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ABSTRACT

New satellite and in situ observations show large intraseasonal (10–60 day) variability of surface winds
and upper-ocean current in the equatorial Indian Ocean, particularly in the east. An ocean model forced by
the Quick Scatterometer (QuikSCAT) wind stress is used to study the dynamics of the intraseasonal zonal
current. The model has realistic upper-ocean currents and thermocline depth variabilities on intraseasonal
to interannual scales. The quality of the simulation is directly attributed to the accuracy of the wind forcing.
At the equator, moderate westerly winds are punctuated by strong 10–40-day westerly wind bursts. The
wind bursts force swift, intraseasonal (20–50 day) eastward equatorial jets in spring, summer, and fall. The
zonal momentum balance is between local acceleration, stress, and pressure, while nonlinearity deepens and
strengthens the eastward current. The westward pressure force associated with the thermocline deepening
toward the east rapidly arrests eastward jets and, subsequently, generates (weak) westward flow. Thus, in
accord with direct observations in the east, the spring jet is a single intraseasonal event, there are intrasea-
sonal jets in summer, and the fall jet is long lived but strongly modulated on an intraseasonal scale. The
zonal pressure force is almost always westward in the upper 120 m, and changes sign twice a year in the
120–200-m layer. Transient eastward equatorial undercurrents in early spring and late summer are associ-
ated with semiannual Rossby waves generated at the eastern boundary following thermocline deepening by
the spring and fall jets. An easterly wind stress is not necessary to generate the undercurrents. Experiments
with a single westerly wind burst forcing show that apart from the intraseasonal response, the zonal pressure
force and current in the east have an intrinsic 90-day time scale that arises purely from equatorial adjust-
ment.

1. Introduction

The availability of new high-frequency satellite wind
data and in situ observations is an important develop-

ment in the study of the equatorial Indian Ocean
(EqIO) because they help to resolve the subseasonal
variability (Sengupta et al. 2004; Masumoto et al. 2005).
Accurate estimates of surface winds with high time and
space resolutions from the Quick Scatterometer (Quik-
SCAT) are available from July 1999 onward (Liu 2002;
Chelton et al. 2001). The first direct observations of the
surface wind, upper-ocean current, and temperature in
the eastern EqIO began soon after. The National Insti-
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tute of Oceanography (NIO), in Goa, India, deployed a

series of moored subsurface current meters beginning

in February 2000 at 0°, 93°E; 0°, 83°E; and 0°, 77°E

(Murty et al. 2002). The Japan Marine Science and

Technology Center (JAMSTEC) deployed a moored

acoustic Doppler current profiler (ADCP) in Novem-

ber 2000 at 400-m depth at 0°, 90°E (Masumoto et al.

2005), and a Triangle Trans-Ocean Buoy Network

(TRITON) buoy in October 2001 at 1.6°S, 90°E

(Kuroda 2002). Ongoing observations from these in-

struments already cover a longer period than previous

in situ time series measurements in the EqIO, including

those from Gan Island, Republic of Maldives (Knox

1976; McPhaden 1982), the western EqIO (Luyten and

Roemmich 1982), and south of Sri Lanka (Schott et al.

1994; Reppin et al. 1999).

Here, we use an ocean general circulation model

forced by 1999–2003 3-day QuikSCAT winds, validated

against available data, to study the basic dynamics of

intraseasonal zonal current in the upper 200 m of the

EqIO. Although the emphasis is on intraseasonal vari-

ability, we revisit some questions related to the dynam-

ics of the seasonal cycle.

a. Seasonal jets and undercurrents

The Gan data showed that eastward equatorial jets

(Wyrtki 1973; Shenoi et al. 1999) accelerate to about 1

m s�1 when a westerly wind stress abruptly increases in

spring and fall, but they decelerate while the wind stress

continues to be westerly; each jet is followed by a west-

ward flow in the upper ocean lasting a month or longer.

From the observed winds and currents at Gan, Knox

(1976) deduced that the jets are accelerated by the

zonal wind stress, but decelerated by the time-varying

zonal pressure gradient (ZPG). He suggested that the

westward pressure force required for momentum bal-

ance arises because the westerly wind stress tempo-

rarily raises sea level in the east relative to the west.

