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ABSTRACT

The complex European–Adria geodynamic framework, which led to the formation of the Alpine belt, is 

considered responsible for the orogenic magmatism that occurred in the Central Alps along the 

Periadriatic/Insubric Line (late Eocene–early Oligocene) and the anorogenic magmatism that occurred in the 

Southeastern Alps (late Paleocene–early Miocene). While subduction–related magmatic activities are expected 

near convergent margins, the presence of the intraplate–related magmatic products is still puzzling. Therefore, 

in this work new geochemical and geochronological data of magmatic products from the Veneto Volcanic 

Province (VVP, north–east Italy) are provided in order to constrain the Cenozoic intraplate magmatism of the 

Southeastern Alps. The VVP is formed by dominant basic–ultrabasic (from nephelinites to tholeiites) 

magmatic products and by localized acid (latitic, trachytic, and rhyolitic) volcanic and sub–volcanic bodies. 

Trace element patterns and ratios suggest that the mantle source of the basanitic magma types was a 

phlogopite–bearing garnet lherzolite, while those of the tholeiitic magma types was an anhydrous (i.e., without 

residual phlogopite and amphibole) garnet lherzolite. All the basic–ultrabasic VVP magmatic products exhibit 

enrichments in Ba, Sr, and P, indicating the mantle sources could be metasomatized by carbonatitic melts. 

According to the biostratigraphic records and our new 40Ar/39Ar ages, VVP eruptions occurred in several 

pulses, reflecting the extensional phases experienced by the Eastern Alpine domain. The volcanism started in 

the late Paleocene in the western sector of the VVP where activity was widespread also during the Eocene 

(45.21± 0.11 Ma – 38.73 ± 0.44 Ma). In the eastern sector eruptions took place only in the early Oligocene 

(32.35 ± 0.09 Ma – 32.09 ± 0.29 Ma) and in the early Miocene (~ 22 – 23 Ma). 

Previously, as suggested for neighboring orogenic magmatism, also the anorogenic magmatic activities were 

interpreted as resulting from mantle upwellings through slab window(s) following the European slab break–

off occurred ~ 35 Ma. However, considering i) new tomographic images evidencing a continuous subvertical 

slab beneath the Central Alps, and ii) the onset of magmatic activity in the VVP in the late Paleocene (i.e., 

before the slab break–off) and its continuation until Miocene, we propose an alternative geodynamic scenario 

to explain the anorogenic magmatism. The westward rollback of the European slab caused the retreat and 

steepening of the sinking plate. As a consequence, the sub–slab mantle material escaped and upwelled from 

the front of the slab and created a poloidal mantle flow. The latter induced the breakdown of carbonates in 

calcareous metasediments and carbonated metabasics within the subducting oceanic slab, providing 



carbonatitic melts, which could be responsible for the metasomatism of the VVP mantle sources. After that, 

the poloidal mantle flow also induced i) the extensional deformation in the overriding Adria microplate and ii) 

the decompressional melting of VVP mantle sources, iii) triggering the magmatism with intraplate affinity. 

During these processes, the Adria microplate also rotated counterclockwise, allowing the poloidal mantle flow 

to affect different portions of the overlying lithosphere and generating up to five eruptive centers within the 

VVP.
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16 ABSTRACT

17 The complex European–Adria geodynamic framework, which led to the formation of the Alpine belt, 

18 is considered responsible for the orogenic magmatism that occurred in the Central Alps along the 

19 Periadriatic/Insubric Line (late Eocene–early Oligocene) and the anorogenic magmatism that 

20 occurred in the Southeastern Alps (late Paleocene–early Miocene). While subduction–related 

21 magmatic activities are expected near convergent margins, the presence of the intraplate–related 

22 magmatic products is still puzzling. Therefore, in this work new geochemical and geochronological 

23 data of magmatic products from the Veneto Volcanic Province (VVP, north–east Italy) are provided 

24 in order to constrain the Cenozoic intraplate magmatism of the Southeastern Alps. The VVP is formed 

25 by dominant basic–ultrabasic (from nephelinites to tholeiites) magmatic products and by localized 

26 acid (latitic, trachytic, and rhyolitic) volcanic and sub–volcanic bodies. Trace element patterns and 

27 ratios suggest that the mantle source of the basanitic magma types was a phlogopite–bearing garnet 

28 lherzolite, while those of the tholeiitic magma types was an anhydrous (i.e., without residual 

29 phlogopite and amphibole) garnet lherzolite. All the basic–ultrabasic VVP magmatic products exhibit 

30 enrichments in Ba, Sr, and P, indicating the mantle sources could be metasomatized by carbonatitic 

31 melts. 

32 According to the biostratigraphic records and our new 40Ar/39Ar ages, VVP eruptions occurred in 

33 several pulses, reflecting the extensional phases experienced by the Eastern Alpine domain. The 

34 volcanism started in the late Paleocene in the western sector of the VVP where activity was 

35 widespread also during the Eocene (45.21± 0.11 Ma – 38.73 ± 0.44 Ma). In the eastern sector 

36 eruptions took place only in the early Oligocene (32.35 ± 0.09 Ma – 32.09 ± 0.29 Ma) and in the early 

37 Miocene (~ 22 – 23 Ma). 

38 Previously, as suggested for neighboring orogenic magmatism, also the anorogenic magmatic 

39 activities were interpreted as resulting from mantle upwellings through slab window(s) following the 

40 European slab break–off occurred ~ 35 Ma. However, considering i) new tomographic images 

41 evidencing a continuous subvertical slab beneath the Central Alps, and ii) the onset of magmatic 
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42 activity in the VVP in the late Paleocene (i.e., before the slab break–off) and its continuation until 

43 Miocene, we propose an alternative geodynamic scenario to explain the anorogenic magmatism. The 

44 westward rollback of the European slab caused the retreat and steepening of the sinking plate. As a 

45 consequence, the sub–slab mantle material escaped and upwelled from the front of the slab and 

46 created a poloidal mantle flow. The latter induced the breakdown of carbonates in calcareous 

47 metasediments and carbonated metabasics within the subducting oceanic slab, providing carbonatitic 

48 melts, which could be responsible for the metasomatism of the VVP mantle sources. After that, the 

49 poloidal mantle flow also induced i) the extensional deformation in the overriding Adria microplate 

50 and ii) the decompressional melting of VVP mantle sources, iii) triggering the magmatism with 

51 intraplate affinity. During these processes, the Adria microplate also rotated counterclockwise, 

52 allowing the poloidal mantle flow to affect different portions of the overlying lithosphere and 

53 generating up to five eruptive centers within the VVP.

54
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58 1. INTRODUCTION

59 Synchronous orogenic (or subduction–related) and anorogenic (or intraplate–like) magmatic events 

60 can occur near subductive zones (e.g., Okete–Alexandra Volcanic Province in New Zealand, Briggs 

61 and McDonough 1990; Cook et al., 2005; Faccini et al., 2018; north–west Turkey, Aldanmaz et al., 

62 2006; Perşani volcanic field and South Harghita, in south-east Carpathian, Seghedi et al., 2011; 

63 Faccini et al., 2018; Kurdistan Province, western Iran, Allen et al., 2013; Trans–Mexican Volcanic 

64 Belt, Neumann et al., 2016; Payenia Volcanic Province in Argentina, Pallares et al., 2016). Calc–

65 alkaline volcanism is expected at convergent margins (e.g., Fytikas et al., 1984; de Boer et al., 1988; 

66 Bradley et al., 2003; Kay et al., 2007; Aragón et al., 2013), whereas many interpretations have been 

67 proposed to explain the apparently unusual occurrence of magmatism with intraplate geochemical 

68 signatures in collisional settings. These magmas have been related to i) upwelling of a mantle plume 

69 through a slab window after a slab detachment (e.g., Ferrari, 2004); ii) activation of extensional 

70 faulting in the foreland after a collisional event (e.g., Verma, 2002; Aldanmaz et al., 2006); and iii) 

71 lateral and frontal ingress of asthenosphere into the mantle wedge region induced by sinking and 

72 rollback of the slab (e.g., Ferrari et al., 2001; Faccenna et al., 2011; Neumann et al., 2016). 

73 In order to contribute to this (global scale) debate we investigated the relationship between the Alpine 

74 regional tectonic evolution and the alkaline to tholeiitic magmatic activity that affected the 

75 Southeastern Alps from Paleocene to Miocene. Such activity generated the Veneto Volcanic Province 

76 (VVP), one of the widest magmatic districts of the Adria microplate (Fig. 1). The VVP magmas are 

77 characterized by an intraplate geochemical signature, whereas contemporaneous middle Eocene-early 

78 Oligocene sub–alkaline to calc–alkaline basic plutons and dikes along the Periadriatic/Insubric Line 

79 in the Central Alps display a subduction fingerprint (i.e., Bergell, Triangia, Adamello; Brack, 1981, 

80 1984; Kagami et al., 1991; von Blanckenburg, 1992; Callegari and Brack, 2002; Oberli et al., 2004; 

81 Harangi et al., 2006; Conticelli et al., 2009; Schaltegger et al., 2009; Alagna et al., 2010; Bergomi et 

82 al., 2015; Fig. 1a). The Periadriatic Cenozoic subduction–related magmatism of the Central Alps is 

83 generally related to upwelling of asthenospheric mantle material through a slab window after the late 
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84 Eocene Adria–Europe continental collision (~ 35 Ma; Stampfli et al., 1998, 2002; Rosenbaum and 

85 Lister, 2005). The mantle flow heated the supra-subduction hydrated mantle wedge, causing melting 

86 of the subcontinental lithosphere (Bergomi et al., 2015). According to the literature, the slab break–

87 off occurrence may explain also the alkaline magmatism in the Southeastern Alps: mantle diapirs 

88 were sucked into the slab window and upwelled towards shallower levels heating the overriding 

89 lithospheric plate to the point of triggering partial melting (Macera et al., 2003; Bergomi et al., 2015). 

90 However, this interpretation is not consistent with the late Paleocene onset of the Southeastern Alps 

91 magmatism, i.e. before the supposed slab break–off, as suggested by biostratigraphic data. Aiming to 

92 unravel the interaction between the alkaline magmatism and the Alpine orogenesis, we combine the 

93 literature biostratigraphic data with new high–resolution 40Ar/39Ar ages of magmatic products from 

94 the Southeastern Alps. In doing this, we also present new major and trace element geochemical data 

95 of the Southeastern Alps magmatic products to constrain the potential nature and evolution of their 

96 mantle source(s).

97

98 2. A BRIEF DESCRIPTION OF GEOLOGICAL EVOLUTION OF THE ALPS

99 Both orogenic and anorogenic igneous activities within the Alpine realm are connected with the 

100 relative movements of the European plate and Adria microplate, which are still debated after a century 

101 of detailed structural work. Convergence of the two plates is considered to have started in the Early 

102 Cretaceous as a result of the final closure of the Meliata Ocean, a back–arc basin, which separated 

103 the two continental plates since the early Permian (Stampfli et al., 1998, 2002; Rosenbaum et al., 

104 2002; Dézes et al., 2004; Schmid et al., 2004, Rosenbaum and Lister, 2005). The convergence of the 

105 Adria microplate and European plate marks the onset of the Alpine orogenesis, which occurred along 

106 the northern margin of the Adria microplate (Stampfli et al., 1998, 2002; Rosenbaum et al., 2002; 

107 Schmid et al., 2004, Rosenbaum and Lister, 2005). In particular, orogenic processes took place first 

108 in the Eastern Alps (peak of high–pressure metamorphism at ~ 100–90 Ma) and then in the Western 

109 Alps (peak of high–pressure metamorphism at ~ 85–60 Ma) (Manzotti et al., 2014 and references 
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110 therein). During the Paleocene (at ~ 65–55 Ma), convergence ceased for a period of 10 My due to 

111 Adria–Europe continental collision in the Eastern Alps after the subduction of the easternmost portion 

112 of Piedmont–Liguria Ocean beneath the advancing orogenic wedge (Stampfli et al., 1998, 2002; 

113 Rosenbaum et al., 2002; Dézes et al., 2004; Schmid et al., 2004; Rosenbaum and Lister, 2005). Since 

114 the early Eocene the reprise of the Adria–Europe convergence led to the subduction and final closure 

115 of the Piedmont–Liguria Ocean and Valais Ocean in the Western Alps domain at ~ 45 Ma and ~ 35 

116 Ma, respectively (Rubatto et al., 1998; Stampfli et al., 1998, 2002; Rosenbaum and Lister, 2005). 

117 According to literature, the subducted oceanic lithospheric slab of the Central and Eastern Alps 

118 detached from the European foreland lithosphere after closure of the Valais Ocean (e.g., von 

119 Blanckenburg and Davies, 1995; Stampfli et al., 1998, 2002; Dézes et al., 2004). During the Eocene 

120 with the ongoing Adria–Europe collision, E–W extension developed parallel to the belt in the Eastern 

121 Alps (Ratschbacher et al., 1989; Zampieri et al., 1995). Such rifting phase extended also into the 

122 Central Alps, in the Oligocene from ~ 34 to ~ 28 Ma (Ring, 1994; Nievergelt et al., 1996; Challandes 

123 et al., 2003; Glodny et al., 2008; Pleuger et al., 2008; Steck, 2008; Beltrando et al. 2010; Ring and 

124 Gerdens, 2016; Schmid et al., 2017). This extensional phase of the overriding plate was probably 

125 induced by the rollback of the retreating SE–dipping slab (Rosenbaum and Lister, 2005). From ~ 30 

126 Ma until the Oligocene–Miocene boundary (~ 23 Ma), the extensional processes stopped and large-

127 scale coarse clastic sedimentation occurred in the Eastern Alps in response to an accretionary event 

128 (Frisch et al., 2000; Rosenbaum and Lister, 2005). Another phase of extension occurred during the 

129 early and middle Miocene due to the onset of lateral tectonic extrusion at the Oligocene–Miocene 

130 boundary, which rearranged the structural pattern and created the present elongated shape of the 

131 Eastern Alps (Ratschbacher et al., 1991; Frisch et al., 2000). This lateral tectonic extrusion is ascribed 

132 to a combination of gravity–driven orogenic collapse because of an over–thickened lithosphere, and 

133 tectonic escape along conjugate fault zones driven by tangential forces due to continuing N–S 

134 convergence between the Adriatic microplate and the European plate (Ratschbacher et al., 1991; Frish 

135 et al., 2000). However, the amount of Oligocene extension was limited, focused in the eastern Tauern 
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136 Window (Fig. 1a) and to the east of it, whereas Miocene extension occurred at a larger scale 

137 (Ratschbacher et al., 1991). 

