
Since the discovery of oestrogens in the early 1920s (Allen
and Doisy, 1923), their effects have intrigued reproductive
biologists. Classically, two approaches have been used to
study the role of oestrogen within the ovary: surgical
removal of the pituitary gland to eliminate confounding
gonadotrophins, and pharmacological blockage of either the
synthesis of oestrogen or its receptors both in vivo and in
vitro. Although some studies have implicated a role for
oestrogen within the ovary (Goldenberg et al., 1972;
Nakayama et al., 1981; Nakano et al., 1982; Gore-Langton
and Daniel, 1990; Nayudu and Osborn, 1992; Hulshof et
al., 1995), others have not (Coney et al., 1987; Spears et al.,
1998). Transgenic gene knockout technology has been used
to investigate the intraovarian effects of oestrogen. Mice that
lack either the P450aromatase gene (Fisher et al., 1998;
Honda et al., 1998) or one or both of the known oestrogen
receptors have been produced (Lubahn et al., 1993; Krege et
al., 1998; Couse et al., 1999; Dupont et al., 2000; for review,
see Rosenfeld et al., 2001). The main ovarian events studied
for oestrogen involvement have been folliculogenesis,
steroidogenesis, ovulation and corpus luteum formation.

Oestrogen synthesis, sites of action and metabolism

Androgens are produced by the thecal cells and, in general,
they are taken up by the granulosa cells and converted by
P450aromatase to various oestrogens with the main one
being oestradiol (Fig. 1). In some species, such as pigs
(Lautincik et al., 1994; Shores and Hunter, 1999), chickens
(Kato et al., 1995) and tree shrews (Kimura et al., 2000), the
thecal cells can also synthesize oestrogen. This steriod
hormone is then released into the vasculature and
circulated to the uterus, hypothalamus, mammary gland
and various other reproductive and non-reproductive
organs. Oestrogens may also exert local effects within the
ovary. Some oestrogens appear also to be metabolized into
presumed inactive as well as active products, such as the
catecholoestrogens (Zhu and Conney, 1998; Fig. 1).

Catecholoestrogens 

The enzymes, 2-hydroxylase (cyp1a1) and 4-hydroxylase
(cyp1b1) catalyse the formation of catecholoestrogens from
oestradiol (Fig. 1). Both of these catecholoestrogens can bind
to the two known oestrogen receptors, ERα and ERβ (Kuiper
et al., 1997). In addition, it has been proposed that they bind
to a novel oestrogen receptor (Das et al., 1997) and possibly
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even androgen receptor (Hudson and Hillier, 1985). Pig 
and human ovaries contain high concentrations of 2-
hydroxylase and 4-hydroxylase (Hammond et al., 1986;
Muskhelishvili et al., 2001), and certain ovarian responses
appear to be induced directly by these steroid metabolites,
as discussed further below. The pattern of expression of
these enzymes has not been examined throughout the
oestrous cycle. 

Oestrogen receptors

Oestrogen was the first steroid hormone demonstrated to
activate transcription by binding to a receptor, the
oestrogen receptor (for review, see Jensen and DeSombre,
1973). The receptors with their bound hormone modulate
transcription by binding to oestrogen response elements
(ERE) present on oestrogen-inducible genes (Kumar et al.,
1987). The receptors can also act as co-regulators through
binding to other transcription factors already attached to
gene regulatory regions (Adler et al., 1988; Feng et al.,
1998), and by ligand-independent mechanisms (Ignar-
Trowbridge et al., 1992). Although it was first believed that
oestrogen receptors were predominantly cytoplasmic, it
was later proposed that they are located exclusively within
the nucleus (Welshons et al., 1984; Greene et al., 1986). It is
now clear that these receptors can be found in both the
cytoplasm and nucleus, with the ratio dependent upon the
cell type and physiological conditions (Yamashita, 1998;
Zieba et al., 2000). Some studies also indicate that
oestrogen receptors reside on the plasma membrane and
modulate cellular activity without directly associating with
DNA (Morley et al., 1992; Levin, 1999; Pietras and Szego,
1999; Nadal et al., 2000). 