Knox’s estimate of the ZPG is broadly consistent with

the difference of the sea level between the eastern and

western equatorial regions of the Indian Ocean. His-

torical sea level data show that this difference reaches

its largest value (about 0.2 m) in June and December,

following the eastward equatorial jets (Wyrtki 1973).

A climatology of the basin-scale ZPG in the upper

200 m of the EqIO has been constructed by Bubnov

(1994), based on hydrographic data from 1962 to 1988

along 51 equatorial sections between 55° and 90°E. Es-

timates based on dynamic topography show that the

ZPG in the upper 100 m is eastward (i.e., the pressure

force is westward) throughout the year except in Feb-

ruary and March. The seasonal cycle of the ZPG in the

upper 100 m has practically the same phase as the equa-

torial zonal wind stress, with a dominant semiannual

period. The ZPG in June and December (about 5 �

10�7 N kg�1, or m s�2) corresponds to an east–west sea

level difference of about 0.2 m. In February and March

the pressure force in the upper 200 m is eastward, with

a maximum at 100-m depth of about �2.0 � 10�7 N

kg�1, comparable to that in the equatorial Atlantic or

Pacific.

The ZPG associated with equatorial Kelvin and

Rossby waves generated/reflected at lateral boundaries

determines ocean adjustment to uniform westerly wind

stress. Since eastward jets are surface intensified, it has

been argued that these waves must have a vertical

structure resembling the second baroclinic mode (Phi-

lander and Pacanowski 1980). The semiannual subsur-

face zonal currents (u) in the Gan and Sri Lanka data

have an upward phase propagation, evidence of free

waves carrying energy to deeper levels (McPhaden

1982; Reppin et al. 1999). A strong semiannual signal in

the subsurface u record from the western EqIO has

been interpreted as vertically propagating first meridi-

onal mode Rossby waves, with a zonal wavelength of

several thousand kilometers and a westward propaga-

tion speed of about 0.5 m s�1 (Luyten and Roemmich

1982). Many features of the western EqIO semiannual

u signal can be understood in terms of equatorial waves

forced by the semiannual zonal wind stress in the pres-

ence of lateral boundaries; although the second baro-

clinic mode is important, several vertically standing

modes are required to account for the observed vertical

phase propagation (Gent et al. 1983). Le Blanc and

Boulanger (2001) suggest that much of the seasonal to

interannual variability of the Ocean Topography Ex-

periment (TOPEX)/Poseidon sea surface height in the

EqIO can be interpreted in terms of wind-forced Kelvin

waves and first meridional mode Rossby waves, and

their reflection at lateral boundaries. The speed of the

Kelvin wave in the sea level data is 2 m s�1 to the east,

while the long Rossby wave moves west at 0.7 m s�1.

Note that the meridional structure of sea level associ-

ated with an eastward equatorial jet projects strongly

onto that of a downwelling Kelvin wave. Second, since

sea level changes project preferentially into first baro-

clinic (n � 1) equatorial waves, an analysis based on sea

level alone is likely to underestimate the importance of

the second (n � 2) and higher modes.

Eastward equatorial undercurrents (EUCs, defined

as an eastward current in the thermocline beneath up-

per-ocean westward flow) in the Indian Ocean are tran-

sient features related to wave dynamics(Schott and Mc-

Creary 2001, hereafter SM). Several observations in the
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central and western EqIO show eastward EUCs in Feb-

ruary–May, but they have been also reported during

June–August (Bubnov 1994). Apart from the eastward

EUC in March–May 1994 in the Sri Lanka data, there

is an eastward flow at 50–150-m depth in August–
September 1994, but not in 1993 (Reppin et al. 1999).

The ADCP zonal current in the eastern EqIO consis-

tently shows eastward EUCs in both seasons, that is,

between December–April and June–September (Masu-

moto et al. 2005). Subsurface u alternates between an

eastward and a westward flow with a broadly semian-

nual period and upward phase propagation. Each dis-

tinct eastward EUC is preceded by an upward phase

propagation of the semiannual eastward u.