138

139 3. THE CENOZOIC CENTRAL AND SOUTHEASTERN ALPINE MAGMATISM

140 Cenozoic magmatism within the Alpine realm is variable in time and space reflecting the changing 

141 geodynamic framework during the convergence of the Adria microplate and the European plate 

142 (Bassi et al., 2008). In the Central Alps, the magmatic activity was orogenic and essentialy intrusive 

143 along the Periadriatic/Insubric line (Fig. 1a), represented by sub–alkaline and calc–alkaline basic 

144 intrusive bodies and basaltic and andesitic dikes with calc–alkaline to shoshonitic affinity. Based on 

145 radioisotopic ages, the climax of such magmatism ranged from ~ 34 to ~ 28 Ma (von Blancknburg 

146 and Davis, 1995; Rosenberg, 2004). However, the first evidence of igneous activity dates back at ~ 

147 42 Ma with the emplacement of the southern Adamello batholith and coeval dikes (Schaltegger et al., 

148 2009; Schoene et al., 2012; Bergomi et al., 2015). On the contrary, in the Southeastern Alps the 

149 magmatic activity was anorogenic with effusive to subvolcanic character. It occurred in an elongated 

150 NNW–SSE area of about 1500 km2, defining from north–west to south–east five main volcanic 

151 districts: Val d’Adige, Lessini Mts., Marosticano, Berici Hills, and Euganean Hills (Beccaluva et al., 

152 2007). Together, these districts constituted a Cenozoic magmatic province in the Southeastern alpine 

153 domain known in literature as Veneto Volcanic Province (VVP; e.g., De Vecchi and Sedea, 1995; 

154 Beccaluva et al., 2001, 2007; Macera et al., 2003, 2008; Visonà et al., 2007; Fig. 1, 1a). 
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156 Figure 1. Simplified geological map of the Veneto Volcanic Province (VVP; De Vecchi and Sedea, 
157 1995), showing the locations of the samples collected for this work. Ages (in Ma) of the magmatic 
158 rocks occuring in the VVP are framed with blue dashed line (literature data) and red continuous line 
159 (this work). Ages in italics are derived from mini–plateaus (50–70% 39Ar released) and are 
160 considered minimum ages (see explanation in section 9, and in section S2 of Supplementary 
161 materials). Red stars are 40Ar/39Ar ages, blue diamonds are U–Pb ages, blue triangles are Rb–Sr 
162 ages, blue circles are K–Ar dates, and black squares are samples of this work for which 40Ar/39Ar 
163 analyses were not performed. Previously published ages for Lessini Mts. are from Savelli and 
164 Lipparini (1979) and Visonà et al. (2007); ages for Euganean Hills are from Zantendeschi (1994) 
165 and Bartoli et al. (2014); ages for Marosticano area are from Savelli and Lipparini (1979). Inset a) 
166 present–day location of VVP in the Italian peninsula, in relation to European, African plates and 
167 Adria microplate (modified from Carminati and Doglioni, 2012) and locations of Periadriatic basic 
168 and acid plutons, in blue and in black, respectively, along the Periadriatic/Insubric line. For 
169 comparative purpose, in this work only the Periadriatic basic plutons of the Central Alps were 
170 considered. Abbreviation for plutons: B = Bergell, T = Trigia, A = Adamello, R = Rensen, VdR = 
171 Vedrette di Ries. [2 columns fitting]
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173 3.1 Geological outline

174 Magmatic activity started in the VVP already in the Paleocene (Beccaluva et al., 2007; Bassi et al., 

175 2008), along the Jurassic Trento carbonate platform, which encompassed the Val d’Adige and Lessini 

176 Mts. areas (Winterer and Bosellini, 1981; Dewey et al., 1989; Zampieri et al., 1995). After the Adria–

177 Europe collision in the Eastern Alps (~ 65 Ma; Stampfli et al., 1998, 2002; Rosenbaum et al., 2002; 

178 Dézes et al., 2004; Schmid et al., 2004; Rosenbaum and Lister, 2005), extension developed 

179 (Ratschbacher et al., 1989). As a consequence in the Southeastern Alpine domain the rigid Trento 

180 platform block–faulted forming a horst and graben structure, called the Alpone–Agno Graben 

181 (Zampieri, 1995). Until the middle Eocene the extensional tectonics of the new NNW–SSE 

182 transtensional fault systems and the Alpone–Agno Graben controlled the deposition of limestone and 

183 the volcanic activity, which manifested with short–lived pulses (Barbieri et al., 1991) in the Monte 

184 Baldo area for the Val d’Adige district and along the Lessini Mts. district (Luciani, 1989). Therefore, 

185 in the troughs of the horst and graben structure basic–ultrabasic hyaloclastites, volcanoclastics, 

186 subaqueous, and subaerial lava flows were accumulated and interbedded between the Scaglia Rossa 

187 (Upper Cretaceous–late Paleocene) and the Eocene limestones, or within the latter (Fig. 2). 

188 According to biostratigraphic data the magmatic activity occurred later in the eastern VVP districts 

189 (i.e., Euganean Hills and Marosticano areas; Piccoli et al., 1976, 1981; Luciani, 1989; Savelli and 

190 Lipparini, 1979). From the late Eocene to early Oligocene basic volcanic deposits were interbedded 

191 with marls of the Euganean Hills pelagic environment (De Vecchi et al., 1976; Piccoli et al., 1976, 

192 1981; Fig. 2). In the early Oligocene, the Euganean magmatism changed and was dominated by 

193 rhyolites, trachytes and subordinately by trachyandesites (latites) and basalts, which formed mainly 

194 subvolcanic bodies and less abundant lava flows (De Vecchi et al., 1976; Piccoli et al., 1976, 1981). 

195 In the middle Oligocene, the magmatic activity resumed in the Marosticano (Fig. 2) and Lessini Mts. 

196 districts in a subaqueous environment as testified by the marine sediments (sandstones, calcarenites 

197 and limestones; Gavioli, 1972; Savelli and Lipparini, 1979) interbedded with the volcanic deposits 

198 (Fig. 2). Sparse Oligocene explosive and effusive volcanic activity is documented also in the Berici 
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199 Hills (west of the Euganean Hills; Bassi et al., 2008). At the end of the late Oligocene, the 

200 Marosticano and Lessini Mts. areas emerged (Frascari Ritondale Spano and Bassani, 1973) shortly 

201 before eruption of the last subaerial volcanic products at the beginning of the Miocene (Savelli and 

202 Lipparini, 1979). These volcanic deposits are overlain by coralline calcarenites of early Miocene age 

203 (Frascari Ritondale Spano, 1969; Savelli and Lipparini, 1979; Fig. 2), testifying to a new 

204 transgression event. 
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206 Figure 2. Simplified Upper Cretaceous to lower Miocene stratigraphy of the studied areas: Monte 
207 Baldo northern sector (Val d’Adige district; Luciani, 1989; De Vecchi and Sedea, 1995), Eastern 
208 Lessini Mts. (De Vecchi and Sedea, 1995; Bassi et al., 2008), Euganean Hills (Piccoli et al., 1976, 
209 1981), and Marosticano (Frascari Ritondale Spano and Bassani, 1973; De Vecchi and Sedea, 1995; 
210 Bassi et al., 2008). Ages and uncertainties are reported in Ma. Ages in italics are derived from 
211 mini–plateaus (50–70% 39Ar released) and are considered minimum ages only (see explanation in 
212 section 9 and in the section S2 of Supplementary materials). Ages derived from pre–erupted zircons 
213 from Lessini Mts. and Euganean Hills districts are considered maximum ages (see explanation in 
214 section 4). Previously published geochronological data for eastern Lessini Mts. are from Borsi et al. 
215 (1969), Savelli and Lipparini (1979), and Visonà et al. (2007), for Euganean Hills are from Borsi et 
216 al. (1969), Zantendeschi (1994), and Bartoli et al. (2014), and for Marosticano are from Savelli and 
217 Lipparini (1979). In the figure the main geodynamic events, extension phases, and coarse clastic 
218 sedimentation occurred in Central and Eastern Alps are reported, as well as the climax of the 
219 orogenic Periadriatic Central Alps magmatism. [2 columns fitting]
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221 4. PREVIOUS GEOCHRONOLOGICAL STUDIES OF VVP

222 The integration of stratigraphic records with reliable radioisotopic ages allows to i) better constrain 

223 the distribution and the timeframe of such highly variable, but temporally short, magmatic activity 

224 and ii) infer the geodynamic evolution of this magmatic province. Previously obtained 

225 geochronological data are mainly K–Ar ages on basic–ultrabasic whole–rocks (Borsi et al., 1969; 

226 Savelli and Lipparini, 1979; Fig. 1). These K–Ar data yielded eruption ages of 42.5 ± 1.5 to 20.4 ± 

227 0.8 Ma for the Lessini Mts., 42.0 ± 1.5 Ma for the Euganean Hills, and from 33.7 ± 1.2 to 20.4 ± 0.8 

228 Ma for the Marosticano district. However, the reliability of such ages is questionable, as the K–Ar 

229 dating technique is not able to recognize (and correct for) non–atmospheric 40Ar/36Ar ratios and 

230 alteration effects (Oostingh et al., 2017). Zantendeschi (1994) dated Euganean trachytes and rhyolites 

231 using the whole–rock Rb–Sr method (Fig. 1), the obtained eruption ages span from 34 ± 2 to 28 ± 1 

232 Ma. These ages also must be treated with caution, as the 87Rb decay constant is still poorly defined 

233 and Rb/Sr isotopic system is prone to secondary alteration (Begemann et al., 2001; Schmitz et al., 

234 2003). The most recent radioisotopic data available (Fig. 1) are U–Pb ages obtained using a sensitive 

235 high–resolution ion microprobe (SHRIMP) on zircons hosted i) in a porphyritic basanite lava and in 

236 two altered dykes of the Lessini Mts. (Visonà et al., 2007) and ii) in magmatic enclaves within 

237 trachytes of the Euganean Hills (Bartoli et al., 2014). These ages may be interpreted as maximum 

238 ages of eruptions as the analysed zircons were not crystallized directly from the erupted magma. The 

239 Lessini Mts. zircons yielded Eocene ages spanning from 51.1 ± 1.5 to 44.9 ± 2.8 Ma (Visonà et al., 

240 2007), even if it should be considered that these data are not concordant. Zircons from the Euganean 

241 Hills xenoliths yielded Oligocenic ages of 31.9 ± 1.3 Ma and 30.6 ± 1.5 Ma (Bartoli et al., 2014). 

242 From this overview on the currently available geochronological data and related uncertainties, it is 

243 clear that more accurate age data are essential for the temporal reconstruction of the VVP magmatism. 

244 In this work, new high–resolution ages were obtained using the 40Ar/39Ar systematic on groundmass 

245 samples on mineral separates, which is currently widely accepted as an accurate dating technique 

246 (McDougall and Harrison, 1999).
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247

248 5. SAMPLING

249 Following biostratigraphic information we selected our samples in order to encompass most of the 

250 time range of the VVP magmatism. From Val d’Adige and Lessini Mts., the two oldest magmatic 

251 districts, samples were collected from basic–ultrabasic lava flows and volcanic necks. BAL1 and 

252 BAL7, two out of three samples of Val d’Adige district, are from the northeastern part of Monte 

253 Baldo (Table 1; Fig. 1). BAL1 was collected nearly at the top of a subaqueous lava flow interbedded 

254 between middle and late Eocene limestones (Calcare di Torbole and Calcare di Nago; Fig. 2), whereas 

255 BAL7 was sampled from a thin sill between Cretaceous–Paleocene (Scaglia Rossa) and middle 

256 Eocene limestones (Calcare di Torbole; Fig. 2). The third sample from Val d’Adige district, BI14, 

257 was collected from a volcanic neck exposed in a quarry near Rovereto (Table 1; Fig. 1). The sampling 

258 for Lessini Mts. district was focused near the famous Bolca Fossil–Lagerstätte area (Papazzoni et al., 

259 2014, and references therein). Sample TER1 (Table 1; Fig. 1) was collected from a lava flow 

260 interbedded with red clays of unknown age, whereas sample BOL1 (Table 1; Fig. 1) was collected 

261 from the volcanic neck preserved near the mentioned fossiliferous area. This neck cuts 10–20 m of 

262 freshwater–brackish sediments of probable Ypresian age (Barbieri and Medizza, 1969; Medizza, 

263 1980; Sorbini, 1989; Giusberti, et al., 2014). 

264 The Euganean Hills are the only VVP magmatic district where basic, intermediate, and acid magmas 

265 erupted or intruded at shallow–depth forming lava flows and subvolcanic bodies (mainly laccoliths) 

266 during late Eocene–Oligocene (Fig. 2). We have sampled and analysed rocks in order to investigate 

267 the entire range of the lithologies. Samples EU1AB, EU53, EU52, EU8B, and EU13A represent the 

268 least differentiated products of the Euganean sample suite. The basaltic andesite lava flow EU1AB 

269 was collected from an outcrop in the western part of the Euganean Hills (Table 1; Fig. 1). The basaltic 

270 andesite sample EU53 was collected from a subvolcanic body at the center of the Euganean Hills, 

271 and basaltic trachyandesite EU52 from an intrusion cutting this basaltic andesite body (Table 1; Fig. 

272 1). The basaltic trachyandesite EU8B and the latite EU13A were collected from subvolcanic bodies 
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273 (Monte Oliveto and Monte Cecilia), in the eastern and southern sectors of the Euganean Hills, 

274 respectively (Table 1; Fig. 1). Samples EU4, EU5B, and EU9 represent the most acid products 

275 available for the Euganean Hills. The trachyte EU4 (Monte Merlo quarry, northern sector of the 

276 Euganean Hills; Table 1; Fig. 1), the rhyolite EU5B (Monte Alto, eastern sector; Table 1; Fig. 1), and 

277 the rhyolite EU9 (Monte Ricco, southeastern sector; Table 1; Fig. 1), were collected from laccoliths 

278 intruded in the Euganean Marls Formation (Oligocene; Piccoli et al., 1976, 1981; Fig. 2).

279 Finally, for the Marosticano district, where one of the last VVP magmatic events occurred, we 

280 sampled two specimens (LB1 and 25B). These samples were collected from the ultrabasic volcanic 

281 neck cutting the middle Oligocene marine sediments of the Salcedo formation at Monte Gloso 

282 (Savelli and Lipparini, 1979; Table 1; Figs. 1, 2).

283

284 6. ANALYTICAL METHODS

285 Whole–rock major and trace elements were determined by Wavelength Dispersive X–Ray 

286 Fluorescence Spectrometry (WDXRF) at the University of Ferrara (IT; ARL Advant–XP 

287 spectrometer) and at the University of Padova (IT; Philips PW1404). Rb, Sr, Y, Zr, Nb, Hf, Ta, Th, 

288 U, and rare–earth elements (REEs) were performed with Inductively Coupled Plasma–Mass 

289 Spectrometry (ICP–MS) at the University of Ferrara (Thermo Series X–I spectrometer) and at the 

290 University of Bretagne Occidentale, Brest (FR; Thermo Element2). Clinopyroxene compositions 

291 were determined by means of a CAMECA SX50 electron microprobe at the IGG–CNR of Padova.

292 For 40Ar/39Ar geochronological analyses, after irradiation in TRIGA Reactor at the Oregon State 

293 University (USA) or US Geological Survey nuclear reactor (Denver, USA), groundmass and mineral 

294 separates were analysed by laser step–heating with i) ARGUS VI (samples BAL1, BAL7, TER1, 

295 BOL1, LB1, and EU52) and ii) MAP 215–50 (samples EU4, EU5B, EU8B, and EU13A) mass 

296 spectrometers at Curtin University within the Western Australian Argon Isotope Facility (WAAIF) 

297 of the John de Laeter Centre and iii) Nu Instruments Noblesse magnetic sector noble gas mass 
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298 spectrometer (samples BI14 and 25B) at the Noble Gas Lab of the University of Vermont. Extended 

299 analytical procedures and details are reported in section S1 of the Supplementary materials.

300

301 7. PETROGRAPHY AND ROCK CLASSIFICATION

302 Samples BAL7, BI14 (Val d’Adige district), BOL1 (Lessini Mts. district), LB1, and 25B 

303 (Marosticano district) are classified as basanites in the total alkali vs. silica (TAS) diagram (Le Maitre 

304 et al., 2002; Fig. 3) and they are nepheline-normative (Table 1). These rocks show porphyritic texture 

305 with large (up to 1 mm across) phenocrysts of euhedral olivine and smaller clinopyroxene 

306 (prevalently diopside; up to 0.5 mm across) as dominant phenocrysts set in a microcrystalline 

307 groundmass constituted by acicular plagioclase, clinopyroxene, and oxides. Interestingly, BOL1, 

308 LB1, and 25B host small (3–4 mm) spinel peridotite xenoliths, probably fragments of the bigger (5–

309 15 cm) counterparts already discovered in alkaline basalts of the Val d’Adige, Lessini Mts., and 

310 Marosticano districts (Morten et al., 1989; Siena and Coltorti, 1989, 1993; Beccaluva et al., 2001; 

311 Gasperini et al., 2006; Brombin et al., 2018). These fragments were extracted from the samples before 

312 proceeding with the chemical analyses. 

313 BAL1 (Val d’Adige district) and TER1 (Lessini Mts. district) are two basalts according to the TAS 

314 classification (Fig. 3), in particular the first sample is olivine/hyperstene normative, while the second 

315 one is quartz-normative (Table 1). They have intergranular texture characterized by elongated and 

316 euhedral plagioclase (up to 2 mm across) and subhedral–anhedral clinopyroxene, olivine and oxides 

317 filling spaces between plagioclase crystals. The presence of scarce iddingsite (substituting for olivine) 

318 and amygdules of secondary hydrothermal minerals are indicative of slight alteration. According to 

319 the TAS diagram, EU1AB and EU53 (Euganean Hills district) are classified as basaltic andesites 

320 (Fig. 3). Both samples are quartz-normative (Table 1) and they have clinopyroxene, plagioclase, and 

321 oxides as phenocrysts and in the groundmass.