The oestrogen receptors are members of the superfamily
of steroid nuclear receptors (Parker, 1995; Baker, 1997;
White and Parker, 1998). All steroid receptors have a DNA-
binding domain that is composed of two zinc fingers
followed by a C-terminal ligand-binding domain (Parker,
1995; White and Parker, 1998). Currently, two oestrogen
receptors, ERα (Green et al., 1986; Greene et al., 1986) and
ERβ (Kuiper et al., 1996; Mosselman et al., 1996) have been
cloned. These two receptors have considerable sequence
identity in the DNA-binding domains, which permit both
receptor types to interact with EREs of various genes.
Sequence differences between the two receptors occur
primarily in the N- and C-terminal regions (Kuiper et al.,
1996; Mosselman et al., 1996).

There are many alternatively spliced forms of both ERα
and ERβ (Chu and Fuller, 1997; Petersen et al., 1997; Kos 
et al., 2000; Poola et al., 2000). The alternatively spliced
forms of ERα have been identified predominantly in human
breast cancer and other tumour cell lines (Kos et al., 2000;
Poola et al., 2000) but not in normal ovarian cells. One
alternative form of ERβ identified in rats lacks exon 4, which
forms the second zinc finger of the DNA-binding domain,
whereas another form has 18 additional codons in the ligand-
binding domain, which results in a protein with only 10% of
the oestradiol-binding affinity and 100- to 1000-fold lower
transcriptional activation potential compared with the full
length receptor (Petersen et al., 1997). This form with 18
additional amino acids appears to be the predominant ERβ in
various mouse organs, including the ovary (Lu et al., 2000). A
third form of ERβ described in rats carries a deletion of the
second zinc finger, as well as the 18 additional codons in the
ligand-binding domain (Petersen et al., 1997) (Fig. 2). All
three of these aforementioned forms have been identified in
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the rat ovary (Petersen et al., 1997), and thus, each may
regulate oestrogenic activity in the rodent ovary. In addition,
other novel human ERβ forms, which differ in their C-
terminal sequences, have been identified, and some of these
are expressed in the human ovary (Moore et al., 1998).

The discovery of ERβ raises the question as to whether
mammals possess additional oestrogen receptors that have
yet to be identified. No such genes have been identified to
date in the human genome, although there is some
evidence for at least one additional oestrogen receptor in
the mouse ovary and uterus (Kudolo et al., 1984a,b; Hillier
et al., 1989; Das et al., 1997; Ghosh et al., 1999; for review,
see Rosenfeld et al., 2001). Moreover, a third oestrogen
receptor, ERγ, has been identified in fish (Hawkins et al.,
2000). ERγ is distinct from other fish ERαs and ERβs, but is
quite closely related to ERβ. In mammals, alternatively
spliced forms of ERα and ERβ that differ in their ligand-
binding domains may represent novel oestrogen receptors

because these mutations might alter their ability to interact
with various endogenous oestrogens, their metabolites and
antagonists.

For oestrogens to act on specific cell types in the ovary,
ovarian oestrogen receptors must be present, and oestrogen-
induced gene activation generally occurs. The ovarian cell
types in which ERα and ERβ have been identified are listed
(Table 1). In all species studied to date, ERβ is the most
abundant ovarian oestrogen receptor. This receptor is
especially prominent in granulosa cells, but it is also
expressed in luteal cells and, to a lesser extent, in thecal cells
(see references in Table 1).

Regulation of ovarian oestrogen receptor expression

As in other oestrogen-responsive organs, such as the
uterus, oestrogen downregulates granulosa cell expression
of ERβ protein (Sharma et al., 1999). In rodents, treatment
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with gonadotrophins, in particular LH, results in a marked
decrease of ERβ in the ovary (Byers et al., 1997; Fitzpatrick
et al., 1999). This effect is mediated through a cAMP-
dependent pathway. Not surprisingly, addition of cAMP to
cultured rat granulosa cells also decreases ERβ expression
(O’Brien et al., 1999). In contrast, when cattle are infused
with ovulatory dosages of LH, ovarian ERβ concentrations
are not altered (Manikkam et al., 1999). Why this species
difference occurs is not clear, but it may relate to the
manner in which follicular maturation and selection occurs
in the two species, that is, polyovulatory rodents versus
generally monovulatory cattle. ERβ may regulate early
follicular growth in rodents, whereas it may exert control
over both early and late follicular development in cattle. 