Most previous studies of equatorial Indian Ocean cir-

culation address the climatological seasonal cycle (e.g.,

Gent et al. 1983; McCreary et al. 1993; Anderson and

Carrington 1993) or interannual variability (e.g., Rever-

din et al. 1986; Saji et al. 1999; Murtugudde et al. 1999;

Schiller et al. 2000). The seasonal cycle of the surface

zonal current, in particular the dominant semiannual

period, is determined by the phase relation between

directly wind-driven flow and flow associated with

waves (Han et al. 1999). In other words, the seasonal

cycle of u depends on the phase relation between the

time-varying zonal wind stress and the time-varying

zonal pressure force. The strength of the eastward jets

in models is sensitive to the choice of wind stress cli-

matology (Anderson and Carrington 1993) and the

depth of the mixed layer (Han et al. 1999; Masson et al.

2004). Models forced by climatological winds consis-

tently generate a transient eastward EUC in spring. For

example, the McCreary et al. (1993) solution has an

eastward EUC with a core at thermocline depth in

January–March. Some models (e.g., Anderson and Car-

rington 1993) also have an eastward EUC in August–
September. Although EUCs arise from a dynamical ad-

justment to westerly winds, several observational and

modeling studies note that the spring EUC follows a

spell of easterly winds in the EqIO (SM; Godfrey et al.

2001). It is not clear from the published literature if

easterly winds are essential to generating the semian-

nual EUC in the Indian Ocean. Sustained easterly

winds during late 1997 forced westward surface cur-

rents at the equator, equatorial upwelling, and a swift

eastward EUC (Murtugudde et al. 2000). Basin-wide

sea level anomalies in the tropical Indian Ocean, asso-

ciated with propagating waves, persist for two seasons

or more during dipole events (Webster et al. 1999). The

large-scale sea level anomalies in 1993/94 or 1997/98

(Le Blanc and Boulanger 2001) imply anomalous zonal

pressure gradients in the equatorial ocean (Grodsky et

al. 2001). The upper-ocean pressure is essentially in

phase with the wind stress on interannual as well as

semiannual time scales.

b. Intraseasonal variability of zonal current

It has been known for some time that upper-ocean

currents in the EqIO have substantial intraseasonal

variability. For example, the weekly current data at

Gan has u variability at a 30–60-day period, and some

evidence of submonthly variability. McPhaden (1982)

suggests that the 30–60-day variability is wind forced,

because it is coherent with the variability of the zonal

wind stress. The 1993 fall jet in the Sri Lanka data is

deep, swift, long lived, and modulated on an intrasea-

sonal time scale (Reppin et al. 1999). The equatorial u

south of Sri Lanka has spectral peaks at 30–50-, 22-, and

15-day periods, whereas equatorial � and off-equator u

have their peaks at 15 days (SM). The new direct mea-

surements suggest that intraseasonal variability domi-

nates the upper-ocean currents in the eastern EqIO. In

the JAMSTEC ADCP data, for example, the amplitude

of the 30–50-day u variability at 40-m depth is 0.5 m s�1,

compared to a 0.1 m s�1 semiannual signal; the domi-

nant variability of � has a 10–20-day period (Masumoto

et al. 2005). The NIO subsurface current data (shallow-

est instrument at 100 m) also show dominant 30–60-day

u variability, and a distinct 10–20-day oscillation of � at

all depths (Murty et al. 2002; Sengupta et al. 2004).

There are relatively few model studies of the dynam-

ics of the intraseasonal variability of the Indian Ocean

circulation. Moore and McCreary (1990) showed that

40–50-day variability in the western EqIO can be wind

forced, whereas other studies attribute the intrasea-

sonal variability in this region to dynamic instability of

western boundary currents (SM). The work of Sen-

gupta et al. (2001) focuses mainly on the intraseasonal

variability of off-equatorial zonal currents in the region

south and east of Sri Lanka, not on equatorial currents.

Han et al. (2001) and Han (2005) show that the 30–60-

day variability of the zonal current is directly wind

forced, and report a dominant 90-day peak in observed

sea level in the eastern EqIO, as well as in the model

upper-ocean current. The 90-day variability is attrib-

uted to a selective response (“resonance”) of the ocean

to weak 90-day wind variations. We have previously

demonstrated the important role of the ZPG in the

existence of intraseasonal jets in the EqIO: westerly

wind bursts generate intraseasonal jets in summer, but

not in winter because the stress is overcome by the

westward pressure force (Senan et al. 2003). The find-

ings of these studies are discussed later in the context of

our results.

