner 

citations. The Review of Economics and Statistics, 88(4): 774–779. 

Aldrich, H., & Herker, D. 1977. Boundary spanning roles and organization structure. Academy of Management 

Review, 2(2): 217–230. 

Allen, J., James, A. D., & Gamlen, P. 2007. Formal versus informal knowledge networks in R&D: A case study 

using social network analysis. R&D Management, 37(3): 179–196. 

Allen, T. J. 1966. Managing the flow of scientific and technological information. Unpublished doctoral thesis. 

Cambridge: Massachusetts Institute of Technology. 

Allen, T. J., & Cohen, S. I. 1969. Information flow in research and development laboratories. Administrative 

Science Quarterly, 14(1): 12–19. 

Allison, P. 2012a, September 12. When can you safely ignore multicollinearity? Statistical Horizons. 

http://www.statisticalhorizons.com/multicollinearity. 

Allison, P. 2012b, June 8. Beware of software for fixed effects negative binomial regression. Statistical 

Horizons. http://www.statisticalhorizons.com/fe-nbreg. 

Allison, P. D., & Waterman, R. P. 2002. Fixed–effects negative binomial regression models. Sociological 

Methodology, 32(1): 247–265. 

Aral, S., & Van Alstyne, M. 2011. The diversity-bandwidth trade-off. American Journal of Sociology, 117(1): 

90–171. 

Argote, L., & Ingram, P. 2000. Knowledge transfer: A basis for competitive advantage in firms. Organizational 

Behavior and Human Decision Processes, 82(1): 150–169. 

Argote, L., McEvily, B., & Reagans, R. 2003. Managing knowledge in organizations: An integrative framework 

and review of emerging themes. Management Science, 49(4): 571–582. 

Argote, L., & Ren, Y. 2012. Transactive memory systems: A microfoundation of dynamic capabilities. Journal 

of Management Studies, 49(8): 1375–1382. 

Arora, A., & Gambardella, A. 1990. Complementarity and external linkages: The strategies of the large firms in 

biotechnology. Journal of Industrial Economics, 38(4): 361–379. 

Baron, R. M., & Kenny, D. A. 1986. The moderator–mediator variable distinction in social psychological 

research. Journal of Personality and Social Psychology, 51(6): 1173–1182. 

Baysinger, B., & Hoskisson, R. E. 1989. Diversification strategy and R&D intensity in multiproduct firms. 

Academy of Management Journal, 32(2): 310–332. 

Berends, H., Van Burg, E., & Van Raaij, E. M. 2011. Contacts and contracts: Cross-level network dynamics in 

the development of an aircraft material. Organization Science, 22(4): 940–960. 

Bizzi, L. 2013. The dark side of structural holes a multilevel investigation. Journal of Management, 39(6): 

1554–1578. 

Borgatti, S. P., & Cross, R. 2003. A relational view of information seeking and learning in social networks. 

Management Science, 49(4): 432–445. 

Borgatti, S. P., & Foster, P. C. 2003. The network paradigm in organizational research: A review and typology. 

Journal of Management, 29(6): 991–1013. 

Bouty, I. 2000. Interpersonal and interaction influences on informal resource exchanges between R&D 

researchers across organizational boundaries. Academy of Management Journal, 43(1): 50–65. 



145 
 

Brass, D. J., Galaskiewicz, J., Greve, H. R., & Tsai, W. 2004. Taking stock of networks and organizations: A 

multilevel perspective. Academy of Management Journal, 47(6): 795–817. 

Brown, J. S., & Duguid, P. 1991. Organizational learning and communities-of-practice: Toward a unified view 

of working, learning, and innovation. Organization Science, 2(1): 40–57. 

Burcharth, A. L., & Fosfuri, A. 2012. Not-invented-here: How cohesive socialization practices affect the 

formation of negative attitudes toward external knowledge. Presented at the DRUID Summer 

Conference 2012, Copenhagen (DK). 

Burt, R. S. 1992. Structural holes: The social structure of competition. Cambridge, MA: Harvard University 

Press. 

Burt, R. S. 2000. The network structure of social capital. Research in Organizational Behavior, 22: 345–423. 

Carnabuci, G., & Operti, E. 2013. Where do firms’ recombinant capabilities come from? Intraorganizational 

networks, knowledge, and firms’ ability to innovate through technological recombination. Strategic 

Management Journal, 34(13): 1591–1613. 

Carpenter, M. A., Li, M., & Jiang, H. 2012. Social network research in organizational contexts: A systematic 

review of methodological issues and choices. Journal of Management, 38(4): 1328–1361. 

Cassiman, B., & Veugelers, R. 2006. In search of complementarity in innovation strategy: Internal R&D and 

external knowledge acquisition. Management Science, 52(1): 68–82. 

Cefis, E., & Marsili, O. 2005. A matter of life and death: Innovation and firm survival. Industrial and 

Corporate Change, 14(6): 1167–1192. 

Chang, S., Lee, J., & Song, J. 2014. Roles of giant cluster in knowledge diffusion and recombination. Presented 

at the Academy of Management Annual Meeting, Philadelphia, PA. 

Chatterji, A. K. 2009. Spawned with a silver spoon? Entrepreneurial performance and innovation in the medical 

device industry. Strategic Management Journal, 30(2): 185–206. 

Chen, C.-J. 2004. The effects of knowledge attribute, alliance characteristics, and absorptive capacity on 

knowledge transfer performance. R&D Management, 34(3): 311–321. 

Chesbrough, H. W. 2003. Open innovation: The new imperative for creating and profiting from technology. 

Boston, MA: Harvard Business School Press. 

Christensen, C. M. 1997. The innovator’s dilemma: When new technologies cause great firms to fail. 
Cambridge, MA: Harvard Business Review Press. 

Cockburn, I. M., & Henderson, R. M. 1998. Absorptive capacity, coauthoring behavior, and the organization of 

research in drug discovery. The Journal of Industrial Economics, 46(2): 157–182. 

Cohen, W. M., Levin, R. C., & Mowery, D. C. 1987. Firm size and R&D intensity: A re-examination. 

Working Paper No. 2205. http://www.nber.org/papers/w2205, National Bureau of Economic Research. 

Cohen, W. M., & Levinthal, D. A. 1990. Absorptive capacity: A new perspective on learning and innovation. 

Administrative Science Quarterly, 35(1): 128–152. 

Coleman, J. S. 1988. Social capital in the creation of human capital. American Journal of Sociology, 94: S95–
S120. 

Coleman, J. S. 1994. Foundations of social theory. Cambridge, MA: Harvard University Press. 

Contractor, N. S., Wasserman, S., & Faust, K. 2006. Testing multitheoretical, multilevel hypotheses about 

organizational networks: An analytic framework and empirical example. Academy of Management 

Review, 31(3): 681–703. 

Cowan, R., & Jonard, N. 2004. Network structure and the diffusion of knowledge. Journal of Economic 

Dynamics and Control, 28(8): 1557–1575. 

Criscuolo, P. 2005. On the road again: Researcher mobility inside the R&D network. Research Policy, 34(9): 

1350–1365. 

Dahlander, L., & McFarland, D. A. 2013. Ties that last tie formation and persistence in research collaborations 

over time. Administrative Science Quarterly, 58(1): 69–110. 

Dahlin, K. B., Weingart, L. R., & Hinds, P. J. 2005. Team diversity and information use. Academy of 

Management Journal, 48(6): 1107–1123. 

Danneels, E. 2002. The dynamics of product innovation and firm competences. Strategic Management Journal, 

23(12): 1095–1121. 



146 
 

Davis, J. P., & Eisenhardt, K. M. 2011. Rotating leadership and collaborative innovation recombination 

processes in symbiotic relationships. Administrative Science Quarterly, 56(2): 159–201. 

Davis, J. P., Eisenhardt, K. M., & Bingham, C. B. 2007. Developing theory through simulation methods. 

Academy of Management Review, 32(2): 480–499. 

De Vet, J. M., & Scott, A. J. 1992. The southern Californian medical device industry: Innovation, new firm 

formation, and location. Research Policy, 21(2): 145–161. 

Dhanaraj, C., & Parkhe, A. 2006. Orchestrating innovation networks. Academy of Management Review, 31(3): 

659–669. 

Dosi, G. 1982. Technological paradigms and technological trajectories: A suggested interpretation of the 

determinants and directions of technical change. Research Policy, 11(3): 147–162. 

Dyer, J. H. 1997. Effective interim collaboration: How firms minimize transaction costs and maximise 

transaction value. Strategic Management Journal, 18(7): 535–556. 

Easterby-Smith, M., Lyles, M. A., & Tsang, E. W. 2008. Inter-organizational knowledge transfer: Current 

themes and future prospects. Journal of Management Studies, 45(4): 677–690. 

Fang, C., Lee, J., & Schilling, M. A. 2010. Balancing exploration and exploitation through structural design: 

The isolation of subgroups and organizational learning. Organization Science, 21(3): 625–642. 

Fang, R., Duffy, M. K., & Shaw, J. D. 2011. The organizational socialization process: Review and development 

of a social capital model. Journal of Management, 37(1): 127–152. 

Felin, T., Foss, N. J., Heimeriks, K. H., & Madsen, T. L. 2012. Microfoundations of routines and capabilities: 

Individuals, processes, and structure. Journal of Management Studies, 49(8): 1351–1374. 

Fiss, P. C. 2007. A set-theoretic approach to organizational configurations. Academy of Management Review, 

32(4): 1180–1198. 

Fleming, L. 2001. Recombinant uncertainty in technological search. Management Science, 47(1): 117–132. 

Fleming, L., King, C., & Juda, A. I. 2007. Small worlds and regional innovation. Organization Science, 18(6): 

938–954. 

Fleming, L., Mingo, S., & Chen, D. 2007. Collaborative brokerage, generative creativity, and creative success. 

Administrative Science Quarterly, 52(3): 443–475. 

Fleming, L., & Sorenson, O. 2001. Technology as a complex adaptive system: evidence from patent data. 

Research Policy, 30(7): 1019–1039. 

Fleming, L., & Sorenson, O. 2004. Science as a map in technological search. Strategic Management Journal, 

25(8-9): 909–928. 

Freeman, L. C. 1977. A set of measures of centrality based on betweenness. Sociometry, 40(1): 35–41. 

Frent, P. 2011. Global Medtech companies. No. 1XEEE2. Xerfi Global. 

Funk, R. 2013. Making the most of where you are: Geography, networks, and innovation in organizations. 

Academy of Management Journal, forthcoming. 

Garcia-Vega, M. 2006. Does technological diversification promote innovation?: An empirical analysis for 

European firms. Research Policy, 35(2): 230–246. 

Garud, R., & Nayyar, P. R. 1994. Transformative capacity: Continual structuring by intertemporal technology 

transfer. Strategic Management Journal, 15(5): 365–385. 

Gittell, J. H., & Weiss, L. 2004. Coordination networks within and across organizations: A multi-level 

framework. Journal of Management Studies, 41(1): 127–153. 

Granovetter, M. 1973. The strength of weak ties. American Journal of Sociology, 78(6): 1360–1380. 

Grant, R. M. 1996. Toward a knowledge-based theory of the firm. Strategic Management Journal, 17: 109–
122. 

Greve, H. R., Strang, D., & Tuma, N. B. 1995. Specification and estimation of heterogeneous diffusion models. 

In P. V. Marsden (Ed.), Sociological methodology: 377–420. New York, NY: Blackwell Publishing. 

Grigoriou, K., & Rothaermel, F. T. 2014. Structural microfoundations of innovation: The role of relational stars. 

Journal of Management, 40(2): 586–615. 

Gulati, R. 1995. Does familiarity breed trust? The implications of repeated ties for contractual choice in 

alliances. Academy of Management Journal, 38(1): 85–112. 

Guler, I., & Nerkar, A. 2012. The impact of global and local cohesion on innovation in the pharmaceutical 

industry. Strategic Management Journal, 33(5): 535–549. 



147 
 

Gupta, A. K., & Govindarajan, V. 2000. Knowledge flows within multinational corporations. Strategic 

Management Journal, 21(4): 473–496. 

Gupta, A. K., Tesluk, P. E., & Taylor, M. S. 2007. Innovation at and across multiple levels of analysis. 

Organization Science, 18(6): 885–897. 

Hall, B. H., Jaffe, A. B., & Trajtenberg, M. 2000. Market value and patent citations: A first look. 

http://www.nber.org/papers/w7741, National Bureau of Economic Research. 

Hall, B. H., Jaffe, A. B., & Trajtenberg, M. 2001. The NBER patent citation data file: Lessons, insights and 

methodological tools. http://www.nber.org/papers/w8498, National Bureau of Economic Research. 

Hamel, G. 1991. Competition for competence and interpartner learning within international strategic alliances. 

Strategic Management Journal, 12(S1): 83–103. 

Hamilton, B. H., & Nickerson, J. A. 2003. Correcting for endogeneity in strategic management research. 

Strategic Organization, 1(1): 51–78. 

Hansen, J. A. 1992. Innovation, firm size, and firm age. Small Business Economics, 4(1): 37–44. 

Hansen, M. T. 1999. The search-transfer problem: The role of weak ties in sharing knowledge across 

organization subunits. Administrative Science Quarterly, 44(1): 82–111. 

Harary, F., & Batell, M. F. 1981. What is a system? Social Networks, 3(1): 29–40. 

Hardin, J. W., & Hilbe, J. M. 2003. Generalized estimating equations. New York, NY: Chapman & Hall/CRC. 

Hargadon, A., & Sutton, R. I. 1997. Technology brokering and innovation in a product development firm. 

Administrative Science Quarterly, 42(4): 716–749. 

Hausman, J., Hall, B. H., & Griliches, Z. 1984. Econometric models for count data with an application to the 

patents-R&D relationship. Econometrica: Journal of the Econometric Society, 52(4): 909–938. 

Henderson, R. M., & Clark, K. B. 1990. Architectural innovation: The reconfiguration of existing product 

technologies and the failure of established firms. Administrative Science Quarterly, 35(1): 9–30. 

Hess, A. M., & Rothaermel, F. T. 2011. When are assets complementary? Star scientists, strategic alliances, and 

innovation in the pharmaceutical industry. Strategic Management Journal, 32(8): 895–909. 

Hilbe, J. M. 2011. Negative binomial regression (2nd edition.). Cambridge (UK): Cambridge University Press. 

Hitt, M. A., Beamish, P. W., Jackson, S. E., & Mathieu, J. E. 2007. Building theoretical and empirical bridges 

across levels: Multilevel research in management. Academy of Management Journal, 50(6): 1385–
1399. 

Hoang, H., & Rothaermel, F. T. 2010. Leveraging internal and external experience: Exploration, exploitation, 

and R&D project performance. Strategic Management Journal, 31(7): 734–758. 

Holmqvist, M. 2003. A dynamic model of intra- and interorganizational learning. Organization Studies, 24(1): 

95–123. 

House, R., Rousseau, D. M., & Thomas-Hunt, M. 1995. The meso paradigm: A framework for the integration of 

micro and macro organizational behavior. In L. L. Cummings & B. M. Staw (Eds.), Research in 

organizational behavior: An annual series of analytical essays and critical reviews: 71–114. 

Greenwich, CT: JAI Press. 

Huang, Y., Luo, Y., Liu, Y., & Yang, Q. 2013. An investigation of interpersonal ties in interorganizational 

exchanges in emerging markets: A boundary-spanning perspective. Journal of Management, 

forthcoming. 

Hussler, C., & Rondé, P. 2007. The impact of cognitive communities on the diffusion of academic knowledge: 

Evidence from the networks of inventors of a French university. Research Policy, 36(2): 288–302. 

Ibarra, H. 1993. Network centrality, power, and innovation involvement: Determinants of technical and 

administrative roles. Academy of Management Journal, 36(3): 471–501. 

Inkpen, A. C. 2000. Learning through joint ventures: A framework of knowledge acquisition. Journal of 

Management Studies, 37(7): 1019–1044. 

Janowicz-Panjaitan, M., & Noorderhaven, N. G. 2008. Formal and informal interorganizational learning within 

strategic alliances. Research Policy, 37(8): 1337–1355. 

Janowicz-Panjaitan, M., & Noorderhaven, N. G. 2009. Trust, calculation, and interorganizational learning of 

tacit knowledge: An organizational roles perspective. Organization Studies, 30(10): 1021–1044. 



148 
 

Jarvenpaa, S. L., & Majchrzak, A. 2008. Knowledge collaboration among professionals protecting national 

security: Role of transactive memories in ego-centered knowledge networks. Organization Science, 

19(2): 260–276. 

Joseph, J., Chatterji, A., & Cunningham, C. 2013. How do capability gaps drive reconfiguration? Evidence from 

U.S. medical technology industry sales force strategies. Presented at the SMS 33rd Annual 

International Conference, Atlanta, GA. 

Karim, S., & Mitchell, W. 2000. Path-dependent and path-breaking change: Reconfiguring business resources 

following acquisitions in the US medical sector, 1978–1995. Strategic Management Journal, 21(10-

11): 1061–1081. 

Katz, R., & Allen, T. J. 1982. Investigating the not invented here (NIH) syndrome: A look at the performance, 

tenure, and communication patterns of 50 R&D project groups. R&D Management, 12(1): 7–20. 

Keller, R. T., & Holland, W. E. 1975. Boundary-spanning roles in a research and development organization: An 

empirical investigation. Academy of Management Journal, 18(2): 388–393. 

Khanna, T., Gulati, R., & Nohria, N. 1998. The dynamics of learning alliances: Competition, cooperation, and 

relative scope. Strategic Management Journal, 19(3): 193–210. 

Kim, S., Zhao, Z. J., & Anand, J. 2014. Knowledge complexity and the performance of inter-unit knowledge 

transfer structures. Presented at the Academy of Management Annual Meeting, Philadelphia, PA. 

Klein, K. J., & Kozlowski, S. W. 2000. From micro to meso: Critical steps in conceptualizing and conducting 

multilevel research. Organizational Research Methods, 3(3): 211–236. 

Knorr-Cetina, K. 1999. Epistemic cultures: How the sciences make knowledge. Cambridge, MA: Harvard 

University Press. 

Kogut, B., & Zander, U. 1992. Knowledge of the firm, combinative capabilities, and the replication of 

technology. Organization Science, 3(3): 383–397. 

Kostova, T., & Roth, K. 2003. Social capital in multinational corporations and a micro-macro model of its 

formation. Academy of Management Review, 28(2): 297–317. 

Kozlowski, S. W., Chao, G. T., Grand, J. A., Braun, M. T., & Kuljanin, G. 2013. Advancing multilevel research 

design capturing the dynamics of emergence. Organizational Research Methods, 16(4): 581–615. 

Krackhardt, D. 1992. The strength of strong ties: The importance of philos in organizations. In N. Nohria (Ed.), 

Networks and organizations: Structure, form, and action: 216–239. Cambridge, MA: Harvard 

Business School Press. 

Krishnan, R., Martin, X., & Noorderhaven, N. G. 2006. When does trust matter to alliance performance? 

Academy of Management Journal, 49(5): 894–917. 

Lahiri, N. 2010. Geographic distribution of R&D activity: How does it affect innovation quality? Academy of 

Management Journal, 53(5): 1194–1209. 

Lai, R., D’Amour, A., Yu, A., Sun, Y., Torvik, V., & Fleming, L. 2011. Disambiguation and co-authorship 

networks of the US Patent Inventor Database. Harvard Institute for Quantitative Social Science, 

Cambridge, MA, 2138. 

Lane, P. J., Koka, B. R., & Pathak, S. 2006. The reification of absorptive capacity: a critical review and 

rejuvenation of the construct. Academy of Management Review, 31(4): 833–863. 

Latour, B., & Woolgar, S. 2013. Laboratory life: The construction of scientific facts. Princeton, NJ: Princeton 

University Press. 

Lavie, D. 2006. The competitive advantage of interconnected firms: An extension of the resource-based view. 

Academy of Management Review, 31(3): 638–658. 

Lawrence, P. R., & Lorsch, J. W. 1967. Differentiation and integration in complex organizations. 

Administrative Science Quarterly, 12(1): 1–47. 

Lazega, E., Jourda, M.-T., Mounier, L., & Stofer, R. 2008. Catching up with big fish in the big pond? Multi-

level network analysis through linked design. Social Networks, 30(2): 159–176. 

Lazega, E., Mounier, L., Jourda, M.-T. se, & Stofer, R. 2006. Organizational vs. personal social capital in 

scientists’ performance: A multi-level network study of elite French cancer researchers (1996-1998). 

Scientometrics, 67(1): 27–44. 

Lazer, D., & Friedman, A. 2007. The network structure of exploration and exploitation. Administrative Science 

Quarterly, 52(4): 667–694. 



149 
 

Lee, E., Lee, J., & Lee, J. 2006. Reconsideration of the winner-take-all hypothesis: Complex networks and local 

bias. Management Science, 52(12): 1838–1848. 

Liebeskind, J. P., Oliver, A. L., Zucker, L., & Brewer, M. 1996. Social networks, learning, and flexibility: 

Sourcing scientific knowledge in new biotechnology firms. Organization Science, 7(4): 428–443. 

March, J. G. 1991. Exploration and exploitation in organizational learning. Organization Science, 2(1): 71–87. 

Marrone, J. A. 2010. Team boundary spanning: A multilevel review of past research and proposals for the 

future. Journal of Management, 36(4): 911–940. 

Matusik, S. F., & Heeley, M. B. 2005. Absorptive capacity in the software industry: Identifying dimensions that 

affect knowledge and knowledge creation activities. Journal of Management, 31(4): 549–572. 

McGrath, R. G., Tsai, M.-H., Venkataraman, S., & MacMillan, I. C. 1996. Innovation, competitive advantage 

and rent: A model and test. Management Science, 42(3): 389–403. 

McKelvey, M., Alm, H., & Riccaboni, M. 2003. Does co-location matter for formal knowledge collaboration in 

the Swedish biotechnology–pharmaceutical sector? Research Policy, 32(3): 483–501. 

Miller, D. J., Fern, M. J., & Cardinal, L. B. 2007. The use of knowledge for technological innovation within 

diversified firms. Academy of Management Journal, 50(2): 307–325. 

Mohr, J., & Spekman, R. 1994. Characteristics of partnership success: Partnership attributes, communication 

behavior, and conflict resolution techniques. Strategic Management Journal, 15(2): 135–152. 

Moliterno, T. P., & Mahony, D. M. 2011. Network theory of organization: A multilevel approach. Journal of 

Management, 37(2): 443–467. 

Molloy, J. C., Ployhart, R. E., & Wright, P. M. 2011. The myth of “the” micro-macro divide: Bridging system-

level and disciplinary divides. Journal of Management, 37(2): 581–609. 

Moreira, S., & Markus, A. 2013. All for one and one for all: How intrafirm networks affect the speed of 

knowledge recombination. Presented at the DRUID Summer Conference 2013, Barcelona (ES). 

Mowery, D. C., Oxley, J. E., & Silverman, B. S. 1996. Strategic alliances and interfirm knowledge transfer. 

Strategic Management Journal, 17: 77–91. 

Nahapiet, J., & Ghoshal, S. 1998. Social capital, intellectual capital, and the organizational advantage. Academy 

of Management Review, 23(2): 242–266. 

Nebus, J. 2006. Building collegial information networks: A theory of advice network generation. Academy of 

Management Review, 31(3): 615–637. 

Nerkar, A., & Paruchuri, S. 2005. Evolution of R&D capabilities: The role of knowledge networks within a 

firm. Management Science, 51(5): 771–785. 

Nohria, N., & Gulati, R. 1996. Is slack good or bad for innovation? Academy of Management Journal, 39(5): 

1245–1264. 

Nonaka, I. 1994. A dynamic theory of organizational knowledge creation. Organization Science, 5(1): 14–37. 

O’Brien, J. P. 2003. The capital structure implications of pursuing a strategy of innovation. Strategic 

Management Journal, 24(5): 415–431. 

Obstfeld, D. 2005. Social networks, the tertius iungens orientation, and involvement in innovation. 

Administrative Science Quarterly, 50(1): 100–130. 

Oh, H., Chung, M.-H., & Labianca, G. 2004. Group social capital and group effectiveness: The role of informal 

socializing ties. Academy of Management Journal, 47(6): 860–875. 

Oh, H., Labianca, G., & Chung, M.-H. 2006. A multilevel model of group social capital. Academy of 

Management Review, 31(3): 569–582. 

Oldroyd, J., Evans, J., & Hendron, M. 2012. Withholding the ace: The performance effects on knowledge 

hoarding. Presented at the SMS 32nd Annual International Conference, Prague (CZ). 

Oliver, A. L., & Liebeskind, J. P. 1997. Three levels of networking for sourcing intellectual capital in 

biotechnology: Implications for studying interorganizational networks. International Studies of 

Management & Organization, 27(4): 76–103. 

Operti, E., & Carnabuci, G. 2012. Good for one, bad for most? Intrafirm networks and innovation at the inventor 

and firm level. Presented at the Academy of Management Annual Meeting, Boston, MA. 

Orr, J. E. 1996. Talking about machines: An ethnography of a modern job. Ithaca, NY: Cornell University 

Press. 



150 
 

Owen-Smith, J., & Powell, W. W. 2004. Knowledge networks as channels and conduits: The effects of 

spillovers in the Boston biotechnology community. Organization Science, 15(1): 5–21. 

Oxley, J. E., & Sampson, R. C. 2004. The scope and governance of international R&D alliances. Strategic 

Management Journal, 25(8-9): 723–749. 

Park, G., & Park, Y. 2006. On the measurement of patent stock as knowledge indicators. Technological 

Forecasting and Social Change, 73(7): 793–812. 

Paruchuri, S. 2010. Intraorganizational networks, interorganizational networks, and the impact of central 

inventors: A longitudinal study of pharmaceutical firms. Organization Science, 21(1): 63–80. 

Payne, G. T., Moore, C. B., Griffis, S. E., & Autry, C. W. 2011. Multilevel challenges and opportunities in 

social capital research. Journal of Management, 37(2): 491–520. 

Phelps, C. C. 2010. A longitudinal study of the influence of alliance network structure and composition on firm 

exploratory innovation. Academy of Management Journal, 53(4): 890–913. 

Phelps, C., Heidl, R., & Wadhwa, A. 2012. Knowledge, networks, and knowledge networks a review and 

research agenda. Journal of Management, 38(4): 1115–1166. 

Pittaway, L., Robertson, M., Munir, K., Denyer, D., & Neely, A. 2004. Networking and innovation: A 

systematic review of the evidence. International Journal of Management Reviews, 5(3-4): 137–168. 

Ployhart, R. E., & Moliterno, T. P. 2011. Emergence of the human capital resource: A multilevel model. 

Academy of Management Review, 36(1): 127–150. 

Postrel, S. 2002. Islands of shared knowledge: Specialization and mutual understanding in problem-solving 

teams. Organization Science, 13(3): 303–320. 