322 EU52 and EU8B (Euganean Hills district) are classified as basaltic trachyandesites in the TAS 

323 diagram (Fig. 3). EU52 is nepheline-normative, while EU8B is quartz-normative (Table 1). The 
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324 phenocrysts of these two samples are plagioclase, amphibole and clinopyroxene in a microcrystalline 

325 groundmass of plagioclase and oxides. The plagioclase phenocrysts (up to 2 mm across in EU8B and 

326 up to 5 mm across in EU52) are generally euhedral with occasional sieved–textured centers (EU8B). 

327 The clinopyroxene phenocrysts (up to 1 mm across) are subhedral with rounded edges. Only EU52 

328 exhibits large (up to 5 mm across) euhedral amphibole without any sign of alteration.

329 Sample EU13A (Euganean Hills district) is classified as latite (Fig. 3) and it is quartz-normative 

330 (Table 1). It contains medium–grained (0.5–1.5 mm across) plagioclase, biotite, and clinopyroxene 

331 in a microcrystalline groundmass of plagioclase feldspar, and oxides. The plagioclase phenocrysts 

332 (up to 1.5 mm across) are generally euhedral; a sieved–textured core is also present. The 

333 clinopyroxene crystals (1 mm across) are subhedral with rounded edges. Biotite (1 mm across) is 

334 subhedral and partly replaced by oxides along the rims.

335 EU4, EU5B, and EU9 (Euganean Hills district) are the most felsic samples of the entire suite. 

336 According to the TAS diagram, EU4 is a trachyte, whereas EU5B and EU9 are rhyolites (Fig. 3). All 

337 of them are quartz-normative (Table 1). They exhibit glomeroporphyritic texture and the phenocrysts 

338 are predominantly alkali feldspar (sanidine, up to 5 mm across), plagioclase (up to 5 mm across), and 

339 biotite (1–2 mm across) in a microcrystalline groundmass consisting of alkali feldspar and Fe–Ti 

340 oxides. Only in EU4 phenocrysts of amphibole (1–2 mm across) are present. The glomerocrysts, up 

341 to 1 cm in diameter, are both monomineralic (alkali feldspar) or formed by plagioclase and alkali 

342 feldspar in the same cluster. Crystals within these glomerocrysts are subhedral with rounded corners 

343 on the edges of grains.
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345 Figure 3. Total Alkali vs. Silica (TAS) classification diagram (Le Maitre et al., 2002) of the 
346 magmatic products from Val d'Adige, Lessini Mts., Marosticano, and Euganean Hills studied in this 
347 work (large symbols) and in literature (small symbols). Val d'Adige compositions are from 
348 Beccaluva et al. (2007); Lessini Mts., and Marosticano compositions are from Macera et al. (2003) 
349 and Beccaluva et al. (2007); Euganean Hills compositions are from Milani et al. (1999) and Macera 
350 et al. (2003). The fields for trachybasalt and trachyandesite are labelled here “potassic trachybasalt” 
351 and “latite”, respectively, as most of the samples of this study display (Na2O – K2O) ≤ 2.0 and are 
352 therefore potassic, as defined by Le Maitre (2002). The alkaline–tholeiitic discrimination line is 
353 from Irvine and Baragar (1971). [1 column fitting]
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355 8. GEOCHEMISTRY

356 Bulk major and trace element compositions of the analysed magmatic rocks are reported in Tables 1 

357 and 2. On the TAS diagram (Fig. 3) this group of magmatic rocks overlaps with those previously 

358 published for the VVP (Milani et al., 1999; Macera et al., 2003; Beccaluva et al., 2007), spanning a 

359 wide range of compositions from alkaline to subalkaline and encompassing ultrabasic, basic, 

360 intermediate, and acid rocks. 

361 The basic–ultrabasic rocks span a relatively wide range in terms of SiO2 (42.01 to 53.22 wt.%; Table 

362 1), MgO (12.26 to 3.85 wt.%; Table 1), and mg# [69.64 to 43.06, where mg# is defined as 100 x 

363 Mg/(Mg + Fe2+)mol, Fe3+/Fe2+ being 0.15; Table 1] reflecting the different degree of evolution for the 

364 VVP lithologies (i.e., from basanites to basaltic trachyandesites). The analysed samples have 

365 predominantly alkaline affinities with the majority of the samples having potassic affinity [(Na2O – 

366 K2O) ≤ 2.0 wt.%] with (Na2O – K2O) ranging from 0 to 1.72 wt.%. Only BI14, EU53, and EU1AB 

367 have sodic affinity [(Na2O – K2O) = 2.51 - 3.48 wt.%]. Chondrite–normalized rare earth element 

368 (REE) patterns are generally parallel for all basic–ultrabasic rocks (Fig. 4a). These patterns are 

369 strongly light REE (LREE) enriched with a significant LREE to heavy REE (HREE) fractionation 

370 [(La/Yb)N = 5.5 to 24.3; (Dy/Lu)N = 1.8 to 2.4; Fig. 4a]. Irrespective to the lithology, samples from 

371 Val d’Adige, Lessini Mts., Euganean Hills (EU1AB and EU53), and Marosticano exhibit negative 

372 Rb and K anomalies and spikes for Ba, Sr, and P in the primitive mantle–normalized incompatible 

373 trace element diagram (Fig. 4b). Basaltic trachyandesite EU52 (Euganean Hills) mimics the general 

374 trace element features of the basic–ultrabasic samples. However, it lacks significant Sr and P spikes 

375 and it is depleted in Ba, consistently with its more evolved character and with possible feldspar and 

376 apatite fractionation (Fig. 4b).

377 The intermediate–acid rocks have higher SiO2 (55.63 to 72.00 wt.%; Table 1) and lower MgO (3.14 

378 to 0.14 wt.%; Table 1) contents with respect to the previous group, consistent with their more evolved 

379 nature. All the samples of this group have potassic affinity [(Na2O – K2O) = 0 -1.55]. No trace element 

380 analyses were performed for this group, as in this work we preferred to focus on the geochemistry of 
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381 basic–ultrabasic samples that can shed light on their mantle sources, while more evolved rocks may 

382 be significantly affected by fractional crystallization.
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384

Sample BAL1 BAL7 BI14 TER1 BOL1 EU1AB EU53 EU52 EU8B

Rock Basalt Basanite Basanite Basalt Basanite
Basaltic 
andesite

Basaltic 
andesite

Basaltic 
trachyandesite

Basaltic 
trachyandesite

District Val d'Adige Val d'Adige Val d'Adige Lessini Mts. Lessini Mts. Euganean Hills Euganean Hills Euganean Hills Euganean Hills

Coordinates
45°47’02.12”N
10°54’18.26”E

45°44’37.00”N
10°53’04.00”E

45°47’02.12”N
10°54’18.26”E

45°35’34.05”N
11°12’58.89”E

45°35’51.84”N
11°12’31.34”E

45°19’40.08”N
11°38’58.00”E

45°32’87.00”N
11°68’48.00”E

45°32’87.88”N
11°68’48.75”E

45°19’07.08”N
11°46’31.04”E

SiO2 46.83 42.62 42.01 48.72 43.00 52.00 53.22 51.70 55.63

TiO2 2.75 3.71 3.22 2.80 3.44 2.45 2.37 2.75 2.01

Al2O3 14.59 13.04 14.65 13.53 13.21 14.85 14.83 16.29 15.53

Fe2O3 14.61 14.56 13.11 11.00 14.35 10.02 11.24 10.43 8.82

MnO 0.20 0.19 0.17 0.36 0.19 0.12 0.12 0.12 0.13

MgO 6.94 8.96 8.28 10.77 9.55 6.25 6.22 3.85 3.41

CaO 10.39 11.03 10.34 9.93 10.23 9.50 8.66 6.12 6.47

Na2O 2.24 3.09 4.98 1.09 3.06 3.10 3.24 4.35 4.23

K2O 0.75 1.37 1.42 1.17 1.45 0.59 0.43 3.23 2.68

P2O5 0.70 1.53 1.81 0.64 0.97 0.35 0.26 0.97 0.59

Tot 100.01 100.10 100.00 100.00 99.45 99.23 100.59 99.81 99.50

LOI 3.02 1.10 2.17 3.30 0.55 3.69 3.11 0.83 2.34

mg# 49.32 55.77 56.40 66.72 57.69 56.10 53.13 43.06 44.20

Quartz - - - 1.4 - 2.6 4.4 - 2.6

Nepheline - 7.9 18.3 - 8.2 - - 0.43 -

Diopside 16.2 22.3 21.6 13.4 21.8 16.5 13.6 7.2 10.6

Hyperstene 16.1 - - 30.9 - 18.1 19.6 - 11.6

Olivine 6.0 18.0 15.3 - 19.5 - - 11.2 0-
385 mg# = 100 x Mg/(Mg+Fe2+)mol considering Fe3+/Fe2+ 0.15
386

387 Table 1. Whole–rock major element compositions (wt.%) and CIPW normative compositions of magmatic products from Val d'Adige, Lessini 
388 Mts., Euganean Hills, and Marosticano.
389
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Sample EU13A EU4 EU5B EU9 LB1 25B

Rock Latite Trachyte Rhyolite Rhyolite Basanite Basanite

District Euganean Hills Euganean Hills Euganean Hills Euganean Hills Marosticano Marosticano

Coordinates
45°15’07.02”N
11°41’27.00”E

45°20’20.09”N
11°39’06.09”E

45°19’16.00”N
11°45’24.00”E

45°14’57.02”N
11°44’28.07”E

45°76’72.83”N
11°67’78.97”E

45°76’72.00”N
11°67’78.00”E

SiO2 56.90 65.52 69.86 72.00 43.22 44.02

TiO2 2.00 0.69 0.39 0.32 3.47 3.12

Al2O3 15.68 16.51 15.41 14.81 11.52 12.80

Fe2O3 7.27 3.71 2.05 1.26 13.12 10.95

MnO 0.09 0.06 0.09 0.03 0.19 0.16

MgO 3.14 0.72 0.17 0.14 11.29 12.26

CaO 5.68 1.59 0.65 0.49 11.85 10.89

Na2O 4.11 5.23 4.80 4.63 3.06 3.22

K2O 3.59 5.11 5.77 5.56 1.36 1.53

P2O5 0.57 0.30 0.07 0.03 0.97 1.06

Tot 99.03 99.44 99.26 99.27 100.05 100.00

LOI 1.64 0.35 0.66 0.14 1.17 1.08

mg# 46.95 28.45 14.52 18.54 63.81 69.64

Quartz 3.5 10.3 17.6 22.3 - -

Nepheline - - - - 11.0 10.4

Diopside 9.0 - - - 31.5 25.1

Hyperstene 9.8 5.6 2.6 1.5 - -

Olivine - - - - 17.9 20.1

390 mg# = 100 x Mg/(Mg+Fe2+)mol considering Fe3+/Fe2+ 0.15

391

392 Table 1 (continued). Whole–rock major element compositions (wt.%) of magmatic products from Val d'Adige, Lessini Mts., Euganean Hills, and 
393 Marosticano.
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Sample BAL7 TER1 BOL1 EU1AB EU53 EU52 LB1

Rock Basanite Basalt Basanite Basaltic andesite Basaltic andesite Basaltic trachyandesite Basanite

District Val d'Adige Lessini Mts. Lessini Mts. Euganean Hills Euganean Hills Euganean Hills Marosticano

Rb 29.6 27.8 37.4 17.0 15.0 71.0 46.6

Ba 860 664 553 348 264 777 777

Th 6.80 5.87 5.99 2.95 2.85 10.1 6.85

U 1.77 1.34 1.42 0.83 0.82 2.56 2.00

Nb 124 74.3 91.4 28.0 21.0 96.6 118

Ta 4.47 2.52 3.74 1.38 1.43 4.64 4.67

La 66.6 39.0 47.0 18.4 13.7 72.4 57.5

Ce 131 75.8 96.1 38.5 28.5 128 109

Pr 15.5 8.37 11.5 4.68 3.71 14.4 12.1

Sr 1744 736 1060 473 349 929 1071

Nd 67.4 35.6 52.0 20.4 16.9 55.9 53.3

Zr 413 235 354 175 168 456 382

Hf 8.29 5.01 7.58 3.93 4.03 9.11 7.91

Sm 12.6 6.73 10.1 5.36 4.85 10.9 9.68

Eu 3.86 2.16 3.13 1.83 1.75 3.25 2.91

Gd 11.7 6.66 9.32 5.55 5.47 8.82 8.92

Tb 1.64 0.99 1.38 0.83 0.85 1.19 1.27

Dy 7.20 4.63 6.23 4.48 4.77 6.15 5.61

Y 40.8 28.7 35.4 24.1 24.0 34.6 31.5

Ho 1.28 0.88 1.10 0.83 0.88 1.10 1.00

Er 3.05 2.22 2.62 1.97 2.20 2.64 2.42

Yb 2.21 1.84 1.93 1.56 1.70 2.03 1.78

Lu 0.31 0.27 0.27 0.21 0.23 0.27 0.25
394 All trace elements (ppm) were analysed by ICP–MS except Ba (XRF).

395

396 Table 2. Trace element (ppm) compositions of magmatic products from Val d'Adige, Lessini Mts., Euganean Hills, and Marosticano.
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397 Figure 4. Chondrite–normalized rare earth elements (a) and primitive mantle–normalized trace 
398 element patterns (b) for basic–ultrabasic rocks from Val d'Adige, Lessini Mts., Euganean Hills, and 
399 Marosticano. The least evolved Euganean Hills samples are also shown for comparison. Previously 
400 published trace element compositions for basic–ultrabasic rocks from Val d'Adige, Lessini Mts., 
401 Euganean Hills, and Marosticano (Macera et al., 2003; Beccaluva et al., 2007) are reported as a 
402 shaded area. Ocean Island Basalt composition (OIB; Sun and McDonough, 1989) is shown with a 
403 black dashed line. The average trace element compositions of orogenic calc–alkaline and sub–
404 alkaline magmas of the Periadriatic Central Alps magmatism are from Bergomi et al. (2015) and are 
405 shown with a black continuous line. Normalizing factors are from McDonough and Sun (1995). 
406
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407 9. 40Ar/39Ar GEOCHRONOLOGICAL RESULTS

408 Detailed 40Ar/39Ar results of the analysed magmatic rocks are reported in Tables 3, 4. Groundmass 

409 samples of BAL1, BAL7, TER1, BOL1, and LB1 as well as amphibole and plagioclase separates of 

410 EU52 were analysed with a new generation noble gas multicollector mass spectrometer (ARGUS 

411 VI). Instead, mineral separates (i.e., biotite, feldspar, sanidine) from EU8B, EU13A, EU4, EU5B, 

412 and EU9 were analysed with the MAP215–50 mass spectrometer. EU1AB and EU53, two basaltic 

413 andesites from the Euganean Hills district, could not be dated due to the lack of fresh K–rich minerals. 

414 Many analysed samples are characterized by 40Ar/36Ar ratios, which are above or below the 

415 atmospheric value (298.56 ± 0.31; Lee et al., 2006). Supra-atmospheric intercepts are indicative of 

416 excess 40Ar whereas sub-atmospheric ratios are too low to be due to isotopic fractionation (Oostingh 

417 et al., 2017) and are rather interpreted in term of hydrothermal alteration signature (Baksi, 2006). In 

418 addition, many samples yielded only mini–plateaus (50–70% cumulative 39Ar; Jourdan et al., 2007). 

419 The latter are less robust than their plateau counterparts and should be treated with caution. They 

420 might indicate the true crystallization age, but they might equally represent minimum age values, not 

421 too far from the crystallization age (Oostingh et al., 2017). The complete description of the dating 

422 result is reported in section S2 of Supplementary materials. 

423 For Val d’Adige, the basalt BAL1 and basanite BAL7 40Ar/36Ar intercepts are similar and slightly 

424 sub–atmospheric (BAL1 = 266 ± 23 and BAL7 = 264 ± 15; Table 3; Fig. 5 a, c), which allow equally 

425 calculating a plateau age of 41.69 ± 0.37 Ma (Table 3; Fig. 5b) and a mini–plateau age of 41.98 ± 

426 0.20 Ma (Table 3; Fig. 5d), respectively. 

427 TER1 and BOL1 were analysed for the Lessini Mts. district and yielded different 40Ar/36Ar and 

428 intercept ages. The basalt TER1 shows sub–atmospheric 40Ar/36Ar intercept (253± 25; Table 3; Fig. 