Recent work suggests that the intraseasonal variabil-

3038 J O U R N A L O F C L I M A T E VOLUME 20



ity of upper-ocean currents is relevant to the regional

climate. For example, Loschnigg and Webster (2000)

and Waliser et al. (2004) suggest that wind-forced in-

traseasonal currents make a significant contribution to

the ocean heat transport and upper-ocean heat balance.

Other studies propose that the intraseasonal variability

influences the Indian Ocean temperature distribution

on longer time scales (Schiller and Godfrey 2003;

Waliser et al. 2004; Sengupta et al. 2004; Han 2005). On

the other hand, the intraseasonal variability of the

zonal winds and currents is influenced by large-scale

seasonal variations of the tropical atmosphere and

ocean (Chatterji and Goswami 2004; Senan et al. 2003).

Observations and models suggest that the 10–60-day

variability of wind, currents, and SST in the Indian

Ocean (Sengupta et al. 2001; Vecchi and Harrison 2002;

Saji et al. 2005, manuscript submitted to J. Climate)

involves air–sea interaction (e.g., Zheng et al. 2004; Fu

et al. 2003b). The role of air–sea interaction in the in-

traseasonal variability of the Indian Ocean climate is an

active area of research (see the reviews of Webster et

al. 1998; Goswami 2005; Waliser 2005).

This paper is organized as follows. Results from the

QuikSCAT simulation are compared with available ob-

servations, and with a simulation forced by daily Na-

tional Centers for Environmental Prediction–National

Center for Atmospheric Research (NCEP–NCAR) re-

analysis winds. We find that high quality wind forcing

leads to a realistic simulation of the large-scale zonal

currents in the EqIO. Experiments with idealized wind

forcing aid in the dynamical interpretation of the in-

traseasonal variability of u. The model setup and the

main experiments are described in the next section. In

section 3 we demonstrate the ability of the model to

simulate the major observed features of the equatorial

circulation, and discuss the large-scale variability of the

winds and currents. The dominant balance of forces

that determine the evolution of the equatorial zonal

flow is examined in section 4. This explicit calculation

demonstrates the central importance of the rapidly

varying zonal pressure force. The relevance of the ex-

periments with idealized winds is also discussed in this

section. Section 5 summarizes the main conclusions.

2. The model

We use the Modular Ocean Model version 2.2 (Pac-

anowski 1996) with the Indian Ocean domain (30°S–
30°N and 30°–110°E), having a sponge layer at 30°S and

a wall at 110°E. The horizontal resolution is approxi-

mately 1/3° by 1/3° north of 5°S. There are 19 levels in

the vertical, 6 of which are in the top 100 m. The hori-

zontal eddy diffusivity and viscosity are 2000 m2 s�1.

Vertical mixing is based on the scheme of Pacanowski

and Philander (1981). The topography is based on the

1/12° data from the National Geophysical Data Center.

No explicit surface fluxes of heat or freshwater are used

to force the model. The surface temperature and salin-

ity fields are relaxed to the observed annual cycle from

the climatological data of Levitus (1982), with an e-

folding time scale of 10 days.

Several model runs or experiments were performed;

a list is given in Table 1. In the control run, or the

QuikSCAT simulation, the model is forced by the July

1999–December 2003 3-day wind stress obtained from

0.25° � 0.25° QuikSCAT vector wind data using a con-

stant drag coefficient (Cd) of 1.2 � 10�3. This wind

stress field has almost no gaps due to limited satellite

swath (about 1500 km) or rain. A test run with an ob-

jectively interpolated daily gridded (1° � 1°) wind

stress field created from QuikSCAT winds (Pegion et

al. 2000) gives almost identical results. The initial con-

ditions for the control run, on 20 July 1999, came from

a 15-yr simulation of the model (“NCEP” run) with the

daily surface wind stress derived from the NCEP–
NCAR reanalysis (Kalnay et al. 1996) surface winds

using the same Cd. The model has been forced with a

low-pass version of the wind stress, obtained from the

daily 1999–2002 QuikSCAT wind stress data by remov-

ing all variabilities with periods of less than 90 days. We

call this the seasonal run. In addition to the control and

seasonal runs, we use the results from several sensitivity

TABLE 1. List of experiments.