Powell, W. W., Koput, K. W., & Smith-Doerr, L. 1996. Interorganizational collaboration and the locus of 

innovation: Networks of learning in biotechnology. Administrative Science Quarterly, 41(1): 116–145. 

Prashant, K., & Harbir, S. 2009. Managing strategic alliances: What do we know now, and where do we go from 

here? Academy of Management Perspectives, 23(3): 45–62. 

Preacher, K. J., & Hayes, A. F. 2004. SPSS and SAS procedures for estimating indirect effects in simple 

mediation models. Behavior Research Methods, Instruments, & Computers, 36(4): 717–731. 

Provan, K. G., Fish, A., & Sydow, J. 2007. Interorganizational networks at the network level: A review of the 

empirical literature on whole networks. Journal of Management, 33(3): 479–516. 

Roach, M., & Cohen, W. M. 2013. Lens or prism? Patent citations as a measure of knowledge flows from public 

research. Management Science, 59(2): 504–525. 

Roberts, P. W. 1999. Product innovation, product-market competition and persistent profitability in the US 

pharmaceutical industry. Strategic Management Journal, 20(7): 655–670. 

Rosenkopf, L., & Nerkar, A. 2001. Beyond local search: Boundary-spanning, exploration, and impact in the 

optical disk industry. Strategic Management Journal, 22(4): 287–306. 

Rothaermel, F. T. 2001. Complementary assets, strategic alliances, and the incumbent’s advantage: An 
empirical study of industry and firm effects in the biopharmaceutical industry. Research Policy, 30(8): 

1235–1251. 

Rothaermel, F. T., & Deeds, D. L. 2004. Exploration and exploitation alliances in biotechnology: A system of 

new product development. Strategic Management Journal, 25(3): 201–221. 

Rothaermel, F. T., & Deeds, D. L. 2006. Alliance type, alliance experience and alliance management capability 

in high-technology ventures. Journal of Business Venturing, 21(4): 429–460. 

Rothaermel, F. T., & Hess, A. M. 2007. Building dynamic capabilities: Innovation driven by individual-, firm-, 

and network-level effects. Organization Science, 18(6): 898–921. 

Rousseau, D. M. 1985. Issues of level in organizational research: Multi-level and cross-level perspectives. In L. 

L. Cummings & B. M. Staw (Eds.), Research in organizational behavior: An annual series of 

analytical essays and critical reviews: 1–37. Greenwich, CT: JAI Press. 

Sampson, R. C. 2007. R&D alliances and firm performance: The impact of technological diversity and alliance 

organization on innovation. Academy of Management Journal, 50(2): 364–386. 

Sasovova, Z., Mehra, A., Borgatti, S. P., & Schippers, M. C. 2010. Network churn: The effects of self-

monitoring personality on brokerage dynamics. Administrative Science Quarterly, 55(4): 639–670. 

Schilling, M. A. 2009. Understanding the alliance data. Strategic Management Journal, 30(3): 233–260. 



151 
 

Schilling, M. A., & Fang, C. 2013. When hubs forget, lie, and play favorites: Interpersonal network structure, 

information distortion, and organizational learning. Strategic Management Journal, forthcoming. 

Schilling, M. A., & Phelps, C. C. 2007. Interfirm collaboration networks: The impact of large-scale network 

structure on firm innovation. Management Science, 53(7): 1113–1126. 

Schumpeter, J. A. 1934. The theory of economic development: An inquiry into profits, capital, credit, interest, 

and the business cycle. Cambridge, MA: Harvard University Press. 

Schumpeter, J. A. 1939. Business cycles. New York, NY: McGraw-Hill. 

Schumpeter, J. A. 1942. Socialism and democracy. New York, NY: Harper. 

Shan, W., Walker, G., & Kogut, B. 1994. Interfirm cooperation and startup innovation in the biotechnology 

industry. Strategic Management Journal, 15(5): 387–394. 

Shaver, J. M. 2005. Testing for mediating variables in management research: Concerns, implications, and 

alternative strategies. Journal of Management, 31(3): 330–353. 

Simonin, B. L. 1997. The importance of collaborative know-how: An empirical test of the learning organization. 

Academy of Management Journal, 40(5): 1150–1174. 

Singh, J. 2005. Collaborative networks as determinants of knowledge diffusion patterns. Management Science, 

51(5): 756–770. 

Singh, J., & Fleming, L. 2010. Lone inventors as sources of breakthroughs: Myth or reality? Management 

Science, 56(1): 41–56. 

Singh, J., Hansen, M. T., & Podolny, J. M. 2010. The world is not small for everyone: Inequity in searching for 

knowledge in organizations. Management Science, 56(9): 1415–1438. 

Smith, K. G., Carroll, S. J., & Ashford, S. J. 1995. Intra- and interorganizational cooperation: Toward a research 

agenda. Academy of Management Journal, 38(1): 7–23. 

Song, J., Almeida, P., & Wu, G. 2003. Learning-by-hiring: When is mobility more likely to facilitate interfirm 

knowledge transfer? Management Science, 49(4): 351–365. 

Sorenson, O., & Fleming, L. 2004. Science and the diffusion of knowledge. Research Policy, 33(10): 1615–
1634. 

Strang, D., & Tuma, N. B. 1993. Spatial and temporal heterogeneity in diffusion. American Journal of 

Sociology, 99(3): 614–639. 

Subramanian, A. M., Lim, K., & Soh, P.-H. 2013. When birds of a feather don’t flock together: Different 
scientists and the roles they play in biotech R&D alliances. Research Policy, 42(3): 595–612. 

Swan, J., Newell, S., Scarbrough, H., & Hislop, D. 1999. Knowledge management and innovation: Networks 

and networking. Journal of Knowledge Management, 3(4): 262–275. 

Ter Wal, A., Criscuolo, P., & Salter, A. 2011. Absorptive capacity at the individual level: An ambidexterity 

approach to external engagement. Presented at the DRUID Summer Conference 2011, Copenhagen 

(DK). 

Tomz, M., King, G., & Zeng, L. 2003. ReLogit: Rare events logistic regression. Journal of Statistical Software, 

08(i02): 137–163. 

Tortoriello, M., & Krackhardt, D. 2010. Activating cross-boundary knowledge: The role of Simmelian ties in 

the generation of innovations. Academy of Management Journal, 53(1): 167–181. 

Trajtenberg, M. 1990. A penny for your quotes: Patent citations and the value of innovations. RAND Journal of 

Economics, 21(1): 172–187. 

Tsai, W. 2001. Knowledge transfer in intraorganizational networks: Effects of network position and absorptive 

capacity on business unit innovation and performance. Academy of Management Journal, 44(5): 996–
1004. 

Tsai, W., & Ghoshal, S. 1998. Social capital and value creation: The role of intrafirm networks. Academy of 

Management Journal, 41(4): 464–476. 

Tushman, M. L. 1977. Special boundary roles in the innovation process. Administrative Science Quarterly, 

22(4): 587–605. 

Tushman, M. L., & Scanlan, T. J. 1981a. Boundary spanning individuals: Their role in information transfer and 

their antecedents. Academy of Management Journal, 24(2): 289–305. 

Tushman, M. L., & Scanlan, T. J. 1981b. Characteristics and external orientations of boundary spanning 

individuals. Academy of Management Journal, 24(1): 83–98. 



152 
 

USPTO Patent Technology Monitoring Team. 2012. Medical devices: All classified utility patents (OR/XR). 

http://www.uspto.gov/web/offices/ac/ido/oeip/taf/meddev.htm, April 26, 2013. 

Uzzi, B. 1996. The sources and consequences of embeddedness for the economic performance of organizations: 

The network effect. American Sociological Review, 61(4): 674–698. 

Uzzi, B. 1997. Social structure and competition in interfirm networks: The paradox of embeddedness. 

Administrative Science Quarterly, 42(1): 35–67. 

Uzzi, B., & Spiro, J. 2005. Collaboration and creativity: The small world problem. American Journal of 

Sociology, 111(2): 447–504. 

Van de Ven, A. H. 1976. On the nature, formation, and maintenance of relations among organizations. Academy 

of Management Review, 1(4): 24–36. 

Van Wijk, R. A., & Van Den Bosch, F. A. J. 1998. Knowledge characteristics of internal network-based forms 

of organizing. Academy of Management Proceedings, 1998(1): B1–B7. 

Van Wijk, R., Jansen, J. J., & Lyles, M. A. 2008. Inter- and intra-organizational knowledge transfer: A meta-

analytic review and assessment of its antecedents and consequences. Journal of Management Studies, 

45(4): 830–853. 

Wang, P., Robins, G., Pattison, P., & Lazega, E. 2013. Exponential random graph models for multilevel 

networks. Social Networks, 35(1): 96–115. 

Wasserman, S., & Faust, K. 1994. Social network analysis: Methods and applications. Cambridge (UK): 

Cambridge University Press. 

Wassmer, U. 2010. Alliance portfolios: A review and research agenda. Journal of Management, 36(1): 141–
171. 

Watts, D. J. 1999. Small worlds: The dynamics of networks between order and randomness. Princeton, NJ: 

Princeton University Press. 

Watts, D. J., & Strogatz, S. H. 1998. Collective dynamics of “small-world”networks. Nature, 393(6684): 440–
442. 

Wooldridge, J. M. 1999. Distribution-free estimation of some nonlinear panel data models. Journal of 

Econometrics, 90(1): 77–97. 

Wu, B. 2013. Opportunity costs, industry dynamics, and corporate diversification: Evidence from the 

cardiovascular medical device industry, 1976–2004. Strategic Management Journal, 34(11): 1265–
1287. 

Zhao, Z. J., & Anand, J. 2013. Beyond boundary spanners: The “collective bridge” as an efficient interunit 
structure for transferring collective knowledge. Strategic Management Journal, 34(13): 1513–1530. 

Zhou, J., Shin, S. J., Brass, D. J., Choi, J., & Zhang, Z.-X. 2009. Social networks, personal values, and 

creativity: Evidence for curvilinear and interaction effects. Journal of Applied Psychology, 94(6): 

1544–1552. 

 

 



153 
 

TABLES 

 

Table 1 Sample descriptive statistics and correlations 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1. Firm innovation 1.000                   

2. Diversity 0.364 1.000                  

3. Transfer 0.486 0.332 1.000                 

4. Reach -0.264 -0.487 -0.266 1.000                

5. Clusters -0.346 -0.315 -0.425 0.124 1.000               

6. Firm size 0.385 0.415 0.272 -0.655 -0.127 1.000              

7. Medical device focus -0.013 -0.048 0.134 0.248 -0.123 -0.278 1.000             

8. Firm performance 0.255 0.277 0.318 -0.333 -0.091 0.454 -0.134 1.000            

9. Firm leverage -0.092 -0.010 -0.081 -0.124 0.167 0.161 -0.093 -0.031 1.000           

10. R&D intensity 0.115 0.063 0.022 0.128 -0.156 -0.153 0.104 -0.481 -0.318 1.000          

11. Firm slack -0.128 -0.062 -0.041 0.372 -0.060 -0.473 0.311 -0.046 -0.278 0.092 1.000         

12. Acquisitions 0.230 0.033 0.099 -0.040 -0.030 0.025 0.008 0.071 0.114 0.018 -0.018 1.000        

13. Divestments -0.041 -0.016 -0.065 -0.021 0.111 -0.041 -0.009 -0.024 -0.001 -0.023 -0.033 -0.010 1.000       

14. R&D concentration -0.277 -0.342 -0.035 0.697 0.001 -0.593 0.252 -0.253 -0.258 0.200 0.357 -0.089 -0.026 1.000      

15. R&D recruitment 0.052 -0.026 0.147 -0.057 0.041 0.037 0.006 0.101 0.021 -0.018 -0.001 0.126 -0.068 0.035 1.000     

16. R&D scientists 0.759 0.388 0.420 -0.335 -0.322 0.536 -0.153 0.285 -0.021 0.053 -0.202 0.108 -0.035 -0.403 -0.038 1.000    

17. Network density 0.263 0.129 0.132 0.141 -0.076 0.251 -0.125 0.081 0.062 0.197 -0.192 0.056 -0.013 -0.023 -0.093 0.377 1.000   

18. Network isolate ratio -0.086 -0.039 -0.029 -0.285 0.067 0.016 0.027 0.010 0.053 -0.151 0.059 -0.002 0.010 -0.164 0.079 -0.151 -0.573 1.000  

19. R&D team size -0.022 -0.092 -0.146 0.369 0.228 0.023 -0.047 -0.012 0.019 0.173 -0.108 0.003 0.010 0.163 -0.060 0.054 0.743 -0.554 1.000 

N 484 441 445 484 484 484 484 484 484 484 484 484 484 484 484 484 484 484 484 

Mean 279.4 0.429 0.147 0.183 0.683 6.333 0.778 0.135 0.126 0.081 2.825 0.047 0.029 0.408 0.191 134.2 3.307 0.095 2.529 

St.Dev. 593.6 0.278 0.153 0.177 0.178 1.972 0.338 0.157 0.126 0.063 2.46 0.186 0.225 0.264 0.159 230 1.36 0.086 0.777 

Min 0 0 0 0.017 0 0 0 -0.928 0 0.004 0.824 0 0 0.086 0 5 0.333 0 1.357 

Max 4825 0.815 0.935 1 1 9.734 1 0.52 0.817 0.593 27.1 1.952 3.695 1 0.857 1628 7.217 0.667 7 

Correlations exceeding |0.09| are generally significant at the 5%-level 

Correlations exceeding |0.12| are generally significant at the 1%-level 
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Table 2 GEE regressions predicting knowledge transfer and diversity 
  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) (Model 8) 

 Transfer Transfer Transfer Transfer Diversity Diversity Diversity Diversity 

Firm size 0.188* 0.070 0.202** 0.073 0.235** 0.147+ 0.242** 0.152+ 

 (0.076) (0.100) (0.074) (0.102) (0.087) (0.089) (0.088) (0.089) 

Medical device 
focus 

0.322 0.447 0.308 0.398 -0.330 -0.239 -0.382 -0.298 

(0.427) (0.382) (0.385) (0.334) (0.340) (0.314) (0.338) (0.313) 

Firm performance 2.130* 2.240* 2.240* 2.331** 0.545 0.253 0.472 0.158 

 (0.952) (0.892) (0.905) (0.787) (0.641) (0.646) (0.630) (0.647) 

Firm leverage 0.953 0.863 0.939 0.658 -0.161 -0.178 -0.136 -0.180 

 (0.661) (0.690) (0.703) (0.771) (0.465) (0.436) (0.459) (0.428) 

R&D intensity 2.632* 1.332 2.409* 0.767 4.156*** 3.425** 3.926** 3.154** 

 (1.252) (1.356) (1.215) (1.290) (1.183) (1.167) (1.201) (1.207) 

Firm slack -0.058 -0.010 -0.046 0.006 0.032 0.053+ 0.039 0.062+ 

 (0.070) (0.046) (0.058) (0.033) (0.027) (0.031) (0.031) (0.036) 

Acquisitions 0.313 0.277 0.328 0.292 0.122 0.115 0.137 0.129 

 (0.258) (0.244) (0.255) (0.236) (0.123) (0.114) (0.125) (0.116) 

Divestments 0.019 -0.052 0.057 -0.007 -0.790 -0.773+ -0.814 -0.797+ 

 (0.202) (0.183) (0.222) (0.215) (0.489) (0.430) (0.542) (0.475) 

R&D concentration 1.488** 2.591*** 1.547** 2.624*** -0.007 0.585 0.026 0.621 

(0.558) (0.639) (0.570) (0.626) (0.443) (0.484) (0.444) (0.492) 

R&D recruitment 0.403 0.536 0.465 0.706 0.572* 0.513+ 0.595* 0.536* 

 (0.524) (0.599) (0.553) (0.675) (0.243) (0.271) (0.242) (0.270) 

R&D scientists 0.000 0.000 0.000 0.000 0.001 0.001* 0.001 0.001+ 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Network density 0.031 0.181+ 0.019 0.168+ 0.140* 0.200** 0.122+ 0.181* 

 (0.084) (0.102) (0.080) (0.087) (0.069) (0.076) (0.069) (0.077) 

Network isolate 
ratio 

0.573 -0.010 0.974 0.445 -0.260 -0.521 0.025 -0.185 

(1.206) (1.243) (1.285) (1.476) (1.083) (1.198) (1.123) (1.259) 

R&D team size -0.465* -0.429+ -0.359* -0.248 -0.238* -0.176+ -0.145 -0.068 

 (0.204) (0.221) (0.182) (0.232) (0.096) (0.095) (0.099) (0.104) 

Reach  -5.434**  -5.843**  -2.857**  -2.939** 

  (1.905)  (2.015)  (1.001)  (1.010) 

Clusters   -0.919 -1.326   -0.782* -0.866* 

   (0.619) (0.808)   (0.351) (0.367) 

Year dummies (included) (included) (included) (included) (included) (included) (included) (included) 

Constant -3.963*** -3.438*** -3.671*** -2.831** -2.014** -1.531* -1.631* -1.083 

 (0.854) (0.905) (0.968) (1.088) (0.731) (0.735) (0.710) (0.711) 

Observations 441 441 441 441 431 431 431 431 

Number of firms 50 50 50 50 49 49 49 49 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table 3 GEE regressions predicting firm innovation 
  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) 

 Firm innov. Firm innov. Firm innov. Firm innov. Firm innov. Firm innov. Firm innov. 

Firm size 0.524*** 0.494*** 0.433*** 0.416*** 0.355*** 0.450*** 0.347*** 

 (0.076) (0.077) (0.065) (0.066) (0.065) (0.059) (0.057) 

Medical device focus 0.280 0.248 0.130 0.087 0.125 -0.083 0.010 

 (0.301) (0.295) (0.271) (0.267) (0.249) (0.248) (0.224) 

Firm performance 1.699* 1.493* 1.122* 0.884+ 1.396+ 1.655** 1.477* 

 (0.729) (0.662) (0.532) (0.476) (0.724) (0.561) (0.639) 

Firm leverage 0.399 0.291 -0.095 -0.186 0.346 0.533 0.506 

 (0.517) (0.573) (0.417) (0.425) (0.442) (0.479) (0.496) 

R&D intensity 4.008* 3.492* 4.038* 3.515* 3.975* 4.200** 3.885** 

 (1.813) (1.684) (1.688) (1.534) (1.816) (1.481) (1.490) 

Firm slack -0.028 -0.034 -0.002 -0.006 -0.021 -0.025 -0.002 

 (0.035) (0.036) (0.023) (0.024) (0.021) (0.020) (0.016) 

Acquisitions 0.229+ 0.263+ 0.236 0.273 0.277* 0.194+ 0.296+ 

 (0.136) (0.154) (0.156) (0.173) (0.134) (0.118) (0.153) 

Divestments -0.261 -0.234 -0.217 -0.187 -0.320+ -0.213 -0.220 

 (0.256) (0.272) (0.348) (0.354) (0.190) (0.241) (0.220) 

R&D concentration 0.883* 1.038* 0.004 0.199 0.920** 0.391 0.932** 

 (0.438) (0.445) (0.361) (0.378) (0.332) (0.343) (0.346) 

R&D recruitment 0.167 0.028 0.284 0.147 -0.147 0.084 -0.109 

 (0.345) (0.347) (0.389) (0.383) (0.279) (0.272) (0.295) 

R&D scientists 0.001** 0.002** 0.002*** 0.002*** 0.002*** 0.001** 0.002*** 

 (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) 

Network density 0.110 0.100 0.104 0.090 0.161+ 0.026 0.096 

 (0.106) (0.112) (0.099) (0.105) (0.085) (0.091) (0.079) 

Network isolate ratio -2.151+ -2.297+ -2.211+ -2.222+ -1.102 -0.831 -0.761 

 (1.199) (1.196) (1.168) (1.142) (0.728) (0.823) (0.763) 

R&D team size -0.577** -0.558** -0.342+ -0.316 -0.328+ -0.337+ -0.159 

 (0.185) (0.200) (0.198) (0.212) (0.188) (0.185) (0.167) 

Knowledge diversity  0.660*  0.563*    

  (0.289)  (0.274)    

Knowledge transfer   3.516*** 3.474***    

   (0.319) (0.326)    

Reach     -2.881***  -2.897*** 

     (0.720)  (0.701) 

Clusters      -1.379*** -1.422*** 

      (0.392) (0.361) 

Year dummies (included) (included) (included) (included) (included) (included) (included) 

Constant 1.675* 1.600* 1.833** 1.710** 2.534*** 3.083*** 3.341*** 

 (0.669) (0.716) (0.571) (0.599) (0.450) (0.604) (0.538) 

Observations 415 415 412 412 484 484 484 

Number of firms 48 48 48 48 50 50 50 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table 4 Sobel-Goodman mediation tests 
Independent → mediating → dependent 
Independent → dependent 

Beta 
coeff. 

Bootstr. 
St.Dev. 

z P>|z| 
Bootstr. 
95%L 

Bootstr. 
95%U 

Reach → transfer → firm innovation -225.330 78.718 -2.860 0.004 -403.574 -93.650 

Reach → firm innovation 258.001 126.687 2.040 0.042 2.846 499.012 

Reach → diversity → firm innovation -163.733 56.639 -2.890 0.004 -285.662 -60.151 

Reach → firm innovation 19.295 154.621 0.120 0.901 -281.428 316.540 

Clusters → transfer → firm innovation -113.735 63.344 -1.800 0.073 -266.095 -22.916 

Clusters → firm innovation -184.526 99.290 -1.860 0.063 -361.533 31.272 

Clusters → diversity → firm innovation -40.703 19.621 -2.070 0.038 -84.157 -9.500 

Clusters → firm innovation -259.795 104.894 -2.480 0.013 -461.111 -44.039 

Bootstrapping coefficients and 95%-confidence intervals based on 5,000 iterations 

Mediation tests includes the same control variables as the earlier regressions 
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Table 5 Sample descriptive statistics and correlations 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

1. Firm innovation 1.000 
                    

2. R&D alliances 0.624 1.000 
                   

3. Intrafirm connections 0.228 0.390 1.000 
                  

4. Intrafirm clustering 0.665 0.720 0.239 1.000 
                 

5. Intrafirm efficiency -0.368 -0.539 -0.785 -0.436 1.000 
                

6. Firm size 0.368 0.431 0.248 0.611 -0.254 1.000 
               

7. Medical device focus -0.005 -0.191 -0.123 -0.192 0.080 -0.277 1.000 
              

8. Firm performance 0.255 0.229 0.080 0.303 -0.107 0.454 -0.133 1.000 
             

9. Firm leverage -0.097 -0.038 0.060 -0.017 0.059 0.159 -0.092 -0.032 1.000 
            

10. Firm slack -0.120 -0.163 -0.191 -0.248 0.101 -0.472 0.310 -0.046 -0.278 1.000 
           

11. Firm tech. diversity 0.247 0.182 -0.038 0.306 -0.008 0.265 -0.008 0.173 -0.024 -0.020 1.000 
          

12. Acquisitions 0.256 0.133 0.056 0.097 -0.053 0.024 0.008 0.070 0.113 -0.017 -0.007 1.000 
         

13. Divestments -0.048 -0.002 -0.013 -0.037 0.065 -0.042 -0.009 -0.024 -0.001 -0.033 -0.001 -0.010 1.000 
        

14. R&D intensity 0.116 0.091 0.198 0.024 -0.216 -0.153 0.103 -0.480 -0.318 0.092 0.079 0.018 -0.023 1.000 
       

15. R&D scientists 0.655 0.742 0.376 0.951 -0.550 0.536 -0.153 0.284 -0.022 -0.202 0.271 0.108 -0.036 0.053 1.000 
      

16. R&D recruitment 0.067 -0.035 -0.084 -0.018 0.094 0.053 0.001 0.107 0.027 -0.006 -0.038 0.130 -0.068 -0.021 -0.034 1.000 
     

17. R&D geographic conc. -0.250 -0.305 -0.019 -0.499 -0.038 -0.591 0.251 -0.252 -0.257 0.356 -0.349 -0.089 -0.026 0.199 -0.402 0.025 1.000 
    

18. R&D team size -0.038 0.106 0.743 -0.041 -0.460 0.022 -0.046 -0.012 0.018 -0.108 -0.190 0.002 0.010 0.174 0.053 -0.058 0.164 1.000 
   

19. R&D alliance duration 0.000 0.242 0.079 0.053 -0.191 -0.050 -0.004 0.019 -0.061 0.153 -0.191 0.039 -0.052 0.001 0.048 -0.071 0.102 0.022 1.000 
  

20. R&D alliance strength 0.159 0.388 0.144 0.243 -0.191 0.355 -0.070 0.115 -0.009 -0.117 0.091 0.022 -0.071 0.097 0.199 0.014 -0.209 -0.062 0.476 1.000 
 

21. R&D alliance structure 0.001 -0.029 -0.077 -0.027 0.102 0.117 -0.076 0.033 0.089 -0.073 -0.174 -0.050 -0.049 -0.076 -0.048 0.138 -0.035 -0.103 0.074 0.162 1.000 

N 483 483 483 483 483 483 483 483 483 483 483 483 483 483 483 483 483 483 483 483 483 

Mean 289.2 4.095 3.311 29.23 -0.645 6.339 0.778 0.135 0.126 2.822 0.511 0.047 0.029 0.081 134.4 0.190 0.408 2.530 2.061 0.854 0.080 

St.Dev. 598.9 4.211 1.359 38.63 0.336 1.969 0.338 0.157 0.126 2.461 0.246 0.186 0.225 0.063 230.2 0.156 0.264 0.778 1.756 0.382 0.200 

Min 0 0 0.333 0 -1.946 0 0 -0.928 0 0.824 0 0 0 0.004 5 0 0.086 1.357 0 0 0 

Max 4825 26 7.217 246.1 -0.037 9.734 1 0.520 0.817 27.10 0.811 1.952 3.695 0.593 1628 0.857 1 7 10.05 2 1 

Correlations exceeding |0.090| are significant at the 5% level 

Correlations exceeding |0.117| are significant at the 1% level 
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Table 6 Fixed-effect negative binomial regressions predicting firm innovation 
  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) (Model 8) 

 
Innovation Innovation Innovation Innovation Innovation Innovation Innovation Innovation 

Firm size 0.290*** 0.230*** 0.233*** 0.207*** 0.230*** 0.211*** 0.240*** 0.220*** 

 
(0.052) (0.053) (0.053) (0.052) (0.053) (0.052) (0.053) (0.053) 

Medical device focus -0.646*** -0.283 -0.319 -0.259 -0.304 -0.302 -0.386+ -0.344 

 
(0.194) (0.212) (0.214) (0.212) (0.211) (0.214) (0.213) (0.216) 

Firm performance 0.479 0.822 0.882+ 0.789 0.751 0.844+ 0.754 0.775 

 
(0.494) (0.510) (0.515) (0.493) (0.509) (0.496) (0.513) (0.499) 

Firm leverage -0.051 0.126 -0.044 -0.047 0.127 -0.301 -0.193 -0.365 

 
(0.381) (0.380) (0.392) (0.384) (0.381) (0.398) (0.401) (0.404) 

Firm slack -0.012 -0.010 -0.014 -0.003 -0.004 -0.008 -0.003 -0.003 

 
(0.024) (0.024) (0.025) (0.024) (0.024) (0.024) (0.024) (0.024) 

Firm tech. diversity -0.433 -0.264 -0.228 -0.209 -0.287 -0.191 -0.264 -0.207 

 
(0.293) (0.297) (0.297) (0.291) (0.297) (0.289) (0.295) (0.289) 

Acquisitions 0.196 0.143 0.128 0.119 0.159 0.094 0.147 0.105 

 
(0.121) (0.117) (0.115) (0.107) (0.118) (0.105) (0.115) (0.106) 

Divestments -0.544* -0.505* -0.516* -0.571* -0.516* -0.578* -0.540* -0.582* 

 
(0.252) (0.245) (0.244) (0.239) (0.244) (0.237) (0.241) (0.237) 

R&D intensity 2.886** 2.919** 3.081** 2.712** 2.757** 2.891** 2.828** 2.776** 

 
(0.989) (1.006) (0.998) (0.971) (1.013) (0.955) (0.995) (0.960) 

R&D scientists 0.001*** -0.001** -0.003*** -0.001+ -0.001* -0.002*** -0.003*** -0.003*** 

 
(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

R&D recruitment 0.593* 0.577* 0.610* 0.576* 0.593* 0.619* 0.676** 0.650** 

 
(0.237) (0.248) (0.246) (0.248) (0.250) (0.246) (0.248) (0.247) 

R&D geographic 
conc. 