Mice that lack LH–hCG receptors have a marked
decrease in ovarian ERα mRNA, but an increase in ovarian
ERβ mRNA expression, as determined by northern blot
analysis (Lei et al., 2001). Oestrogen and progesterone
treatment of these mice restores ERα mRNA to the amounts
found in wild-type mice, but ERβ mRNA remains increased.
These findings support the contention that LH signalling is
needed in mice to maintain proper ovarian ERβ mRNA
concentrations. Concomitantly, the absence of ERα results
in increased serum concentrations of LH (Rissman et al.,
1997; Couse and Korach, 1999), and thus, ERα is needed to
maintain normal LH concentrations.

Intraovarian effects of oestrogen

Folliculogenesis 

As the ovarian follicles grow and differentiate, increasing
amounts of oestrogen are produced (Fortune, 1994), which,
in turn, upregulate the synthesis and release of the pituitary
gonadotrophins, FSH and LH, thereby promoting ovarian
follicular growth. On the basis of some reports, oestrogen
directly increases the number and size of ovarian follicles in
vivo and the size of rat, mouse and bovine follicles in
culture (Goldenberg et al., 1972; Nakayama et al., 1981;
Nakano et al., 1982; Gore-Langton and Daniel, 1990;
Nayudu and Osborn, 1992; Hulshof et al., 1995). However,
other studies on rat and ovarian follicles have not supported
this finding (Coney et al., 1987; Spears et al., 1998). 

If oestrogen is indeed directly promoting ovarian
follicular growth, it is uncertain which oestrogen receptors
are involved. Both the ERα knockout (ERαKO) (Rosenfeld et
al., 2000) and ERβKO (Krege et al., 1998) mice exhibit
follicular development to the Graafian stage, albeit to a
lesser extent than in wild-type sibling mice. However, ERαβ
double KO mice are infertile because of follicular arrest
(Couse et al., 1999; Dupont et al., 2000). Nevertheless,
early follicular growth and development occurs in these
mice, even though mature Graafian follicles do not form.
Collectively, these results indicate that, in mice, ERα or ERβ
can compensate, at least partially, for the absence of the
other to provide mature ovulatory follicles, but may not be
necessary for the earlier stages of follicular growth.

Aromatase knockout (ArKO) mice can complete follicu-
logenesis without exogenous oestrogens, but the process is
impaired, with fewer follicles reaching maturity than in
wild-type controls (Fisher et al., 1998; Britt et al., 2000).
ArKO mice that are treated with oestradiol every 4 days
from 4 weeks of age for 1 month have increased numbers of
follicles compared with untreated ArKO mice. However,
these treated mice still do not develop corpora lutea (Toda
et al., in press). On the basis of these data, folliculogenesis
can occur, albeit sub-normally, in the absence of either
oestrogen or one of its two known receptors.

Gonadotrophin receptor expression

Growing follicles express gonadotrophin receptors.
Before selection, follicles express FSH receptors, but LH
receptors emerge later in the dominant follicles. In cattle,
when the dominant follicles are first selected, FSH reaches
its nadir (Fortune, 1994) while serum concentrations of LH
begin to increase. It is presumed that only those follicles that
express LH receptors in granulosa cells can be rescued and,
in time, ovulated.

Oestrogen increases follicular expression of both FSH
and LH receptors in rat granulosa cells (Richards et al.,
1976, 1979). Those follicles that first begin to produce
significant amounts of oestrogen are more likely to possess
more gonadotrophin receptors. Therefore, whether or not a
particular follicle expresses oestrogen receptors may control
its fate. However, ERαKO mice have increased expression
of granulosa and thecal LH receptor (Schomberg et al.,
1999), again indicating a lack of ERα involvement in control
of follicular growth. These mice also have increased serum
oestrogen concentrations, which may increase granulosa
cell expression of LH receptor by acting through ERβ or one
of the putative additional receptor types. There is currently
no information on the ovarian expression of FSH and LH
receptors in ERβKO and ERαβ double KO mice. If oestrogen
acts through ERβ to upregulate gonadotrophin receptor
expression, ERβ mutant mice presumably would have
decreased expression of FSH and LH receptors.