429 5e) defining a mini–plateau age of 45.21 ± 0.11 Ma (Fig. 5f). The 40Ar/36Ar intercept of basanite 

430 BOL1 is 278 ± 19 (Table 3; Fig. 5g), close to the atmospheric 40Ar/36Ar ratio. This sample yielded a 

431 mini–plateau age of 38.73 ± 0.44 Ma (Table 3; Fig. 5h). 
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432 For the basaltic trachyandesite EU52 both amphibole and plagioclase were analysed. The amphibole 

433 is characterized by a 40Ar/36Ar intercept (295 ± 14; Table 3; Fig. 5i) indistinguishable from 

434 atmosphere, and yielded a mini–plateau age of 32.35 ± 0.09 Ma (Fig. 5j). The plagioclase 40Ar/36Ar 

435 intercept value is supra–atmospheric (397 ± 19; Table 3; Fig. 5k), indicating excess 40Ar. Using the 

436 latter value, we obtained a plateau age of 32.16 ± 0.06 Ma (Table 3; Fig. 5l). The alkali–feldspar 

437 separate of the basaltic trachyandesite EU8B shows a value of 305 ± 99 (Table 3; Fig. 5m) for the 

438 40Ar/36Ar intercept, which is indistinguishable from the atmospheric ratio and allows calculating a 

439 plateau age of 32.17 ± 0.32 Ma (Table 3; Fig. 5n). The feldspar separate of the latite EU13A yielded 

440 a 40Ar/36Ar intercept of 349 ± 136 (Fig. 5o) and a plateau age of 32.34 ± 0.51 Ma (Fig. 5p). The 

441 40Ar/36Ar intercept age for the biotite separate of trachyte EU4 is 328 ± 43 (Table 3; Fig. 5q) and 

442 defines a plateau age of 32.09 ± 0.29 Ma (Fig. 5r). Also for the sanidine separate of rhyolite EU5B 

443 the 40Ar/36Ar intercept is slightly supra–atmospheric (343 ± 58; Fig. 5s); the calculated plateau age is 

444 32.30 ± 0.52 Ma (Table 3; Fig. 5t). The sanidine separate of rhyolite EU9 shows a 40Ar/36Ar intercept 

445 value (315 ± 68; Table 3; Fig. 5u) indistinguishable from atmosphere and we obtained a plateau age 

446 of 32.17 ± 0.27 Ma (Table 3; Fig. 5v). It is clear that irrespective to the lithology all analysed 

447 Euganean samples yielded nearly indistinguishable ages, allowing to calculate a mean weighted age 

448 of 32.21 ± 0.09 Ma.

449 The basanite from the Marosticano district, LB1, yielded the youngest integrated age of the VVP 

450 samples analysed at WAAIF using the ARGUS VI mass spectrometer. It did not return isochron and 

451 plateau age, but almost all the steps indicate apparent ages between 20.5 and 23.2 Ma (Table 3; Fig. 

452 5w, x). 

453 Two additional basanites BI14 and 25B, from Val d’Adige and Marosticano, respectively, were 

454 analysed at the Noble Gas Geochronology Laboratory of the University of Vermont using the Nu 

455 Instruments Noblesse magnetic sector noble gas mass spectrometer with the purpose to expand the 

456 VVP geochronological dataset. Sample BI14 yielded a 40Ar/36Ar intercept of 207 ± 138 and a mini–

457 plateau age of 40.73 ± 0.48 Ma (Table 4; Fig. 6a, b). This age is similar to those recorded by BAL1 
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458 and BAL7. As occurred for LB1, also the Marosticano basanite 25B did not provide ages (Table 4; 

459 Fig. 6c, d). However, for both Marosticano samples almost all the steps indicate apparent ages of ~ 

460 22 – 23 Ma (Fig. 6d). 
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462

General characteristics    Isochron characteristics  Plateau characteristics   

Sample Lithology Instrument Separate

Inverse 

isochron age 

(Ma, ±2σ)
n

40Ar/36Ar 

intercept 

(±2σ)
MSWD

P 

(%)

Plateau age 

(Ma, ±2σ)

Total 39Ar 

released 

(%)

MSWD 
P 

(%)

Val d'Adige

BAL1 Basalt ARGUS VI Groundmass 41.70 ± 0.82 16 266 ± 23 0.78 69 41.69 ± 0.37 75 0.39 98

BAL7 Basanite ARGUS VI Groundmass 41.95 ± 0.46 15 264 ± 15 0.82 64 41.98 ± 0.20 60 0.25 100

Lessini Mts.

TER1 Basalt ARGUS VI Groundmass 45.21 ± 0.15 12 253 ± 25 1.00 44 45.21 ± 0.11 57 0.83 61

BOL1 Basanite ARGUS VI Groundmass 40.60 ± 1.76 17 278 ± 19 0.75 74 38.73 ± 0.44 62 0.99 46

Euganean Hills

Amphibole 32.37 ± 0.12 10 295 ± 14 0.52 85 32.35 ± 0.09 67 0.48 89
EU52

Basaltic 
trachyandesite

ARGUS VI
Plagioclase 32.16 ± 0.08 21 397 ± 19 0.65 87 32.16 ± 0.06 100 0.58 93

EU8B
Basaltic 

trachyandesite
MAP 215–50 Feldspar 32.11 ± 0.98 15 305 ± 99 0.85 61 32.17 ± 0.32 100 0.79 68

EU13A Latite MAP 215–50 Feldspar 31.96 ± 1.13 14 349 ± 136 0.52 91 32.34 ± 0.51 88 0.53 91

EU4 Trachyte MAP 215–50 Biotite 31.83 ± 0.50 14 328 ± 43 0.88 57 32.09 ± 0.29 100 0.97 48

EU5B Rhyolite MAP 215–50 Sanidine 31.87 ± 0.79 15 343 ± 58 0.86 59 32.30 ± 0.52 100 1.00 45

EU9 Rhyolite MAP 215–50 Sanidine 32.02 ± 0.67 14 315 ± 68 0.51 91 32.17 ± 0.27 100 0.48 94

Marosticano

LB1 Basanite ARGUS VI Groundmass
 

No isochron age      No plateau age    

463
464 Data in italics are derived from mini–plateaus (50–70% 39Ar released) and are considered minimum ages only, bold font represents statistically significant plateau ages. Mean square weighted deviation (MSWD) for isochron, 
465 plateau, and mini–plateau, number of analyses included in the isochron, 40Ar/36Ar intercept, percentage of 39Ar degassed used in the plateau calculation, probability (P) for isochron, plateau and mini–plateau are indicate. 
466 Analytical uncertainties on the ages and 40Ar/36Ar intercepts are quoted at 2 sigma (2σ) confidence levels.

467

468 Table 3. Summary table of 40Ar/39Ar results for Val d'Adige, Lessini Mts., Euganean Hills, and Marosticano samples analysed at Western Australian 
469 Argon Isotope Facility (WAAIF).
470
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General characteristics   Isochron characteristics  Plateau characteristics   

Sample Lithology Separate
Inverse isochron 

age (Ma, ±2σ) n
40Ar/36Ar intercept 

( ±2σ) MSWD
Plateau age 

(Ma, ±2σ)

Total 39Ar 

released 

(%)

MSWD P (%)

Val d'Adige

BI14 Basanite Groudmass 42.2 ± 8.2 7 207 ± 138 11.3 40.73 ± 0.48 57 0.8 45

Marosticano

25B Basanite Groudmass  No isochron age    No plateau age   

471
472 Data in italics are derived from mini–plateau (50–70% 39Ar released) and are considered minimum ages only. Mean square weighted deviation (MSWD) for isochron and mini–plateau, number of analyses included in the 
473 isochron, 40Ar/36Ar intercept, percentage of 39Ar degassed used in the plateau calculation and probability (P) for mini–plateau are indicated. Analytical uncertainties on the ages and 40Ar/36Ar intercept are quoted at 2 sigma 
474 (2σ) confidence levels.

475

476 Table 4. Summary table of 40Ar/39Ar results for Val d'Adige, and Marosticano samples analysed at the Noble Gas Geochronology Laboratory of the 
477 University of Vermont with Nu Instruments Noblesse magnetic sector noble gas mass spectrometer.
478
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479 Figure 5. 39Ar/40Ar vs. 36Ar/40Ar inverse isochrons and 40Ar/39Ar apparent age and K/Ca spectra, 
480 plotted against the cumulative percentage of 39Ar released for VVP rocks analysed at Curtin 
481 University. Plateau ages (bold) are inverse isochron intercept corrected. Mini–plateaus (50–70% 
482 cumulative 39Ar) are indicated in italics. Mean square weighted deviation (MSWD) and probability 
483 of fit (P) are indicated. Errors on plateau ages are quoted at 2σ and do not include systematic errors 
484 (i.e., uncertainties on the age of the monitor and on the decay constant). These plots are obtained at 
485 Curtin University within the Western Australian Argon Isotope Facility (WAAIF) of the John de 
486 Laeter Centre using ARGUS VI and MAP 215–50 mass spectrometers.
487 Abbreviations: gm = groundmass; bt = biotite; san = sanidine; fsp = feldspar; pl = plagioclase; 
488 amph = amphibole. [2 pages, 2 columns fitting]

489

490 Figure 6. 39Ar/40Ar vs. 36Ar/40Ar plot and 40Ar/39Ar apparent age and K/Ca spectra, plotted against 
491 the cumulative percentage of 39Ar released for VVP rocks analysed at University of Vermont. The 
492 mini–plateau age is inverse isochron intercept (40Ar/39Ar) corrected and indicated in italics. Mean 
493 square weighted deviation (MSWD) and probability of fit (P) are reported. Error on the plateau age 
494 is quoted at 2σ. These plots are obtained at the Noble Gas Geochronology Laboratory of the 
495 University of Vermont with Nu Instruments Noblesse magnetic sector noble gas mass spectrometer.
496 Abbreviations: gm = groundmass. [1 column fitting]
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498 10. DISCUSSION

499 10.1 Temperature and pressure of mineral crystallization

500 Crystallization temperature and pressure are calculated mainly through analysis of mineral and whole 

501 rock pairs using the recent Fe–Mg cation exchange reaction [KdFe–Mg = (Feclinopyroxene/Femelt) × 

502 (Mgmelt/Mgclinopyroxene); Table 5] (Putirka, 2008; Neave and Putirka, 2017). For each VVP district, we 

503 used equilibrium clinopyroxene–melt pairs having pyroxene–melt KdFe–Mg close to 0.27 ± 0.03, as 

504 indicated by Putirka et al. (2003). Futhermore, the difference between predicted and observed 

505 diopside+hedenbergite (DiHd) values should approach zero as indicated by Neave and Putirka (2017; 

506 see also Putirka et al., 2009) and Mollo et al. (2013; 2017). Calculated clinopyroxene crystallization 

507 temperatures and pressure for all VVP districts are reported in Table 5 and in Figure 7. For Val 

508 d’Adige, Lessini Mts, and Marosticano calculated temperature ranges are similar (Val d’Adige: T = 

509 1142°C – 1174°C; Lessini Mts. T = 1148 – 1204 °C; Marosticano: T = 1209 – 1219°C; Table 5; Fig. 

510 7) and higher than those for Euganean Hills (T = 1129 – 1162°C; Table 5; Fig. 7). Lessini Mts. 

511 clinopyroxene-melt pairs record the highest pressure values (P = 0.4 – 0.8 GPa; Table 5; Fig. 7), while 

512 those from the Euganean Hills are the lowest (P = 0.1 – 0.4 GPa; Table 5; Fig. 7). Val d’Adige and 

513 Marosticano clinopyroxenes record narrow pressure ranges (Val d’Adige: P = 0.3 – 0.6 GPa; 

514 Marosticano: P = 0.5 – 0.6; Table 5; Fig. 7)

515 It is interesting to note that several of the investigated rocks (e.g., samples BOL1, LB1, and 25B) 

516 contain small fragments of mantle peridotite xenoliths, implying that magmas rose rapidly from the 

517 mantle to the surface. Therefore, it can be proposed that the highest calculated pressure, measured in 

518 Lessini Mts. (~ 0.8 GPa) likely corresponds to the topmost mantle and can be used to infer the depth 

519 of the Moho during the VVP activity. Hence, the estimated depth of the Moho under the magmatic 

520 region is ~ 26 km, in accordance with geophysical data indicating relatively thin continental crust of 

521 ~ 28 km under the VVP (Ansorge et al., 1992; Giese and Buness, 1992; Grad et al., 2009).
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Clinopyroxene compositions Determined pressures and temperatures

Sample Lithology Cpx
SiO2 

(wt.%)
TiO

2

Al2O
3

FeOto

t

Mn
O

MgO CaO
Na2

O
K2

O
Cr2O

3
Tot

T (°C)
Eqn. 
33

P 
(GPa)

DiHd 
error

Kd (Fe–
Mg)

Val d'Adige

BAL7 Basanite
cpx
1

point
1

47.93 2.25 4.73 6.57 0.06
14.2

2
22.6

2
0.36

0.0
0

0.02 98.76 1142 0.3 0.02 0.28

point
2

48.20 2.26 4.64 6.39 0.14
14.5

0
22.5

0
0.38

0.0
0

0.03 98.70 1150 0.4 0.01 0.28

cpx
2

point
1

48.64 2.23 4.35 6.55 0.10
14.4

6
22.4

8
0.42

0.0
0

0.00 99.23 1137 0.3 0.05 0.28

point
2

47.77 2.34 4.96 6.61 0.12
14.3

8
22.0

1
0.37

0.0
1

0.00 98.57 1167 0.5 –0.01 0.29

point
3

48.02 2.14 4.91 6.45 0.11
14.4

6
22.0

1
0.39

0.0
1

0.02 98.51 1174 0.6 –0.03 0.29

point
4

48.49 2.12 4.43 6.22 0.09
14.5

9
22.4

2
0.35

0.0
0

0.00 98.71 1151 0.4 0.00 0.28

Lessini Mts.

TER1 Basalt
cpx
1

point
1

50.29 1.07 3.36 5.15 0.11
15.8

7
22.7

3
0.31

0.0
0

0.39 99.28 1195 0.6 –0.15 0.30

point
2

50.38 1.12 3.47 5.10 0.11
15.7

9
23.2

0
0.31

0.0
1

0.35 99.83 1185 0.5 –0.14 0.30

point
3

49.47 1.60 4.26 6.10 0.13
14.9

2
22.7

4
0.29

0.0
0

0.02 99.53 1204 0.7 –0.16 0.30

BOL1 Basanite
cpx
1

point
1

47.88 1.98 5.32 6.56 0.10
14.3

5
22.0

2
0.55

0.0
0

0.08 98.84 1190 0.8 –0.08 0.30

point
2

47.92 1.99 4.88 6.14 0.07
14.5

1
22.5

8
0.71

0.0
0

0.00 98.80 1148 0.4 –0.01 0.29

Euganean 

Hills

EU1A

B

Basaltic 
andesite

cpx
1

point
1

49.14 2.11 4.12 8.65 0.15
14.8

5
19.8

8
0.32

0.0
2

0.49 99.73 1136 0.2 0.03 0.28

cpx
2

point
1

50.23 1.95 3.18 10.48 0.20
13.1

6
19.6

0
0.33

0.0
1

0.05 99.20 1143 0.3 –0.01 0.28

point
2

49.68 1.87 2.88 13.71 0.22
11.9

9
19.1

8
0.37

0.0
1

0.05 99.95 1132 0.1 0.02 0.27

cpx
3

point
1

50.93 1.19 3.61 7.64 0.11
15.4

0
19.7

7
0.42

0.0
1

0.74 99.81 1162 0.4 –0.03 0.28

point
2

50.09 1.33 3.44 7.45 0.20
15.3

4
20.2

3
0.32

0.0
2

0.73 99.15 1141 0.2 –0.01 0.28

point
3

50.58 1.43 3.18 8.17 0.14
15.4

3
20.0

0
0.31

0.0
1

0.33 99.58 1141 0.2 0.04 0.27

point
4

50.34 1.96 3.77 8.85 0.13
14.2

2
20.3

4
0.34

0.0
1

0.22
100.1

8
1142 0.3 –0.01 0.28

1702

1703

1704

1705

1706

1707

1708

1709
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point
5

49.49 1.88 3.69 9.43 0.17
14.3

4
19.7

5
0.30

0.0
3

0.18 99.26 1140 0.2 –0.01 0.28

point
6

49.31 2.12 3.65 9.71 0.17
14.0

8
19.9

3
0.32

0.0
0

0.13 99.44 1129 0.1 0.01 0.28

Marosticano

LB1 Basanite
cpx
1

point
1

44.47 3.44 7.56 7.12 0.12
13.0

8
22.1

3
0.43

0.0
0

0.22 98.57 1219 0.6 0.00 0.30

cpx
2

point
1

49.64 1.08 3.87 5.17 0.08
15.8

7
22.1

4
0.52

0.0
0

0.24 98.61 1209 0.5 –0.05 0.30

523 Table 5. Clinopyroxene compositions in wt.% from Val d’Adige, Lessini Mts., Euganean Hills, and Marosticano magmatic products and calculated 
524 temperatures and pressures using the equation 33 from Putirka (2008) and the equation from Neave and Putirka (2017), respectively. Only 
525 clinopyroxenes with the appropriate range in cpx/meltKdFe–Mg values (KdFe–Mg =0.27±0.03; Putirka et al., 2003; Putirka, 2008) and DiHd error 
526 (DiHdpredicted–observed; Neave and Putirka, 2017; Mollo et al., 2013, 2017) approaching zero are presented.
527 The corresponding whole rock compositions are in Table 1.
528 Abbreviations: cpx = clinopyroxene; DiHd = Diopside+Hedenbergite solid solution.
529  
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530 Figure 7. Clinopyroxene/melt equilibrium temperatures (°C) and pressures (GPa) of Val d’Adige, 
531 Lessini Mts., Euganean Hills, and Marosticano magmatic products calculated from equation 33 of 
532 Putirka (2008) and the equation from Neave and Putirka (2017), respectively.
533
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534 10.2 The mantle source of VVP magmatism