-0.529 -0.416 -0.422 -0.261 -0.440 -0.271 -0.499 -0.325 

(0.325) (0.323) (0.321) (0.326) (0.324) (0.322) (0.320) (0.324) 

R&D team size -0.260*** -0.490*** -0.472*** -0.449*** -0.470*** -0.429*** -0.418*** -0.410*** 

 
(0.076) (0.118) (0.119) (0.115) (0.119) (0.115) (0.120) (0.117) 

R&D alliance 
duration 

-0.045 -0.052 -0.054+ -0.043 -0.048 -0.044 -0.044 -0.037 

(0.033) (0.033) (0.032) (0.034) (0.033) (0.033) (0.032) (0.033) 

R&D alliance strength 0.107 0.091 0.101 -0.044 0.032 -0.041 -0.020 -0.092 

 
(0.140) (0.140) (0.137) (0.145) (0.147) (0.140) (0.143) (0.145) 

R&D alliance 
structure 

0.289 0.283 0.302 0.342+ 0.314+ 0.367+ 0.376* 0.396* 

(0.189) (0.188) (0.189) (0.190) (0.190) (0.190) (0.190) (0.191) 

R&D alliances 0.027* 0.010 -0.003 0.047*** 0.023 0.033* 0.014 0.038* 

 
(0.012) (0.012) (0.014) (0.014) (0.015) (0.014) (0.014) (0.015) 

Intrafirm connections 
 

0.257*** 0.276*** 0.230** 0.222** 0.245*** 0.213** 0.218** 

  
(0.073) (0.073) (0.072) (0.077) (0.071) (0.077) (0.074) 

Intrafirm clustering 
 

0.017*** 0.023*** 0.020*** 0.016*** 0.028*** 0.026*** 0.029*** 

  
(0.004) (0.004) (0.003) (0.004) (0.004) (0.004) (0.004) 

Intrafirm efficiency 
 

0.072 0.018 0.096 -0.049 0.012 -0.293 -0.151 

  
(0.176) (0.174) (0.167) (0.190) (0.164) (0.200) (0.207) 

R&D alliances x 
Intrafirm connect. 

  
0.021* 

  
0.027** 0.038** 0.035** 

  
(0.011) 

  
(0.010) (0.012) (0.011) 

R&D alliances x 
Intrafirm clustering 

   
-0.000*** 

 
-0.001*** 

 
-0.000*** 

   
(0.000) 

 
(0.000) 

 
(0.000) 

R&D alliances x 
Intrafirm efficiency 

    
0.037 

 
0.077** 0.033 

    
(0.023) 

 
(0.026) (0.027) 

Year dummies (included) (included) (included) (included) (included) (included) (included) (included) 

Constant -0.461 0.466 0.477 0.654 0.530 0.713 0.621 0.761 

 
(0.459) (0.528) (0.527) (0.515) (0.527) (0.514) (0.525) (0.515) 

Observations 483 483 483 483 483 483 483 483 

Number of firms 49 49 49 49 49 49 49 49 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table 7 Incident-rate ratios of negative binomial regressions predicting firm innovation 
  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) (Model 8) 

 
Innovation Innovation Innovation Innovation Innovation Innovation Innovation Innovation 

Firm size 1.336*** 1.259*** 1.263*** 1.230*** 1.259*** 1.235*** 1.272*** 1.246*** 

 
(0.069) (0.067) (0.067) (0.065) (0.067) (0.065) (0.068) (0.066) 

Medical device focus 0.524*** 0.753 0.727 0.772 0.738 0.739 0.679+ 0.709 

 
(0.102) (0.160) (0.155) (0.163) (0.156) (0.158) (0.144) (0.153) 

Firm performance 1.614 2.274 2.415+ 2.200 2.119 2.326+ 2.126 2.171 

 
(0.798) (1.160) (1.243) (1.086) (1.079) (1.153) (1.090) (1.082) 

Firm leverage 0.951 1.134 0.957 0.954 1.136 0.740 0.825 0.694 

 
(0.363) (0.431) (0.375) (0.366) (0.433) (0.294) (0.330) (0.281) 

Firm slack 0.988 0.990 0.986 0.997 0.996 0.992 0.997 0.997 

 
(0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024) 

Firm tech. diversity 0.649 0.768 0.796 0.811 0.750 0.826 0.768 0.813 

 
(0.190) (0.228) (0.236) (0.236) (0.223) (0.239) (0.226) (0.235) 

Acquisitions 1.216 1.154 1.136 1.126 1.172 1.099 1.159 1.111 

 
(0.148) (0.135) (0.131) (0.121) (0.138) (0.115) (0.134) (0.117) 

Divestments 0.581* 0.603* 0.597* 0.565* 0.597* 0.561* 0.583* 0.559* 

 
(0.146) (0.148) (0.146) (0.135) (0.146) (0.133) (0.141) (0.132) 

R&D intensity 17.930** 18.523** 21.772** 15.064** 15.756** 18.005** 16.909** 16.062** 

 
(17.725) (18.634) (21.730) (14.620) (15.954) (17.186) (16.820) (15.423) 

R&D scientists 1.001*** 0.999** 0.997*** 0.999+ 0.999* 0.998*** 0.997*** 0.997*** 

 
(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

R&D recruitment 1.809* 1.780* 1.840* 1.779* 1.809* 1.857* 1.965** 1.915** 

 
(0.428) (0.441) (0.453) (0.442) (0.452) (0.456) (0.488) (0.473) 

R&D geographic 
conc. 

0.589 0.660 0.655 0.770 0.644 0.763 0.607 0.722 

(0.191) (0.213) (0.210) (0.251) (0.209) (0.246) (0.194) (0.234) 

R&D team size 0.771*** 0.613*** 0.624*** 0.638*** 0.625*** 0.651*** 0.658*** 0.664*** 

 
(0.059) (0.073) (0.074) (0.074) (0.075) (0.075) (0.079) (0.078) 

R&D alliance 
duration 

0.956 0.950 0.948+ 0.958 0.953 0.957 0.957 0.963 

(0.031) (0.031) (0.030) (0.032) (0.031) (0.031) (0.030) (0.031) 

R&D alliance strength 1.112 1.095 1.107 0.956 1.032 0.960 0.981 0.913 

 
(0.155) (0.154) (0.151) (0.139) (0.152) (0.134) (0.140) (0.133) 

R&D alliance 
structure 

1.336 1.327 1.353 1.408+ 1.368+ 1.443+ 1.457* 1.486* 

(0.253) (0.250) (0.255) (0.267) (0.259) (0.274) (0.277) (0.284) 

R&D alliances 1.027* 1.010 0.997 1.048*** 1.023 1.034* 1.014 1.038* 

 
(0.012) (0.012) (0.014) (0.014) (0.015) (0.015) (0.015) (0.015) 

Intrafirm connections 
 

1.293*** 1.318*** 1.259** 1.249** 1.278*** 1.237** 1.244** 

  
(0.095) (0.096) (0.090) (0.096) (0.090) (0.095) (0.092) 

Intrafirm clustering 
 

1.017*** 1.023*** 1.021*** 1.016*** 1.029*** 1.026*** 1.030*** 

  
(0.004) (0.005) (0.003) (0.004) (0.004) (0.005) (0.004) 

Intrafirm efficiency 
 

1.075 1.018 1.101 0.952 1.012 0.746 0.860 

  
(0.189) (0.177) (0.184) (0.181) (0.166) (0.149) (0.178) 

R&D alliances x 
Intrafirm connect. 

  
1.022* 

  
1.028** 1.039** 1.035** 

  
(0.011) 

  
(0.010) (0.012) (0.012) 

R&D alliances x 
Intrafirm clustering 

   
1.000*** 

 
0.999*** 

 
1.000*** 

   
(0.000) 

 
(0.000) 

 
(0.000) 

R&D alliances x 
Intrafirm efficiency 

    
1.038 

 
1.080** 1.034 

    
(0.024) 

 
(0.028) (0.027) 

Year dummies (included) (included) (included) (included) (included) (included) (included) (included) 

Constant 0.630 1.593 1.610 1.923 1.699 2.039 1.861 2.141 

 
(0.289) (0.840) (0.849) (0.990) (0.896) (1.049) (0.977) (1.103) 

Observations 483 483 483 483 483 483 483 483 

Number of firms 49 49 49 49 49 49 49 49 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Robustness Checks for Chapter 2 

 

Table 8 Robustness checks for network reach and clusters 
  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) (Model 8) (Model 9) 

  Transfer Transfer Transfer Diversity Diversity Diversity Firm inno. Firm inno. Firm inno. 

Firm size 0.070 0.205** 0.091 0.149 0.242** 0.158+ 0.310*** 0.476*** 0.330*** 

 
(0.084) (0.075) (0.077) (0.091) (0.089) (0.094) (0.063) (0.062) (0.061) 

Medical device 
focus 

0.596 0.342 0.620+ -0.206 -0.307 -0.202 0.304 -0.004 0.262 

(0.362) (0.425) (0.355) (0.310) (0.338) (0.309) (0.259) (0.265) (0.258) 

Firm performance 2.240* 1.993* 2.053* 0.248 0.456 0.186 1.609* 1.321* 1.447* 

 
(0.882) (0.941) (0.858) (0.634) (0.683) (0.676) (0.690) (0.667) (0.709) 

Firm leverage 0.873 0.927 0.772 -0.244 -0.092 -0.197 0.304 0.421 0.342 

 
(0.706) (0.669) (0.710) (0.437) (0.458) (0.436) (0.548) (0.450) (0.560) 

R&D intensity 1.558 2.717* 1.554 3.450** 4.127*** 3.464** 4.345* 3.656* 4.013* 

 
(1.319) (1.153) (1.170) (1.131) (1.190) (1.126) (1.754) (1.820) (1.769) 

Firm slack -0.020 -0.036 -0.010 0.050 0.040 0.054 -0.023 -0.024 -0.012 

 
(0.046) (0.054) (0.038) (0.030) (0.031) (0.034) (0.017) (0.023) (0.016) 

Acquisitions 0.271 0.290 0.255 0.115 0.113 0.108 0.259+ 0.200+ 0.264+ 

 
(0.247) (0.263) (0.251) (0.107) (0.118) (0.103) (0.133) (0.117) (0.135) 

Divestments -0.040 -0.019 -0.062 -0.806+ -0.772 -0.794+ -0.315 -0.398+ -0.368 

 
(0.201) (0.213) (0.214) (0.467) (0.499) (0.476) (0.249) (0.225) (0.257) 

R&D 
concentration 

2.274*** 1.284* 1.989** 0.411 -0.100 0.319 0.624* 0.249 0.494 

(0.652) (0.649) (0.707) (0.442) (0.430) (0.428) (0.312) (0.322) (0.311) 

R&D recruitment 0.565 0.433 0.621 0.551* 0.548* 0.539+ 0.048 0.047 0.036 

 
(0.567) (0.493) (0.551) (0.268) (0.261) (0.280) (0.280) (0.275) (0.288) 

R&D scientists 0.000 0.000 -0.000 0.001 0.001 0.000 0.001*** 0.001** 0.001*** 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) 

Network density 0.250* 0.067 0.261* 0.219** 0.159* 0.226** 0.194+ 0.116 0.194+ 

 
(0.124) (0.085) (0.120) (0.079) (0.069) (0.080) (0.102) (0.097) (0.101) 

Network isolate 
ratio 

0.238 -0.482 -0.537 -0.445 -0.818 -0.800 -1.147 -1.933* -1.659* 

(1.201) (1.426) (1.388) (1.179) (1.368) (1.415) (0.812) (0.784) (0.819) 

R&D team size -0.599** -0.250 -0.377+ -0.241* -0.154 -0.178 -0.440* -0.343+ -0.340+ 

 
(0.212) (0.226) (0.226) (0.108) (0.113) (0.126) (0.223) (0.190) (0.205) 

Fragmentation 2.716** 
 

2.496** 1.602** 
 

1.511** 1.512** 
 

1.342** 

 
(1.008) 

 
(0.926) (0.522) 

 
(0.528) (0.522) 

 
(0.518) 

Path length 0.283** 
 

0.272** 0.221*** 
 

0.211*** 0.351*** 
 

0.337*** 

 
(0.090) 

 
(0.088) (0.055) 

 
(0.055) (0.066) 

 
(0.068) 

Ego-network 
density 

 
-2.367* -2.026+ 

 
-1.114 -0.767 

 
-1.721*** -1.104* 

 
(1.130) (1.127) 

 
(0.761) (0.779) 

 
(0.475) (0.522) 

Year dummies (included) (included) (included) (included) (included) (included) (included) (included) (included) 

Constant -6.712*** -3.149*** -5.845*** -3.467*** -1.564* -3.079*** 0.574 2.935*** 1.180 

 
(1.418) (0.931) (1.339) (0.756) (0.754) (0.775) (0.847) (0.525) (0.888) 

Observations 441 441 441 431 431 431 484 484 484 

Number of firms 50 50 50 49 49 49 50 50 50 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table 9 Robustness checks for knowledge transfer, diversity and lagged variables 
  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) 

 TransferALT DiversityALT Firm inno. Transfer Diversity Firm inno. Firm inno. 

Firm size -0.035 0.365*** 0.384*** 0.044 0.129 0.418*** 0.331*** 

 (0.080) (0.078) (0.073) (0.058) (0.082) (0.065) (0.054) 

Medical device focus 0.581* 0.792** 0.124 0.260 -0.131 0.067 0.013 

(0.246) (0.258) (0.257) (0.182) (0.275) (0.263) (0.220) 

Firm performance 1.813* -0.382 0.898* 1.253+ 0.280 0.829+ 1.471* 

 (0.745) (0.738) (0.404) (0.674) (0.675) (0.474) (0.631) 

Firm leverage 0.079 -0.849 -0.028 0.078 -0.373 -0.144 0.612 

 (0.730) (0.601) (0.508) (0.488) (0.380) (0.432) (0.513) 

R&D intensity 3.443* 1.250 2.413* 0.219 2.020+ 3.421* 4.036** 

 (1.668) (1.619) (1.228) (0.909) (1.211) (1.527) (1.476) 

Firm slack 0.032 0.025 0.003 0.003 0.043 -0.005 0.002 

 (0.043) (0.027) (0.024) (0.030) (0.036) (0.023) (0.016) 

Acquisitions 0.235 0.767* 0.311* 0.213 0.144 0.258 0.233 

 (0.309) (0.380) (0.146) (0.198) (0.118) (0.187) (0.174) 

Divestments 0.081 -0.220 -0.217 -0.063 -0.885+ -0.183 -0.217 

 (0.292) (0.495) (0.288) (0.236) (0.508) (0.350) (0.222) 

R&D concentration 1.991** 0.497 0.295 0.746* 0.639 0.227 0.925** 

(0.718) (0.407) (0.348) (0.303) (0.413) (0.369) (0.337) 

R&D recruitment 1.100* 0.395 -0.092 1.265* 0.484 0.154 -0.082 

 (0.522) (0.423) (0.317) (0.531) (0.327) (0.382) (0.302) 

R&D scientists 0.000 0.005*** 0.002*** -0.000 0.001* 0.001*** 0.001** 

 (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) 

Network density 0.196* 0.250* 0.068 0.062 0.132+ 0.085 0.106 

 (0.084) (0.110) (0.101) (0.061) (0.069) (0.104) (0.080) 

Network isolate ratio -1.242 0.235 -1.776 1.789+ -0.148 -2.210* -0.699 

(1.350) (1.194) (1.244) (1.037) (1.079) (1.128) (0.744) 

R&D team size -0.113 -0.271 -0.225 0.193 -0.112 -0.308 -0.151 

 (0.170) (0.235) (0.178) (0.170) (0.121) (0.213) (0.169) 

Network reach -6.315*** -3.386***  -3.858*** -2.589**  -2.959*** 

 (1.336) (1.022)  (1.046) (0.948)  (0.697) 

Network clusters -1.804** -1.447**  -2.121*** -0.651+  -1.352*** 

 (0.604) (0.532)  (0.460) (0.394)  (0.355) 

TransferALT   1.938***     

   (0.330)     

DiversityALT   0.911**     

   (0.344)     

Transfert0     3.360***  3.361***  

    (0.482)  (0.311)  

Diversityt0      1.048** 0.557*  

     (0.397) (0.274)  

Firm innovationt0      0.000* 0.000*** 

      (0.000) (0.000) 

Year dummies (included) (included) (included) (included) (included) (included) (included) 

Constant -1.668+ -0.383 1.305* -2.552*** -1.398* 1.703** 3.276*** 

 (0.885) (0.787) (0.571) (0.686) (0.678) (0.585) (0.515) 

Observations 441 431 412 412 405 412 484 

Number of firms 50  49 48 48 47 48 50 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
ALT Alternative measures for knowledge transfer and diversity 
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Table 10 Robustness check for firm innovation 
  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) 

 
New products New products New products New products New products New products 

Firm size 0.419*** 0.400*** 0.397*** 0.384*** 0.432*** 0.389*** 

 
(0.049) (0.052) (0.050) (0.046) (0.047) (0.047) 

Medical device focus 0.086 0.028 0.086 0.101 -0.005 0.088 

 
(0.228) (0.217) (0.221) (0.235) (0.245) (0.238) 

Firm performance 1.001 0.837 0.705 1.477* 1.455* 1.492* 

 
(0.993) (0.964) (0.911) (0.709) (0.739) (0.698) 

Firm leverage 0.675 0.777* 0.741+ 0.725+ 0.753+ 0.789+ 

 
(0.426) (0.367) (0.380) (0.424) (0.428) (0.445) 

R&D intensity -3.536+ -3.947* -4.061* -4.010* -3.469* -4.291** 

 
(1.819) (2.003) (1.962) (1.651) (1.580) (1.634) 

Firm slack -0.046+ -0.059* -0.053* -0.042+ -0.044+ -0.039+ 

 
(0.025) (0.029) (0.025) (0.025) (0.025) (0.023) 

Acquisitions 0.337* 0.326** 0.342** 0.353* 0.321* 0.360* 

 
(0.148) (0.120) (0.126) (0.149) (0.144) (0.145) 

Divestments 0.089** 0.063+ 0.068+ 0.081** 0.118*** 0.104** 

 
(0.033) (0.038) (0.039) (0.030) (0.035) (0.037) 

R&D concentration -0.585 -0.224 -0.370 -0.184 -0.537+ -0.140 

 
(0.372) (0.384) (0.385) (0.329) (0.287) (0.322) 

R&D recruitment -0.141 -0.213 -0.245 -0.047 0.017 -0.024 

 
(0.326) (0.289) (0.318) (0.231) (0.228) (0.233) 

R&D scientists 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Network density 0.076 0.057 0.050 0.131+ 0.086 0.117 

 
(0.102) (0.100) (0.102) (0.078) (0.082) (0.074) 

Network isolate ratio -0.299 -0.402 -0.293 -0.522 -0.379 -0.429 

 
(0.701) (0.604) (0.655) (0.588) (0.584) (0.593) 

R&D team size -0.267 -0.263 -0.232 -0.229 -0.246+ -0.180 

 
(0.213) (0.211) (0.216) (0.143) (0.130) (0.129) 

Knowledge transfer 0.539 
 

0.563 
   

 
(0.375) 

 
(0.384) 

   
Knowledge diversity 

 
0.652*** 0.654*** 

   

  
(0.172) (0.177) 

   
Reach 

   
-1.336** 

 
-1.369** 

    
(0.454) 

 
(0.486) 

Clusters 
    

-0.329 -0.354 

     
(0.431) (0.412) 

Year dummies (included) (included) (included) (included) (included) (included) 

Constant 0.697 0.647 0.526 0.775 0.818 0.908 

 
(0.600) (0.583) (0.589) (0.488) (0.572) (0.562) 

Observations 378 381 378 438 438 438 

Number of firms 47 47 47 49 49 49 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table 11 Robustness checks for estimation methods 
  (Model 1) (Model 2) (Model 3) (Model 4) 

 Firm innovation Firm innovation Firm innovation Firm innovation 

Method Neg. binomial-FE Neg. binomial-FE Poisson-QMLE Poisson-QMLE 

Firm size 0.332*** 0.209*** 0.508** 0.575*** 

 (0.057) (0.054) (0.161) (0.147) 

Medical device focus -0.212 -0.532** -0.745 -1.157* 

 (0.197) (0.195) (0.499) (0.544) 

Firm performance 0.003 0.510 0.222 0.968 

 (0.556) (0.500) (1.087) (0.937) 

Firm leverage 0.089 0.138 0.384 0.609 

 (0.364) (0.357) (0.582) (0.546) 

R&D intensity 0.217 1.376 1.081 1.261 

 (1.129) (1.025) (1.397) (1.335) 

Firm slack -0.003 0.013 -0.011 0.004 

 (0.026) (0.023) (0.026) (0.026) 

Acquisitions 0.231* 0.209+ 0.098 0.051 

 (0.098) (0.110) (0.074) (0.077) 

Divestments -0.530* -0.579* -0.562 -0.421 

 (0.245) (0.254) (0.371) (0.383) 

R&D concentration 0.079 0.711* -0.506 -0.025 

 (0.325) (0.334) (0.505) (0.555) 

R&D recruitment 0.203 0.808** -0.206 0.105 

 (0.280) (0.248) (0.307) (0.241) 

R&D scientists 0.001*** 0.001*** 0.001+ 0.001+ 

 (0.000) (0.000) (0.000) (0.000) 

Network density -0.001 0.094 -0.027 -0.023 

 (0.064) (0.058) (0.058) (0.058) 

Network isolate ratio -2.086** -1.797* -1.508 -1.448 

 (0.796) (0.711) (1.270) (1.058) 

R&D team size -0.335* -0.245* -0.372** -0.335* 

 (0.141) (0.117) (0.120) (0.138) 

Knowledge diversity 0.788***  0.538*  

 (0.188)  (0.273)  

Knowledge transfer 1.987***  1.382***  

 (0.247)  (0.396)  

Reach  -3.484***  -1.879+ 

  (0.644)  (0.995) 

Clusters  -1.330***  -0.605+ 

  (0.285)  (0.355) 

Year dummies (included) (included) (included) (included) 

Constant -0.925+ 0.841+   

 (0.517) (0.483)   

Observations 407 483 407 483 

Number of firms 43 49 43 49 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table 12 Robustness checks for mediation effects 
  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) 

 Firm inno. Firm inno. Firm inno. Firm inno. Firm inno. Firm inno. Firm inno. 

Firm size 0.361* 0.416** 0.365** 0.214 0.374 0.209 0.322* 

 (0.143) (0.136) (0.137) (0.167) (0.338) (0.158) (0.143) 

Medical device focus 0.009 -0.685 -0.129 -0.670 -1.029 -0.663 -0.250 

 (0.713) (0.778) (0.638) (0.569) (0.803) (0.535) (0.568) 

Firm performance -0.246 -0.727 -0.362 -0.662 -1.290 -0.768 -0.248 

 (1.112) (1.055) (1.051) (1.293) (1.436) (1.225) (1.028) 

Firm leverage -0.186 0.030 -0.201 -0.171 0.132 -0.156 -0.194 

 (0.595) (0.602) (0.577) (0.685) (0.747) (0.660) (0.573) 

R&D intensity 0.902 0.073 0.797 -2.074 -1.096 -2.152 -0.051 

 (1.796) (1.692) (1.717) (1.848) (2.407) (1.740) (2.035) 

Firm slack 0.031 -0.013 0.024 -0.078* -0.056 -0.081* -0.006 

 (0.042) (0.057) (0.039) (0.039) (0.056) (0.037) (0.057) 

Acquisitions 0.182 0.220 0.207 0.266 0.228 0.247 0.223 

 (0.204) (0.150) (0.188) (0.197) (0.146) (0.181) (0.180) 

Divestments -0.326 -0.320 -0.329 -0.476 -0.353 -0.473 -0.379 

 (0.346) (0.342) (0.345) (0.393) (0.418) (0.386) (0.365) 

R&D concentration -0.724 -0.153 -0.609 0.443 0.046 0.333 -0.188 

 (0.696) (0.801) (0.643) (0.765) (0.790) (0.700) (0.829) 

R&D recruitment 0.093 0.233 0.127 -0.074 0.220 -0.045 0.042 

 (0.429) (0.350) (0.400) (0.406) (0.615) (0.385) (0.372) 

R&D scientists 0.001*** 0.002*** 0.001*** 0.002*** 0.002*** 0.002*** 0.001*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Network density -0.039 -0.139 -0.048 -0.256* -0.230* -0.260** -0.112 

 (0.109) (0.132) (0.104) (0.101) (0.095) (0.096) (0.131) 

Network isolate ratio -0.876 -1.708 -1.022 -1.049 -1.548 -0.902 -1.169 

 (1.041) (1.256) (0.974) (1.186) (1.701) (1.115) (0.905) 

Knowledge transfer 5.911* 2.489 5.403*    3.823 

 (2.517) (3.530) (2.234)    (2.755) 

Knowledge diversity    2.976** 0.577 2.815** 1.101 

    (1.133) (4.310) (1.036) (1.392) 

Year dummies (included) (included) (included) (included) (included) (included) (included) 

Observations 381 381 381 386 386 386 381 

Number of firms 40 40 40 42 42 42 40 

First-stage model:        

Instrument(s): Network 
reach 

Network 
clusters 

Reach and 
clusters 

Network 
reach 

Network 
clusters 

Reach and 
clusters 

Reach and 
clusters 

Model validity (F-test): 4.71* 1.77 2.45+ 15.30*** 1.41 9.59***  9.66*** 

Hansen J statistic: (e.e.i.) (e.e.i.) 0.649 (e.e.i.) (e.e.i.) 0.217 (e.e.i.) 