Steroid production

Ovarian steroid hormones are produced throughout the
oestrous cycle. During folliculogenesis, the thecal cells
produce androgens, which are converted into oestrogens by
P450aromatase in the granulosa cells. Both oestradiol
(Fortune and Hansel, 1979; Leung and Armstrong, 1980;
Welsh et al., 1983; Roberts and Skinner, 1990) and cate-
choloestrogens (Spicer and Hammond, 1987; Tekpetey and
Armstrong, 1994) can regulate the production of androgen
and progesterone within bovine, rat and pig ovaries.
Oestrogen is known to increase CYP17 expression by rat
theca cells (Johnson and Crane, 1995). The oestrogen-driven
increase in progesterone presumably promotes corpus
luteum formation and maintenance through luteal proges-
terone receptors (Duffy and Stouffer, 1995; Smith et al.,
1995).
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Gap junctions 

As the follicles continue to grow and proliferate, the
avascular granulosa cell lining becomes removed from the
nutrient-providing interstitial blood vessels. Gap junctions
permit transfer of nutrients and cytokines to and from the
granulosa cells and developing oocytes (Albertini and
Anderson, 1974; Anderson and Albertini, 1976). Oestrogen
controls granulosa cell gap junction formation (Merk et al.,
1972; Burghardt and Anderson, 1981). Gap junctions are
composed of various connexin proteins: connexin 43 is a
major granulosa and luteal gap junction protein in bovine
(Nuttinck et al., 2000), ovine (Grazul-Bilska et al., 1998),
pig (Lenhart et al., 1998) and rat (Mayerhofer and Garfield,
1995) ovaries, and is oestrogen-regulated (Yu et al., 1994).
One method whereby oestrogen might potentiate gap
junction formation between granulosa cells is through
induction of this protein. However, connexin 43 protein
expression has not been reported in any of the oestrogen
receptor or P450arom mutant female mice.

Apoptosis 

Most follicles do not reach the ovulatory stage but instead
become atretic owing to apoptosis of the granulosa cell
lining (Kaipia and Hsueh, 1997; Amsterdam et al., 1999).
This process is normally tightly regulated with anti- and pro-
apoptotic factors balancing each other, and with crosstalk
among multiple intracellular pathways determining the final
outcome of the cell (Kaipia and Hsueh, 1997; Amsterdam et
al., 1999). Oestrogen inhibits granulosa cell apoptosis (Billig
et al., 1993). In contrast, androgens promote apoptosis (Billig
et al., 1993). 

As with other ovarian processes, it is uncertain which
oestrogen receptors are mediating this oestrogenic anti-
apoptotic effect. In addition, it is not clear whether there are
physiological repercussions if the anti-apoptotic mechanism
is perturbed. In 10–12-week-old ArKO mice, many apoptotic
granulosa cells are present in large antral follicles (Britt et al.,
2000), and by 21–23 weeks of age, these mice have fewer
antral follicles than do wild-type controls. Predictably, ArKO
mice have increased ovarian expression of pro-apoptotic
genes, such as p53 and Bax, compared with wild-type mice
(Toda et al., in press). At 1 year of age, the ArKO mice have a
reduced number of primary follicles, all of which contain
numerous apoptotic cells (Britt et al., 2000). By contrast,
ERαKO mice have similar numbers of apoptotic granulosa
cells when compared with wild-type control mice
(Schomberg et al., 1999). Although oestrogen may be
essential for preventing the demise of ovarian follicles, this
protection is clearly not conferred through ERα.

Corpus luteum formation and maintenance

Early studies with hypophysectomized or X-irradiated
rabbits and rats with hypothalamic lesions indicated that
oestrogen directly regulates corpus luteum formation and
controls luteal maintenance (Robson, 1937; Bogdanove,
1966; Keyes and Nalbandov, 1967). Unexpectedly, ERβKO
mice demonstrate normal corpus luteum development, but
have an overall reduced fertility (Krege et al., 1998). Pre-
pubertal ERαKO mice treated with superovulatory dosages
of gonadotrophins also develop steroidogenically functional
corpora lutea, but they remain infertile (Rosenfeld et al.,
2000). Thus, the phenotypes of these mutant mice do not
corroborate earlier studies. In contrast, ArKO and ERαβ
double KO mice do not undergo luteinization and corpus
luteum formation (Fisher et al., 1998; Couse et al., 1999;
Britt et al., 2000; Dupont et al., 2000). Taken together, these
findings indicate that oestrogen is indeed needed for corpus
luteum formation and maintenance, and that it likely acts
non-selectively through ERα or ERβ with one oestrogen
receptor compensating for the absence of the other. If both
receptors are lacking, oestrogen cannot stimulate
luteinization.