Name Forcing characteristics

Control run 3-day running mean wind stress derived from 1999–2003 QuikSCAT winds

Seasonal run Seasonal wind stress, i.e., 3-day QuikSCAT winds with all sub-90-day variability removed

NCEP run Wind stress derived from daily mean 10-m winds from NCEP–NCAR reanalysis

20-day burst run Uniformly stratified ocean forced by a single burst of spatially uniform purely zonal wind stress; forcing

increases smoothly to 0.1 N m�2 in 10 days and drops to 0 in the next 10 days

60-day burst run Uniformly stratified ocean forced by a single burst of spatially uniform purely zonal wind stress; forcing

increases smoothly to 0.04 N m�2 in 10 days, remains constant for the next 40 days, and drops to 0 in

the next 10 days

Equatorial �x � 0 run Zonal wind stress within 4° of the equator is prescribed to be 0 from 15 Dec to 15 Apr 2002
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experiments with the model ocean forced by idealized

wind stress fields (Table 1); these are further described

in section 4.

3. Variability of equatorial zonal currents

a. Comparison with observations

Daily data from the TRITON mooring (information

available online at http://www.jamstec.go.jp/jamstec/

TRITON/) show that relative to the amplitude of the

seasonal cycle, the intraseasonal variability of the wind

and current is stronger in the eastern EqIO than at Gan

(Knox 1976). The root-mean-square (rms) difference

between the weekly equivalent-neutral QuikSCAT

wind speed and the in situ TRITON wind speed is

about 1 m s�1. The QuikSCAT zonal wind stress is ac-

curate, but slightly overestimates the maximum stress

(Fig. 1a). The phase of the intraseasonal variability of

the 10-m zonal current from the QuikSCAT simulation

compares reasonably well with 10-m u from the TRITON

data (Fig. 1b), although the peak speeds can be higher

in the model. The depths of the 20° isotherms (d20)

from the model and TRITON observations are close,

but occasionally model d20 can be 10–15 m too shallow

for up to a month (Fig. 1c).

The variability of the zonal pressure gradient at the

equator computed from the model surface dynamic

height is reasonably close to that estimated from

TOPEX/Poseidon (Fu et al. 1994) and Jason-1 (Fu et al.

2003a) sea surface height data (Fig. 2). The rms differ-

ence of the 10-day model ZPG and satellite ZPG is

0.9 � 10�7 m s�2, compared to the standard deviation

of the daily model ZPG of 2.2 � 10�7 m s�2. The time

average of the September 1999–December 2003 model

surface ZPG, equal to 4.26 � 10�7 m s�2, has been

removed from the time series in Fig. 2. If the slope were

uniform, this would correspond to a sea level difference

of about 0.2 m between 95° and 60°E. For comparison,

Bubnov’s estimate of the annual mean surface ZPG is

3.8 � 10�7 m s�2. The anomalous dipole-related ZPG

of October 1997–March 1998 represents a negative sur-

face slope (east lower than west). Although the satellite

sea levels are 10-day datasets, they do show the in-

traseasonal variability of the zonal slope.

The depth–time evolutions of the zonal flows at 0°,

90°E in the model and the JAMSTEC ADCP observa-

tions (Masumoto et al. 2005) agree in all major respects

(Fig. 3).

1) Eastward equatorial jets extend to a depth of about

120 m in both the observations and the model.

2) The spring jet is a single event with a lifetime of

30–50 days at this longitude; the fall jet is longer

lived than the spring jet, and is modulated on in-

traseasonal time scales.

3) There are one or two intraseasonal eastward equa-

torial jets every summer. These “monsoon jets”
(Senan et al. 2003) have a lifetime of about a month.

4) Subsurface zonal flow between 120 and 200 m is

generally eastward from January to April and July

to September.

5) Westward subsurface flow in October–December

and May–June, and eastward subsurface flow in

FIG. 1. Evolution of the zonal wind stress, zonal current, and

d20 at 1.6°S, 90°E from TRITON data and the QuikSCAT simu-

lation for 2002–03: (a) 3-day �x (10�1 N m �2), (b) 5-day u (m s�1)

at 10 m, and (c) 5-day 20°C isotherm depth (m).
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FIG. 2. The surface zonal pressure gradient averaged between 2°S–2°N and 60°–95°E estimated from the satellite

sea surface height (bold) for 1997–2003, and from the control run (thin) for July 1999–December 2003. The

observations are from the TOPEX/Poseidon (January 1997–May 2002) and Jason-1 (June 2002–December 2003)

altimeter readings.