Hansen J p-value:   0.421   0.641  

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table 13 Robustness checks for network size 
 Networks of at least 15 R&D scientists Networks of at least 50 R&D scientists 

  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) (Model 8) 

 Transfer Diversity Firm inno. Firm inno. Transfer Diversity Firm inno. Firm inno. 

Firm size -0.003 0.065 0.351*** 0.332*** -0.057 0.099 0.182* 0.283** 

 (0.090) (0.098) (0.078) (0.069) (0.079) (0.166) (0.071) (0.093) 

Medical device focus 0.119 -0.372 0.098 0.205 -0.201 -0.990* 0.031 0.202 

 (0.426) (0.338) (0.225) (0.208) (0.480) (0.397) (0.218) (0.244) 

Firm performance 2.140+ 1.389 2.111* 0.794 1.518 0.926 0.505 -1.236 

 (1.167) (1.101) (0.847) (0.768) (1.495) (1.765) (1.183) (1.048) 

Firm leverage 0.786 0.059 0.781 0.110 0.628 0.215 0.201 -0.414 

 (0.828) (0.450) (0.508) (0.390) (0.865) (0.548) (0.654) (0.390) 

R&D intensity 0.282 0.420 1.091 2.477 0.201 0.159 2.606+ 2.765+ 

 (1.430) (1.230) (1.661) (1.896) (1.906) (1.747) (1.391) (1.501) 

Firm slack 0.051* 0.047+ 0.000 -0.040* 0.061 0.196+ 0.156 0.128 

 (0.023) (0.026) (0.017) (0.020) (0.144) (0.109) (0.122) (0.126) 

Acquisitions 0.215 0.080 0.122 0.154 0.388* -0.062 0.056 0.222 

 (0.224) (0.125) (0.098) (0.119) (0.166) (0.128) (0.134) (0.176) 

Divestments 0.034 -0.460 -0.139 -0.228 0.063 -0.600* -1.193*** -1.589*** 

 (0.164) (0.377) (0.196) (0.239) (0.158) (0.304) (0.205) (0.134) 

R&D concentration 2.218** 0.690 0.488 0.011 3.938* 1.323 0.764 0.092 

 (0.819) (0.577) (0.394) (0.351) (1.636) (1.143) (0.565) (0.417) 

R&D recruitment 0.578 0.975* 0.465 0.263 0.644 0.519 0.689+ -0.268 

 (0.514) (0.448) (0.284) (0.323) (0.422) (0.494) (0.404) (0.576) 

R&D scientists 0.000 0.001+ 0.001** 0.001*** 0.000 0.001+ 0.001*** 0.001*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Network density 0.113 0.186* -0.012 0.056 0.166 -0.004 0.189+ 0.148+ 

 (0.122) (0.074) (0.078) (0.099) (0.213) (0.163) (0.108) (0.088) 

Network isolate ratio 0.178 -0.559 -0.428 -0.151 0.070 1.425 0.306 0.377 

 (1.547) (1.074) (1.206) (1.270) (1.792) (1.428) (1.018) (1.057) 

R&D team size -0.091 -0.017 -0.217 -0.261 0.241 0.593 -0.188 -0.542* 

 (0.232) (0.127) (0.171) (0.217) (0.187) (0.414) (0.244) (0.264) 

Reach -7.205* -4.246** -1.630  -13.825* -4.560 -6.519*  

 (3.127) (1.347) (1.089)  (6.222) (4.300) (2.628)  

Clusters -1.678** -1.031* -2.037***  -0.994 -1.797* -3.795***  

 (0.549) (0.434) (0.503)  (0.805) (0.850) (0.759)  

Knowledge diversity    0.425    0.941*** 

    (0.277)    (0.244) 

Knowledge transfer    3.031***    2.628*** 

    (0.337)    (0.512) 

Year dummies (included) (included) (included) (included) (included) (included) (included) (included) 

Constant -1.902* -0.123 4.060*** 2.337*** -2.553+ -0.896 5.890*** 2.775** 

 (0.894) (0.714) (0.556) (0.596) (1.543) (1.617) (0.857) (0.924) 

Observations 343 343 343 343 233 233 233 233 

Number of firms 39 39 39 39 25 25 25 25 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table 14 Robustness checks for outliers 
 Without outliers Winsorized outliers 

  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) (Model 8) 

 Firm inno. Firm inno. Firm inno. Firm inno. Firm inno. Firm inno. Firm inno. Firm inno. 

Firm size 0.337*** 0.429*** 0.329*** 0.410*** 0.342*** 0.439*** 0.334*** 0.418*** 

 (0.064) (0.057) (0.056) (0.068) (0.062) (0.056) (0.055) (0.066) 

Medical device focus 0.143 -0.044 0.042 0.081 0.146 -0.031 0.047 0.090 

 (0.248) (0.247) (0.224) (0.269) (0.250) (0.250) (0.225) (0.267) 

Firm performance 1.316+ 1.602** 1.422* 0.785 1.275+ 1.553** 1.382* 0.713 

 (0.693) (0.536) (0.622) (0.486) (0.680) (0.528) (0.607) (0.492) 

Firm leverage 0.349 0.502 0.503 -0.289 0.548 0.734 0.703 -0.052 

 (0.444) (0.481) (0.502) (0.422) (0.457) (0.506) (0.517) (0.439) 

R&D intensity 3.825* 4.093** 3.801* 3.284* 3.984* 4.243** 3.942** 3.333* 

 (1.834) (1.489) (1.532) (1.541) (1.797) (1.468) (1.495) (1.564) 

Firm slack -0.020 -0.024 -0.001 -0.005 -0.022 -0.028 -0.003 -0.008 

 (0.021) (0.020) (0.016) (0.024) (0.021) (0.021) (0.016) (0.024) 

Acquisitions 0.358* 0.280* 0.375* 0.351+ 0.203 0.125 0.221 0.236 

 (0.164) (0.140) (0.183) (0.210) (0.154) (0.160) (0.172) (0.187) 

Divestments -0.314 -0.213 -0.219 -0.186 -0.307+ -0.206 -0.210 -0.180 

 (0.195) (0.249) (0.225) (0.357) (0.186) (0.238) (0.214) (0.346) 

R&D concentration 0.920** 0.367 0.919** 0.221 0.940** 0.369 0.939** 0.203 

 (0.326) (0.338) (0.343) (0.381) (0.321) (0.335) (0.338) (0.379) 

R&D recruitment -0.101 0.143 -0.067 0.168 -0.132 0.117 -0.087 0.191 

 (0.272) (0.266) (0.292) (0.377) (0.281) (0.277) (0.300) (0.380) 

R&D scientists 0.002*** 0.002*** 0.002*** 0.002*** 0.002** 0.001** 0.001** 0.002** 

 (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Network density 0.174* 0.045 0.116 0.088 0.190* 0.060 0.129 0.104 

 (0.086) (0.093) (0.080) (0.104) (0.087) (0.095) (0.081) (0.110) 

Network isolate ratio -0.965 -0.684 -0.646 -2.179+ -0.874 -0.560 -0.548 -2.020+ 

 (0.686) (0.810) (0.732) (1.141) (0.683) (0.802) (0.721) (1.124) 

R&D team size -0.332+ -0.349+ -0.173 -0.313 -0.329+ -0.353+ -0.166 -0.316 

 (0.191) (0.187) (0.166) (0.215) (0.190) (0.189) (0.167) (0.224) 

Reach -2.871***  -2.908***  -2.995***  -3.018***  

 (0.719)  (0.704)  (0.731)  (0.711)  

Clusters  -1.330*** -1.364***   -1.333*** -1.378***  

  (0.389) (0.356)   (0.387) (0.353)  

Knowledge diversity    0.524+    0.550* 

    (0.272)    (0.273) 

Knowledge transfer    3.383***    3.393*** 

    (0.324)    (0.330) 

Year dummies (included) (included) (included) (included) (included) (included) (included) (included) 

Constant 2.565*** 3.082*** 3.328*** 1.783** 2.500*** 2.986*** 3.265*** 1.670** 

 (0.446) (0.593) (0.532) (0.606) (0.434) (0.597) (0.527) (0.588) 

Observations 467 467 467 395 484 484 484 412 

Number of firms 50 50 50 48 50 50 50 48 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table 15 Robustness checks for interaction effects 
  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) (Model 8) 

  Transfer Transfer Diversity Diversity Firm innov. Firm innov. Firm innov. Firm innov. 

Firm size 0.073 0.072 0.152+ 0.152+ 0.416*** 0.417*** 0.347*** 0.319*** 

 
(0.102) (0.094) (0.089) (0.089) (0.066) (0.066) (0.057) (0.055) 

Medical device focus 0.398 0.398 -0.298 -0.297 0.087 0.088 0.010 0.044 

 
(0.334) (0.326) (0.313) (0.313) (0.267) (0.265) (0.224) (0.217) 

Firm performance 2.331** 2.323** 0.158 0.156 0.884+ 0.881+ 1.477* 1.605* 

 
(0.787) (0.795) (0.647) (0.647) (0.476) (0.472) (0.639) (0.695) 

Firm leverage 0.658 0.667 -0.180 -0.177 -0.186 -0.188 0.506 0.484 

 
(0.771) (0.769) (0.428) (0.430) (0.425) (0.429) (0.496) (0.546) 

R&D intensity 0.767 0.759 3.154** 3.148** 3.515* 3.507* 3.885** 4.138** 

 
(1.290) (1.336) (1.207) (1.207) (1.534) (1.545) (1.490) (1.577) 

Firm slack 0.006 0.006 0.062+ 0.062+ -0.006 -0.006 -0.002 0.003 

 
(0.033) (0.033) (0.036) (0.035) (0.024) (0.024) (0.016) (0.015) 

Acquisitions 0.292 0.290 0.129 0.129 0.273 0.274 0.296+ 0.283+ 

 
(0.236) (0.237) (0.116) (0.117) (0.173) (0.174) (0.153) (0.145) 

Divestments -0.007 0.001 -0.797+ -0.797+ -0.187 -0.187 -0.220 -0.197 

 
(0.215) (0.209) (0.475) (0.473) (0.354) (0.354) (0.220) (0.237) 

R&D concentration 2.624*** 2.613*** 0.621 0.621 0.199 0.197 0.932** 0.927** 

 
(0.626) (0.618) (0.492) (0.490) (0.378) (0.378) (0.346) (0.337) 

R&D recruitment 0.706 0.711 0.536* 0.535* 0.147 0.150 -0.109 -0.045 

 
(0.675) (0.664) (0.270) (0.269) (0.383) (0.382) (0.295) (0.295) 

R&D scientists 0.000 0.000 0.001+ 0.001+ 0.002*** 0.002*** 0.002*** 0.002*** 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Network density 0.168+ 0.173* 0.181* 0.180* 0.090 0.091 0.096 0.131 

 
(0.087) (0.085) (0.077) (0.078) (0.105) (0.104) (0.079) (0.086) 

Network isolate ratio 0.445 0.417 -0.185 -0.181 -2.222+ -2.229+ -0.761 -0.978 

 
(1.476) (1.574) (1.259) (1.248) (1.142) (1.153) (0.763) (0.815) 

R&D team size -0.248 -0.268 -0.068 -0.065 -0.316 -0.318 -0.159 -0.226 

 
(0.232) (0.293) (0.104) (0.111) (0.212) (0.204) (0.167) (0.190) 

Reachmc -5.843** -5.861** -2.939** -2.923** 
  

-2.897*** -3.414*** 

 
(2.015) (1.846) (1.010) (0.921) 

  
(0.701) (0.772) 

Clustersmc -1.326 -1.260 -0.866* -0.870* 
  

-1.422*** -1.483*** 

 
(0.808) (0.977) (0.367) (0.368) 

  
(0.361) (0.370) 

Reachmc x Clustersmc  
1.632 

 
-0.207 

   
2.795 

 
(6.835) 

 
(3.257) 

   
(2.275) 

Knowledge 
diversitymc 

    
0.563* 0.568* 

  

    
(0.274) (0.268) 

  
Knowledge 

diffusionmc 
    

3.474*** 3.464*** 
  

    
(0.326) (0.329) 

  
Diversitymc x 

Diffusionmc 
     

0.139 
  

     
(1.371) 

  
Year dummies (included) (included) (included) (included) (included) (included) (included) (included) 

Constant -4.885*** -4.842*** -2.244** -2.249** 2.430*** 2.431*** 1.831*** 1.947*** 

 
(0.761) (0.820) (0.722) (0.735) (0.618) (0.618) (0.492) (0.492) 

Observations 441 441 431 431 412 412 484 484 

Number of firms 50 50 49 49 48 48 50 50 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 

mc: mean-centered variable 
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Table 16 Robustness checks for knowledge transfer at patent level 
  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) 

 
Times cited Times cited Times cited Dummy cited Dummy cited Dummy cited 

Method Neg. binom. Neg. binom. Neg. binom. Probit Probit Probit 

Year t+2 0.740*** 0.738*** 0.745*** 0.393*** 0.392*** 0.396*** 

 
(0.038) (0.038) (0.037) (0.020) (0.020) (0.020) 

Year t+3 1.089*** 1.080*** 1.098*** 0.541*** 0.537*** 0.547*** 

 
(0.037) (0.038) (0.038) (0.020) (0.020) (0.020) 

Nr cites made 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

% Self-citations 5.334*** 6.022*** 4.986*** 2.461*** 2.701*** 2.196*** 

 
(0.538) (0.573) (0.583) (0.269) (0.283) (0.290) 

% Patents in same class 1.174*** 1.206*** 1.169*** 0.508*** 0.520*** 0.501*** 

 
(0.101) (0.101) (0.101) (0.050) (0.050) (0.051) 

% Patents in proximity 1.015*** 1.029*** 0.901*** 0.415*** 0.420*** 0.362*** 

 
(0.082) (0.082) (0.083) (0.044) (0.044) (0.044) 

Number of inventors 0.001 -0.002 -0.005 0.007 0.006 0.005 

 
(0.009) (0.009) (0.009) (0.005) (0.005) (0.005) 

Closeness centrality 2.259*** 2.533*** 3.424*** 1.294*** 1.419*** 1.787*** 

 
(0.169) (0.186) (0.210) (0.088) (0.099) (0.107) 

Reach 
 

-1.235*** 0.231 
 

-0.468** 0.304 

  
(0.344) (0.374) 

 
(0.173) (0.191) 

Closeness x Reach 
  

-7.851*** 
  

-3.565*** 

   
(0.858) 

  
(0.408) 

Firm dummies (included) (included) (included) (included) (included) (included) 

Year dummies (included) (included) (included) (included) (included) (included) 

Patent class dummies (included) (included) (included) (included) (included) (included) 

Constant -2.986*** -3.025*** -2.858*** -1.594*** -1.605*** -1.528*** 

 
(0.194) (0.194) (0.196) (0.098) (0.098) (0.098) 

Observations 44,112 44,112 44,112 43,983 43,983 43,983 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table 17 Robustness checks for knowledge transfer at citation level 
  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) 

 
Citation Citation Citation Citation Citation Citation 

  Probit Probit Probit RE logit RE logit RE logit 

Time difference 0.180*** 0.193*** 0.198*** 0.626*** 0.658*** 0.672*** 

 
(0.005) (0.005) (0.005) (0.019) (0.020) (0.021) 

Same tech main class 0.442*** 0.406*** 0.413*** 1.337*** 1.231*** 1.243*** 

 
(0.008) (0.009) (0.009) (0.033) (0.034) (0.034) 

Same tech subclass 0.866*** 0.732*** 0.720*** 2.301*** 2.151*** 2.118*** 

 
(0.011) (0.012) (0.012) (0.057) (0.063) (0.063) 

Spatial distance -0.099*** -0.028*** -0.031*** -0.260*** -0.088*** -0.094*** 

 
(0.001) (0.002) (0.002) (0.005) (0.007) (0.007) 

Social proximity 
 

1.162*** 
  

2.758*** 
 

  
(0.015) 

  
(0.068) 

 
Same inventor(s) 

  
1.051*** 

  
2.540*** 

   
(0.015) 

  
(0.068) 

Past collaborators 
  

0.523*** 
  

1.143*** 

   
(0.014) 

  
(0.057) 

Shared acquaintance 
  

0.199*** 
  

0.557*** 

   
(0.015) 

  
(0.058) 

Indirect tie 
  

-0.117*** 
  

-0.362*** 

   
(0.013) 

  
(0.045) 

Firm dummies (included) (included) (included) (included) (included) (included) 

Year dummies (included) (included) (included) (included) (included) (included) 

Firm-year citation mean (included) (included) (included) (included) (included) (included) 

Patent citation mean 17.790*** 17.798*** 17.706*** 133.557*** 127.478*** 126.016*** 

 
(0.197) (0.200) (0.199) (5.224) (5.366) (5.401) 

Constant -3.097*** -3.676*** -3.637*** -7.784*** -9.339*** -8.924*** 

  (0.052) (0.055) (0.055) (0.061) (0.078) (0.081) 

Observations 5,612,009 5,612,009 5,612,009 66,441 66,441 66,441 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 

 

 



 
 

 

Robustness Checks for Chapter 3 

Table 18 Robustness checks for non-linear effects 
  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) (Model 8) 

 
Innovation Innovation Innovation Innovation Innovation Innovation Innovation Innovation 

Firm size 0.231*** 0.195*** 0.225*** 0.195*** 0.234*** 0.192*** 0.250*** 0.203*** 

 
(0.053) (0.053) (0.053) (0.054) (0.053) (0.053) (0.053) (0.054) 

Medical device focus -0.324 -0.363+ -0.386+ -0.362+ -0.300 -0.324 -0.306 -0.326 

 
(0.214) (0.212) (0.214) (0.216) (0.214) (0.218) (0.218) (0.221) 

Firm performance 0.826 0.791 0.813 0.791 0.774 0.859+ 0.629 0.795 

 
(0.511) (0.498) (0.511) (0.498) (0.507) (0.497) (0.504) (0.500) 

Firm leverage -0.018 -0.231 -0.097 -0.230 -0.214 -0.421 -0.261 -0.434 

 
(0.393) (0.392) (0.397) (0.393) (0.396) (0.404) (0.403) (0.408) 

Firm slack -0.011 -0.004 -0.006 -0.004 -0.010 -0.008 -0.000 -0.004 

 
(0.025) (0.024) (0.024) (0.024) (0.024) (0.025) (0.024) (0.024) 

Firm tech. diversity -0.192 -0.189 -0.208 -0.188 -0.206 -0.213 -0.237 -0.225 

 
(0.298) (0.293) (0.297) (0.293) (0.292) (0.288) (0.290) (0.288) 

Acquisitions 0.139 0.149 0.155 0.149 0.140 0.079 0.135 0.079 

 
(0.115) (0.108) (0.116) (0.108) (0.110) (0.104) (0.110) (0.105) 

Divestments -0.541* -0.586* -0.559* -0.586* -0.577* -0.532* -0.541* -0.520* 

 
(0.245) (0.238) (0.243) (0.238) (0.240) (0.240) (0.242) (0.241) 

R&D intensity 2.927** 2.539** 2.819** 2.541** 2.834** 2.872** 2.624** 2.783** 

 
(0.998) (0.963) (0.996) (0.964) (0.981) (0.962) (0.983) (0.969) 

R&D scientists -0.002** -0.001+ -0.002** -0.001 -0.003*** -0.001 -0.004*** -0.002 

 
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

R&D recruitment 0.615* 0.646** 0.663** 0.645** 0.633* 0.597* 0.653** 0.608* 

 
(0.248) (0.248) (0.250) (0.250) (0.247) (0.249) (0.249) (0.249) 

R&D geographic 
conc. 

-0.395 -0.122 -0.450 -0.120 -0.365 -0.173 -0.429 -0.222 
(0.322) (0.326) (0.321) (0.331) (0.321) (0.327) (0.322) (0.333) 

R&D team size -0.426*** -0.360** -0.379** -0.361** -0.454*** -0.418*** -0.457*** -0.423*** 

 
(0.122) (0.120) (0.125) (0.121) (0.119) (0.120) (0.123) (0.121) 

R&D alliance 
duration 

-0.054 -0.065* -0.052 -0.065* -0.055+ -0.037 -0.040 -0.032 
(0.033) (0.032) (0.032) (0.032) (0.033) (0.032) (0.032) (0.033) 

R&D alliance 
strength 

0.020 -0.142 -0.068 -0.140 -0.031 -0.082 -0.062 -0.094 
(0.157) (0.159) (0.164) (0.165) (0.145) (0.145) (0.151) (0.150) 

R&D alliance 
structure 

0.348+ 0.439* 0.421* 0.438* 0.354+ 0.406* 0.330+ 0.393* 
(0.194) (0.193) (0.198) (0.197) (0.192) (0.190) (0.195) (0.194) 

R&D alliances(1) 0.112 0.169* 0.129 0.169* 0.031+ 0.031+ 0.030+ 0.030+ 

 
(0.081) (0.078) (0.081) (0.079) (0.017) (0.018) (0.017) (0.018) 

R&D alliances sq. 
    

-0.004*** 0.002 -0.002 0.002 

     
(0.001) (0.002) (0.001) (0.002) 

Intrafirm connections 0.233** 0.178* 0.180* 0.179* 0.244*** 0.214** 0.220** 0.206** 

 
(0.074) (0.074) (0.080) (0.078) (0.073) (0.075) (0.077) (0.077) 

Intrafirm clustering 0.019*** 0.025*** 0.020*** 0.025*** 0.028*** 0.027*** 0.032*** 0.028*** 

 
(0.004) (0.004) (0.004) (0.004) (0.005) (0.004) (0.005) (0.005) 

Intrafirm efficiency 0.052 0.073 -0.207 0.079 -0.062 0.017 -0.298 -0.095 

 
(0.172) (0.165) (0.218) (0.230) (0.172) (0.168) (0.201) (0.213) 

R&D alliances(1) x 
Intrafirm connect. 

0.064 0.092* 0.140* 0.090 0.023* 0.018 0.018 0.017 
(0.047) (0.047) (0.062) (0.063) (0.012) (0.011) (0.016) (0.016) 

R&D alliances sq. x 
Intrafirm connect. 

    
0.001 0.000 0.003* 0.001 

    
(0.001) (0.001) (0.001) (0.001) 

R&D alliances(1) x 
Intrafirm clustering 

 
-0.006*** 

 
-0.006*** 

 
-0.001*** 

 
-0.001** 

 
(0.001) 

 
(0.001) 

 
(0.000) 

 
(0.000) 

R&D alliances sq. x 
Intrafirm clustering 

     
0.000+ 

 
0.000 

     
(0.000) 

 
(0.000) 

R&D alliances(1) x 
Intrafirm efficiency 

  
0.408+ -0.009 

  
-0.031 -0.007 

  
(0.211) (0.230) 

  
(0.055) (0.060) 

R&D alliances sq. x 
Intrafirm efficiency 

      
0.007+ 0.002 

      
(0.004) (0.004) 

Year dummies (included) (included) (included) (included) (included) (included) (included) (included) 
Constant 0.400 0.598 0.518 0.596 0.744 0.736 0.802 0.769 

 
(0.530) (0.523) (0.533) (0.526) (0.537) (0.527) (0.536) (0.533) 

Observations 483 483 483 483 483 483 483 483 
Number of firms 49 49 49 49 49 49 49 49 
Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
(1) In models 1 to 4, this variables is the natural log of R&D alliances 



 
 

 

Table 19 Robustness checks for R&D alliances 
  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) (Model 8) 

 Innovation Innovation Innovation Innovation Innovation Innovation Innovation Innovation 

Firm size 0.285*** 0.228*** 0.225*** 0.214*** 0.229*** 0.207*** 0.221*** 0.210*** 

 (0.052) (0.053) (0.053) (0.053) (0.053) (0.053) (0.053) (0.053) 

Medical device focus -0.652*** -0.287 -0.300 -0.306 -0.302 -0.333 -0.353+ -0.363+ 

 (0.193) (0.211) (0.212) (0.210) (0.211) (0.210) (0.211) (0.211) 

Firm performance 0.466 0.812 0.811 0.757 0.771 0.741 0.714 0.692 

 (0.492) (0.506) (0.508) (0.495) (0.503) (0.495) (0.502) (0.496) 

Firm leverage -0.062 0.099 0.088 0.032 0.096 -0.004 0.049 -0.013 

 (0.379) (0.379) (0.380) (0.380) (0.379) (0.381) (0.380) (0.381) 

Firm slack -0.012 -0.011 -0.012 -0.010 -0.008 -0.012 -0.009 -0.010 

 (0.024) (0.024) (0.025) (0.024) (0.024) (0.024) (0.024) (0.024) 

Firm tech. diversity -0.434 -0.252 -0.242 -0.200 -0.258 -0.179 -0.236 -0.190 

 (0.294) (0.297) (0.298) (0.296) (0.296) (0.297) (0.296) (0.297) 

Acquisitions 0.250* 0.173 0.175 0.158 0.172 0.160 0.175 0.164 

 (0.123) (0.118) (0.118) (0.115) (0.118) (0.115) (0.119) (0.116) 

Divestments -0.518* -0.494* -0.494* -0.548* -0.514* -0.551* -0.538* -0.562* 

 (0.251) (0.245) (0.244) (0.241) (0.245) (0.239) (0.243) (0.239) 

R&D intensity 2.790** 2.869** 2.853** 2.604** 2.754** 2.522* 2.540* 2.392* 

 (0.983) (1.000) (0.998) (0.985) (1.003) (0.981) (0.998) (0.989) 

R&D scientists 0.001*** -0.001** -0.002** -0.001* -0.001* -0.002** -0.002** -0.002** 

 (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

R&D recruitment 0.589* 0.568* 0.585* 0.552* 0.572* 0.579* 0.630* 0.608* 

 (0.237) (0.248) (0.248) (0.247) (0.249) (0.246) (0.248) (0.247) 

R&D geographic 
conc. 