Non-genomic actions of oestrogen within the ovary

The complex physiological responses to oestrogen are
generally presumed to involve transcriptional regulation of
many genes. However, oestrogen-binding to putative
membrane oestrogen receptors (Levin, 1999) may also induce
non-genomic–non-transcriptionally mediated responses. In
cultured granulosa cells, oestrogen has been implicated in
causing a rapid increase in intracellular Ca2+ concentrations
(Morley et al., 1992). As this response occurs within seconds
of treating the cells with oestrogen, a reasonable conclusion is
that it is occurring without transcriptional activation, that is, it
is elicited through some existing membrane-associated
response. The demonstration that ERα associates with the
regulatory subunit of phosphatidylinositol-3-OH kinase
(PI(3)K) in the presence of ligand may provide at least a partial
explanation for the non-genomic effects of oestrogen
(Simoncini et al., 2000), and thus provide another dimension
to oestrogenic action within the ovary. Non-genomic
responses have not yet been studied in transgenic mice.

Confounding problems in interpreting ovarian
phenotypes in oestrogen- and oestrogen receptor-

deficient mice

Although these knockout mice have proved invaluable in
elucidating some of the roles of oestrogen within the ovary,
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Fig. 3. Illustration of the proposed intraovarian actions of oestrogen. On the basis of past pharmacological, surgical, and culture
approaches, oestrogen modulates many ovarian responses, including promoting folliculogenesis, increasing granulosa cell gonadotrophin
receptor expression, increasing gap junction formation between granulosa cells, increasing steroid production by both thecal and luteal
cells, and inhibiting granulosa cell apoptosis. E2: oestrogen; LH-R: LH receptor, FSH-R: FSH receptor.
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confounding factors hinder interpretation of the resulting
ovarian phenotypes. In rodents, only one P450aromatase
gene has been identified and knocked out (Youngblood et
al., 1989; Fisher et al., 1998; Honda et al., 1998). However,
such mice are likely to have been exposed in utero to
maternal oestrogen and postnatally to other sources of
oestrogen, including compounds in the environment and
diet, which would hinder interpreting the reproductive
phenotypes of the adult animals. Furthermore, it is now
apparent that there are non-aromatized steroid molecules,
such as hermaphrodiol, that have both androgenic and
oestrogenic activity (Lima et al., 2000; Rosenberg-Zand et
al., 2000). Therefore, proper interpretation of ovarian
phenotypes in ArKO mice requires exclusion of all sources
of both aromatic and non-aromatic oestrogenic molecules.
In addition, ArKO mice have secondary hormonal
imbalances, such as increased serum concentrations of LH,
FSH and androgen, which may account for some of the
ovarian pathology (Fisher et al., 1998).

The ERKO mice also have secondary hormonal
imbalances, including an increase in serum LH, which is
present in both ERαKO (Rissman et al., 1997; Couse and
Korach, 1999) and ERαβ double KO (Couse et al., 1999a)
mice. In ERKO mice, all receptors that bind oestrogen have to
be considered and deleted before it is possible to make
accurate inferences about which oestrogen receptors mediate
the intraovarian effects of oestrogen. Novel oestrogen
receptors may be discovered once the mouse and human
genomic sequences are fully annotated and the properties 
of forms arising by alternative splicing elucidated. It is
interesting to note that the orphan oestrogen-related receptors
(ERRα, β, and γ), the endogenous ligands of which are
unknown, have been demonstrated, albeit with low affinity,
to bind diethylstilboestrol (DES) but not oestradiol (Tremblay
et al., 2001). Thus, the ERRs may play a role in oestrogenic
actions within the ovary, although as yet these receptors have
not been examined fully in the ovary.

Ultimate resolution of these difficulties may depend on
the creation of more sophisticated approaches to producing
mutant mice that have ovarian cell-specific and conditional
ablation of oestrogen receptors. Production of such mice
would permit a thorough analysis of the effects of
oestrogen-binding to oestrogen receptors throughout the
oestrous cycle and pregnancy and would have minimal
confounding hormonal imbalances. Transgenic mice with
tamoxifen-dependent Cre recombinase fused to a mutated
ligand-binding domain of human oestrogen receptor have
been produced (Metzger and Chambon, 2001) and, when
these mice are treated with tamoxifen, the chromosomally
integrated gene, which is flanked by loxP sites, is excised. 