535 Most analysed magmatic products of the VVP show mg# significantly lower than typical primary 

536 magmas (Table 1), i.e., they have undergone at least some fractional crystallization before being 

537 erupted to the surface. However, at least a few rocks have mg# higher than 60 and, as mentioned 

538 before, host millimeter to centimeter–sized fragments of peridotite xenoliths, which point to fast 

539 transport of magma from mantle depths to the surface. Conservatively, we consider only the trace 

540 elements contents of the less evolved VVP samples exhibiting MgO > 8 wt.% and mg# > 55 (BAL7, 

541 TER1, BOL1, and LB1) to constrain the nature and evolution of their mantle source. The selected 

542 samples are characterized by low LILE/HFSE, LREE/HFSE ratios, and high–Nb contents (Fig. 4a, 

543 b). Notably, also slightly more evolved basic samples, including those from the Euganean Hills, 

544 display similar trace element features. These trace element and REE patterns are clearly distinct from 

545 those of the Periadriatic Central Alps calc–alkaline and sub–alkaline products with arc signature 

546 (Bergomi et al., 2015; Fig. 4a, b) and are instead consistent with the within–plate signature already 

547 noticed by previous studies on the VVP (Milani et al., 1999; Beccaluva et al., 2007; Macera et al., 

548 2008; Fig. 4a, b). In fact, Beccaluva et al., (2001, 2007) invoked an Ocean Island Basalts (OIB)–like 

549 mantle source (Sun and McDonough, 1989) for these magmas, justifying the deviations of VVP 

550 samples from typical OIB trace element patterns (Fig. 4b), with the identification of a spinel lherzolite 

551 enriched with hydrated-carbonated components as potential source. However, large uncertainties 

552 were attributed to the mantle region where melting occurred.

553 Using the geochemical features of the sample suite of this study we determined i) the depth of partial 

554 melting; ii) the mineralogical and geochemical features of melting mantle; and iii) the geodynamic 

555 evolution that may be responsible for the enrichment/depletion processes in the VVP mantle source 

556 region.

557

558 10.2.1 The depth of the VVP mantle partial melting

559 The trace elements patterns and ratios of the selected VVP basic–ultrabasic rocks were at first used 
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560 to constrain the depth of the VVP mantle source, i.e., if it was in the garnet or in the spinel stability 

561 field. The steep middle (M)–HREE profiles of the selected VVP samples suggest a possible presence 

562 of garnet in the mantle source, as this mineral progressively takes up the HREE over MREE 

563 (garnet/meltKdSm/ garnet/meltKdYb ~ 10–3; e.g., van Westrenen et al., 2001; Niu et al., 2011). When garnet is 

564 no longer stable, clinopyroxene becomes the sole peridotitic phase that can accommodate REE 

565 (Hellebrand et al., 2002). This mineral has an almost equal partition coefficient for MREE and HREE 

566 during melting (clinopyroxene/meltKdSm/ clinopyroxene/meltKdYb close 1.0; Green et al., 2000; Niu et al., 2011), 

567 imposing melt REE profiles with almost flat M–HREE patterns. Taking this into account, values of 

568 (Sm/Yb)N higher than 1.0 are considered evidence for garnet signature in OIBs (Niu et al., 2011). 

569 Such consideration may apply also to VVP basic–ultrabasic samples [(Sm/Yb)N = 3.9 to 6.1]. 

570 Lanthanum is highly incompatible during melting and difficult to accommodate in both garnet and 

571 clinopyroxene. This implies that any fertile or moderately fertile mantle source in the early stages of 

572 melting, produces melts with positive fractionated REE pattern [(La/Yb)N >>1] in both garnet or 

573 spinel stability fields. However, by combining REE ratios such as La/Yb and Dy/Yb, it is possible to 

574 constrain the presence or absence of garnet in the mantle source and consequently inferring the 

575 melting depth (e.g., Thirlwall et al., 1994). In fact, Dy/Yb is fractionated in the presence of residual 

576 garnet and this effect is seen for relatively high degrees of melting (Bogaard and Wörner, 2003). On 

577 the contrary, the presence of spinel in the source does not significantly fractionate La, Dy, and Yb as 

578 these elements are all moderately incompatible in this mineral. Therefore, in the spinel stability field, 

579 La/Yb is only slightly fractionated for small degrees of melting, and Dy/Yb is not fractionated at all 

580 (Bogaard and Wörner, 2003).

581 La/Yb vs. Dy/Yb of melts calculated for non-modal batch melting model (Shaw, 1970) are compared 

582 to the selected basic–ultrabasic VVP magmatic products (Fig. 8) to confine the chemical composition 

583 and mineralogy of the VVP magma source(s), as well as to estimate the degree of partial melting. 

584 The calculated melts were obtained for fertile and/or moderately fertile lherzolites (modal 

585 clinopyroxene 15–20%; Table 6) with garnet or spinel in the peridotite assemblage. In addition, we 
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586 modelled also the possible presence of metasomatic phases (i.e, phlogopite and amphibole) in the 

587 lherzolitic source. The relative starting and melting modes of (phlogopite-bearing) garnet and 

588 (phlogopite-bearing) spinel lherzolites are reported in Table 6. In Figure 8 the selected VVP samples 

589 as well as basic–ultrabasic magmatic products from previous studies (Beccaluva et al., 2007) lie 

590 closer to the melting curves of the garnet peridotites rather than of the spinel peridotites. In particular, 

591 the basanitic samples and the majority of the alkaline primary lavas from Lessini Mts. (data from 

592 Beccaluva et al., 2007) cluster around 3–4% of melting of a phlogopite enriched-garnet mantle 

593 source. On the other hand, the basalt TER1, which can be classified as tholeiite for its normative 

594 character (see Table 1), and the tholeiitic samples from the Lessini Mts. (data from Beccaluva et al., 

595 2007) require slightly higher melting degrees (about 5–6%), and perhaps an anhydrous (i.e., 

596 phlogopite and amphibole–free) source. 

597 This melting model and the REE patterns clearly indicate that for the selected samples partial melting 

598 occurred dominantly within the garnet–peridotite stability field, i.e., at depths higher than about 70 

599 km (e.g., Green and Ringwood, 1970; Frost, 2008; Ziberna et al., 2013). Geophysical data indicate 

600 the depth of lithosphere–asthenosphere boundary under the VVP at ~100km (Panza and Suhaldoc, 

601 1990), therefore we infer that melting occurred within the deep lithosphere. This is also consistent 

602 with the inferred presence in the VVP mantle source of phlogopite (see section 10.2.2), a mineral that 

603 would rapidly melt out in the asthenospheric mantle wedge (Frost, 2006 and references therein) 

604 overlying the subducting European slab.

605 Unlike VVP basanites and basalt, the calc–alkaline and sub–alkaline basic dykes and intrusive rocks 

606 from the Periadriatic Central Alps magmatism exhibit flat HREE profile (Bergomi et al. 2015; Fig. 

607 4a, b) more consistent with a spinel-bearing peridotite. This implies a relatively shallower melting 

608 depth for the orogenic compared to the intraplate VVP magmas.
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 olivine orthopyroxene clinopyroxene spinel garnet phlogopite

Garnet lherzolite       
Mode of the source 0.57 0.16 0.14 –– 0.13 ––
Melting mode 0.03 0.03 0.44 –– 0.50 ––

Spinel lherzolite       
Mode of the source 0.56 0.22 0.19 0.03 –– ––
Melting mode 0.10 0.20 0.68 0.02 –– ––

Phlogopite–bearing garnet lherzolite       
Mode of the source 0.60 0.14 0.15 –– 0.03 0.08
Melting mode 0.10 0.10 0.30 –– 0.34 0.16

Phlogopite–bearing spinel lherzolite       
Mode of the source 0.58 0.15 0.18 0.03 –– 0.06
Melting mode 0.10 0.10 0.54 0.10 –– 0.16

610 Table 6. Source and melting mineral phases used in the non-modal batch model. Mineral modes of garnet lherzolite and spinel lherzolite in primitive 
611 mantle are taken from McDonough and Rudnick (1998). Mineral modes of phlogopite-bearing garnet lherzolite and phlogopite-bearing spinel are 
612 modified from Pfänder et al. (2018 and reference therein). Values are weight fractions. 
613
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614 Figure 8. Dy/Yb vs. La/Yb in selected basic–ultrabasic VVP samples (large symbols) and alkaline 
615 and tholeiitic Lessini Mts. magmatic products from Beccaluva et al. (2007; small symbols) having 
616 MgO > 8 wt.% and mg# > 55. Also shown are non–modal batch partial melting curves for different 
617 mantle sources: i) garnet lherzolite (thick continuous line); ii) spinel lherzolite (thin continuous 
618 line); iii) phlogopite–bearing garnet lherzolite (thick dashed line); iv) phlogopite–bearing spinel 
619 lherzolite (thin dashed line). The partition coefficients are from GERM (http://earthref.org/). The 
620 source and melting mineral modes are reported in Table 6. Mineral modes of garnet lherzolite and 
621 spinel lherzolite in primitive mantle are taken from McDonough and Rudnick (1998). Mineral 
622 modes of phlogopite-bearing garnet lherzolite and phlogopite-bearing spinel are modified from 
623 Pfänder et al. (2018 and reference therein). The source compositions for phlogopite–garnet 
624 lherzolite and phlogopite–spinel lherzolite are modified from Pfänder et al. (2018); the source 
625 compositions for garnet lherzolite and spinel lherzolite are those of the primitive mantle from 
626 McDonough and Sun (1995). Numbers on model curves indicate the percentage of melting.
627
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628 10.2.2 Is phlogopite really the K (Rb)–bearing residual phase in the VVP mantle source?

629 Although all the selected basic–ultrabasic samples have potassic affinity, on the primitive–mantle 

630 normalized multi–element diagram K and Rb are depleted, whereas Ba is enriched with respect to 

631 neighboring elements (Fig. 4b). Such features suggest the presence of a residual K (Rb)–bearing 

632 phase (i.e, amphibole and/or phlogopite) in the mantle source region (Greenough et al., 1988; Wilson 

633 and Downes, 1992). Previously, we inferred that the partial melting of the VVP mantle source took 

634 place probably within the garnet stability field (i.e., at pressures higher than 2.5 GPa; Robinson and 

635 Wood, 1998). The stability field of amphibole in upper mantle rocks ranges from 0.5 to 4 GPa at 

636 temperatures in the range of 970–1170°C (e.g., Konzett et al., 1997; Frost, 2006; Mandler and Grove, 

637 2016), whereas that of phlogopite ranges from 1 to 9 GPa and temperatures in the range of 800–

638 1500°C (e.g., Sato et al., 1997; Konzett and Ulmer, 1999; Conceição and Green, 2004; Sokol et al., 

639 2017). Therefore, both phases are thus stable at the mantle depths where VVP magmas formed. 

640 However, the calculated crystallization temperatures, based on the empirical equation of Putirka 

641 (2008) for the clinopyroxene/melt equilibrium, range from ~ 1150 to ~ 1220°C for the selected VVP 

642 basanites (Table 5), slightly lower than the temperature of ~ 1250°C obtained by Beccaluva et al. 

643 (2007) for the same lithotype. The temperatures of crystallization of the VVP clinopyroxenes are 

644 generally above than the stability temperature of amphibole. Taking this into account and considering 

645 its chemical–physical properties (Zanazzi and Pavese, 2002; Gemmi et al., 2008; Gatta et al., 2011) 

646 phlogopite appears to be the most likely potassic residual mantle phase. The hypothesis of amphibole 

647 as residual phase in the VVP mantle source is also ruled out by the REE patterns of VVP samples. 

648 Calcic amphiboles have affinity for the MREE (Gd to Ho) relative the HREE (Er to Lu; Tiepolo et 

649 al., 2007; Meyzen et al., 2016). Therefore, basanitic melts derived from an amphibole–bearing mantle 

650 source are fingerprinted by a typical convex–upward pattern in the MREE (Meyzen et al., 2016), 

651 which is absent in the VVP samples. Further evidence for the presence of phlogopite as the K-bearing 

652 residual phase is the Ba/Rb ratio. Both Rb and Ba are more compatible in phlogopite (phlogopite/meltDRb 

653 = 1.44, phlogopite/meltDBa = 1.03; LaTourette et al., 1995; Furman and Graham, 1999; Tiepolo et al., 
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654 2007) than in amphibole (amphibole/meltDRb = 0.15, amphibole/meltDBa = 0.29; LaTourette et al., 1995; 

655 Furman and Graham, 1999; Schmidt et al., 1999). Considering these partition coefficients, residual 

656 amphibole would produce melts enriched in Ba/Rb (> 50), the opposite being true for phlogopite (< 

657 20; Furman and Graham, 1999; Tiepolo et al., 2007; Meyzen et al., 2016). The relatively low Ba/Rb 

658 (10 to 20) of most VVP basic–ultrabasic products thus supports the presence of residual phlogopite 

659 rather than of amphibole within their mantle source.

660

661 10.2.3 The origin of the VVP mantle source enrichment

662 In the spider diagrams (Fig. 4a, b) as well as to the K and Rb depletions, the basic–ultrabasic VVP 

663 magmatic products exhibit enrichments also in Ba, Sr, and P. The same positive anomalies have been 

664 described in within–plate magmatic suites generated from an enriched mantle source metasomatized 

665 by CO2–rich fluids, which are able to carry Ba, Sr, and P (Yaxley et al., 1991; Ionov et al., 1996; 

666 Beccaluva et al., 2007; Dixon et al., 2008). For example, Merle et al. (2017) suggested that basic–

667 ultrabasic magmatic rocks from Cameroon, which are geochemically characterized by enrichments 

668 in LREE, Ba, Sr, and P and depletions in Zr, were derived from a mantle source that underwent 

669 metasomatism from carbonatitic melts.

670 In the case of VVP basic–ultrabasic magmatic rocks, CO2–rich fluids may have been provided by the 

671 subduction of the Tethys oceanic slab, which included calcareous metasediments and carbonated 

672 metabasics (Malusà et al., 2018). Following the latter authors, this subduction was “cold” allowing 

673 for major amounts of subducted carbonates to survive decarbonation and to be delaminated and stored 

674 at depths higher than 180 km, generating a long low velocity layer from Central Southalpine to the 

675 Eastern Southalpine domains (Malusà et al., 2018). In fact, according to Maierov et al. (2018) in any 

676 collision-subduction process, if the subducted sediments detach from the slab at large depth (> 100 

677 km), their exhumation will be hindered by the thick overlying lithosphere and the subducted materials 

678 are forced to flow laterally forming a “long sheet” under the upper plate. 

679 Malusà et al. (2018) proposed that after the slab carbonates emplacement under the Adria microplate 
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680 lithosphere, their breakdown occurred, due to the progressive rise of mantle temperatures at the slab 

681 interface. The new generated carbonate-rich melts, characterized by low density and viscosity 

682 (Frezzotti et al., 2009, Malusà et al., 2018), upwelled and infiltrated the overlying (garnet-bearing) 

683 mantle domain. These processes possibly involved the mantle source of the VVP. 