-0.532 -0.421 -0.411 -0.339 -0.441 -0.313 -0.453 -0.358 

(0.324) (0.323) (0.323) (0.325) (0.323) (0.324) (0.322) (0.326) 

R&D team size -0.260*** -0.487*** -0.475*** -0.469*** -0.480*** -0.441*** -0.430*** -0.423*** 

 (0.077) (0.118) (0.118) (0.117) (0.119) (0.117) (0.120) (0.118) 

R&D alliance 
duration 

-0.028 -0.037 -0.039 -0.023 -0.032 -0.024 -0.031 -0.021 

(0.034) (0.035) (0.035) (0.035) (0.035) (0.035) (0.034) (0.035) 

R&D alliance 
strength 

0.109 0.073 0.084 0.026 0.040 0.040 0.025 0.013 

(0.138) (0.141) (0.140) (0.142) (0.144) (0.140) (0.142) (0.142) 

R&D alliance 
structure 

0.307 0.303 0.308 0.351+ 0.334+ 0.368+ 0.402* 0.408* 

(0.189) (0.189) (0.189) (0.189) (0.190) (0.190) (0.193) (0.193) 

New R&D alliances 0.039* 0.026 0.014 0.065** 0.046+ 0.050* 0.039 0.057* 

 (0.020) (0.020) (0.024) (0.024) (0.026) (0.025) (0.026) (0.026) 

Intrafirm connections  0.258*** 0.257*** 0.259*** 0.244*** 0.251*** 0.214** 0.227** 

  (0.072) (0.072) (0.071) (0.073) (0.070) (0.074) (0.073) 

Intrafirm clustering  0.017*** 0.019*** 0.019*** 0.017*** 0.021*** 0.021*** 0.022*** 

  (0.003) (0.004) (0.003) (0.003) (0.004) (0.004) (0.004) 

Intrafirm efficiency  0.069 0.057 0.172 0.007 0.167 -0.130 0.037 

  (0.174) (0.175) (0.175) (0.180) (0.175) (0.188) (0.205) 

New R&D alliances 
x Intrafirm connect. 

  0.016   0.029+ 0.052* 0.045* 

  (0.017)   (0.017) (0.022) (0.022) 

New R&D alliances 
x Intrafirm cluster 

   -0.001**  -0.001**  -0.001* 

   (0.000)  (0.000)  (0.000) 

New R&D alliances 
x Intrafirm effici. 

    0.062  0.162* 0.084 

    (0.050)  (0.065) (0.072) 

Year dummies (included) (included) (included) (included) (included) (included) (included) (included) 

Constant -0.498 0.469 0.469 0.550 0.507 0.547 0.558 0.576 

 (0.459) (0.527) (0.526) (0.523) (0.527) (0.521) (0.524) (0.521) 

Observations 483 483 483 483 483 483 483 483 

Number of firms 49 49 49 49 49 49 49 49 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table 20 Robustness checks for intrafirm networks and small worlds 
  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) (Model 8) 
 Innovation Innovation Innovation Innovation Innovation Innovation Innovation Innovation 

Firm size 0.195*** 0.186*** 0.198*** 0.194*** 0.191*** 0.232*** 0.221*** 0.220*** 
 (0.054) (0.054) (0.055) (0.054) (0.055) (0.053) (0.053) (0.053) 
Medical device focus -0.478* -0.448* -0.477* -0.474* -0.439* -0.279 -0.337 -0.339 
 (0.197) (0.199) (0.197) (0.197) (0.198) (0.212) (0.216) (0.216) 
Firm performance 0.471 0.464 0.471 0.471 0.461 0.786 0.743 0.732 
 (0.489) (0.490) (0.488) (0.489) (0.489) (0.511) (0.500) (0.499) 
Firm leverage 0.156 0.182 0.154 0.165 0.175 0.127 -0.361 -0.345 
 (0.361) (0.361) (0.362) (0.362) (0.362) (0.379) (0.404) (0.405) 
Firm slack 0.012 0.010 0.012 0.012 0.008 -0.009 -0.002 -0.001 
 (0.022) (0.022) (0.022) (0.022) (0.023) (0.024) (0.024) (0.024) 
Firm tech. diversity -0.675* -0.727* -0.685* -0.686* -0.768** -0.272 -0.217 -0.228 
 (0.282) (0.286) (0.282) (0.284) (0.286) (0.297) (0.288) (0.290) 
Acquisitions 0.201+ 0.192+ 0.207+ 0.203+ 0.202+ 0.145 0.106 0.106 
 (0.110) (0.109) (0.111) (0.110) (0.109) (0.117) (0.106) (0.106) 
Divestments -0.556* -0.525* -0.583* -0.560* -0.585* -0.510* -0.585* -0.587* 
 (0.256) (0.261) (0.258) (0.256) (0.259) (0.245) (0.237) (0.237) 
R&D intensity 1.273 1.204 1.273 1.246 1.212 2.893** 2.749** 2.842** 
 (1.019) (1.028) (1.018) (1.024) (1.024) (1.010) (0.964) (0.989) 
R&D scientists 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** -0.001** -0.003*** -0.003*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) 
R&D recruitment 0.536* 0.510* 0.541* 0.537* 0.511* 0.568* 0.641** 0.637* 
 (0.247) (0.246) (0.247) (0.247) (0.246) (0.248) (0.247) (0.247) 
R&D geographic 

conc. 
0.579 0.496 0.572 0.554 0.478 -0.422 -0.329 -0.329 
(0.354) (0.361) (0.353) (0.359) (0.364) (0.323) (0.324) (0.324) 

R&D team size -0.018 -0.011 -0.020 -0.015 -0.018 -0.483*** -0.406*** -0.409*** 
 (0.081) (0.080) (0.081) (0.081) (0.080) (0.118) (0.117) (0.117) 
R&D alliance 

duration 
-0.033 -0.019 -0.035 -0.032 -0.019 -0.053 -0.039 -0.040 
(0.031) (0.032) (0.031) (0.031) (0.032) (0.033) (0.033) (0.033) 

R&D alliance 
strength 

0.099 0.157 0.089 0.094 0.168 0.094 -0.087 -0.078 
(0.142) (0.146) (0.144) (0.143) (0.148) (0.140) (0.145) (0.147) 

R&D alliance 
structure 

0.144 0.132 0.145 0.145 0.127 0.278 0.390* 0.386* 
(0.181) (0.180) (0.181) (0.181) (0.180) (0.188) (0.191) (0.191) 

R&D alliances 0.022+ -0.007 0.027+ 0.029 -0.019 0.011 0.039** 0.040** 
 (0.012) (0.022) (0.015) (0.021) (0.033) (0.012) (0.015) (0.015) 
Intrafirm connections¹ -4.270*** -4.957*** -4.241*** -4.342*** -5.065*** 0.258*** 0.219** 0.220** 
 (0.940) (1.047) (0.940) (0.953) (1.047) (0.073) (0.074) (0.074) 
Intrafirm clustering¹ -1.025** -1.015** -0.938* -1.003** -0.792* 0.017*** 0.029*** 0.029*** 
 (0.334) (0.333) (0.365) (0.338) (0.366) (0.004) (0.004) (0.004) 
Intrafirm efficiency¹ -0.413 -0.339 -0.377 -0.363 -0.285 0.093 -0.127 -0.120 
 (0.301) (0.303) (0.307) (0.323) (0.320) (0.177) (0.209) (0.210) 
Intrafirm small world      0.000 0.000 0.000 
      (0.000) (0.000) (0.000) 
New R&D alliances x 

Intrafirm connect.¹ 
 -0.303   -0.450*  0.034** 0.034** 
 (0.197)   (0.230)  (0.011) (0.011) 

New R&D alliances x 
Intrafirm clustering¹ 

  0.043  0.127  -0.000*** -0.000*** 
  (0.075)  (0.091)  (0.000) (0.000) 

New R&D alliances x 
Intrafirm efficiency¹ 

   -0.019 0.033  0.033 0.032 
   (0.044) (0.052)  (0.027) (0.027) 

R&D alliances x 
Intrafirm small w. 

       -0.000 
       (0.000) 

Year dummies (included) (included) (included) (included) (included) (included) (included) (included) 
Constant -0.468 -0.527 -0.462 -0.468 -0.532 0.444 0.740 0.732 
 (0.457) (0.458) (0.458) (0.457) (0.460) (0.528) (0.515) (0.516) 
Observations 483 483 483 483 483 483 483 483 

Number of firms 49 49 49 49 49 49 49 49 
Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
¹ Models 1 to 5 use alternative intrafirm network measures (density, transitivity, largest component) 
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Table 21 Robustness checks for firm innovation 
  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) (Model 8) 

 
New prod. New prod. New prod. New prod. New prod. New prod. New prod. New prod. 

Firm size 0.429*** 0.398*** 0.390*** 0.376*** 0.397*** 0.361*** 0.381*** 0.361*** 

 
(0.076) (0.078) (0.078) (0.078) (0.079) (0.078) (0.079) (0.078) 

Medical device focus 0.302 0.376 0.393 0.395 0.372 0.421 0.375 0.419 

 
(0.256) (0.260) (0.261) (0.261) (0.261) (0.262) (0.262) (0.263) 

Firm performance -1.105 -0.922 -0.746 -1.004 -0.940 -0.815 -0.793 -0.819 

 
(0.728) (0.756) (0.769) (0.746) (0.761) (0.756) (0.767) (0.757) 

Firm leverage 0.270 0.269 0.170 0.106 0.266 -0.041 0.104 -0.045 

 
(0.335) (0.334) (0.341) (0.340) (0.334) (0.349) (0.346) (0.351) 

Firm slack -0.007 -0.015 -0.019 -0.009 -0.014 -0.013 -0.013 -0.013 

 
(0.030) (0.031) (0.032) (0.031) (0.032) (0.031) (0.031) (0.031) 

Firm tech. diversity -0.035 0.083 0.005 0.081 0.086 -0.021 -0.014 -0.022 

 
(0.291) (0.300) (0.304) (0.299) (0.300) (0.304) (0.305) (0.304) 

Acquisitions 0.345** 0.332** 0.312* 0.313* 0.334** 0.287* 0.321* 0.288* 

 
(0.128) (0.128) (0.127) (0.124) (0.129) (0.123) (0.127) (0.123) 

Divestments 0.099 0.098 0.068 0.075 0.099 0.036 0.060 0.035 

 
(0.110) (0.112) (0.113) (0.115) (0.113) (0.115) (0.115) (0.115) 

R&D intensity -9.892*** -10.700*** -9.957*** -10.848*** -10.771*** -9.950*** -10.110*** -9.967*** 

 
(1.878) (1.996) (2.022) (1.942) (2.026) (1.954) (2.010) (1.961) 

R&D scientists 0.001*** 0.000 -0.001 0.000 0.000 -0.001 -0.001 -0.001 

 
(0.000) (0.000) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) 

R&D recruitment 0.307 0.340 0.327 0.337 0.343 0.321 0.342 0.322 

 
(0.232) (0.236) (0.237) (0.239) (0.237) (0.240) (0.238) (0.240) 

R&D geographic conc. -0.346 -0.358 -0.396 -0.373 -0.365 -0.423 -0.464 -0.428 

 
(0.368) (0.367) (0.365) (0.368) (0.368) (0.366) (0.369) (0.370) 

R&D team size -0.212* -0.215 -0.248+ -0.203 -0.211 -0.244+ -0.235 -0.243 

 
(0.096) (0.145) (0.148) (0.145) (0.147) (0.148) (0.149) (0.149) 

R&D alliance duration -0.027 -0.026 -0.036 -0.016 -0.025 -0.028 -0.033 -0.027 

 
(0.031) (0.031) (0.031) (0.031) (0.031) (0.031) (0.031) (0.031) 

R&D alliance strength 0.046 0.054 0.082 0.014 0.049 0.047 0.061 0.046 

 
(0.125) (0.126) (0.125) (0.129) (0.129) (0.126) (0.126) (0.127) 

R&D alliance structure -0.279+ -0.238 -0.252 -0.219 -0.233 -0.234 -0.227 -0.232 

 
(0.155) (0.156) (0.158) (0.157) (0.158) (0.159) (0.160) (0.160) 

R&D alliances 0.015 0.011 0.001 0.030* 0.013 0.019 0.005 0.019 

 
(0.011) (0.011) (0.013) (0.013) (0.013) (0.014) (0.013) (0.014) 

Intrafirm connections 
 

0.061 0.090 0.047 0.056 0.077 0.068 0.075 

  
(0.085) (0.087) (0.085) (0.088) (0.086) (0.089) (0.088) 

Intrafirm clustering 
 

0.006+ 0.010* 0.007* 0.006+ 0.013** 0.012** 0.013** 

  
(0.003) (0.004) (0.003) (0.003) (0.004) (0.004) (0.004) 

Intrafirm efficiency 
 

-0.042 -0.071 -0.060 -0.060 -0.105 -0.210 -0.117 

  
(0.161) (0.160) (0.157) (0.184) (0.157) (0.196) (0.202) 

R&D alliances x 
Intrafirm connections 

  
0.016 

  
0.020* 0.024* 0.021+ 

  
(0.010) 

  
(0.010) (0.012) (0.012) 

R&D alliances x 
Intrafirm clustering 

   
-0.000** 

 
-0.000** 

 
-0.000** 

   
(0.000) 

 
(0.000) 

 
(0.000) 

R&D alliances x 
Intrafirm efficiency 

    
0.004 

 
0.030 0.003 

    
(0.021) 

 
(0.025) (0.027) 

Year dummies (included) (included) (included) (included) (included) (included) (included) (included) 

Constant 0.335 0.596 0.760 0.816 0.607 1.057 0.908 1.067 

 
(0.639) (0.718) (0.724) (0.716) (0.720) (0.724) (0.732) (0.730) 

Observations 422 422 422 422 422 422 422 422 

Number of firms 47 47 47 47 47 47 47 47 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table 22 Robustness checks for outliers 
 Without outliers Winsorized outliers 

  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) (Model 8) 

 Innovation Innovation Innovation Innovation Innovation Innovation Innovation Innovation 

Firm size 0.219*** 0.201*** 0.217*** 0.202*** 0.228*** 0.211*** 0.226*** 0.213*** 

 (0.053) (0.053) (0.054) (0.053) (0.052) (0.052) (0.052) (0.052) 

Medical device focus -0.369+ -0.417+ -0.417+ -0.422* -0.349 -0.394+ -0.345 -0.395+ 

 (0.216) (0.213) (0.214) (0.214) (0.213) (0.214) (0.212) (0.214) 

Firm performance 0.858+ 0.858+ 0.840+ 0.854+ 0.836+ 0.712 0.840+ 0.712 

 (0.510) (0.498) (0.510) (0.499) (0.500) (0.478) (0.498) (0.479) 

Firm leverage -0.055 -0.289 -0.216 -0.299 0.167 -0.059 0.064 -0.082 

 (0.392) (0.401) (0.403) (0.405) (0.385) (0.388) (0.390) (0.390) 

Firm slack -0.015 -0.010 -0.012 -0.010 -0.014 -0.008 -0.007 -0.006 

 (0.026) (0.025) (0.026) (0.025) (0.025) (0.025) (0.025) (0.025) 

Firm tech. diversity -0.234 -0.309 -0.297 -0.313 -0.343 -0.402 -0.394 -0.414 

 (0.298) (0.293) (0.297) (0.294) (0.296) (0.286) (0.295) (0.287) 

Acquisitions 0.188 0.188 0.209 0.190 0.009 -0.040 0.022 -0.036 

 (0.170) (0.168) (0.169) (0.169) (0.130) (0.121) (0.130) (0.122) 

Divestments -0.493* -0.530* -0.551* -0.534* -0.432+ -0.510* -0.443+ -0.510* 

 (0.240) (0.237) (0.238) (0.238) (0.243) (0.236) (0.240) (0.235) 

R&D intensity 3.060** 2.988** 2.972** 2.979** 3.319*** 3.034** 3.244** 3.016** 

 (0.999) (0.972) (0.993) (0.973) (1.002) (0.958) (0.994) (0.959) 

R&D scientists -0.003*** -0.001 -0.003*** -0.001 -0.002** -0.002** -0.003*** -0.002** 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

R&D recruitment 0.616* 0.665** 0.690** 0.672** 0.622* 0.642** 0.662** 0.653** 

 (0.250) (0.249) (0.253) (0.251) (0.246) (0.243) (0.248) (0.244) 

R&D geographic conc. -0.446 -0.238 -0.439 -0.245 -0.460 -0.311 -0.522 -0.334 

 (0.324) (0.329) (0.322) (0.330) (0.318) (0.320) (0.318) (0.321) 

R&D team size -0.484*** -0.419*** -0.451*** -0.418*** -0.496*** -0.439*** -0.469*** -0.436*** 

 (0.119) (0.117) (0.120) (0.117) (0.119) (0.117) (0.120) (0.117) 

R&D alliance duration -0.047 -0.046 -0.047 -0.046 -0.062+ -0.056+ -0.058+ -0.054+ 

 (0.033) (0.032) (0.032) (0.032) (0.032) (0.033) (0.032) (0.032) 

R&D alliance strength 0.065 -0.035 -0.033 -0.042 0.141 -0.001 0.044 -0.024 

 (0.138) (0.139) (0.145) (0.144) (0.135) (0.137) (0.140) (0.142) 

R&D alliance structure 0.253 0.311+ 0.326+ 0.317+ 0.243 0.307+ 0.286 0.315+ 

 (0.188) (0.188) (0.191) (0.190) (0.186) (0.186) (0.189) (0.186) 

R&D alliances -0.002 0.024 0.016 0.025 -0.018 0.022 -0.003 0.024 

 (0.014) (0.015) (0.016) (0.016) (0.014) (0.014) (0.015) (0.015) 

Intrafirm connections 0.277*** 0.205** 0.227** 0.201** 0.273*** 0.219** 0.227** 0.208** 

 (0.073) (0.074) (0.077) (0.076) (0.074) (0.072) (0.076) (0.074) 

Intrafirm clustering 0.028*** 0.026*** 0.029*** 0.026*** 0.022*** 0.026*** 0.025*** 0.027*** 

 (0.005) (0.004) (0.005) (0.004) (0.005) (0.004) (0.005) (0.004) 

Intrafirm efficiency -0.082 -0.048 -0.263 -0.070 -0.111 -0.123 -0.376+ -0.202 

 (0.193) (0.182) (0.205) (0.212) (0.179) (0.169) (0.202) (0.208) 

New R&D alliances x 
Intrafirm connect. 

0.016 0.021* 0.034** 0.023+ 0.018+ 0.023* 0.033** 0.027* 

(0.011) (0.010) (0.013) (0.013) (0.011) (0.010) (0.012) (0.011) 

New R&D alliances x 
Intrafirm clustering 

 -0.001***  -0.001***  -0.001***  -0.001*** 

 (0.000)  (0.000)  (0.000)  (0.000) 

New R&D alliances x 
Intrafirm efficiency 

  0.097* 0.009   0.070** 0.018 

  (0.039) (0.047)   (0.026) (0.027) 

Year dummies (included) (included) (included) (included) (included) (included) (included) (included) 

Constant 0.861 0.827 1.007+ 0.844 0.619 0.877+ 0.787 0.912+ 

 (0.535) (0.519) (0.532) (0.525) (0.528) (0.513) (0.528) (0.516) 

Observations 466 466 466 466 483 483 483 483 

Number of firms 49 49 49 49 49 49 49 49 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table 23 Robustness checks for estimation method 
  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) (Model 8) 

 
Innovation Innovation Innovation Innovation Innovation Innovation Innovation Innovation 

Method Random-effect negative binomial Fixed-effect Poisson QMLE 

Firm size 0.213*** 0.192*** 0.217*** 0.198*** 0.517*** 0.408** 0.514*** 0.408** 

 
(0.045) (0.043) (0.045) (0.043) (0.134) (0.131) (0.136) (0.131) 

Medical device focus 0.132 0.154 0.064 0.121 -0.984+ -0.806 -0.981+ -0.804 

 
(0.185) (0.178) (0.183) (0.180) (0.532) (0.502) (0.535) (0.498) 

Firm performance 1.482** 1.411** 1.352** 1.355** 0.445 0.255 0.435 0.262 

 
(0.451) (0.431) (0.451) (0.434) (0.713) (0.575) (0.702) (0.575) 

Firm leverage -0.093 -0.286 -0.206 -0.328 0.669 0.625 0.656 0.638 

 
(0.361) (0.364) (0.367) (0.367) (0.540) (0.479) (0.537) (0.484) 

Firm slack -0.012 -0.002 -0.000 0.002 -0.013 0.000 -0.009 -0.003 

 
(0.022) (0.021) (0.022) (0.021) (0.024) (0.024) (0.030) (0.028) 

Firm tech. diversity 0.124 0.128 0.086 0.117 -0.064 -0.164 -0.063 -0.167 

 
(0.258) (0.247) (0.255) (0.247) (0.486) (0.451) (0.480) (0.454) 

Acquisitions 0.086 0.054 0.111 0.066 -0.017 -0.012 -0.015 -0.014 

 
(0.105) (0.095) (0.106) (0.096) (0.076) (0.065) (0.077) (0.064) 

Divestments -0.495* -0.568* -0.525* -0.572* -0.428 -0.455 -0.429 -0.455 

 
(0.242) (0.236) (0.241) (0.235) (0.351) (0.348) (0.350) (0.349) 

R&D intensity 4.131*** 3.842*** 3.854*** 3.735*** 1.289 1.013 1.219 1.080 

 
(0.880) (0.829) (0.877) (0.836) (1.113) (0.979) (1.143) (1.020) 

R&D scientists -0.003*** -0.003*** -0.004*** -0.003*** -0.002** -0.002** -0.002* -0.002* 

 
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

R&D recruitment 0.672** 0.716** 0.739** 0.742** 0.131 0.148 0.145 0.134 

 
(0.245) (0.243) (0.247) (0.244) (0.258) (0.253) (0.278) (0.273) 

R&D geographic 
conc. 

-0.342 -0.162 -0.415 -0.211 -0.704 -0.660 -0.738 -0.624 

(0.282) (0.278) (0.280) (0.280) (0.480) (0.435) (0.534) (0.483) 

R&D team size -0.644*** -0.593*** -0.586*** -0.575*** -0.393** -0.401** -0.394** -0.400** 

 
(0.115) (0.110) (0.116) (0.111) (0.133) (0.130) (0.134) (0.129) 

R&D alliance 
duration 

-0.063* -0.068* -0.057+ -0.064* -0.001 0.010 0.000 0.008 

(0.030) (0.031) (0.030) (0.031) (0.038) (0.039) (0.038) (0.039) 

R&D alliance strength 0.166 0.020 0.039 -0.026 -0.196 -0.229* -0.205+ -0.220* 

 
(0.130) (0.132) (0.136) (0.137) (0.120) (0.110) (0.113) (0.109) 

R&D alliance 
structure 

0.280 0.342+ 0.365+ 0.372* 0.183 0.204 0.184 0.203 

(0.186) (0.187) (0.188) (0.188) (0.147) (0.136) (0.146) (0.136) 

R&D alliances -0.004 0.038** 0.014 0.042** 0.005 0.027 0.007 0.026 

 
(0.013) (0.014) (0.014) (0.014) (0.010) (0.017) (0.010) (0.017) 

Intrafirm connections 0.438*** 0.400*** 0.373*** 0.375*** 0.114 0.109+ 0.113 0.110+ 

 
(0.069) (0.066) (0.072) (0.069) (0.073) (0.066) (0.072) (0.065) 

Intrafirm clustering 0.029*** 0.034*** 0.032*** 0.035*** 0.015** 0.019*** 0.016* 0.018** 

 
(0.004) (0.004) (0.004) (0.004) (0.006) (0.006) (0.006) (0.006) 

Intrafirm efficiency -0.003 -0.001 -0.324+ -0.151 0.054 0.018 0.012 0.063 

 
(0.170) (0.158) (0.190) (0.195) (0.162) (0.155) (0.201) (0.201) 

R&D alliances x 
Intrafirm connect. 