Studying the intraovarian actions of oestrogen in
other species

It is worth considering whether the mouse is the best model
with which to study the intraovarian effects of oestrogen. Is it
possible, for example, to extrapolate from responses seen in

rodents to other species? Although women, cows and mares
are generally monovulatory, rodents are polyovulatory, and
thus, the regulation of folliculogenesis may be different.
How then can the in vivo effects of oestrogen in the ovaries
of other species be studied, where the targeted deletion of
genes is not currently possible? Microarray technology could
be invaluable in this respect and provide comparison of
oestrogen-regulated genes in various ovarian cells during
puberty, the oestrous cycle, pregnancy and in response to
oestrogenic treatment. This technique could be used in
combination with pharmacological blockage of one or more
oestrogen receptors to provide multiple snapshots of the
intraovarian effects of oestrogen. An ovarian gene database
(http://ovary.stanford.edu; Melner and Korach, 2000) has
been established that may assist in the identification of all the
oestrogen-regulated ovarian genes. 

Regulation of oestrogen action within the ovary

Although there is ample evidence that oestrogen acts within
the ovary, it also originates there, and is present in highest
concentrations in this organ. Such quantities would in theory
continually saturate and activate any cognate receptors, and
potentially result in either continual transcriptional activation
or other consequences such as desensitization. Some
regulation of this system must occur to prevent such scenarios.
One regulatory step could be at the receptor level. Oestrogen
receptors may be required for only a limited period of
follicular development but persist thereafter in a sub-
functional state.

Co-activators may provide another level of regulation.
These factors act in concert with oestrogen receptors to
induce transcription of oestrogen-responsive genes. Various
transcription factors, such as SRC-1, GRIP1, RAC3, p300,
SPA AIB1, RIP140, SMRT, Fas-associated protein-tyrosine
phophatase-1 (FAP-1), and co-activator independent of 
AF-2 function (CIA) that regulate oestrogen-responsive genes
have been identified (Rey et al., 2000; Hlaing et al., 2001;
Sauve et al., 2001). Possibly, it is their specific expression
pattern and not that of the cognate receptors that governs the
oestrogen responsiveness of granulosa and other ovarian
cells. Differential expression of some of the oestrogen
receptor co-activators supports this hypothesis (Hlaing et al.,
2001). Although granulosa, thecal and stromal cells in ovine
ovaries express SRC-1, RIP140 and SPA mRNA, granulosa
cells have the highest mRNA expression for these co-
activators (Hlaing et al., 2001). Similarly, the ovine corpus
luteum expresses smaller amounts of SRC-1 and RIP1240
mRNA than do follicular cells (Hlaing et al., 2001).

A third form of regulation may be through metabolism of
oestrogen by the cyp enzymes into various active and inactive
metabolites. Compounds, such as the catecholoestrogens,
may bind oestrogen receptors (Kuiper et al., 1997), androgen
receptor (Hudson and Hillier, 1985) and other novel steroid
receptors (Das et al., 1997, 2000), resulting in responses both
quantitatively and qualitatively distinct from the parental
steroid. How efficiently the various ovarian cells convert
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oestradiol into these metabolites might provide another level
of control.

In summary, selective expression of oestrogen receptors,
co-activational factors, and metabolic conversion of
oestradiol may regulate the intraovarian effects of
oestrogen. Similar processes could be invoked in other
tissues in which a hormone acts within its originating tissue.
For example, progesterone receptors are found in the
bovine and primate corpus luteum (Smith et al., 1995; Duffy
and Stouffer, 1995).

Conclusions

The intraovarian effects of oestrogen have been examined.
Early work indicated that oestrogen directly regulates
ovarian folliculogenesis, corpus luteum formation,
granulosa cell expression of the gonadotrophin receptors,
gap junction formation between granulosa cells, granulosa
cell apoptosis and steroid production by granulosa, thecal
and luteal cells (Fig. 3). These actions are presumably
regulated by specific oestrogen receptors. ERβ is the
predominant form of oestrogen receptor found in the ovary
(Byers et al., 1997; Couse et al., 1997).

Aromatase-deficient and oestrogen receptor-deficient
mice have been created to study the effects of oestrogen.
Although results from these mice support a role for
oestrogen in the ovary, some of the data are equivocal, such
that the phenotypes cannot always be directly attributed to
the absence of the gene, since secondary hormonal
imbalances and other confounding factors invariably occur
in these mice. More sophisticated, tissue-targeted knockout
mice are needed to elucidate the roles of oestrogen within
the ovary. The involvement of oestrogen in ovarian
physiology needs to be examined in several species before
any firm and general conclusions can be drawn about its
intraovarian effects.
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