684 Several authors (e.g., Aulbach et al., 2004; Su et al., 2010; Meyzen et al., 2016; Sokol et al., 2017) 

685 invoked metasomatic processes of silicatic and/or carbonatitic melts and/or fluids to explain the 

686 presence of phlogopite in mantle sources. Similarly, we can think that the presence of phlogopite in 

687 the VVP mantle source could be responsible for the formation and stabilization of the potassic phase. 

688

689 To summarize, the trace element data seem to indicate that VVP magmas were derived by partial 

690 melting of metasomatized phlogopite–bearing garnet lherzolite (basanitic magmas) and anhydrous 

691 garnet lherzolite (tholeiitic magmas). The metasomatic processes occurred at depth with carbonatitic 

692 melts. Except for an ancient carbonatitic signature recorded in Marosticano mantle (Brombin et al., 

693 2018), the Val d’Adige and Lessini Mts. mantle peridotites show no evidence for carbonatitic 

694 metasomatism. Therefore, we have not enough elements to constrain the age of the carbonatitic 

695 metasomatism recorded in the VVP magmatic products. However, according to Beccaluva et al. 

696 (2007), the VVP melts are characterized also by low 87Sr/86Sr and high 144Nd/143Nd isotope ratios, as 

697 typical of magmas derived from incompatible element depleted mantle sources. Such decoupling of 

698 enrichment in trace elements and depletion in isotopic compositions observed for the VVP magmatic 

699 products indicates that the carbonatitic metasomatic event must have occurred recently enough to be 

700 unable to significantly affect the isotope composition of the VVP magmas. This consideration 

701 emphasizes our suggestion that the infiltration of carbonate fluids in the VVP mantle portion could 

702 have occurred after the breakdown of carbonates during the subduction of Tethys oceanic slab.

703

704 10.3 The temporal evolution of the magmatic activity of the VVP
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705 For basic–ultrabasic rocks older than Quaternary, the dating of mineral separates is preferred over 

706 groundmass for which separation of altered from fresh grains is difficult during sample preparation 

707 (Jourdan et al., 2007; Verati and Jourdan, 2013). However, due to the lack of relatively abundant and 

708 fresh phenocrysts of K-rich minerals in the VVP basanitic and basaltic samples, groundmass dating 

709 was carried out. For these samples, slight alteration is suggested by i) the 40Ar/36Ar intercepts 

710 substantially lower than atmospheric values for VVP whole–rock data (<298.56 ± 0.31; Table 3; Fig. 

711 5a, c, e, g), ii) the absence of proper plateau ages (i.e., <70% 39Ar released; Tables 3, 4; Fig. 5d, f, h, 

712 j, x, 6b, c), and iii) convex K/Ca spectra (Figs. 5b, d, f, h, 6b, d). In view of this, all the obtained mini–

713 plateau ages are considered as minimum crystallization ages. However, the geological significance 

714 of these minimum ages is reinforced and confirmed by biostratigraphic data, when available. 

715 Therefore, we are confident that the reported whole-rock ages approximately constrain the actual 

716 crystallization ages, but we are aware that the true eruption age of a rock that yielded a mini-plateau 

717 could lie well outside of the 95% confidence level given by the sample uncertainties. Only 

718 Marosticano groundmass data did not define any isochron or plateau ages. However, the age spectra 

719 indicating a crystallization age of ~ 22–23 Ma (Figs. 5w, x, 6c, d) are confirmed by biostratigraphic 

720 data supporting a late Oligocene to early Miocene eruption in this district. Ages for the Euganean 

721 samples were all obtained on mineral separates and are thus of higher quality. All Euganean samples 

722 yielded statistically robust plateau ages based on > 88% of gas released (Table 3; Fig. 5l, n, p, r, t, v), 

723 only the amphibole separate from EU52 yielded a mini–plateau age (defined by 67% of the released 

724 gas; Table 3; Fig. 5j).

725 Based on the new age determinations and considering the available biostratigraphic data, we 

726 reconstructed the temporal evolution of the Cenozoic magmatism occurred in the Southeastern Alpine 

727 domain (Fig. 2). The VVP magmatic activity was discontinuous and took place with several pulses, 

728 covering a time–span of about 30 My (from late Paleocene to early Miocene). The oldest activity was 

729 always subaqueous, thus difficult to date by the 40Ar/39Ar technique due to the pervasive alteration of 

730 the volcanic products. However, biostratigraphic data constrain the Paleocene onset of VVP 

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359



731 magmatism in the Val d’Adige and Lessini Mts., as well as a late Eocene onset in the Euganean Hills 

732 (Piccoli et al., 1976, 1981; Savelli and Lipparini, 1979; Luciani, 1989; De Vecchi and Sedea, 1995; 

733 Bassi et al., 2008). The oldest age here obtained with the 40Ar/39Ar method is Lutetian and is recorded 

734 by a basaltic lava flow (TER1≥ 45.21 ± 0.11 Ma; Table 3; Figs. 2, 5e, f) from the Lessini Mts. The 

735 basanitic neck of the same district records a quite younger age (BOL1≥ 38.73 ± 0.44 Ma; Bartonian; 

736 Table 3; Figs. 2, 5g, h) consistent with its stratigraphic position, cutting the lava flow from which 

737 TER1 was collected. The Val d’Adige district records 40Ar/39Ar ages similar to those obtained for the 

738 Lessini Mts. In particular at Monte Baldo the lava flow (BAL1) and the sill (BAL7) record ages of 

739 41.69 ± 0.37 Ma and 41.98 ± 0.20 Ma, respectively while the basanitic neck near Rovereto (BI14) 

740 shows an age of 40.73 ± 0.48 Ma (Tables 3, 4; Figs. 5a–d, 6a, b). These ages are consistent with 

741 biostratigraphic ages for the interbedded carbonates (Fig. 2). 

742 All analysed basic to acid Euganean Hills samples yielded indistinguishable ages pointing to a main 

743 magmatic phase in this district at ~ 32.21 ± 0.09 Ma (average value). In particular, for the basaltic 

744 trachyandesite sample (EU52) both amphibole and plagioclase separates were analysed and the 

745 resulting plateau ages are similar (32.35 ± 0.09 Ma and 32.16 ± 0.06 Ma, respectively; Table 3; Fig. 

746 5j, l). The slight difference between the two ages for this sample may be tentatively attributed to the 

747 different closure temperatures of these two minerals, i.e., ~ 550 °C for hornblende and ~ 300 °C 

748 plagioclase. This would suggest a relatively slow cooling rate (≥1.3°C/Ka) for the EU52 sub–

749 intrusive body. This relatively slow cooling rate of the magma is easily understandable if we consider 

750 that EU52 intruded other basic intrusive units, which were probably nearly synchronous and thus still 

751 hot. These host basic units are geochemically equivalent to the tholeiitic basaltic products of the 

752 Euganean Hills, while EU52 is representative of the basic alkaline products of this district. The 

753 plateau age of EU52 overlaps that of the other dated Euganean basaltic trachyandesite (EU8B = 32.17 

754 ± 0.32 Ma; Table 3; Fig. 5n). The plateau ages for the latitic, trachytic, and rhyolitic Euganean 

755 samples range between 32.09 ± 0.29 and 32.34 ± 0.51 Ma (Table 3; Fig. 5p, r, t, v). Therefore, 

756 according to the new geochronological data the peak phase of both basaltic and acidic Euganean 
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757 magmatism occurred during the Rupelian (lower Oligocene; Fig. 2) in a time–span possibly shorter 

758 than 0.3 My. 

759 Finally, both the Marosticano samples, collected in Monte Gloso quarry, point to an Aquitanian (early 

760 Miocene; ~ 22 Ma) eruption age (Table 3; Figs. 2, 5w, x, 6c, d). According to biostratigraphic studies 

761 and field evidences, no eruptions occurred during the Miocene neither in Val d’Adige nor in 

762 Euganean Hills. Therefore, the Miocene magmatic products of the eastern Lessini Mts. indicated by 

763 biostratigraphic data (Savelli and Lipparini, 1979; Fig. 2) and those of the Marosticano district 

764 represent the most recent known magmatic activity in the VVP. 

765 The evidence for several VVP magmatic pulses reflects the main extensional phases of the 

766 southernmost portion of the Eastern Alps, which were intermitted by episodic accretionary events of 

767 the Alpine orogen (Rosenbaum and Lister, 2005). The decompressional melting of the upwelling 

768 mantle during extension of continental lithosphere is known as viable mechanism for intraplate 

769 magmatism (Pedersen and Ro, 1992). In the Paleocene (65–55 Ma) the Adria–Europe convergence 

770 stopped after the continental collision in the Eastern Alps and the following reprise of the convergence 

771 was slower than the rollback of the subducting European slab (Stampfli et al., 1998, 2002; Rosenbaum 

772 et al., 2002; Dézes et al., 2004; Schmid et al., 2004; Rosenbaum and Lister, 2005). The extension in 

773 the overriding plate is promoted when slow convergence rates do not exceed the rates of subduction 

774 rollback (Pacanovsky et al., 1999; Jolivet and Faccenna, 2000; Rosenbaum et al., 2002; Heuret and 

775 Lallemand, 2005; Rosenbaum and Lister, 2005; Brenna et al., 2015). Therefore, from the Paleocene 

776 to the middle Eocene, an extensional regime developed in the Southeastern Alps (Ratschbacher et al., 

777 1989), triggering the magmatism in Val d’Adige (Luciani, 1989; De Vecchi and Sedea, 1995) and in 

778 Lessini Mts. (Borsi et al., 1969; Savelli and Lipparini, 1979; Luciani, 1989; De Vecchi and Sedea, 

779 1995; Bassi et al., 2008) along the transtensional fault systems of the Alpone–Agno Graben 

780 (Zampieri, 1995). From the late Eocene until ~30 Ma an extensional regime developed in the 

781 easternmost VVP parts triggering magmatism also in the Euganean Hills (Piccoli et al., 1976, 1981; 

782 Zantendeschi et al., 1994; Milani et al., 1999; Bartoli et al., 2014) and Marosticano (Savelli and 
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783 Lipparini, 1979). From ~30 Ma to ~23 Ma (Oligocene-Miocene boundary) the extensional processes 

784 stopped in the Southeastern Alps (Frisch et al., 2000). The magmatic activity reprised in the early 

785 Miocene, but it was quite rare and limited to the easternmost areas. No magmatic activity younger 

786 than ~ 20–23 Ma is documented (Savelli and Lipparini, 1979). 

787

788 10.4 Geodynamic implications of the magmatism in the VVP

789 According to the new age determinations, the VVP magmatism ranges from 45.21 ± 0.11 Ma (TER1, 

790 Lessini Mts. district) to ~ 22 – 23 Ma (LB1 and 25B, Marosticano district). If we consider also the 

791 biostratigraphic evidence for early subacqueous activity in Val d’Adige and Lessini Mts., the VVP 

792 magmatism probably started from the late Paleocene (Luciani, 1989; De Vecchi and Sedea, 1995; 

793 Bassi et al., 2008). Magmatism in the Central Alps started slightly later, in the Eocene along the 

794 Periadriatic/Insubric Line, with the emplacement of the Adamello batholith and its feeder dykes at ~ 

795 42 Ma (Bergomi at al., 2015 and reference therein). However, the climax of the Periadriatic Central 

796 Alps orogenic magmatism occurred from 34 Ma to 28 Ma (Bergomi at al., 2015 and reference 

797 therein), during the Oligocenic extensional phase that characterized both the Central and the Eastern 

798 Alpine domains (Ring, 1994; Nievergelt et al., 1996; Challandes et al., 2003; Glodny et al., 2008; 

799 Pleuger et al., 2008; Steck, 2008; Beltrando et al. 2010; Ring and Gerdens, 2016; Schmid et al., 2017). 

800 Despite the geographic proximity and despite similar emplacement ages, the Periadriatic Central Alps 

801 intrusive bodies and the VVP magmatic products are characterized by quite different geochemical 

802 signatures. The first one is characterized by sub–alkaline and calc–alkaline affinities, exhibiting trace 

803 element features typical of subduction–related magmas (high LILE/HFSE, high LREE/HFSE ratios, 

804 and low–Nb contents; Bellieni, 1980; Bergomi et al., 2015). In particular, the enrichments in LILE, 

805 Th and U of the least evolved Periadriatic Central Alps calc–alkaline and sub–alkaline dykes (MgO 

806 > 6 wt.% and mg# > 60; Fig. 4b), may result from a mantle source contaminated by subducted and 

807 recycled continental material, probably the crystalline basement of the Central Southern Alps 

808 (Bergomi et al., 2015; Fig. 4b). Contrarily, the VVP magmas span dominant alkaline to rare 
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809 subalkaline compositions including ultrabasic, basic, intermediate, and acid rocks, with the least 

810 evolved magmatic products exhibiting trace element signature typical of intraplate magmas (e.g., high 

811 HFSE contents, high LREE/HREE ratios, and relatively low LILE/HFSE ratios). Nb/La ratio when 

812 plotted against MgO concentrations, becomes a good proxy to discriminate between arc or intraplate 

813 magmatic affinities (Kay et al., 2006b, 2013; Pallares et al., 2016). Low Nb/La can be associated with 

814 an arc–magmatism, while high Nb/La reflects intraplate chemical signature. The Periadriatic Central 

815 Alps magmatic products show Nb/La values significantly lower than those of VVP magmatic 

816 products (0.14–0.45 vs. 0.78–2.08, respectively), confirming a mantle source with an arc affinity for 

817 the Periadriatic Central Alps magmatism and a mantle source with an intraplate affinity for the 

818 Southeastern Alps (Fig. 9). 

819 Despite the clearly different geochemical compositions of the Periadriatic Central Alps and VVP 

820 magmatism, both events were explained by the slab break–off model by several authors (e.g., von 

821 Blanckenburg and Davies, 1995; Dal Piaz et al., 2003; Macera et al., 2003; Bergomi et al., 2015). 

822 According to this model, at ~ 35 Ma, after the Adria–Europe collision in the Western Alps, the 

823 subducting oceanic slab detached from the European margin (von Blanckenburg and Davies, 1995; 

824 Stampfli et al., 1998, 2002; Dézes et al., 2004). The break–off of the subducting slab allowed 

825 asthenospheric upwelling above the supra–subduction hydrated mantle wedge, causing its melting. 

826 The occurrence of high seismic velocity anomalies (i.e., “cold” material) observed on tomographic 

827 images lying above the mantle transition zone under the Central Alps has been proposed to represent 

828 the detached European slab (e.g., Macera et al., 2003; Piromallo and Morelli, 2003; Giacomuzzi et 

829 al., 2011; Zhao et al., 2016). According to these tomographic images, such high velocity anomalies 

830 are discontinuous, reflecting gaps larger than 100 km (Lippitsch et al., 2003; Piromallo and Morelli, 

831 2003). The low–velocity anomalies (i.e., “hot” material) below the VVP could be interpreted as 

832 mantle diapirs sucked into these lithospheric gaps and upwelled towards shallower levels inducing 

833 partial melting of the surrounding subcontinental lithospheric material and providing an intraplate 

834 geochemical signature to the VVP magmatic products (Macera et al., 2003). However, the 
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835 biostratigraphic ages suggest that the Cenozoic magmatism started in the late Paleocene and also our 

836 new radioisotopic ages confirm that the peak activity in the Val d’Adige and Lessini Mts. was Eocene 

837 in age (~ 45–38 Ma), i.e., it was formed well before the supposed slab break–off event. Therefore, 

838 only the Oligocene magmatic activity from the Euganean Hills may be related to slab detachment. 

839 Macera et al. (2003) justified the early VVP eruptions (Paleocene) as the result of the mantle diapir 

840 action. On the contrary, Bergomi et al. (2015) proposed a partial melting of supra–subduction mantle 

841 wedge in the VVP area in response to the low–angle Alpine subduction that shifted the magmatism 

842 into the foreland. 