FIG. 3. Time evolution of 5-day u (m s�1) in the upper 400 m at 0°, 90°E from the (a) control run and (b)

JAMSTEC ADCP observations for November 2000–October 2001. (Data courtesy of Y. Masumoto.)
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January–February, appear first at deeper levels in

the east.

The full ADCP record, November 2000–July 2003, is

available (Y. Masumoto 2005, personal communica-

tion; online at http://www.jamstec.go.jp/frcgc/jp/sympo/

2004/seika040428/ppt/10_CVORP_IO.pdf). In accord

with the observations, the swiftest eastward jets in the

model are in spring 2002 and 2003. The fall 2002 jet

consists of three nearly distinct intraseasonal events.

The model has certain systematic shortcomings. The

model fall jets are somewhat stronger, and more per-

sistent than the observed. It is likely that the westerly

wind stress is overestimated because the stress is not

calculated from winds relative to the ocean surface cur-

rent (M. J. Harrison 2004, personal communication).

Model subsurface currents are somewhat weaker than

those observed; in particular, the model eastward un-

dercurrents at 75–150-m depth are weaker than those

observed in April 2002 and March–April 2003. Com-

parison with temperature data from the NIO mooring

at 0°, 93°E suggests (Sengupta et al. 2004) that the

model vertical gradient of the thermocline temperature

is realistic. However, away from the equator at the lo-

cation of the TRITON mooring (Fig. 1c), the model

does not reproduce the nearly 100-m-deep isothermal

layer in some seasons. Occasionally, the model 100-m

temperature is too cool by 2°–3°C, and the thermocline

FIG. 4. Daily time series at 0°, 90°E from the QuikSCAT (bold) and NCEP (thin) runs: (a) zonal wind stress

(10�1 N m�2), (b) 50-m u (m s�1), and (c) potential temperature (°C) at 100 m.
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is more diffuse than that observed (not shown). These

limitations might be due to the relatively coarse model

vertical resolution (about 25 m) below 100-m depth, as

well as deficiencies in the mixing parameterization.

The equatorial Indian Ocean circulation is rather

sensitive to the choice of wind product used to force the

model, which is consistent with the findings of Ander-

son and Carrington (1993). Westerly winds in the EqIO

are weak in the NCEP–NCAR reanalysis product com-

pared to the QuikSCAT results throughout the year,

particularly in the east (Fig. 4a). The seasonal mean

wind speed, as well as the intraseasonal variability of

the zonal wind, are underestimated in the reanalysis

product. Goswami and Sengupta (2003) suggest that

this is related to an inaccurate representation of the

atmospheric convective heating over the eastern tropi-

cal Indian Ocean in the NCEP–NCAR model. As a

consequence, the fall jet and the intraseasonal jets in

the NCEP run are weak in the eastern EqIO (Fig. 4b).

The correlation coefficient between TRITON and

model 10-m u is 0.73 for the QuikSCAT run and 0.60

for the NCEP run. The NCEP run 100-m temperature

is systematically too cool compared to the QuikSCAT

simulation (Fig. 4c); the NCEP d20 is 20 m too shallow

relative to the QuikSCAT d20 at the equator, or to the

TRITON d20 away from the equator throughout the

year, except in spring (not shown). The TRITON–
model d20 correlation coefficient is 0.94 for QuikSCAT

and 0.80 for NCEP. Note that surface heat and fresh-

water fluxes are not externally prescribed, but they

come purely from a relaxation to climatology. We con-

clude that the model can simulate the equatorial Indian

Ocean circulation with reasonable fidelity provided the

surface wind forcing is accurate. This is a major result of

the present study.

b. Variability of wind, current, and pressure

gradient

Before taking up the dynamics of the zonal current in

section 4, we briefly describe the variability of the wind

stress and zonal current fields in the north Indian

Ocean, as well as the variability of the zonal pressure

gradient in the equatorial region. The seasonal cycle of

the QuikSCAT zonal and meridional wind stress has its

largest amplitude off the African coast and in the Ara-

bian Sea, exceeding 0.08 N m�2. The seasonal cycle of

the model upper-ocean zonal current is largest in the

western boundary regions off of Africa and the east

coast of India. In the equatorial waveguide, the ampli-

tude of the seasonal cycle is 0.2–0.4 m s�1 (not shown).