0.021* 0.026** 0.038*** 0.033** 0.021** 0.021** 0.023* 0.019* 

(0.010) (0.009) (0.011) (0.011) (0.007) (0.008) (0.009) (0.009) 

R&D alliances x 
Intrafirm clustering 

 
-0.001*** 

 
-0.001*** 

 
-0.000** 

 
-0.000** 

 
(0.000) 

 
(0.000) 

 
(0.000) 

 
(0.000) 

R&D alliances x 
Intrafirm efficiency 

  
0.084*** 0.032 

  
0.008 -0.008 

  
(0.024) (0.025) 

  
(0.019) (0.017) 

Year dummies (included) (included) (included) (included) (included) (included) (included) (included) 

Constant 0.412 0.627 0.579 0.681 
    

 
(0.486) (0.467) (0.483) (0.469) 

    
Observations 483 483 483 483 483 483 483 483 

Number of firms 49 49 49 49 49 49 49 49 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table 24 Robustness checks for intrafirm network size 
  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) (Model 8) 

 
Innovation Innovation Innovation Innovation Innovation Innovation Innovation Innovation 

Network size 15 R&D scientists 30 R&D scientists 50 R&D scientists 100 R&D scientists 

Firm size 0.291*** 0.248*** 0.273** 0.210* 0.099 0.034 0.097 0.034 

 
(0.068) (0.067) (0.093) (0.094) (0.112) (0.108) (0.134) (0.122) 

Medical device focus -0.045 -0.067 -0.313 -0.293 -0.264 -0.143 -0.640 -0.494 

 
(0.231) (0.232) (0.263) (0.265) (0.314) (0.309) (0.442) (0.405) 

Firm performance 1.181 1.082 -0.094 -0.065 -0.361 -0.255 -0.759 -0.508 

 
(0.874) (0.844) (1.085) (1.032) (1.259) (1.144) (1.685) (1.402) 

Firm leverage 0.086 -0.230 0.044 -0.244 -0.096 -0.465 -0.909 -0.966+ 

 
(0.401) (0.418) (0.432) (0.453) (0.472) (0.488) (0.602) (0.543) 

Firm slack -0.006 0.007 0.005 0.069 0.019 0.163+ 0.212* 0.314*** 

 
(0.032) (0.029) (0.078) (0.075) (0.086) (0.085) (0.098) (0.091) 

Firm tech. diversity -0.211 -0.241 -0.601+ -0.664+ -0.636 -0.640+ -0.176 -0.266 

 
(0.317) (0.308) (0.355) (0.345) (0.398) (0.383) (0.584) (0.539) 

Acquisitions 0.080 0.057 0.105 0.081 0.103 0.064 0.005 -0.000 

 
(0.108) (0.098) (0.113) (0.101) (0.118) (0.100) (0.110) (0.093) 

Divestments -0.480+ -0.554* -0.764* -0.829** -0.803** -0.855** -0.499 -0.391 

 
(0.263) (0.256) (0.309) (0.298) (0.290) (0.279) (0.621) (0.589) 

R&D intensity 0.001 0.076 -0.568 -0.124 -0.332 0.358 2.570 2.516 

 
(1.463) (1.364) (1.700) (1.578) (1.790) (1.615) (1.923) (1.737) 

R&D scientists -0.003*** -0.003*** -0.002** -0.003** -0.002+ -0.002* -0.003** -0.004*** 

 
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

R&D recruitment 0.793** 0.856** 0.962** 0.876** 0.475 0.385 0.635 0.523 

 
(0.283) (0.280) (0.336) (0.328) (0.406) (0.381) (0.491) (0.439) 

R&D geographic conc. -0.550 -0.605 -0.933* -1.043* -1.646** -1.844** -0.929 -1.274 

 
(0.388) (0.398) (0.457) (0.475) (0.620) (0.631) (0.927) (0.898) 

R&D team size -0.375** -0.325* -0.162 -0.160 -0.264 -0.209 -0.635+ -0.478 

 
(0.136) (0.135) (0.188) (0.183) (0.260) (0.245) (0.363) (0.318) 

R&D alliance duration -0.012 0.016 0.014 0.043 0.027 0.070* -0.046 0.015 

 
(0.033) (0.032) (0.032) (0.032) (0.034) (0.033) (0.037) (0.037) 

R&D alliance strength 0.029 -0.116 -0.090 -0.239 -0.178 -0.353+ -0.196 -0.357+ 

 
(0.141) (0.148) (0.162) (0.167) (0.199) (0.199) (0.199) (0.207) 

R&D alliance structure 0.025 0.113 0.047 0.130 0.059 0.140 0.943** 0.981*** 

 
(0.192) (0.195) (0.199) (0.200) (0.208) (0.210) (0.306) (0.296) 

R&D alliances -0.007 0.030* -0.010 0.028+ -0.000 0.052** -0.029+ 0.027 

 
(0.013) (0.015) (0.014) (0.015) (0.015) (0.017) (0.018) (0.020) 

Intrafirm connections 0.188* 0.155+ 0.115 0.104 0.058 0.070 0.355* 0.348* 

 
(0.081) (0.082) (0.094) (0.093) (0.117) (0.111) (0.171) (0.157) 

Intrafirm clustering 0.022*** 0.029*** 0.020*** 0.027*** 0.016** 0.025*** 0.024*** 0.033*** 

 
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) 

Intrafirm efficiency -0.121 -0.305 -0.068 -0.314 -0.131 -0.514* 0.013 -0.419+ 

 
(0.159) (0.195) (0.159) (0.202) (0.174) (0.219) (0.178) (0.236) 

R&D alliances x 
Intrafirm connections 

0.034** 0.047*** 0.035** 0.048*** 0.031* 0.046*** 0.052*** 0.058*** 

(0.011) (0.012) (0.012) (0.012) (0.013) (0.013) (0.013) (0.013) 

R&D alliances x 
Intrafirm clustering 

 
-0.000*** 

 
-0.000*** 

 
-0.000*** 

 
-0.000*** 

 
(0.000) 

 
(0.000) 

 
(0.000) 

 
(0.000) 

R&D alliances x 
Intrafirm efficiency 

 
0.035 

 
0.044+ 

 
0.066* 

 
0.060* 

 
(0.025) 

 
(0.026) 

 
(0.027) 

 
(0.027) 

Year dummies (included) (included) (included) (included) (included) (included) (included) (included) 

Constant 0.024 0.529 0.407 1.108 2.304* 2.782* 3.003+ 3.212* 

 
(0.673) (0.658) (0.918) (0.892) (1.147) (1.097) (1.563) (1.366) 

Observations 372 372 284 284 233 233 171 171 

Number of firms 39 39 29 29 24 24 18 18 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table 25 Robustness checks for potential endogeneity 
  (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) (Model 8) 

 
Innovation Innovation Innovation Innovation Innovation Innovation Innovation Innovation 

Firm size 0.265*** 0.217*** 0.242*** 0.145** 0.216*** 0.163** 0.246*** 0.173** 

 
(0.053) (0.053) (0.052) (0.053) (0.053) (0.053) (0.052) (0.054) 

Medical device focus -0.630** -0.289 -0.389+ -0.239 -0.285 -0.317 -0.403+ -0.343 

 
(0.192) (0.210) (0.212) (0.205) (0.210) (0.208) (0.210) (0.209) 

Firm performance 0.592 0.862+ 0.968+ 1.051* 0.850+ 1.165* 0.876+ 1.087* 

 
(0.499) (0.509) (0.507) (0.497) (0.510) (0.493) (0.504) (0.496) 

Firm leverage 0.043 0.168 -0.151 -0.130 0.170 -0.369 -0.225 -0.401 

 
(0.380) (0.379) (0.386) (0.376) (0.379) (0.378) (0.387) (0.381) 

Firm slack -0.006 -0.007 -0.005 -0.007 -0.006 -0.007 0.002 -0.003 

 
(0.023) (0.024) (0.024) (0.023) (0.024) (0.023) (0.024) (0.023) 

Firm tech. diversity -0.440 -0.247 -0.222 -0.089 -0.255 -0.088 -0.281 -0.113 

 
(0.289) (0.295) (0.287) (0.291) (0.297) (0.285) (0.288) (0.287) 

Acquisitions 0.204+ 0.152 0.120 0.111 0.155 0.077 0.140 0.086 

 
(0.114) (0.110) (0.107) (0.093) (0.111) (0.091) (0.110) (0.093) 

Divestments -0.522* -0.503* -0.517* -0.513* -0.498* -0.516* -0.475* -0.499* 

 
(0.249) (0.244) (0.244) (0.239) (0.245) (0.237) (0.241) (0.237) 

R&D intensity 2.990** 2.955** 3.535*** 2.640** 2.911** 3.202*** 3.351*** 3.115*** 

 
(0.964) (0.989) (0.968) (0.920) (0.996) (0.910) (0.965) (0.915) 

R&D scientists 0.001*** -0.001** -0.004*** -0.000 -0.001* -0.003*** -0.004*** -0.003*** 

 
(0.000) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) 

R&D recruitment 0.598* 0.570* 0.537* 0.651** 0.580* 0.647** 0.620* 0.681** 

 
(0.236) (0.247) (0.243) (0.246) (0.249) (0.243) (0.246) (0.245) 

R&D geographic conc. -0.579+ -0.440 -0.474 -0.102 -0.443 -0.174 -0.520+ -0.212 

 
(0.323) (0.322) (0.315) (0.322) (0.322) (0.317) (0.313) (0.318) 

R&D team size -0.274*** -0.473*** -0.456*** -0.437*** -0.471*** -0.446*** -0.443*** -0.437*** 

 
(0.077) (0.118) (0.117) (0.114) (0.119) (0.115) (0.119) (0.116) 

R&D alliance duration -0.061* -0.061+ -0.068* -0.044 -0.060+ -0.049+ -0.058+ -0.045 

 
(0.031) (0.032) (0.031) (0.030) (0.032) (0.030) (0.030) (0.029) 

R&D alliance strength 0.112 0.077 0.050 -0.056 0.070 -0.079 -0.030 -0.110 

 
(0.137) (0.139) (0.133) (0.135) (0.141) (0.131) (0.135) (0.133) 

R&D alliance structure 0.315+ 0.332+ 0.325+ 0.406* 0.336+ 0.388* 0.359+ 0.405* 

 
(0.191) (0.191) (0.187) (0.187) (0.191) (0.184) (0.187) (0.185) 

R&D alliances(1) 0.080*** 0.060* 0.037 0.078*** 0.059* 0.061** 0.026 0.057* 

 
(0.024) (0.026) (0.025) (0.023) (0.026) (0.023) (0.025) (0.023) 

Intrafirm connections 
 

0.241*** 0.303*** 0.223** 0.233** 0.274*** 0.257*** 0.253*** 

  
(0.073) (0.074) (0.070) (0.076) (0.072) (0.077) (0.075) 

Intrafirm clustering 
 

0.016*** 0.030*** 0.024*** 0.015*** 0.035*** 0.033*** 0.036*** 

  
(0.003) (0.005) (0.003) (0.003) (0.004) (0.005) (0.004) 

Intrafirm efficiency 
 

0.081 -0.030 0.154 0.042 0.047 -0.383+ -0.117 

  
(0.167) (0.161) (0.153) (0.199) (0.150) (0.204) (0.211) 

R&D alliances(1) x 
Intrafirm connect. 

  
0.052*** 

  
0.043*** 0.069*** 0.051*** 

  
(0.012) 

  
(0.011) (0.013) (0.013) 

R&D alliances(1) x 
Intrafirm clustering 

   
-0.001*** 

 
-0.001*** 

 
-0.001*** 

   
(0.000) 

 
(0.000) 

 
(0.000) 

R&D alliances(1) x 
Intrafirm efficiency 

    
0.012 

 
0.091** 0.036 

    
(0.032) 

 
(0.034) (0.033) 

Year dummies (included) (included) (included) (included) (included) (included) (included) (included) 

Constant -0.202 0.561 0.764 0.908+ 0.568 1.157* 0.891+ 1.180* 

 
(0.469) (0.526) (0.525) (0.516) (0.526) (0.522) (0.526) (0.522) 

Observations 483 483 483 483 483 483 483 483 

Number of firms 49 49 49 49 49 49 49 49 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
(1) Instrumented value of R&D alliances (bases on non-R&D alliances) 
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APPENDIX A – SAMPLE SELECTION 

 

Initial data was collected on all firms active in the medical device industry included in 

WRDS Compustat using firm segment data. This database covers all North-American public 

firms. The sampling frame consists of all firms with any sales in the medical devices industry 

in 1990. A sample of medical device firms was selected using three criteria: (1) the size of a 

firm in terms of medical device sales in 1990, (2) the number of medical device patents 

during 1986-1990, and (3) the number of medical devices during 1986-1990. Medical device 

sales were measured as the sum of sales in segments with SICs 3841-3851. For convenience, 

the original patent concordance details and ownership data as provided in the NBER Patent 

Data Project (Hall et al., 2001) were used. The number of medical devices was measured as 

the raw number of PMA approvals and 510(k) notifications for each firm. I realize that these 

data are rather crude (and are re-collected in more detail later on), but sufficient enough for 

sample selection. The initial sampling frame contained 180 firms which were ranked based 

on a factor analysis of sales, patents and products (all three variables strongly loaded on a 

single factor). The first fifty firms form my final sample. I considered including more firms, 

but these firms generally did not have patents or devices (e.g. distributors, importers or start-

ups). The final sample is shown in the table below. 

 

Table 26 Sample of fifty North-American medical device firms 
Firm Observation period1 R&D 

scientists2 
R&D alliance 

partners3 
Abbott Laboratories 1990-2005 535 34 

American Cyanamid Co 1990-1993 
(acquired by Wyeth in 1994) 

124 3 

Wyeth  
(AKA: American Home Products) 

1990-1997 
(divested by selling subsidiaries) 

219 12 

Ballard Medical Products 1990-1998 
(acquired by Kimberly-Clark in 1999) 

34 5 

Bard (C.R.) Inc 1990-2005 529 25 
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Bausch & Lomb Inc 1990-2005 
(acquired by Warburg Pincus in 2007) 

160 24 

Baxter International Inc 1990-2005 844 28 

Becton Dickinson & Co 1990-2005 553 27 

Bristol-Myers Squibb Co 1990-1999  
(divested by selling subsidiaries) 

460 10 

Circon Corp 1990-1997 
(acquired by Maxxim Med. in 1998) 

25 0 

Coherent Inc 1990-2001 
(divested by selling subsidiaries) 

36 14 

Collagen Aesthetic Inc  
(AKA: Collagen Corp) 

1990-1998 
(acquired by Inamed in 1999) 

53 16 

Cooper Companies Inc  
(AKA: CooperVision) 

1990-2005 30 11 

Cordis Corp 1990-1995 
(acquired by J&J in 1996) 

171 7 

Datascope Corp 1990-2005 
(acquired by Getinge AB in 2008) 

62 8 

OEC Medical Systems Inc 
(AKA: Diasonics Inc) 

1990-1998 
(acquired by GE Healthcare in 1999) 

30 11 

Eastman Kodak Co  
(AKA: Kodak) 

1990-2005 160 20 

Empi Inc 1990-1998 
(acquired by Carlyle Group in 1999) 

25 1 

General Electric Co 1990-2005 1118 44 

Gish Biomedical Inc 1990-2002 
(acquired by CardioTech in 2002) 

9 6 

Grace (W R) & Co 1990-1993 
(left industry) 

9 1 

Healthdyne Inc 1990-1994 
(merged with Tokos Medical in 1995) 

9 0 

Hewlett-Packard Co 1990-1998 
(divested by spinning off subsidiary) 

242 11 

Mallinckrodt (AKA: International 
Minerals & Chemicals Corp/IMCERA) 

1990-2000 
(acquired by Tyco in 2000) 

229 18 

Invacare Corp 1990-2005 20 3 

Johnson & Johnson 1990-2005 2533 68 

Lilly (Eli) & Co 1990-1994 
(divested by selling subsidiaries) 

348 11 

Medex Inc 1990-1996 
(acquired by Furon in 1997) 

33 0 

Medtronic Inc 1990-2005 2201 68 

Mentor Corp 
(AKA: Mentor Medical) 

1990-2005 
(acquired by J&J in 2009) 

80 26 

Optical Radiation Corp  
(AKA: ORC) 

1990-1993 
(merged with Benson Eyecare in 1994) 

11 2 

PPG Industries Inc 1990-1993 
(divested by selling subsidiary) 

16 1 

Pfizer Inc 1990-1997 
(divested by selling subsidiaries) 

392 12 

Puritan-Bennett Corp 1990-1994 
(acquired by Nellcor in 1995) 

45 3 
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St Jude Medical Inc 1990-2005 529 23 

Schering-Plough 1990-1998 
(divested by selling subsidiary) 

45 3 

Scimed Life Systems Inc 1990-1993 
(acquired by Boston Sci. in 1994) 

53 5 

Stryker Corp 1990-2005 435 10 

Meridian Medical Technologies Inc 
(AKA: Survival Technology Inc/STI) 

1990-2002 
(acquired by King Pharma. in 2003) 

30 13 

Thermo Fisher Scientific Inc  
(AKA: Thermo Electron) 

1990-2003 
(divested by selling subsidiaries) 

115 14 

Trimedyne Inc 1990-2005 24 15 

U.S. Surgical Corp  
(AKA: U.S.S.C.) 

1990-1997 
(acquired by Tyco in 1998) 

297 8 

Acuson Corp 1990-1999 
(acquired by Siemens in 2000) 

139 4 

Cabot Medical Corp 1990-1994 
(acquired by Circon Corp in 1995) 

7 4 

Kirschner Medical Corp 1990-1993 
(acquired by Biomet in 1994) 

12 0 

Nellcor Puritan Bennett Inc  
(AKA: Nellcor Inc) 

1990-1996 
(acquired by Mallinckrodt in 1997) 

61 4 

Dentsply International Inc  
(AKA: Gendex Corp) 

1990-2005 139 8 

Orthomet Inc4 1990-1994 
(acquired by Wright Medical in 1994) 

7 2 

Allergan Inc 1990-2001 102 7 

Target Therapeutics Inc 1990-1995 
(acquired by Boston Sci. in 1997) 

37 11 

(1) Period a firm is included in the panel and, if exited before 2005, the cause of leaving the sample 
(2) Number of unique medical device inventors mentioned on firm's patents 
(3) Number of unique medical device R&D alliance partners 
(4) Orthomet Inc is not included in Chapter 3 (only one observation) 
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APPENDIX B – VARIABLES AND DATA COLLECTION 

 

This appendix describes the process of data collection and variable construction. The 

table below provides a summary by defining each variable and stating its source. 

 

Name Definition Data source Updated 
Firm's innovation    
Firm innovation Number of patents the firm successfully applied for 

at t0 plus the number of non-self-citations they 
received in the next five years 

USPTO/NBER/ 
Dataverse 

Updated annually 

New products* Number of new or technologically improved 
medical devices observed via PMA approvals and 
510(k) notifications 

FDA Updated annually 

Firm's knowledge    
Knowledge transfer The percentage of patents and backward citations 

at t-1 that are (re)cited by another (set of) 
inventor(s) during [t0;t+2] 

USPTO/NBER/ 
Dataverse 

Updated annually 

Knowledge diversity Blau's index (one minus Herfindahl concentration 
index) of a firm's medical device patents applied 
for at t0 by technological class 

USPTO/NBER/ 
Dataverse 

Updated annually 

Intrafirm networks    
Network reach Average inversed path length among all R&D 

scientists (with zero if disconnected) 
USPTO/NBER/ 
Dataverse 

Updated annually 
using 5y window 

Network clusters Three times the number of triads divided by the 
number of triples (likelihood of triadic closure) 

USPTO/NBER/ 
Dataverse 

Updated annually 
using 5y window 

Network density Average degree centrality of all connected R&D 
scientists in an intrafirm network 

USPTO/NBER/ 
Dataverse 

Updated annually 
using 5y window 

Network isolate ratio Number of non-connected R&D scientists as a 
percentage of all R&D scientists 

USPTO/NBER/ 
Dataverse 

Updated annually 
using 5y window 

Network largest 
component* 

Number of R&D scientists in largest connected 
component divided by total number of scientists 

USPTO/NBER/ 
Dataverse 

Updated annually 
using 5y window 

Network component 
ratio* 

The number of components as a fraction of the 
number of scientists in a network 

USPTO/NBER/ 
Dataverse 

Updated annually 
using 5y window 

Network 
fragmentation* 

The percentage of R&D scientists that are not 
(in)directly connected 

USPTO/NBER/ 
Dataverse 

Updated annually 
using 5y window 

Network path length* The average path length among all R&D scientists 
(corrected for network density and size) 

USPTO/NBER/ 
Dataverse 

Updated annually 
using 5y window 

Ego-network density* Average ego-network density of all R&D scientists USPTO/NBER/ 
Dataverse 

Updated annually 
using 5y window 

Intrafirm connections Average degree centrality of all connected R&D 
scientists in an intrafirm network 

USPTO/NBER/ 
Dataverse 

Updated annually 
using 5y window 

Intrafirm clustering Average ego-network density of all R&D scientists 
scaled for similar density in random networks 

USPTO/NBER/ 
Dataverse 

Updated annually 
using 5y window 

Intrafirm efficiency Inverse of average shortest path length scaled for 
similar path length in random networks 

USPTO/NBER/ 
Dataverse 

Updated annually 
using 5y window 

Largest component* Number of R&D scientists in largest connected 
component divided by total number of scientists 

USPTO/NBER/ 
Dataverse 

Updated annually 
using 5y window 

Interfirm networks    
R&D alliances The number of R&D alliance partners (independent 

of multipartner alliances or repeated ties)  
SDC/ReCap/ 
10K/Factiva/ 
LexisNexis 

Updated annually 

New R&D alliances* The number of new R&D alliance partners in at t0 SDC/ReCap/ Updated annually 
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10K/Factiva/ 
LexisNexis 

Interfirm controls    
R&D alliance 
duration 

The average age of a firm's ongoing R&D alliance 
partnerships 

SDC/ReCap/ 
10K/Factiva/ 
LexisNexis 

Updated annually 

R&D alliance 
strength 

The average number of partnerships between a 
firm and each R&D alliance partner 

SDC/ReCap/ 
10K/Factiva/ 
LexisNexis 

Updated annually 

R&D alliance 
structure 

The percentage of R&D partnerships that is based 
on a new, equity-based entity (i.e. joint venture) 

SDC/ReCap/ 
10K/Factiva/ 
LexisNexis 

Updated annually 

Non-R&D alliances* Number of alliance partners that are purely 
downstream and do not involve any R&D (e.g. 
production, distribution, marketing) 

SDC/ReCap/ 
10K/Factiva/ 
LexisNexis 

Updated annually 

R&D controls    

R&D intensity R&D expenses as fraction of total sales Compustat Updated annually 
Acquisitions Amount spent on acquisitions of medical device 

firms scaled by the firm's sales in medical devices 
SDC Platinum/ 
Compustat 

Updated annually 

Divestments Amount earned from sales (or spin-off) of medical 
device units scaled by the firm's sales in medical 
devices 

SDC Platinum/ 
Compustat 

Updated annually 

R&D scientists Number of R&D scientists observed on medical 
device patent applications 

USPTO/NBER/ 
Dataverse 

Updated annually 
using 5y window 

R&D recruitment Number of R&D scientists observed for first time 
within firm at t0 as fraction of total R&D scientists 

USPTO/NBER/ 
Dataverse 

Updated annually 

R&D concentration One minus a Herfindahl index of R&D scientists 
by US state and by country (for foreign scientists)  

Harvard Patent 
Dataverse 

Updated annually 
using 5y window 

R&D team size Average number of inventors on each patent USPTO/NBER/ 
Dataverse 

Updated annually 
using 5y window 

Patent stock*/** Number of medical device patents the firm 
successfully applied for in the past five years 

USPTO/NBER/ 
Dataverse 

Updated annually 
using 5y window 

Technological 
diversity** 

One minus a Herfindahl index of firm medical 
device patents by technological class 

USPTO/NBER/ 
Dataverse 

Updated annually 
using 5y window 

Firm controls    
Firm size Natural log of total firm sales in medical device 

segments in $millions 
Compustat Updated annually 

Medical device focus Percentage of total sales earned in medical devices Compustat Updated annually 
Firm performance Return on sales (EBIT ÷ sales) Compustat Updated annually 
Firm slack Current ratio (current assets ÷ current liabilities) Compustat Updated annually 
Firm leverage Debt-to-asset ratio Compustat Updated annually 
Firm age** Current year minus year of establishment Mergent Updated annually 
Diversification** One minus Herfindahl index of firm sales by SIC Compustat Updated annually 
* These variables are only used the robustness checks 
** These variables were excluded for multicollinearity reasons 

 

Firm Data 

Financial data for sample firms were obtained from WRDS Compustat North America 

and WRDS Compustat Segment data. In case variables were missing, data were retrieved 

from firm SEC filings (obtained via Thomson One and SEC Edgar). Firm years of 
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establishment were mentioned in Mergent WebReports. All variables were updated annually 

until the end of the panel or until a firm was acquired or left the medical devices industry. 

In addition, I manually created corporate trees for each firms by listing all their 

subsidiaries based on SEC 10K filings (updated annually). Subsidiaries are included in case 

the parent has majority ownership (leaving out CVC investments) 

  

Patent Data 

Full patent data were obtained via Harvard Patent Dataverse which includes 

bibliographic characteristics for all patents granted by the USPTO during 1976-2010. Using 

the corporate trees, the names of each firm and all its subsidiaries are then matched against 

patent assignee names. This is important since some firms do not use their corporate name 

when applying for patents. For instance, Johnson & Johnson often uses the names of its main 

subsidiaries (Cilag, Cordis, Ethicon, Janssen, etc.) as patent assignees. So patents are matched 

to the ultimate owner of the assignee at the time of invention. 

To correct for highly diversified firms, I only focus on medical device patents as 

indicated by the USPTO Patent Technology Monitoring Team (2012). These are USPTO 

main classes 128, 433, 600, 601, 602, 604, 606, 607, and 623 and certain subclasses of 

technological classes 227, 323, 351, 356, 362, 378, 382, 422, 424, 436, and 705. Other 

concordances, like these by Hall et al. (2001), were considered. While they largely 

overlapped with the Patent Technology Monitoring Team's concordance, they are not as fine-

grained. 

 

Publication Data 

Publication data were obtained from Elsevier Scopus. This database contains 

bibliographic characteristics of a large number of publications including journals and 
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conference proceedings. It also lists all authors and their individual affiliations. I extracted all 

publications for each firm by searching for firm and subsidiary names in the publication 

affiliation field. I then manually filtered for each publication to correct for false positives 

(name similarities between a focal firm and an unrelated organization). I filtered out all co-

authors not related to a focal firm. Publications with over 15 co-authors were also excluded 

for computational reasons (this was only a very tiny fraction). 

These publication data are subject to one major limitation. Contrary to patents, 

publications are not categorized in fine-grained classes. Though Scopus allows for filtering, 

the group of life sciences includes biotech and pharmaceutical in addition to medical devices. 

Since some of the sample firms are active in both industries, this needed to be corrected when 

constructing intraorganizational networks. 

 

Product Data 

Product data were obtained from FDA PMA and 510(k) archival data. Any medical 

device sold in the United States must be registered with the FDA. Premarket approval (PMA) 

is required for potentially high-risk medical devices (e.g. implants) before being marketed. 

Further approval is needed each time devices are changed. 510(k) notifications (also known 

as PMN) are required for lower-risk medical devices (e.g. sphygmomanometer) before being 

marketed. PMA and 510(k) data are publicly available and updated annually. 

It is important to understand that the approval procedure for medical devices is 

significantly different from the approval procedure for new pharmaceutical products. 

Pharmaceutical products need to pass through various stages of clinical testing. The entire 

process from early clinical testing to market often takes multiple years. For medical devices, 

however, the process is much simpler and faster. First, medical device firms perform 

independent clinical testing of their device to compare its efficacy with alternative devices. 
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As one interviewee explained, this process can be extremely quick for often used devices 

(like stethoscopes) and clinical testing only takes weeks or months. Upon submission of the 

application that includes the results of these tests, the FDA aims to provide approval within 

180 days. The large majority of these devices were approved within a year. 

For my study, I used the historical medical device registrant to avoid changes caused 

by M&A. I match each registrant to the names of a focal firm and all its subsidiaries. I 

measure product innovation as the sum of (i) the number of successful PMA applications for 

new devices, (ii) the number of successful PMA applications for technological changes to 

existing devices, and (iii) the number of 510(k) notifications. Though the approval procedures 

tend to be very short, all is measured using application dates. 

 

M&A Data 

M&A data were obtained from SDC Platinum. Firm and subsidiary names were 

matched to acquirer and vendor names (the 'immediate', 'parent' and 'ultimate parent' fields) 

to obtain all deals done by sample firms. Non-medical device deals were excluded as well as 

non-realized deals and deals that involved minority stakes (e.g. a 10% stake or a share 

increase from 95% to 100%). This provided the number and amount of acquisitions and 

divestitures of medical devices units. 

 

Intrafirm Network Data 

Intrafirm networks were observed via R&D scientists and their co-invention and co-

authorship activities. I used a complicated procedure to weed out non-medical device 

scientists. First, of the ca. 114,000 patents belonging to the focal firms, only 18,797 were 

related to medical devices. As explained above, such filtering was unfortunately not possible 

for publications. Therefore I limit the nodes in intrafirm networks to all R&D scientists 
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mentioned on medical device patents. Second, ties are added by looking at the instances in 

which any potential dyad of medical device R&D scientists co-invented a patent or co-

authored a paper. I use five-year moving windows since ties tend to persist over time (Singh, 

2005). An intrafirm network at t0 thus consists of all medical device inventors during [t-4;t0] 

and their co-invention and co-authorship ties during this period. 

Name disambiguation is an important issue since R&D scientists tend to use different 

names over time by adding or removing initials and middle names. While Lai et al. (2011) 

made a serious effort in creating coherent identifiers, a manually inspection showed that their 

method was too restrictive: since they only compare inventor characteristics (name, address) 

and ignore assignee, their method generally provides too many false negatives (the same 

person getting two different identifiers). Therefore I use a method similar by Paruchuri 

(2010) and create unique identifiers based on first name initial and last name. A similar name 

disambiguation was applied to authors of publications. 