843 Recent high–resolution P wave isotropic tomography (Zhao et al., 2016) and the first P wave 

844 anisotropic tomography of the Alps performed (Hua et al., 2017), allow reconstructing the complex 

845 mantle structure and dynamics of the Alps and adjacent regions. Isotropic tomography simply 

846 provides snapshots of the present crust and upper mantle structures beneath the Alps (Zhao et al., 

847 2016; Hua et al., 2017). On the contrary, seismic anisotropy is produced by the preferred orientation 

848 of olivine crystals induced by mantle flow (e.g., Savage, 1999; Savage and Sheehan, 2000; Park and 

849 Levin, 2002; Lucente et al., 2006; Savage et al., 2016). Therefore, it reveals information on the actual 

850 upper mantle flow field (Long and Silver, 2008; Hua et al., 2017). These new images document a 

851 continuous European slab beneath the Central Alps without evidence of any gaps down to 450 km in 

852 depth, which rules out the hypothesis of the slab break–off as a viable mechanism for the Cenozoic 

853 magmatism in the Alps. In particular, the length of the subducted slab in the Central Alps ranges from 

854 450 to 500 km (Hua et al., 2017), which is in accordance with the estimation of the length of a 

855 hypothetical continuous subducting slab below the Central Alps and contrasts with the more reduced 

856 slab length of 300 km estimated by Piromallo and Faccenna (2004) that was taken as evidence of slab 

857 break–off. 

858 Futhermore, Freeburn et al. (2017) showed by numerical modelling that magmatism induced by slab 

859 break–off occurs only when the latter is shallower than the base of the overriding lithosphere. Such 

860 processes are not common as slab break–off occurs typically deeper than the overriding plate 
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861 thickness (Duretz et al., 2011; van Hunen and Allen, 2011; Freeburn et al., 2017), too deep to generate 

862 any decompressional melting of dry upwelling asthenosphere or sufficient thermal perturbations 

863 within the overriding lithosphere. These new results allow reconsidering the mechanism generating 

864 the magmatic processes in the VVP. In particular, in the frame of our new geochronological results 

865 and source modelling, the tomographic results of Zhao et al. (2016) and Hua et al. (2017) provide 

866 elements for also an alternative model to explain the Alpine geodynamics. Since the continental 

867 collision in the Eastern Alps (65 Ma), the European slab became not only progressively steeper, but 

868 also retreated in response to rollback mechanisms (Stampfli et al., 1998, 2002; Rosenbaum et al., 

869 2002; Dézes et al., 2004; Schmid et al., 2004; Rosenbaum and Lister, 2005; Singer et al., 2014; 

870 Bergomi et al., 2015; Schlunegger and Kissling, 2015, Kissling and Schlunegger, 2018). 

871 Laboratory analogue solutions, 3D experiments, and numerical modelling reproducing the retreating 

872 slab movements show that the rollback subduction generates a complex mantle circulation pattern 

873 characterized by the presence of poloidal and toroidal mantle flows, escaping from beneath the slab 

874 and upwelling from the tip and the lateral edges of the sinking plate, respectively (Fig. 10a; Kincaid 

875 and Griffiths, 2003; Funiciello et al., 2006; Piromallo et al., 2006; Faccenna et al., 2011, Strak and 

876 Schellart, 2014). The poloidal mantle flow can affect areas located far away from the trench, while 

877 the toroidal flow produces upwellings located only slightly laterally away from the sub–slab domain 

878 (Fig. 10a; Strak and Schellart, 2014). However, the mantle circulation is intermittent: when the slab 

879 approaches the upper/lower mantle discontinuity at 660 km, the poloidal circulation reduces 

880 significantly, as the slab represents a barrier for material exchange in vertical direction, whereas the 

881 toroidal mantle motion is particularly vigorous (Kincaid and Griffiths, 2003; Funiciello et al., 2006; 

882 Faccenna et al., 2011; Chen et al., 2016). Irrespective of the dominant component (poloidal or 

883 toroidal), the subduction–induced mantle flow i) drives deformation, mainly extensional, in the 

884 overriding plate (Chen et al., 2016) and ii) triggers volcanism induced by decompressional melting 

885 (Faccenna et al., 2011).

886 Taking all of this into account, we speculate that within the Alpine geological setting, the progressive 
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887 retreat of the European slab caused upwelling of a subduction–induced mantle flow (Fig. 10). This 

888 was probably mainly poloidal, as the European slab tip is presently at ~ 450 km (Hua et al., 2017), 

889 still far from the 660 km discontinuity. The circulation of this mantle flow could be also the cause of 

890 the rising temperature at the slab interface, responsible for the breakdown of the subducted carbonates 

891 stored at depth higher than 180 km. Then the carbon–rich melts infiltrated and metasomatized the 

892 overlying mantle lithosphere or the mantle wedge. The mantle flow upwelling induced also 

893 extensional deformation in the overriding plate and decompressional melting of the phlogopite–

894 bearing and anhydrous (i.e., phlogopite and amphibole–free) garnet lherzolite sources metasomatized 

895 by CO2–rich melts. This process triggered magmatism with intraplate signature instead of arc affinity 

896 (Fig. 10). The VVP magmatism occurred in the Paleocene–Eocene in the westernmost side (i.e., Val 

897 d’Adige–Lessini Mts. domain) and only since the Oligocene in its eastern areas (i.e., Euganean Hills–

898 Marosticano domain). The southeastward migration and rejuvenation of the magmatism can be 

899 accounted for considering that Adria microplate underwent counterclockwise rotation of the order of 

900 40–50° since ~ 35 Ma (Lowrie and Alvarez, 1975; Dewey et al., 1989; Rosenbaum et al., 2002; Ring 

901 and Gerdens, 2016). Such movement could have controlled the asthenospheric upwelling to affect 

902 different portions of the overlying lithosphere. 

903 In this work, we ruled out the need of passive upwelling of mantle flow through slab window(s) to 

904 explain the occurrence of the VVP magmatism. Although this was not the aim of this work, in the 

905 frame of the geodynamic model we also speculate that the Periadriatic orogenic magmatism in Central 

906 Alps is related to the dehydration of the subducting oceanic slab, which triggerred the partial melting 

907 of the overlying spinel-bearing mantle wedge (Fig. 10). 
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909 Figure 9. MgO (wt.%) vs. Nb/La diagram showing arc  (grey field) and intraplate (coulored fields) 
910 affinities of mantle sources for Val d'Adige, Lessini Mts., Euganean Hills, and Marosticano rocks 
911 studied in this work (large symbols) and in previous studies (small symbols delimiting fields). Val 
912 d'Adige compositions are from Beccaluva et al., (2007); Lessini Mts. and Marosticano 
913 compositions are from Macera et al. (2003) and Beccaluva et al. (2007); Euganean Hills 
914 compositions are from Macera et al. (2003) and Milani et al. (1999). [1 column fitting]

915

916 Figure 10. Schematic model (not in scale) for magmatism in the Central and Southeastern Alpine 
917 domains at Eocene/Oligocene. The slab rollback and steepening of the subducted European slab 
918 induced the upwelling of a poloidal mantle flow, which causes i) the breakdown of carbonates in 
919 calcareous metasediments and carbonated metabasics dragged at depth by the subducting slab (i.e. 

920 Malusà et al., 2018); ii) extensional deformation within the Adria microplate, and iii) melting of the 
921 carbonatitic metasomatized phlogopite–bearing and anhydrous (i.e., phlogopite and amphibole-free) 
922 garnet-peridotite sources, which generated the basanitic and the tholeiitic magmas, respectively. In 
923 the Central Alps domain, the dehydration of the subducting oceanic slab induced partial melting of 
924 the overlying spinel-bearing mantle wedge, which triggered the Periadriatic orogenic magmatism. 
925 Inset a) Sketch showing the paths of poloidal and toroidal mantle flows. The poloidal mantle flow 
926 escapes from beneath the slab and upwells from its tip, affecting mantle region(s) located far away 
927 from the sinking plate; the toroidal flow escapes from the lateral edges of the slab and upwells only 
928 in the mantle portion(s) near the slab. [2 columns fitting]
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930 11. CONCLUSION

931 For this work new geochemical and geochronological data are provided to investigate the occurrence 

932 of the intraplate magmatism of VVP, which emplaced in an extensional setting (inferred depth Moho: 

933 ~ 26 km) at the same time of the Alpine orogeny.

934 The geothermobarometric and geochemical data of basanitic magmatic products are consistent with 

935 ~ 3–4% degree of partial melting of a phlogopite–bearing garnet peridotite mantle source and those 

936 of tholeiitic magmatic products are consistent with ~ 5–6% degree of partial melting of an anhydrous 

937 (i.e, phlogopite and amphibole-free) garnet peridotite mantle source. All basic–ultrabasic VVP 

938 magmatic products exhibit enrichments in Ba, Sr, and P, indicating that the mantle sources could be 

939 metasomatized by carbonatitic melts, maybe provided by the breakdown of carbonates in calcareous 

940 metasediments and carbonated metabasics dragged at depth by the subducting Tethys slab.

941 By integrating literature biostratigraphic data with new 40Ar/39Ar geochronological data of the VVP 

942 magmatic products, we reconstructed the temporal evolution of the magmatic activity of this 

943 province. In the Paleocene–Eocene the first magmatic activities occurred in the westernmost VVP 

944 domain (i.e., Val d’Adige and Lessini Mts.) when an extensional regime was imposed in the 

945 Southeastern Alps by the rollback of the subducted oceanic slab. During the Oligocene–Miocene 

946 another extensional phase occurred promoting the magmatic activities also in the easternmost VVP 

947 domain (i.e., Euganean Hills and Marosticano districts). According to this reconstruction the first 

948 VVP eruptions are pre–Oligocene in age, ruling out the hypothesis that the magmatism was due to 

949 the upwelling of mantle diapirs through a slab window after the European slab detachment, which 

950 occurrence was dated after ~ 35 Ma. Moreover, in accordance with new tomographic images, the 

951 present European slab is continuous and nearly vertical, with a tip at ~ 450 km in depth, as expected 

952 for a hypothetical continuous subducting slab in the Central Alps. Therefore, in this study a new 

953 geodynamic model is proposed: 

954 the progressive retreatment and steepness of the European slab induced the escape of the sub–slab 

955 mantle material and its upwelling mainly from the front the slab. The subduction–induced mantle 
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956 flow caused the increasing temperature at the slab interface and, by consequence, the generation of 

957 the metasomatizing CO2–rich melts after the breakdown of carbonates dragged at depth by the 

958 subducting Tethys. The upwelling of the mantle flow also caused the intraplate magmatism in the 

959 Alpine collisional setting driving i) extensional deformation in Adria microplate and ii) 

960 decompression melting of the carbonatitic metasomatized mantle wedge beneath the VVP. It is also 

961 speculated that the migration and rejuvenation of the magmatism southeastward is an effect of the 

962 Adria counterclockwise rotation, which started ~ 35 Ma. Finally, we suggest that the coeval 

963 Periadriatic orogenic magmatism occurred in the Central Alps is related to the partial melting of the 

964 spinel-bearing mantle wedge induced by dehydration of the subducting slab. 
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S1. ANALYTICAL METHODS

S1.1. Major and trace elements

Whole-rock major and trace elements of samples BAL1, BAL7, BI14, TER1, BOL1, LB1, and 25B 

were determined by Wavelength Dispersive X-Ray Fluorescence Spectrometry (WDXRF) on pressed 

powder pellets at the Department of Physics and Earth Sciences, University of Ferrara (Italy), using 

an ARL Advant-XP spectrometer, following the full matrix correction method proposed by Lachance 

and Traill (1966). Accuracy is generally lower than 2% for major oxides and less than 5% for trace 



element determinations, whereas the detection limits for trace elements range from 1 to 2 ppm. 

Volatile contents were determined as loss on ignition (LOI) at 1000 °C. 

Whole-rock major and trace elements of samples EU1AB, EU53, EU52, EU8B, EU13A, EU4, EU5B, 

and EU9, were determined by X-Ray Fluorescence Spectrometry (XRF) on glass bead samples at the 

Department of Geosciences, University of Padova (Italy), using Phillips PW1404. Analytical 

uncertainty ranges from 1 to 2% for major elements and from 10 to 15% for trace elements. LOI was 

measured at 1000 °C. In addition, Rb, Sr, Y, Zr, Nb, Hf, Ta, Th, U, and Rare Earth elements (REEs) 

of samples BAL7, TER1, BOL1 and LB1 were determined by Inductively Coupled Plasma–Mass 

Spectrometry (ICP-MS) using a Thermo Series X-I spectrometer at Department of Physics and Earth 

Sciences, University of Ferrara. Accuracy and detection limits were determined using several 

international reference standards, as well as internal standards run as unknowns. Same analyses for 

samples EU4, EU9, EU8B, EU13A, and EU52 were performed using a Thermo Element2 HR-ICP-

MS at University of Bretagne Occidentale, Brest (France), after a repeated HF-HClO4 digestion and 

HNO3 dilutions (see Li and Lee, 2006 for details). The repeated analysis of the international standards 

BCR-2 and BIR-1 demonstrated an external reproducibility better than 5–10 % depending on the 

element and concentration.

Clinopyroxene compositions of samples BAL7, TER1, BOL1, EU1AB, and LB1 were determined 

in-situ by means of a CAMECA SX50 electron microprobe (EMP) at the IGG–CNR of Padova. using 

ZAF on-line data reduction and matrix correction procedures. 

S1.2. Analytical procedure for 40Ar/39Ar radio-isotopic dating

Basanitic and basaltic samples from Val d’Adige, Lessini Mts., and Marosticano districts (BAL1, 

BAL7, BOL1, TER1, LB1, BI14, and 25B) lack K-rich minerals suitable for geochronology, 

therefore 40Ar/39Ar analyses were performed on groundmass. The sample fraction (30-40 g) was 

crushed with a rigorously cleaned steel hydraulic press, sieved to a size fraction of 90-250 μm and 

rinsed in distilled H2O to remove any dust or powder. In order to collect only the sample grains 



constituted by the groundmass, the sample fraction was handpicked under a binocular microscope to 

remove any phenocrysts (pyroxene and olivine). However, due to the dark color of these grains it was 

impossible to clearly observe if inclusions were present, and therefore exclude the possibility of 

alteration. The grains were leached in dilute HF in order to remove at least the alteration phases along 

the surface and cracks. Samples were then rinsed in distilled H2O in an ultrasonic cleaner. 

As basaltic trachyandesites (EU52, EU8B), latite (EU13A), trachyte (EU4), and rhyolites (EU5B, 

EU9) from the Euganean district are characterized by phenocrysts that are good candidates for 

40Ar/39Ar dating, i.e., plagioclase and amphibole in the most basic sample, and biotite, sanidine, or 

feldspar in the more acid samples, 40Ar/39Ar analyses were performed on mineral separates. The 

sample fraction (>1kg) was crushed with a rigorously cleaned steel hydraulic press, sieved to size 

fractions of 150-215 μm and 215-315 μm, and rinsed in distilled H2O to remove any dust or powder. 

Phenocrysts were separated from these fractions using a Frantz isodynamic magnetic separator and 

were hand-picked grain-by-grain under the binocular stereomicroscope. Mineralic separates were 

further leached using diluted HF (2N) for 5 minutes to remove any potential adhering alteration 

product within superficial cracks that were not removed during hand picking (Jourdan et al., 2009b) 

and then were rinsed in distilled H2O in an ultrasonic cleaner. 

The Ar isotopic ratios were measured through laser step-heating with i) ARGUS VI (samples BAL1, 

BAL7, BOL1, TER1, EU52, and EU52) and ii) MAP 215–50 (samples EU4, EU5B, EU8B, and 

EU13A) mass spectrometers at Curtin University within the Western Australian Argon Isotope 

Facility (WAAIF) of the John de Laeter Centre and iii) Nu Instruments Noblesse magnetic sector 

noble gas mass spectrometer (samples BI14 and 25B) at the Noble Gas Lab of the University of 

Vermont. Irrespective to the instrument used for the analyses, our criteria for the determination of 

plateau are as follows. Plateaus must include at least 70% of 39Ar. The plateau should be distributed 

over a minimum of 3 consecutive steps agreeing at 95% confidence level and satisfying a probability 

of fit (P) of at least 0.05. Plateau ages at the 2σ. All the plateau ages are calculated using the mean of 

all the plateau steps, each weighted by the inverse variance of their individual analytical error. Mini-



plateaus are defined similarly except that they include between 50% and 70% of 39Ar. Inverse 

isochrons include the maximum number of steps with a probability of fit ≥ 0.05. All sources of 

uncertainties are included in the calculation.

The sample irradiations and the analytical procedures performed are reported in detail below.