The intraseasonal zonal wind stress (�x) variability is

largest (daily standard deviation �0.03 N m�2) in the

central Arabian Sea and Bay of Bengal, south of Sri

Lanka, and east of 75°E in the EqIO (Fig. 5a). Equa-

torial westerly wind bursts lasting 10–40 days occur

throughout the year (Fig. 1; see also Fig. 5 of Knox

(1976)), in response to intraseasonal variations of orga-

nized atmospheric convection (Goswami and Sengupta

2003). The intraseasonal variability of upper-ocean u is

largest in the equatorial waveguide. Its amplitude ex-

ceeds the seasonal variability at 90°E, which is consis-

tent with the finding of Masumoto et al. (2005) (see Fig.

5b). There is some intraseasonal variability of u in the

seasonal run, with maximum amplitudes of 0.04–0.08

m s�1 in the EqIO and off of Africa (not shown), which

arises from dynamic instability of the seasonal currents

(Vinayachandran et al. 1996; Sengupta et al. 2001). The

contribution of this instability to the intraseasonal vari-

ance of u in the EqIO is generally 10%–20% in mod-

erate horizontal resolution models, except west of 55°E

where it can reach 30%–40% (Han et al. 2004).

Figure 6 shows 3-day and seasonal QuikSCAT �x,

and daily upper-ocean (0–120 m) and subsurface (120–
200 m) zonal currents, averaged over 60°–95°E, from

the control and seasonal runs. The QuikSCAT zonal

wind stress within a few degrees of the equator is al-

FIG. 5. Standard deviation of intraseasonal anomalies of (a) �x

(10�1 N m �2) and (b) u (m s�1) at 50 m from the control run.
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most always westerly. Episodes of westerly wind stress

are generally, but not always, followed by upper-ocean

eastward flow. Similarly, there is no one-to-one relation

between easterly wind stress and either upper-ocean

westward flow, or subsurface eastward flow. The sub-

surface zonal flow is generally eastward; westward flow

persists for up to 3 months in October–January and

May–July, with substantial year-to-year differences.

Equatorial “undercurrents,” with eastward flow lying

underneath westward flow, occur twice every year.

The zonal extent of westerly wind bursts in the equa-

torial Indian Ocean is generally comparable to the ba-

sin size in spring and fall (Fig. 7a). It is smaller in sum-

mer, with strong wind bursts mainly east of 75°E. Major

westerly wind bursts (�x � 0.06 N m�2) rarely last more

than 40 days, and occasionally propagate eastward.

Eastward equatorial jets in the upper ocean are longer

lived in fall than in spring (Fig. 7b), in agreement with

the new time series observations (Masumoto et al.

2005) and the surface drifter climatology (Shenoi et al.

1999). Outside the fall season, strong eastward

flow (u � 0.8 m s�1) has a lifetime of less than 40 days

at any longitude. Subsurface (120–200 m) u is eastward

much of the time (Fig. 7c). Westward flow appears first

at the eastern boundary at about the same time as the

strong eastward jets in the upper ocean. The envelope

of westward u generally propagates west at 0.5–0.8

m s�1. Many of these characteristics of the response of

the equatorial current to the wind stress forcing are

examined later in the paper.

The power spectra of the July 1999–December 2003

zonal wind stress, zonal current, and zonal pressure gra-

dient from the control run show a dominant semiannual

cycle and intraseasonal variability. We show the vari-

ance preserving spectra (Chatfield 1975) in order to

emphasize the intraseasonal scale relative to the semi-

annual. Most of the intraseasonal variance is at 30–60-

day period (Fig. 8). All quantities used in the spectrum

calculations, including the zonal pressure gradient, are

from the model term balances, which represent the

daily time and volume averages of the terms in the

zonal momentum equation at each grid point and time

FIG. 6. Zonal surface wind stress and current from the control (thin) and seasonal (bold) runs averaged over