Using five-year windows, the collaboration data on R&D scientists, patents and 

publications form a bipartite network. I used the iGraph plug-in for R to collapse these two-

mode networks into undirected, non-weighted one-mode networks and calculate all network 

characteristics. As a robustness check, all measures were recalculated using three-year 

windows which provided highly correlated results. 

 

Interfirm Network Data 

Interfirm network data were obtained from three sources. First, I scanned two alliance 

databases for any alliance announcement by a focal firm or any of its subsidiaries. SDC 

provided a number of alliance announcements but mainly for the larger firms. Recombinant 

Capital (ReCap) provided mainly alliances for sample firms also active in pharmaceuticals. 
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Second, I scanned firms' annual reports (ARS and 10K) from 1985 till 2005. These 

are around 1,500 documents that ranged between 50 and 500 pages each. It proved to be very 

useful for smaller firms: the legal obligation to mention any agreement that could 

substantially impact their financial results forced them to disclose many alliances. 

Third, I scanned news announcements via the LexisNexis and Factiva databases. In 

particular, I searched for the keywords joint*, alliance*, link*, partner*, agree*, licen*, 

coop*, collab*, tie, team, accord or pact in combination with firm and subsidiary names. This 

resulted in over 122,000 news articles that were manually scanned and coded.  

Each alliance in any of the three sources was coded in a similar fashion. Dummies 

were used to code for medical device focus, upstream elements, downstream elements, and 

equity arrangement (joint venture). If upstream, dummies were used to code for in-licensing, 

out-licensing, cross-licensing, and joint R&D/technology transfer. Downstream elements 

included OEM, manufacturing, marketing, and distribution. Starting dates and ending dates 

were coded as much as possible. In case termination was not announced, I assumed three-

year duration unless there was evidence otherwise (e.g. an extension mentioned four years 

later). Licensing agreements for unique patents were limited to three years as well: though 

patent lifetime could be up to twenty years, licensing contracts showed that actual technology 

transfer and training only occurs in the first years. 

As pointed out by Schilling (2009), commercial alliance databases are often 

incomplete. Table 27 below shows what percentage of all alliances was found in each source 

of data as well as the overlap between data sources. Each cell represents the number of 

alliances that were covered by both the source mentioned in the column and the row. The 

percentage underneath shows which fraction this is of the total number of alliances identified 

in this source. For example, 143 medical device alliances are both mentioned in SDC and in 

ReCap. This composes 26% of all relevant medical device alliances obtained from SDC but 



188 
 

33% of all relevant alliances obtained from ReCap. It reveals that news announcements are 

by far the most complete: of all alliances announced, over half was mentioned in Factiva or 

LexisNexis. 

 

Table 27 Alliance announcements by data source 
  SDC ReCap 10K/ARS Factiva LexisNexis Total 

SDC 559 
(100%) 

143 
(33%) 

72 
(18%) 

346 
(24%) 

318 
(23%) 

559 
(24%) 

ReCap 143 
(26%) 

428 
(100%) 

51 
(13%) 

285 
(20%) 

260 
(18%) 

428 
(19%) 

10K/ARS 72 
(13%) 

51 
(12%) 

406 
(100%) 

165 
(11%) 

179 
(13%) 

406 
(18%) 

Factiva 346 
(62%) 

285 
(67%) 

165 
(41%) 

1438 
(100%) 

1007 
(71%) 

1438 
(63%) 

LexisNexis 318 
(57%) 

260 
(61%) 

179 
(44%) 

1007 
(70%) 

1413 
(100%) 

1413 
(62%) 

Total 559 428 406 1438 1413 2294 
(100%) 

The numbers in each cell represent the number of medical device alliances of the fifty sample firms that are both 
covered by the source mentioned in the column and in the row (e.g. overlap).  
The percentage in each cell represents the fraction of these overlapping alliances as the total number of alliances 
mentioned by the source mentioned in the column. 
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APPENDIX C – ROBUSTNESS CHECKS AT PATENT AND CITATION LEVEL 

 

The first hypothesis of chapter 2 argues that intrafirm network reach has a positive 

effect on knowledge transfer. However, the empirical results consistently show a negative 

effect of network reach on knowledge transfer. This appendix performs additional robustness 

checks at different levels of analysis. While the main analysis was performed at the level of a 

firm, these robustness checks perform a similar assessment at the patent- and citation-level. 

 

Patent-level Robustness Checks 

Each patent harbors one or more components of knowledge, i.e. unique knowledge, 

skills or technologies (Fleming, 2001). If new R&D projects build upon these components of 

knowledge, this tacit process is observable via a paper trail of patent citations (see Alcacer & 

Gittelman, 2006). Past studies have shown that patent citations are robust proxies for 

knowledge reuse and knowledge transfer (e.g. Mowery et al., 1996; Rosenkopf & Nerkar, 

2001). In this robustness check, I will repeat earlier analysis at the level of a firm's patents. 

Data collection and sample construction. The sample consists of all 16,205 medical 

device patents successfully applied for by the fifty sample firms between 1989 and 2004. 

These patents enter a panel dataset the year after their invention. They leave the panel after 

three years, after their firm was acquired, or after 2005 (whichever came first). This results in 

44,112 firm-patent-year observations. This corresponds to the three-year windows used for 

measuring knowledge transfer at the organizational level. 

Co-patent networks. To measure distance between patents, firm co-patent networks 

are created in a fashion similar to co-inventor networks above. In such networks, patents are 

the nodes while ties are based on common inventors, e.g. a patent has a direct connection to 

another patent if both patents have at least one inventor in common. As above, I use a five-
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year moving window to construct unweighted, undirected networks for each firm for each 

year. 

Dependent variables. Times cited is a count variable indicating how many times the 

focal patent is cited on any new patent by the same firm during the focal year. Dummy cited 

is a dummy variable indicating if the focal patent is cited at least once on any of the new 

patents by the same firm during the focal year. 

Independent variable. Network reach is a firm level variable indicating the average 

closeness centrality of all patents. Specifically, I calculate the average closeness centrality of 

all patents from a given application year in regard to new patents in the focal year. For 

example, if an organization had five patents in 1998 and seven patents in 1999, I first 

calculate the closeness centrality of each of the five patents from 1998 towards the seven new 

patents in 1999. An older patent's closeness centrality is the average of the inverse of the 

number of steps from the older, focal patent to each new patent. Reach is then the average of 

all older patents' closeness centrality. This is similar to the network reach measure in the 

main chapter, but adapted to correct for time. 

Control variables. The likelihood of a patent being cited is not only influenced by 

the social proximity of its inventors. Therefore I add a number of different control variables. 

First, the likelihood of knowledge transfer depends on the time since the invention. Therefore 

I add dummies to correct for the number of years since patent application (either one, two or 

three). Second, a firm's R&D strategy influences the probability of citing a particular patent. 

Therefore I add the total number of citations a firm makes in a focal year, the percentage of 

self-citations and the percentage of patents in the same class. To correct for the effects of 

geographical proximity in knowledge flows, I calculate the percentage of patents in proximity 

(inventors of the same firm living within a 100 kilometer radius from focal patent's 

inventors). The number of inventors and the patents closeness centrality are added to correct 
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for other effects of social proximity. Finally, I added firm, year, and technological class 

dummies to control for firm, time and technology specific effects. 

Results. The results of negative binomial regressions are shown in the table below. 

The results indicate that intrafirm network structure and position have significant effects on 

patent citations. First, patent closeness centrality increases the likelihood of being cited. This 

means that patents with inventors that are more central in an intrafirm network have a higher 

chance of being cited, confirming Paruchuri (2010). Second, network reach has a negative 

effect on citations. This implies that cohesive intrafirm networks with shorter paths reduce 

knowledge transfer. An interaction effect (model 3) indicates that this effect is stronger for 

patents with a higher closeness centrality. Computed incident rate ratios reveal that this effect 

is strong. The regression was repeated using a probit estimation and the binary dependent 

variable. Results are virtually the same and margin plots showed again a negative effect of 

network reach, particularly for patents central in an intrafirm network. In summary, 

knowledge transfer from one R&D scientist to another increases if this R&D scientist is well-

connected. However, this effect is weaker in firms where all R&D scientists are well-

connected. 

Table 16 – Robustness checks for knowledge transfer at patent level (p. 168)  

 

Citation-level Robustness Checks 

This robustness check aims to replicate the results for the first hypothesis using the 

method of Singh (2005). In this article, Singh demonstrated that knowledge transfer increases 

with physical proximity, social proximity and with working in the same organization. Since 

my analysis does not support the argument for social proximity, I replicate my study using 

this approach. 
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Data collection and sample construction. In line with Singh (2005), the unit of 

analysis consists of the dyad of an existing patent and a new patent. Therefore I took all 

medical device patents by the fifty sample firms between 1989 and 2005. For each patent 

between 1989 and 2004 (focal patent), I created dyadic relationships to all other medical 

device patents (alter patents) by the same firm in the next three years, until the firm was 

acquired, or until 2005 (whichever came first). This results in 5,689,161 dyadic observations. 

Co-patent networks. To measure distance between focal and alter patents, firm co-

patent networks are created in a fashion similar to the robustness check above. In these 

networks, patents are the nodes while ties are based on common inventors, e.g. a focal patent 

has a direct connection to an alter patent if both patents have at least one inventor in common. 

As above, I use a five-year moving window to construct unweighted, undirected networks for 

each firm for each year. 

Dependent variable. Cited is a dummy variable indicating if the alter patent cites the 

focal patent. 

Independent variable. Social proximity is the inverse path length between social and 

alter patent in a firm's co-patent network. It ranges from 0 (no social tie among inventors) to 

1 (same inventor(s)). Furthermore, I split social distance into five categories. Same 

inventor(s) means at least one of the inventors mentioned on focal and alter patent is the same 

R&D scientist. Past collaborators means that one or more inventors on each patent have 

collaborated on another R&D project during the past five years. Shared acquaintance means 

that one or more inventors on each patent share a common acquaintance, that is, an R&D 

scientist they collaborated with during the past five years. Indirect tie implies that inventors 

of focal and alter patent are indirectly connected via longer paths. The reference group, Non-

connected, has no collaborative ties between focal and alter patent inventors. 
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Control variables. The likelihood of an alter patent citing a focal patent is not only 

influenced by the social proximity of their inventors. Therefore I add a number of different 

control variables. First, like Singh (2005), I add two dummy variables indicating if focal and 

alter patent belong to the same technological main class and same technological subclass. 

Second, to control for geographical proximity, the spatial distance between inventors of the 

focal and alter patent is added. Using the Patent Network Dataverse dataset, I calculate the 

distance between all inventors on the two patents and take its log value for the nearest 

inventors. Since knowledge transfer takes time, the time difference (in years) between focal 

and alter patent is added. In addition, firm and year dummies are added to control for 

unobserved organizational and temporal effects. Finally, patents themselves differ largely in 

importance and impact. Since the estimation method does not allow for fixed effects, I add 

the focal patent citation mean to control for this effect. 

Results. To start, social ties among R&D scientists of focal and alter patent are 

present in 49% of the dyads. In 1.7% of the dyads, both patents share the same inventor(s). In 

4.8% of the cases, inventors of focal and alter patent have collaborated in the past. In 7.2% of 

the cases, these R&D scientists share a common acquaintance and in 35.4% of the cases there 

is a longer indirect tie. 

The results of a probit regression are shown in the table below. The results indicate 

that intrafirm network structure influences knowledge transfer and recombination. As 

expected, the higher the social proximity, the more likely it is that the alter patent cites the 

focal patent (model 2). However, when looking at the different levels of social distance 

between two patents (model 3), results become interesting. First, an alter patent is more likely 

to cite a focal patent if both patents have one R&D scientist in common. Second, an alter 

patent is also more likely to cite a focal patent if scientists of both patents have collaborated. 

Third, an alter patent is still more likely to cite the focal patent if its inventors have a 
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common acquaintance. Fourth, an alter patents is significantly less likely to cite a focal patent 

if the social tie is longer. Contrary to Singh (2005), I find that R&D scientists are more likely 

to build upon knowledge components of colleagues they do not share a connection with than 

to use knowledge components of distant colleagues. These results provide support for the 

effects of network reach on knowledge transfer, namely that shorter ties (13.7% of the cases) 

increase knowledge transfer but that longer ties (35.4% of the cases) decrease knowledge 

transfer. 

Since the likelihood of an alter patent citing a focal patent is only 0.18%, the 

regressions are repeated in models 4 to 6 using a rare events logit specification (Tomz, King, 

& Zeng, 2003). This procedure uses a subsample of all zero observations to obtain more 

efficient standard errors. Since this method is computationally intensive, year and firm 

dummies are replaced with firm-year averages of the dependent variable. The results are 

similar to those obtained earlier in models 1 to 3. 

Table 17 – Robustness checks for knowledge transfer at citation level (p. 169)  
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RÉSUMÉ GÉNÉRAL EN FRANÇAIS 

Introduction 

Cette thèse développe la notion de ‘réseaux d'innovation à plusieurs niveaux’, c’est-à-

dire, l'idée que le rendement innovateur d’une entreprise est influencé conjointement par des 

réseaux à l'intérieur et à l'extérieur d'une organisation. L'innovation est une source importante 

de compétitivité de l'entreprise sur le marché et l’innovation d’une entreprise est un 

déterminant majeur du rendement financieret de la survie de celle-ci sur le long terme (Cefis 

& Marsili, 2005; Roberts, 1999). L’innovation permet à une entreprise de briser le cycle 

continu d'améliorations de l'efficacité et de la concurrence des prix par le développement de 

produits ou de procédés nouveaux ou améliorés. Cela permet à une entreprise de fixer les prix 

du marché, d’obtenir des rendements excédentaires et d’obtenir un avantage concurrentiel. 

De nombreuses études antérieures ont mis l'accent sur l'importance des réseaux et de 

la collaboration pour les innovations de l’entreprise (Borgatti & Foster, 2003; Brass et al., 

2004). Un corps de littérature a complètement étudié le rôle des réseaux intra-

organisationnels et de l’innovation (Smith et al., 1995; Van Wijk et al., 2008). Ce volet de 

recherche, principalement intégré dans la discipline du comportement organisationnel, se 

penche sur le rôle des relations entre les (groupes d’) employés pour expliquer la créativité 

individuelle (ou de l'équipe). Les liens sociaux entre les employés donnent une possibilité 

d’accès et d'échange d'informations, de connaissances et de ressources entre eux. Ceci, à son 

tour, augmente la productivité et le rendement. Les chercheurs dans ce domaine ont montré 

que la taille, la structure et la force des liens sociaux ont une forte influence sur la créativité 

et l’innovation des employés (Phelps et al., 2012; Van Wijk et al., 2008). Un deuxième corps 

de la littérature a mis l'accent sur le rôle des réseaux inter-organisationnels dans l'innovation 

de l’entreprise. Basées sur la littérature de gestion stratégique, ces études soutiennent que les 

relations de collaboration entre les organisations, créées par des alliances et des coentreprises, 
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donnent lieu à l'échange de connaissances et de ressources qui permettent d'améliorer par la 

suite le rendement innovateur des entreprises (Shan et al., 1994). Puisant dans la littérature 

des réseaux sociaux, les chercheurs dans ce domaine ont montré que le nombre et la structure 

de ces liens inter-entreprises influencent l'innovation de l’entreprise (Phelps et al., 2012).  

Malgré le nombre important d'études dans les deux volets de recherche, la plupart des 

recherches se sontelles-mêmes limitées à un seul niveau. Avec quelques exceptions notables 

(e.g. Lazega et al., 2006; Moliterno & Mahony, 2011; Paruchuri, 2010), la nature multi-

niveaux des réseaux et de l'innovation est un domaine de recherche peu développé. Cela est 

surprenant, en particulier pour la recherche regardant l’innovation de l’entreprise, car 

l'innovation est en fin de compte le résultat de ces processus à plusieurs niveaux (Gupta et al., 

2007). Par conséquent, je soutiens que les réseaux inter et intra-organisationnels d'une 

entreprise doivent être considérés simultanément pour expliquer l'innovation de l’entreprise. 

Dans une conceptualisation de réseau à plusieurs niveaux, les acteurs à un niveau inférieur 

forment un réseau qui devient lui-même un nœud à un niveau supérieur (Harary & Batell, 

1981; Moliterno & Mahony, 2011). Dans ce cas, une organisation crée des liens avec d'autres 

organisations par le biais d’accords de collaboration et ainsi elle crée et maintient un réseau 

inter-organisationnel. Simultanément, cette organisation abrite un réseau intra-

organisationnel créé par les liens sociaux entre ses employés. Dans ces réseaux imbriqués, les 

nœuds ne sont plus des entités cohérentes, mais deviennent eux-mêmes des réseaux.  

L'application d'une optique à plusieurs niveaux pour les réseaux et les recherches de 

l’innovation pose des défis pour les études passées sur trois points importants. Tout d'abord, 

la plupart des études ont porté sur les effets microéconomiques des réseaux sociaux et ont 

négligé les conséquences potentielles de niveau macroéconomique. Autrement dit, ces études 

ont examiné l'effet des caractéristiques des réseaux sociaux (position, taille, ou structure) sur 

la performance d'un acteur individuel et n'ont pas examiné l'impact de ces dernières sur la 
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performance cumulée de tous les acteurs. Cette recherche suppose implicitement que les 

avantages au niveau microéconomique sont similaires à ceux du niveau macroéconomique. 

Cependant, il ya des raisons de douter de cette hypothèse. Par exemple, être dans une position 

de courtage est souvent liée à l'amélioration de la créativité et de la performance (Burt, 1992; 

Fleming et al., 2007). Cependant, le courtage d’un réseau a une forte incidence défavorable 

sur les collègues d'un courtier et réduit leur performance (Bizzi, 2013). Donc, ce qui peut être 

bon pour la performance individuelle, à l’échelle microéconomique, peut-ne pas être 

automatiquement avantageux pour la performance organisationnelle, à l’échelle 

macroéconomique. Deuxièmement, la littérature existante a obtenu des résultats confus en ce 

qui concerne les mécanismes expliquant le lien entre la structure du réseau et l'innovation. 

Les quelques études portant empiriquement sur ces mécanismes ont démontré que les 

connexions dans les réseaux intra-organisationnels accroissent l'innovation de l’entreprise, 

mais donnent des résultats opposés pour les coefficients d’agglomération (comparent Cowan 

et Jonard (2004) à Fang et al. (2011)) et la reach (comparent Lazer and Friedman (2007) à 

Fang et al. (2011)). Une explication plausible de ces résultats contradictoires peut être liée à 

des processus médiateurs concurrents. Troisièmement, la recherche sur les réseaux et 

l'innovation a accordé peu d'attention aux effets potentiels d’un niveau conjoint. Les effets 

d’un niveau conjoint sont les effets combinés d'un niveau inférieur et d’un réseau de plus haut 

niveau sur l'innovation de l'acteur. Pour l'innovation de l’entreprise, cela signifie comment les 

réseaux inter et intra-organisationnels non seulement influencent individuellement 

l’innovation de l’entreprise, mais qu’ils ont aussi un effet conjoint. Par exemple, les 

entreprises peuvent bénéficier davantage de la collaboration inter-organisationnelle si leurs 

réseaux internes sont moins liés et partagent moins d'informations entre les unités 

commerciales. Dans un tel cas, les unités commerciales sont plus susceptibles d'obtenir de 

nouvelles connaissances et des ressources via des alliances inter-entreprises. Ainsi, il 
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convient d'examiner les deux réseaux simultanément afin de saisir pleinement leur influence 

sur l'innovation de l’entreprise. 

L'objectif de cette thèse est de combler ces lacunes par l'intégration des réseaux à 

différents niveaux et d'évaluer leur effet sur les processus qui expliquent la relation des 

réseaux et de l'innovation. Je le fais en répondant à la question suivante: comment les réseaux 

d’entreprise inter et intra-organisationnels, indépendamment et conjointement, influencent 

l'innovation de l’entreprise? Pour répondre à cette question, je me concentre sur deux niveaux 

de réseaux: les réseaux intra-organisationnels des employés au sein des entreprises et les 

réseaux inter-organisationnels entre les entreprises. Ces réseaux intra-organisationnels sont 

constitués de réseaux de collaboration entre les scientifiques travaillant dans les services de 

recherche et de développement d'une organisation. Leur collaboration sur des projets de R & 

D mène à la communication et l'interaction ce qui facilitent la circulation de l'information et 

de la connaissance, et affecte ultimement l'innovation (Brown & Duguid, 1991; Paruchuri, 

2010; Singh, 2005). Les réseaux inter-organisationnels sont composés d'organisations qui 

établissent des partenariats inter-entreprises à des fins d'innovation. Une telle collaboration 

inter-organisationnelle conduit à la diffusion des connaissances entre les entreprises et 

constitue une source importante d'innovation (Ahuja, 2000; Hamel, 1991; Shan et al., 1994). 

Pour comprendre comment les réseaux influencent l'innovation de l’entreprise, j’adopte une 

approche de système imbriqué (Harary & Batell, 1981). Dans cette perspective, un acteur à 

un niveau supérieur se compose d'un ou plusieurs acteurs de niveau inférieur. Cela signifie 

qu'un nœud dans le réseau inter-entreprises est en fait lui-même un réseau de personnes. 

Lorsque deux entreprises collaborent, les employés des deux organisations coopéreront par 

projets d’équipes communs. Il en résulte de nouveaux liens interpersonnels qui traversent les 

frontières organisationnelles. Les liens inter-entreprises sont donc représentés à un niveau 
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inférieur par la création de nouveaux liens interpersonnels entre les (certaines) personnes des 

deux entreprises. 

 

 
Figure 9 Structure de thèse 
  

Pour répondre à la question de recherche ci-dessus, je développe trois sous-questions 

connexes qui sont traitées dans trois articles différents, chacun constituant un chapitre distinct 

de cette thèse. Le premier chapitre développe un modèle conceptuel des réseaux d'innovation 

à plusieurs niveaux et développe le rôle crucial des passeurs de frontières dans ce processus. 

Le deuxième chapitre examine les mécanismes qui interviennent dans la structure du réseau 

et de l'innovation en utilisant une approche à l’échelle macroéconomique. Le dernier chapitre 

explore la nature commune des réseaux inter et intra-organisationnels pour l’innovation de 

l’entreprise. 

 

Chapitre 1: Réseaux Inter-organisationnels, Réseaux Intra-organisationnels et 

Innovation 

Le premier chapitre intègre les littératures sur les réseaux inter-organisationnels et 

intra-organisationnels. Il est motivé par l'absence d’un perspectif multi-niveau dans la 

littérature des réseaux et de l’innovation. Au lieu de cela, la plupart des recherches sur les 
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réseaux et l'innovation ne portent que sur un seul niveau d'analyse et ne tiennent pas compte 

des influences potentielles des réseaux à des niveaux plus ou moins élevés (Moliterno & 

Mahony, 2011). En particulier, il répond à deux lacunes de la recherche existante. Tout 

d'abord, la littérature sur les réseaux inter-organisationnels perçoit les entreprises comme 

individuelles, des entités «atomistique». Les entreprises peuvent varier dans leurs 

caractéristiques, mais sont considérées comme homogène en interne. Cela signifie que les 

collaborations entre deux organisations conduisent à des niveaux similaires de diffusion de 

connaissances et d'innovation. En conséquence, il suppose que chaque entreprise est affectée 

également par sa structure, et sa position au sein d'un réseau organisationnel. Cependant, la 

littérature du réseau intra-organisationnel a montré que les entreprises sont en fait des réseaux 

d'individus qui ont tous leurs propres caractéristiques. Parce que les organisations sont en 

interne hétérogène, les effets de la collaboration inter-organisationnelle varient selon la firme. 

Pour mieux comprendre quand les réseaux inter-entreprises influencent l'innovation de 

l’entreprise, le rôle des individus et de leurs réseaux intra-organisationnels doit être inclus. 

Deuxièmement, la littérature sur les réseaux inter organisationnels a prêté peu d'attention au 

rôle des individus dans ce processus. La plupart des études de réseaux inter-organisationnels 

considère que seulement le nombre, la structure et le type d'alliances interentreprises 

concerne directement l'apprentissage organisationnel et l'innovation de l’entreprise (Van Wijk 

et al, 2008). Cependant, l'apprentissage inter-organisationnel et le transfert de connaissances 

sont ultimement des processus de niveau individuel qui se produisent entre les employés des 

deux organisations partenaires (Janowicz-Panjaitan & Noorderhaven, 2009). Pour 

comprendre comment et quand la collaboration inter-organisationnelle conduit à l'innovation 

de l’entreprise, le rôle des employés et de leurs réseaux personnels doivent être intégré 

davantage. Par conséquent, ce chapitre aborde la question de la façon dont les réseaux inter-
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organisationnels et intra-organisationnels influencent conjointement l'innovation de 

l’entreprise. 

Afin de développer le concept de réseaux d'innovation à plusieurs niveaux, nous 

commençons par expliquer comment les réseaux inter-organisationnels, en collaboration avec 

les réseaux intra-organisationnels ont des rôles complémentaires dans le transfert des 

connaissances inter-organisationnelles et la diffusion des connaissances intra-

organisationnelles. Nous nous appuyons sur le modèle en bateau de Coleman pour décrire la 

façon dont les actions à l’échelle macroéconomique ont des résultats à l’échelle 

macroéconomique, par procédés microéconomique (Coleman, 1994). En particulier, nous 

l'utilisons pour décrire comment la formation de lien au niveau organisationnel influence 

l’innovation de l’entreprise par les processus au niveau individuel. Nous soutenons que la 

formation d'alliances influence l’innovation de l’entreprise via un processus en quatre étapes. 

Dans la première étape, comprenant la liaison macro-micro dans le bateau de Coleman, une 

organisation nomme des employés comme passeurs de frontières après la création d'une 

alliance avec une organisation partenaire. Ces personnes passeurs de frontières sont ensuite 

assignées à des projets qui font partie des accords d'alliance. Dans la deuxième étape, une 

partie de la liaison micro-micro, ces passeurs de frontières nouent des relations 

professionnelles avec les passeurs de frontières dans l'organisation partenaire. Ces liens 

interpersonnels se traduisent dans la connaissance et le partage d’informations entre les 

passeurs de frontières qui traversent les frontières organisationnelles. Dans la troisième étape, 

qui est également une partie de la liaison micro-micro, les passeurs de frontières partagent 

leurs nouvelles informations avec leur contact professionnel au sein de leur propre 

organisation. De cette façon la connaissance, les nouvelles connaissances sont partagées et 

réparties au sein de l'organisation focale. Dans la quatrième étape, constituant la liaison 
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micro-macro, les employés appliquent ces nouvelles connaissances dans leurs projets et 

deviennent plus créatifs. Cela augmente les niveaux globaux d'innovation de l’entreprise. 