S1.3. Sample irradiation and analyses for samples analysed with ARGUS VI mass spectrometer

The cleaned groundmass (BAL1, BAL7, TER1, BOL1, LB1) and mineral separates (EU52) were 

loaded into several 1.9 cm in diameter by 0.3 cm depth aluminum discs. The discs were then stacked 

together and placed in quartz tubes. The discs hosting the groundmass included also GA1550 biotite, 

while the discs hosting plagioclase and amphibole included FCs. GA1550 and FCs were used as 

neutron fluence monitors, adopting an age of 99.738 ± 0.100 Ma and 28.294 ± 0.036 Ma (1σ), 

respectively (Renne et al., 2011). The discs were Cd-shielded (to minimize undesirable nuclear 

interference reactions) and irradiated for 3 hours at the TRIGA Reactor at Oregon State University 

(USA) The mean J-values computed from standard grains within the small pits range from 0.0008098 

(± 0.07%) to 0.0008121 (± 0.11%) for groundmass sample and yielded values of 0.0008098 (± 0.07%) 

and 0.0008121 (± 0.13%) for the plagioclase and hornblende samples, respectively. For all the 

samples, the mass discrimination was monitored regularly through the analysis using an automated 

air pipette and provided the mean value is 0.993485 (±0.02%) per dalton (atomic mass unit) relative 

to an air ratio of 298.56 ± 0.31 (Lee et al., 2006). The correction factors for interfering isotopes were 

(39Ar/37Ar)Ca = 6.95 × 10 −4 (± 1.3 %), (36Ar/37Ar)Ca = 2.65 × 10 −4 (± 0.84 %) and (40Ar/39Ar)K = 7.30 

× 10 −4 (± 12.4 % ; Renne et al., 2013). At the WAAIF plagioclase, amphibole crystal and groundmass 

populations were step-heated using a continuous 100 W PhotonMachine© CO2 (IR, 10.4 µm) laser 

fired on the crystals during 60 seconds. Each of the standard crystals was fused in a single step.

The gas was purified in an extra low-volume stainless steel extraction line of 240cc and using one 

SAES AP10 and one GP50 getter. Ar isotopes were measured in static mode using a low volume (600 

cc) ARGUS VI mass spectrometer from Thermofisher© set with a permanent resolution of ~200. 



Measurements were carried out in multi-collection mode using four faradays to measure mass 40 to 

37 and a 0-background compact discrete dynode ion counter to measure mass 36. We measured the 

relative abundance of each mass simultaneously using 10 cycles of peak-hopping and 33 seconds of 

integration time for each mass. Detectors were calibrated to each other electronically and using Air 

shot beam signals. The raw data were processed using the ArArCALC software (Koppers, 2002) and 

the ages have been calculated using the decay constants recommended by Renne et al. (2011). Blanks 

were monitored every 2 steps. 

S1.4. Sample irradiation and analyses for samples analysed with MAP 215-50 mass 

spectrometer

Euganean mineral separates (EU8B, EU13A, EU4, EU5B, EU9) were loaded into five large wells of 

two 1.9 cm diameter by 0.3 cm depth aluminum discs. In one disc the wells were bracketed by small 

pits that included GA1550 biotite, while in the other disc, the wells were bracketed by seven pits that 

included Fish Canyon sanidine (FCs). GA1550 and FCs were used as neutron fluence monitors, 

adopting an age of 99.738 ± 0.100 Ma and 28.294 ± 0.036 Ma (1σ), respectively (Renne et al., 2011). 

The discs were Cadmium-shielded (to minimize undesirable nuclear interference reactions) and 

irradiated for 3 hours in the US Geological Survey nuclear reactor (Denver, USA) in central position. 

The mean J-values computed from standard grains within the small pits is 0.000661 ± 0.00000099 

(0.15%) determined as the average and standard deviation of J-values of the small wells for each 

irradiation disc. Mass discrimination was monitored using an automated air pipette and provided a 

mean value ranging from 1.006254 ± 0.00030188 (0.03%) to 1.006589 ± 0.00030198 (0.03%) per 

dalton (atomic mass unit) relative to an air ratio of 298.56 ± 0.31 (Lee et al., 2006). The correction 

factors for interfering isotopes were (39Ar/37Ar)Ca = 7.30 × 10-4 (± 11%), (36Ar/37Ar)Ca = 2.82 × 10-4 

(± 1%), and (40Ar/39Ar)K = 6.76 × 10-4 (± 32%). At the WAAIF the samples were step-heated using 

a 110 W Spectron Laser Systems, with a continuous Nd-YAG (IR; 1064 nm) laser rastered over the 

sample during 1 minute to ensure an homogenously distributed temperature. The gas was purified in 



a stainless steel extraction line using two SAES AP10 getters, a GP50 getter and a liquid nitrogen 

condensation trap. Ar isotopes were measured in static mode using a MAP 215-50 mass spectrometer 

(resolution of ~500; sensitivity of 4x10-14 mol/V) with a Balzers SEV 217 electron multiplier mostly 

using 9 to 10 cycles of peak-hopping. The data acquisition was performed with the Argus program 

written by M.O. McWilliams and ran under a LabView environment. The raw data were processed 

using the ArArCALC software (Koppers, 2002) and the ages have been calculated using the decay 

constants recommended by Renne et al. (2010). Blanks were monitored every 3 to 4 steps and typical 

40Ar blanks range from 1 × 10-16 to 2 × 10-16 mol. 

S1.5. Sample irradiation and analyses for samples analysed with Nu Instruments Noblesse 

magnetic sector noble gas mass spectrometer

The cleaned groundmass were loaded into aluminum foil packets, arranged in suprasil vial, and placed 

in an aluminum canister for irradiation. Samples were irradiated with multigrain aliquots of FCs to 

act as a flux monitor (age: 28.03 Ma; Renne et al., 1998) to monitor the neutron dose, and CaF2 and 

KSO4 were also irradiated to determine corrections for interfering nuclear reactions. Samples were 

irradiated for four hours at the Cd-Lined In-Core Irradiation Tube (CLICIT) reactor of Oregon State 

University, USA. Correction factors used to account for interfering nuclear reactions for the irradiated 

samples are: (40Ar/39Ar)K = 8.87 × 10-3 ± 5.30 × 10-3, (36Ar/37Ar)Ca = 2.7 × 10-4 ± 0.2 × 10-4, 

(39Ar/37Ar)Ca = 6.7 x 10-4 ± 0.2 × 10-4. At the Noble Gas Lab of the University of Vermont, laser step 

heating for 40Ar/39Ar dating was conducted with a Santa Cruz Laser Microfurnace 75 W diode laser 

system. Flux monitors were loaded into degassed Nb foil packets before being loaded in the wells of 

the copper planchette sample holder. The volcanic samples were loaded directly into wells of the 

copper planchette. The gas released during heating was purified with SAES getters and argon isotopes 

were analysed on a Nu Instruments Noblesse magnetic sector noble gas mass spectrometer during 

step-heating analyses. Data from samples and flux monitors were corrected for blanks, mass 

discrimination, atmospheric argon, neutron-induced interfering isotopes, and the decay of 37Ar and 



39Ar. Mass discrimination was calculated by analyzing known aliquots of atmospheric argon for 

which the measured 40Ar/36Ar was compared with an assumed atmospheric value of 298.56 ± 0.31 

(Lee et al., 2006). A linear interpolation was used to calculate J factors for samples based on sample 

position between flux monitor packets in the irradiation tube. All ages were calculated using the 

isotope decay constants recommended by Steiger and Jäger (1977). The age calculations for inverse 

isochron and apparent age data were achieved using both an in-house data reduction program and 

Isoplot 3.0 (Ludwig, 2003).

S2. RESULTS FROM 40Ar/39Ar GEOCHRONOLOGICAL ANALYSES

All ages obtained and here reported correspond to plateau ages corrected for deviations from the 

atmospheric 40Ar/36Ar ratio of 298.56 ± 0.31 (Lee et al., 2006). For most samples, the 40Ar/36Ar ratios 

are above or below the atmospheric values. Supra-atmospheric values can be explained by the 

presence of excess 40Ar (e.g., Oostingh et al., 2017), whereas the sub-atmospheric values are 

indicative of fluid circulation and alteration. In fact 36Ar concentrations are extremely low in mantle 

derived magmas and fluids, therefore 40Ar/36Ar ratio of a predominantly magmatic fluid is sensitive 

to trace additions of hydrothermal fluids (Burnard and Polya, 2004). For these reasons, in this study 

ages from samples with low 40Ar/36Ar ratios have been considered as only minimum ages. 

The basalt BAL1 from Val d’Adige shows an inverse isochron age of 41.70 ± 0.82 Ma [mean square 

weighted deviation (MSWD) = 0.78; probability (P) = 69%; Table 3; Fig. 5a]. The measured intercept 

of the inverse isochron indicates an initial 40Ar/36Ar value of 266 ± 23, which is slightly below the 

atmospheric value (298.56 ± 0.31; Lee et al., 2006). Using the 40Ar/36Ar intercept value, we calculated 

a plateau age of 41.69 ± 0.37 Ma (MSWD = 0.39; P = 98%; Table 3; Fig. 5b) based on 75% of the 

total gas. From the same district, the basanite BAL7 yielded an inverse isochron age of 41.95 ± 0.46 

Ma (MSWD = 0.82; P = 64; Table 3; Fig. 5c). Like the previous sample, the 40Ar/36Ar intercept value 

is sub-atmospheric (264 ± 15 Ma); this allows calculate a mini-plateau age of 41.98 ± 0.20 Ma 

(MSWD = 0.25; P = 100%), including 60% of the released 39Ar (Table 3; Fig. 5d). Both in BAL1 and 



BAL7, the K/Ca spectra show typical trends observed for basaltic rock fragments with relatively high 

values (0.20-0.55) at the low temperature steps that decrease steadily (0.10 to 0.00) towards higher 

temperature steps, indicating that the K-rich phases degassed predominantly at lower temperatures 

and high Ca/K-phases dominate at higher temperatures (Fig. 5b, d). TER1 and BOL1 are a basalt and 

a basanite, respectively, analysed for the Lessini Mts. district and yielded different ages. TER 1 

yielded an inverse isochron age of 45.21 ± 0.15 Ma (MSWD = 1.00; P = 44%; Table 3; Fig. 5e). The 

sub-atmospheric 40Ar/36Ar (253± 25) defines a mini-plateau age of 45.21 ± 0.11 Ma (MSWD = 0.83; 

P = 61%) including 57% of the released 39Ar (Table 3; Fig. 5f). In general the K/Ca ratio decrease 

from 0.75 to 0.01. BOL1 yielded an inverse isochron age of 40.60 ± 1.76 Ma (MSWD = 0.75; P = 

74%; Table 3; Fig. 5g). The 40Ar/36Ar intercept is 278 ± 19, close to the atmospheric 40Ar/36Ar ratio. 

This sample yielded a mini-plateau age of 38.73 ± 0.44 Ma (MSWD = 0.99; P = 46%) based on 62% 

of the total gas (Table 3; Fig. 5h). The basanite BOL1 shows the lowest K/Ca (0.27 to 0.007) of all 

analysed samples (Fig. 5h). 

The amphibole separate of basaltic trachyandesite EU52 yielded an inverse isochron age of 32.37 ± 

0.12 Ma (MSWD = 0.52; P = 85%; Table 3; Fig. 5i), with 40Ar/36Ar intercept (295 ± 14) 

indistinguishable from atmosphere and yielded a mini-plateau age of 32.35 ± 0.09 Ma (MSWD = 

0.48; P = 89%) based on 67% of 39Ar (Table 3; Fig. 5j). The K/Ca spectrum is flat and the values 

(0.098 to 0.104) are low, as expected for amphibole (Fig. 5j). The plagioclase inverse isochron age 

of EU52 is 32.16 ± 0.08 Ma (MSWD = 0.65; P = 87%; Table 3; Fig. 5k). The 40Ar/36Ar intercept 

value is 397 ± 19 and may indicate presence of excess 40Ar. Using the latter value we obtained a 

plateau age of 32.16 ± 0.06 Ma (MSWD = 0.58; P = 93%), based on 99.5% of the gas (Table 3; Fig. 

5l). It should however be considered that the low K/Ca makes all steps cluster at very low 40Ar/36Ar 

intercepts. The K/Ca values range from 0.079 to 0.114, consistent with the plagioclase separate 

analysed (Fig. 5l). The alkali-feldspar separate of basaltic trachyandesite EU8B shows an inverse 

isochron age of 32.11 ± 0.98 Ma (MSWD = 0.85; P = 61%; Table 3; Fig. 5m). Using its 40Ar/36Ar 

intercept value (305 ± 99) we obtained a plateau age of 32.17 ± 0.32 Ma (MSWD = 0.79; P = 68%; 



Table 3; Fig. 5n), defined by 100% of the released 39Ar. The high K/Ca values (10-5478) are 

consistent with the mineral phase analysed (Fig. 5n). For the feldspar separate of the latite EU13A 

we obtained an inverse isochron age of 31.96 ± 1.13 (MSWD = 0.52; P = 91%; Table 3; Fig. 5o). The 

40Ar/36Ar intercept is 349 ± 136 and defines a plateau age of 32.34 ± 0.51 Ma (MSWD = 0.53; P = 

91%) that includes 88% of the total 39Ar (Table 3; Fig. 5p). Despite their large uncertainties, the K/Ca 

values (0.58-12.50) are consistent with the low-Ca plagioclase phase analysed (Fig. 5p). The inverse 

age for the biotite separate of trachyte EU4 is 31.83 ± 0.50 Ma (MSWD = 0.88; P = 57%; Table 3; 

Fig. 5q). The 40Ar/36Ar intercept is 328 ± 43 and defines a plateau age of 32.09 ± 0.29 Ma (MSWD 

= 0.97; P = 48%) based on 100% of the total released gas (Table 3; Fig. 5r). The K/Ca spectrum is 

flat and the high ratios (157-3762) are consistent with the mineral phase analysed (Fig. 5r). The 

sanidine separate of rhyolite EU5B yielded an inverse isochron age of 31.87± 0.79 Ma (MSWD = 

0.86; P = 59%; Table 3; Fig. 5s) with 40Ar/36Ar intercept slightly supra-atmospheric (343 ± 58; Fig. 

5s). The calculated plateau age is 32.30 ± 0.52 Ma (MSWD = 1.00; P = 45%) defined by 100% of the 

released 39Ar (Table 3; Fig. 5t). The K/Ca spectrum is flat with typical ratios for sanidine (0.02-2.48) 

(Fig. 5t). The sanidine separate of rhyolite EU9 shows inverse isochron ages of 32.02 ± 0.67 Ma 

(MSWD = 0.51; P = 91%; Table 3; Fig. 5u). With the 40Ar/36Ar intercept value (315 ± 68) 

indistinguishable from atmosphere, the calculated plateau age is 32.17 ± 0.27 Ma (MSWD = 0.48; P 

= 94%; Table 3; Fig. 5v), defined by 100% of the gas released. The K/Ca spectrum is flat and exhibits 

typical values for the mineral phase analysed (42-2233; Fig. 5v). It is clear that irrespective to the 

lithology all analysed Euganean samples yielded nearly indistinguishable ages, which allow us to 

calculate a mean weighted age of 32.21 ± 0.09 Ma. 

The basanite from Marosticano district, LB1, it is the most recent aged VVP sample analysed at 

WAAIF using the ARGUS VI mass spectrometer. It did not return isochron and plateau ages, but 

almost all the steps indicate apparent ages between 20.5 and 23.2 Ma (Table 3; Fig. 5w, x). The K/Ca 

diagram shows a monotonically decreasing plot from 1.69 to 0.003 (Fig. 5x).



The samples BI14 and 25B, two basanites from Val d’Adige and Marosticano, respectively, were 

analysed at the Noble Gas Geochronology Laboratory of the University of Vermont using the Nu 

Instruments Noblesse magnetic sector noble gas mass spectrometer with the purpose to expand the 

VVP geochronological dataset. Despite the poor fit of the measured inverse isochrons, the results 

from these samples are concordant with the Val d’Adige and Marosticano samples analysed at the 

WAAIF. For the sample BI14 the 40Ar/36Ar intercept of the inverse isochron is 207 ± 138 (Table 4; 

Fig. 6a) defining a mini-plateau age (40.73 ± 0.48 Ma; MSWD = 0.80; Table 4; Fig. 6b) based on 

57% of the released 39Ar. The calculated age is similar to BAL1 and BAL7 ages. In the first three 

steps the K/Ca ranges from 1.8 to 2.3, while in the last steps it decrease from 0.5 to 0.1 (Fig. 6b). As 

the LB1, also the sample 25B did not provide isochron and plateau ages and the K/Ca decreases (0.06-

6.27; Table 4; Fig. 6c, d). In fact, for both Marosticano samples, almost all the steps indicate apparent 

ages of ~ 22 - 23 Ma. 
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