 

 
Figure 10 Le modèle en bateau de Coleman pour collaboration inter-organisationelle 

  

Subséquemment, nous séparons ce modèle en quatre étapes en deux parties distinctes 

et générons des prévisions significatives sur l'efficacité de ces deux processus. Le premier 

processus est l'assimilation des connaissances et comprend les deux premières étapes du 

modèle en bateau de Coleman. Ce processus implique l'absorption de connaissances résidant 

dans une organisation partenaire par (un ou plusieurs) passeurs de frontières dans 

l'organisation focale. Nous soutenons que la mesure dans laquelle un passeur de frontière de 

l'organisation focale peut obtenir la connaissance de l'organisation partenaire dépend des 

caractéristiques de la source, du lien, et du destinataire. En ce qui concerne la source, un 

passeur de frontière apprendra plus si son homologue dans une organisation partenaire a des 

niveaux plus élevés de capital humain ou social. En ce qui concerne le lien, un passeur de 

frontière apprendra plus s’il / elle a un lien plus fort avec sa contrepartie dans une 

organisation partenaire. Considérant le destinataire, un passeur de frontière apprendra plus si 

il / elle a plus de capital humain, ce qui est, une meilleure capacité à apprendre de nouvelles 

connaissances et compétences. Dans une perspective à l’échelle macroéconomique, ce 

transfert de connaissances inter-organisationnelles change légèrement nos propositions. Tout 
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d'abord, l'organisation focale en apprendra plus de son partenaire si le partenaire implique 

plus de passeurs de frontière et si ces passeurs de frontières ont plus de capital humain et 

social non-cumulable. Deuxièmement, l'organisation focale en apprendra plus de son 

partenaire si ses passeurs de frontières des deux organisations développent des liens de plus 

en plus forts avec les passeurs de frontières dans l'organisation partenaire. Troisièmement, 

l'organisation focale en apprendra plus en nommant des employés plus nombreux et plus 

qualifiés comme passeurs de frontières. 

Le processus d'absorption de connaissances est suivi par un processus de diffusion des 

connaissances au sein d'une organisation. Ce processus, qui constitue les deux dernières 

étapes du modèle en bateau de Coleman, décrit comment les nouvelles connaissances se 

propagent des employés passeurs de frontières aux autres collègues dans une organisation. 

Au niveau microéconomique, un passeur de frontière peut encore apprendre des 

connaissances d'une organisation partenaire via ses connexions dans le réseau intra-

organisationnelle. L'efficacité de ce processus dépend de sa / ses relations avec les employés 

passeurs de frontières. Nous prévoyons qu’un passeur de frontière peut encore apprendre des 

connaissances de l'organisation partenaire s’il / elle a plus de liens, des liens plus forts, et des 

liens plus étroits avec des collègues passeurs de frontière. Plus de liens avec les passeurs de 

frontières sont bénéfiques puisque chaque lien est l'occasion d'échanger des connaissances. 

Des liens plus étroits avec les passeurs de frontière augmentent la volonté et la capacité des 

passeurs de frontièreà partagé leur nouvelle information. Des liens plus étroits rendent les 

mécanismes de conseil et d'orientation plus efficace. En passant à un point de vue 

macroéconomique de la diffusion des connaissances, nous développons des prévisions un peu 

différentes. Tout d'abord, les connaissances acquises d'une organisation partenaire est plus 

susceptible de diffuser à partir des passeurs de frontière à d'autres employés de l'organisation 

si les passeurs de frontières ont une position plus centrale dans le réseau intra-
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organisationnel. Deuxièmement, cette connaissance est plus susceptible d’être diffusée si le 

réseau intra-organisationnel est moins fragmenté (mieux connecté) ou si les passeurs de 

frontière font partie des différents éléments dans un réseau intra-organisationnel fragmenté. 

Pour conclure, les organisations sont simultanément impliquées dans deux réseaux 

différents. Leur réseau inter-organisationnel des alliances et des projets communs leur permet 

d'absorber de nouvelles connaissances par les organisations partenaires. Leur réseau intra-

organisationnel de liens professionnels entre les employés leur permet de partager et 

d’employer cette connaissance afin de renforcer l'innovation de l’entreprise. En examinant 

une situation particulière, à savoir lier la formation dans le réseau inter-organisationnel, nous 

décrivons l'efficacité de ce processus en fonction de diverses caractéristiques individuelles et 

de l’entreprise. Le modèle de réseau d'innovation à plusieurs niveaux développé dans ce 

chapitre contribue à divers volets de recherche. Tout d'abord, il contribue à la recherche sur 

les réseaux et à l'innovation en intégrant et en identifiant les rôles complémentaires des 

réseaux inter et intra-organisationnels. Deuxièmement, il contribue à la littérature sur le 

fondement microéconomique en identifiant le rôle des individus dans le processus de transfert 

de connaissances inter-entreprises. Troisièmement, il contribue à notre compréhension de la 

capacité d'absorption en décrivant les mécanismes qui sous-tendent la capacité d'une 

entreprise à absorber et d'exploiter les connaissances externes. 

 

Chapitre 2: Structure de Réseau Intra-organisationnel et Innovation de l'Entreprise 

De nombreuses recherches ont discuté les conséquences de la structure du réseau 

interpersonnel sur la créativité individuelle et l'innovation (Carpenter et al., 2012; Phelps et 

al, 2012). Toutefois, on en sait moins sur les effets à l’échelle macroéconomique de la 

structure du réseau intra-entreprises, à savoir les effets de la structure de l'ensemble du réseau 

sur l'innovation de l'entreprise. Cette question est importante pour deux raisons. Tout d'abord, 
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plusieurs études indiquent qu'il existe un micro / macro paradoxe entre la structure du réseau 

au niveau individuel et organisationnel (Operti & Carnabuci, 2012). Cela signifie que les 

structures du réseau favorisant la performance d'un employé peuvent le faire au détriment 

d'autres personnes dans l'entreprise et, éventuellement, diminuer l'innovation de l'entreprise. 

Par exemple, Burt (1992) propose que les personnes améliorent leurs performances en 

comblant les trous structurels. Cependant, Bizzi (2013) affirme que l'augmentation des 

courtiers de trous structuraux nuit au capital social des employés et démontre que plus de 

courtage réduit en fait le rendement des employés. Cette question est pertinente dans la 

recherche de gestion qui tente d'expliquer l'innovation au niveau des entreprises. 

Deuxièmement, une recherche existante utilisant la structure du réseau à l’échelle 

macroéconomique pour expliquer l'innovation de l’entreprise a fourni des résultats 

incomplets. Par exemple, Carnabuci et Operti (2013) confirment que les réseaux intra-

organisationnels sont un mécanisme important pour le partage des connaissances en montrant 

que la connectivité du réseau augmente la réutilisation des connaissances. Cependant, Guler 

et Nerkar (2012) concluent que la connectivité du réseau réduit l'innovation de l'entreprise, ce 

qui impliquerait que le partage des connaissances nuit à l'innovation de l’entreprise. Pour 

comprendre comment la structure du réseau influence l’innovation de l’entreprise, il faut 

identifier les mécanismes qui interviennent dans cette relation.  

Le deuxième chapitre demande donc: comment la structure du réseau intra-entreprise 

n'a aucune influence sur l’innovation de l’entreprise? Il vise à créer une clarté théorique et 

empirique par l'identification des processus qui interviennent dans la relation structure-

performance. Spécifiquement, je me concentre sur deux caractéristiques dominantes des 

réseaux intra-organisationnels, à savoir le reach et le clusters (Provan et al., 2007). Le reach 

du réseau se réfère au degré avec lequel tous les employés sont reliés par des chemins 

relativement étroit et est un équivalent au niveau macro de la proximité de centralité. Je 
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soutiens que le reach du réseau sera faciliter le transfert des connaissances entre les employés 

par le partage des connaissances, la communication informelle et la résolution conjointe de 

problèmes, mais cela diminuera la diversité des connaissances entre les employés. Le 

coefficient de clustering du réseau se réfère à la présence de groupes connectés d'employés à 

forte densité dans une organisation et est l'équivalent au niveau macro à la clôture du réseau. 

Les clusters sont des mécanismes efficaces pour le développement de nouveaux domaines 

d'expertise et pour augmenter la diversité des connaissances, mais ont un double effet sur le 

transfert de connaissances entre les employés. Subséquemment, la diversité et le transfert de 

connaissances d'une entreprise renforcent les performances d'innovation de l’entreprise: alors 

que la diversité des connaissances fournit à l'entreprise des possibilités de recombinaison des 

connaissances et de l'innovation, sa capacité à le faire est déterminée par le degré auquel les 

connaissances détenues par les divers employés sont partagées et transférées.  

 
Figure 11 Modèle théorique des reseaux, connaissances et innovation 

 

Ce modèle théorique est testé sur un ensemble de données de cinquante entreprises 

actives dans l'industrie des dispositifs médicaux nord-américains entre 1990 et 2005. Cette 

industrie fournit un cadre approprié en raison de son haut degré d'innovation technologique 

qui est le résultat d'un processus de recombinaison par des personnes ayant des 
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spécialisations diverses. Les réseaux intra-organisationnels sont observés en regardant la 

collaboration entre les employés dans les projets de R & D qui résultent soit en brevets soit 

en publications. La diversité et le transfert des connaissances sont mesurés par les classes et 

les citations de brevets de chaque entreprise. Enfin, l'innovation technologique est observée 

par le nombre de nouveaux brevets et de produits obtenus par chaque entreprise dans une 

année. Les résultats, bien que significatifs, sont souvent en contradiction avec les prévisions 

antérieures. Pour commencer, les réseaux intra-entreprises dont le niveau de reach est plus 

grand affichent des niveaux inférieurs de diversité de connaissances et de transfert de 

connaissances. De plus, les réseaux intra-entreprises avec de grands clusters ont également 

des niveaux inférieurs de diversité des connaissances et de transfert des connaissances. 

Comme prévu, la diversité des connaissances et le transfert ont un effet positif sur 

l'innovation de l’entreprise. Dans l'ensemble, la structure des réseaux intra-entreprises influe 

sur l’innovation de l’entreprise par un processus qui est entièrement ou partiellement médiés 

par la diversité de connaissances et le transfert de connaissances. 

Ce chapitre contribue à notre compréhension des réseaux et de l'innovation de deux 

façons. Premièrement, il permet une meilleure compréhension de la relation entre la structure 

du réseau et l'innovation en identifiant le transfert de connaissances et la diversité comme 

processus de médiation. Ces mécanismes pourraient être testés de façon empirique en 

déplaçant le niveau d'analyse de l'individu à l'ensemble de l'organisation. Deuxièmement, il 

fournit de plus amples informations potentiellement divergentes des effets micro / 

macroéconomique de la structure du réseau en examinant les effets à l’échelle 

macroéconomique de la centralité de proximité des salariés, ou le reach du réseau, et la 

clôture de l'ego-réseau des employés, ou le coefficient de clustering du réseau, sur 

l’innovation de l’entreprise. 
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Chapitre 3: La Collaboration Inter-organisationnelle, Réseaux Intra-organisationnels et 

Innovation de l’Entreprise 

Le troisième chapitre relie les réseaux intra-organisationnels à la collaboration inter-

organisationnelle et à l’innovation de l’entreprise. La collaboration inter-organisationnelle via 

des alliances et à des projets communs conduit à l’apprentissage inter-organisationnelle et à 

la diffusion des connaissances (Hamel, 1991; Lavie, 2006). L'afflux de nouvelles 

connaissances et d'information par l'intermédiaire de partenariats inter-entreprises stimule 

aussi l’innovation de l’entreprise (Shan et al., 1994). Les travaux existants sur les réseaux de 

collaboration inter-organisationnelle ont montré les effets significatifs de la taille du réseau, 

de la structure et de la composition sur l'innovation des entreprises (par exemple Ahuja, 

2000a; Phelps, 2010). Malgré le vaste corpus de littérature sur la collaboration inter-

organisationnelle, elle a prêté peu d'attention au rôle des réseaux intra-organisationnels. Ceci 

est surprenant puisque les réseaux intra-organisationnels remplissent un autre rôle, très lié à 

l'innovation de l’entreprise. Les réseaux de collaboration au sein des organisations permettent 

le transfert des connaissances et la diffusion parmi les employés (Brown & Duguid, 1991). 

Ces relations personnelles entre les employés constituent le fondement de la circulation des 

connaissances au sein d'une organisation (Paruchuri, 2010). La performance individuelle des 

employés est donc fortement influencée par le nombre et la structure de leurs liens (Fleming, 

Mingo, et al., 2007). Le nombre et la structure des connexions entre employés ont également 

un effet profond sur la capacité d'une organisation à transformer ses connaissances et 

ressources en innovation (Carnabuci & Operti, 2013). Les réseaux de collaboration inter-

entreprises et intra-entreprises assurent ainsi des rôles très similaires en agissant comme des 

conduits de connaissances qui stimulent la créativité et l'innovation. Peu d'études ont examiné 

l'effet conjoint des réseaux inter-organisationnels et intra-organisationnels et ont démontré 

que les deux réseaux influencent la performance individuelle de chaque employé (Lazega et 
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al., 2008; 2006; Paruchuri, 2010). Cependant, la recherche n'a pas encore évalué la façon dont 

les réseaux inter-organisationnels et intra-organisationnels influencent simultanément 

l'innovation organisationnelle, qui est un élément clé dans la recherche en gestion. Par 

conséquent, le troisième chapitre de cette thèse pose la question: comment les réseaux intra-

organisationnels et la collaboration inter-organisationnelle influencent conjointement 

l'innovation de l’entreprise ? 

Je soutiens que la collaboration inter-organisationnelle via des alliances et des projets 

communs façonne l'opportunité d'une entreprise pour l'absorption de la connaissance alors 

que son réseau intra-organisationnel constitue sa capacité à absorber ces connaissances et à 

les appliquer dans de nouveaux produits et procédés. La coopération avec d'autres 

organisations donne accès aux connaissances et aux capacités des organisations partenaires 

(Hamel, 1991; Lavie, 2006). Initialement, les employés passeurs de frontière apprennent de 

nouvelles informations et compétences d'une organisation partenaire via leur participation à 

des projets communs. Par la suite, ils peuvent partager leurs connaissances et leurs 

expériences avec d'autres collègues dans leur entreprise par le biais de son réseau intra-

organisationnel. Il en résulte un processus de diffusion des connaissances à travers 

l'entreprise. Le degré de diffusion dépendra alors du nombre et de la structure de connexion 

dans le réseau intra-organisationnel d'une entreprise (Lazer & Friedman, 2007). Par 

conséquent, l'influence de la collaboration inter-organisationnelle sur l'innovation est 

modérée par la structure du réseau des employés intra-organisationnel de l'entreprise. En 

particulier, je propose que l'effet positif de la collaboration inter-organisationnelle sur 

l'innovation soit plus fort si le réseau intra-organisationnel d'une entreprise a une densité 

supérieure, plus ou moins de clusters, et un plus grand reach. 

Les propositions sont examinées de façon empirique sur le même jury de cinquante 

entreprises de dispositifs médicaux nord-américains. La collaboration inter-organisationnelle 
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est observée via l'annonce d’alliances et d’une formation de projets communs annoncée dans 

des articles de presse et des bases de données spécialisées. Pour chaque entreprise, je calcule 

le degré de sa centralité dans ses réseaux inter-organisationnels, c’est-à-dire, le nombre 

unique de partenaires alliés dans une année donnée. Ce terme est en interaction avec les 

caractéristiques structurelles du réseau des employés intra-organisationnel de l'entreprise. 

Comme prévu, les résultats montrent un effet positif du nombre d'alliances sur l'innovation de 

l'entreprise. L'effet de modération de la structure du réseau intra-organisationnel est 

partiellement pris en charge: alors que le nombre total de connexions a un effet positif, les 

clusters ont un effet négatif et son reach n'a aucun effet. Ces résultats obtenus au cours de 

nombreux tests de robustesse effectués pour corriger l'observation et la mesure potentiels. 

Dans l'ensemble, les résultats indiquent que les réseaux inter et intra-organisationnels ont un 

effet sur l'innovation conjointe en plus de leurs effets individuels. 

Ce chapitre apporte des contributions à la littérature sur les réseaux et l'innovation, à 

la littérature sur la complémentarité des alliances, et à la recherche sur la capacité 

d'absorption. Premièrement, en considérant les effets conjoints des réseaux individuels et 

organisationnels, cette étude révèle que l'innovation de l’entreprise est le résultat d'une 

interaction entre les réseaux inter et intra-organisationnels. En particulier, la connectivité des 

réseaux intra-organisationnels d'une entreprise renforce l'effet positif des réseaux inter-

entreprises sur l'innovation de l’entreprise. Cette étude contribue également à la recherche sur 

la complémentarité des alliances (Rothaermel, 2001) en examinant comment les réseaux 

intra-entreprises complètent les alliances inter-entreprises dans la poursuite de l'innovation. 

Finalement, ce document déballe le concept de capacité d'absorption. La capacité d'une 

entreprise « à reconnaître la valeur des nouvelles, informations externes, à les assimiler et à 

les appliquer » (Cohen & Levinthal, 1990: 128) est partiellement expliquée par le réseau 
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intra-organisationnel d'une entreprise qui diffuse de nouvelles connaissances à travers 

l'entreprise. 

 

Contributions 

Les résultats de cette thèse contribuent à trois flux connectés de la littérature: les 

réseaux et l'innovation, la recherche du fondement microéconomique, et le paradigme ouvert 

de l'innovation. Premièrement, cette thèse contribue tout d’abord à la littérature sur les 

réseaux multi-niveaux en explorant les effets des liens de collaboration internes et externes 

sur l'innovation de l'entreprise. La recherche multi-niveaux dans la gestion a révélé comment 

les effets des réseaux à un niveau sont tributaires sur les réseaux supérieurs et inférieurs 

(Moliterno & Mahony, 2011), donc il ya des effets sur le niveau transversal et le niveau 

commun (Maison et al., 1995; Rousseau, 1985). Cette thèse explore la nature multi-niveau 

des réseaux organisationnels et l'innovation de l'entreprise en combinant les effets individuels 

et conjoints du partenariat inter-organisationnel et de la collaboration intra-organisationnelle. 

Dans le premier chapitre, on expose comment les individus et leurs liens personnels 

effectuent une tâche fondamentale dans la réalisation des opportunités offertes par les 

relations inter-organisationnelles. L'efficacité de la collaboration interentreprises pour 

l'innovation dépend fortement des caractéristiques du réseau intra-organisationnel ainsi que 

du capital social des passeurs de frontière. Le troisième chapitre fournit un test préliminaire 

de ce modèle multi-niveaux du réseau en combinant le réseau de collaboration intra-

entreprises avec les alliances interentreprises R & D, à savoir le degré de centralité dans le 

réseauinter-organisationnel de l'entreprise. Les résultats indiquent que les réseaux 

interentreprises et intra-entreprises façonnent conjointement l'innovation de l’entreprise. 

Cette thèse soulève donc le fait que les recherches futures devraient combiner les réseaux à 

différents niveaux pour examiner leur impact sur l'innovation de l'entreprise. 
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Deuxièmement, cette thèse contribue également à la masse croissante de la littérature 

sur les fondements microéconomiques dans la recherche en gestion (Felin et al., 2012). Une 

approche du fondement microéconomique de la recherche en gestion fait valoir que la 

recherche sur les actions et les résultats de l’entreprise devrait examiner les processus exacts 

par lesquels une cause conduit à un effet, y compris les processus à un niveau inférieur de 

l'analyse. Coleman (1994) a fourni un outil utile pour l'analyse du fondement 

microéconomique et a démontré son utilisation dans un cadre politique. Dans le premier 

chapitre, j’applique une approche similaire aux alliances de R & D, au transfert des 

connaissances inter-organisationnelles et à l'innovation l'entreprise. L’utilisation de cette 

approche révèle l'importance liée aux individus, à leurs connexions et le rôle des réseaux 

intra-entreprise. Il démontre comment les effets au niveau de l'organisation des alliances de R 

& D reposent sur de nombreux facteurs au niveau individuel. Les fondements 

microéconomiques des alliances R & D sont donc les individus, et leur capital social est 

essentiel pour le succès de la collaboration inter-organisationnelle. Il met aussi en lumière les 

fondements microéconomiques de la capacité recombinante de l'entreprise (Garud & Nayyar, 

1994).Les organisations sont des instruments essentiels pour l'apprentissage, le partage et la 

combinaison des connaissances qui résulte en l'innovation (Grant, 1996; Kogut & Zander, 

1992). Le deuxième chapitre identifie les réseaux intra-entreprises comme d'importants 

mécanismes pour le partage des connaissances et l'innovation. La structure de ce réseau 

émerge par un processus ascendant et a des effets importants sur le transfert et la diversité des 

connaissances et de l'expertise. Par conséquent, la capacité recombinante d'une entreprise est 

finalement façonnée par la structure de son réseau de collaboration intra-entreprise qui 

facilite le partage de l'information et le transfert parmi ses employés. Le troisième chapitre 

traite de la littérature sur la capacité d'absorption par l'identification des fondements 

microéconomiques de la capacité d'une entreprise à absorber et exploiter les connaissances 
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externes. Dans leur article pivot, Cohen et Levinthal (1990) ont déjà soutenu que la 

connaissance et l'expertise externe obtenue en traversant les frontières organisationnelles ne 

sont pas suffisantes. Au lieu de cela, les organisations ont besoin de procédures de transfert 

de connaissances absorbées au bon (s) endroit (s) de l'organisation où elles peuvent être 

utilisées et développées davantage. Le troisième chapitre décrit comment les passeurs de 

frontière dans les alliances de R & D peuvent partager et transférer leurs nouvelles 

connaissances à d'autres scientifiques R & D via leurs connections personnelles avec des 

collègues. Le réseau intra-entreprise, avec tous les flux de son savoir informel, est donc 

comme un complément important de la connaissance externe absorbée. 

Enfin, cette dissertation contribue au paradigme de l'innovation ouverte. Dans un 

cadre et une époque où l'innovation n’est plus le résultat de la recherche et du développement 

par une organisation, des idées dans un rôle précis de collaboration à plusieurs niveaux sont 

une nécessité. Une approche d'innovation ouverte souligne l'importance de la collaboration 

entre les différents acteurs pour stimuler la recherche et le développement, mais révèle 

également les risques liés à ces stratégies (Chesbrough, 2003). Dans le premier chapitre, 

j'étudie comment les organisations peuvent structurer leur coopération inter-organisationnelle 

pour influencer la quantité et la diversité des apports de connaissances. Il révèle un certain 

nombre d'éléments importants de la stratégie de l'entreprise et de la politique de l'entreprise. 

Pour commencer, l'apprentissage par l'innovation ouverte dépend directement des passeurs de 

frontière ainsi que de la structure et des politiques de l'alliances R & D. Consacrer davantage 

de ressources à des alliances R & D en augmentant le nombre de scientifiques va augmenter 

l’apprentissage inter-entreprises. De plus, permettre la communication et la collaboration 

interpersonnelle et informelle, par exemple via la colocation, conduit à des liens plus étroits 

entre les passeurs de frontière et résulte en plus de transfert des connaissances. En outre, les 

alliances des réseaux inter-entreprises et intra-entreprise ne doivent pas être considérées 
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individuellement pour comprendre les effets de la collaboration interne et externe sur 

l'innovation. La combinaison d'une perspective de portefeuille d'alliance avec les réseaux 

intra-entreprise est très utile pour comprendre comment la coopération des alliances inter-

entreprises influence l'innovation de l'entreprise. Le portefeuille de recherche d'une alliance 

affirme déjà qu'il ya des effets complémentaires et de remplacement survenant lorsqu'une 

organisation est impliquée dans de multiples alliances (Wassmer, 2010). En outre, la 

recherche d'alliances a identifié le capital humain au sein des organisations en tant que 

compléments aux alliances R & D pour l'innovation de l'entreprise (Hess & Rothaermel, 

2011). Cette thèse ajoute les réseaux intra-entreprises comme un autre facteur qui vient 

compléter la collaboration inter-organisationnelle. En particulier, elle explique comment des 

réseaux de collaboration intra-entreprise plus forts renforcent les effets positifs des alliances 

sur l'innovation. Cela indique que la collaboration R & D interne et externe est un élément 

complémentaire de la stratégie d'innovation d'une organisation. 
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Intraorganizational Networks, Interorganizational Collaboration and Firm Innovation 

Abstract. This dissertation explores how intraorganizational networks and 

interorganizational collaboration, individually and jointly, shape firm innovation.  

Organizations rely on both external and internal collaboration to obtain and integrate 

knowledge in new products and processes. Internal collaboration networks among R&D 

scientists facilitate knowledge sharing and transfer whereas external collaboration via 

alliances and joint ventures provide an organization with access to new knowledge. This 

model is empirically tested in the North-American medical devices industry between 1990 

and 2005. Contrary to the expectations, intrafirm networks with shorter paths and more 

clusters actually reduce knowledge transfer and diversity, which then reduces firm 

innovation. But well-connected intrafirm networks augment the effects of interorganizational 

collaboration on firm innovation. This dissertation contributes to the networks and innovation 

literature by examining the mechanisms that mediate the effects of network structure on firm 

innovation. It also explores the multilevel nature of networks by combining both intrafirm 

and interfirm relationships to explain firm innovation. 

 

Keywords. Intraorganizational networks, Interorganizational relations, Multilevel 

collaboration, Firm innovation. 

 

 
Réseaux Intra-organisationnels, Collaboration Inter-organisationnelle et Innovation 

d'Entreprise 

Résumé. Cette thèse explore comment les réseaux intra-organisationnels et la collaboration 

inter-organisationnelle déterminent, séparément et conjointement l'innovation d'entreprise. 

Les organisations s'appuient à la fois sur la collaboration externe et interne pour obtenir et 

intégrer des connaissances sur de nouveaux produits et procédés. Les réseaux de 

collaboration interne entre les scientifiques en recherche et développement facilitent le 

partage et le transfert de connaissances tandis que la collaboration externe, via des alliances 

et des "joint ventures", offre accès à de nouvelles connaissances. Ce modèle a été testé 

empiriquement en utilisant des données de l'industrie des dispositifs médicaux en Amérique 

du nord entre 1990 et 2005. Contrairement aux attentes, les réseaux intra-organisationnels 

plus cohésifs et plus regroupés réduisent le transfert de connaissances et la diversité, ce qui 

réduit aussi l'innovation d'entreprise. Alors que les réseaux intra-organisationnels très 

connectés augmentent les effets de la collaboration inter-organisationnelle sur l'innovation 

d'entreprise. Cette thèse contribue à la littérature des réseaux et de l'innovation en examinant 

les mécanismes qui interviennent dans les effets de la structure du réseau sur l'innovation 

d'entreprise. Elle explore également le caractère multi-niveaux des réseaux en combinant à la 

fois les relations intra-entreprise et inter-entreprises pour expliquer l'innovation d'entreprise. 

 

Mots-clés. Réseaux intra-organisationnels, Relations inter-organisationnelles, Collaboration 
multi-niveaux, Innovation d'entreprise. 