60°–95°E. (a) QuikSCAT �x (10�1 N m�2) averaged over 2°S–2°N, (b) upper-ocean u (m s�1) averaged over 0–120

m at 1°S–1°N, and (c) subsurface u (m s�1) averaged over 120–200 m at 1°S–1°N. Equatorial “undercurrents” are

highlighted.
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step. The semiannual variance of �x is comparable in

the east and west, whereas the intraseasonal variance of

�x is larger in the east (Figs. 8a and 8b). The variability

of the zonal pressure gradient is much stronger in the

east at all periods. The intraseasonal variability of u is

also higher in the eastern EqIO (Figs. 8c and 8d). Note

that although there is a spectral valley between the in-

traseasonal and semiannual �x, the intraseasonal vari-

ability of the upper-ocean u or ZPG in the east is not

clearly separated from variability with period longer

than 60 days. The spectral peaks of the subsurface ZPG

in the east lie at 40–60- and 80–100-day periods (Fig.

8f). We offer a dynamical explanation in the next sec-

tion. Meridional currents are not discussed here. Infor-

mation about the annual cycle of (�y) and � can be

found in Schott et al. (2002) and Godfrey et al. (2001),

and discussion about the 10–20-day variability is in Sen-

gupta et al. (2004).

4. Dynamics of zonal currents

a. Zonal momentum balance

We examine the zonal momentum balance in the

QuikSCAT simulation in the equatorial strip at 1°S–
1°N, 60°–95°E. The western edge is chosen at 60°E be-

cause the dynamics of the flow might be expected to be

different in the western boundary region. For simplic-

ity, we denote the various terms in Cartesian coordi-

nates. The model stress term is (�/�z)[	(�u/�z)], where z

is the depth and 	 the coefficient of the vertical mo-

FIG. 7. Time–longitude plot of 1°S–1°N averaged (a) 10-day running mean QuikSCAT �x

(10�1 N m�2), (b) daily 0–120-m u (m s�1), and (c) daily 120–200-m u (m s�1) from the control run.
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mentum mixing; integration of the stress from a suffi-

ciently deep level to the surface gives the following

model surface boundary condition:

�
z � 0�
�u

�z
�

z�0

� �x · 
1�

The stress is negligible below 120-m depth, except

when there is a strong equatorial jet in the upper ocean

(see below). The pressure acceleration, (�1/�)(�p/�x),

where � is density, p pressure, and x the eastward co-

ordinate, is almost always westward in the upper 120 m.

It is generally small or weakly eastward twice a year,

and westward for 3–4 months following strong westerly

winds in spring and fall (Fig. 9a). Like the wind stress or

upper-ocean current, the zonal pressure force has a

clear semiannual period, which is consistent with the

climatology of Bubnov (1994). The dominant zonal mo-

mentum balance is (Fig. 9b)

�u

�t
� �

1

�

�p

�x


�

�z
��

�u

�z
� · 
2�

The zonal acceleration is generally somewhat larger

than the right-hand side of Eq. (2). The vertical advec-

tion term � w(�u/�z) is almost always positive, where w

is the vertical velocity (positive upward), and exceeds

the generally negative meridional advection �(�u/�y)

(Fig. 9c). Our upper-ocean box is relatively deep (120

m), but the net effect of nonlinearity is to strengthen

and deepen the eastward current, in agreement with

past studies (Cane 1980). The zonal advection, horizon-

tal mixing, and Coriolis terms are generally smaller

than the vertical and meridional advection terms. Zonal

FIG. 8. Variance-preserving power spectra of July 1999–December 2003: (a) �x (bold) and �y (thin) averaged over 2°S–2°N, 60°–70°E;

(b) as in (a) but for 80°–95°E; (c) control run u (bold), � (thin), and ZPG (gray) averaged over 0–120 m at 1°S–1°N, 60–70°E; (d) as

in (c) but for 80°–95°E; (e) control run u (bold) and ZPG (gray) averaged over 120–200 m at 1°S–1°N, 60°–70°E; and (f) as in (e) but

for 80°–95°E. Units are arbitrary, but identical for wind stress, velocity, and ZPG across (a)–(f). The lines mark the 20- and 60-day

periods.
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advection is occasionally important; it is generally nega-

tive in the western and central EqIO but positive in the

east, strengthening and prolonging eastward jets. West-

erly wind bursts can lead to rapid changes in the zonal

pressure force via equatorial waves. The lag correlation

between the 1999–2003 daily �x in the central EqIO

(70°–80°E) and the 0–120-m ZPG in the eastern EqIO

(80°–95°E) has a peak of 0.6 at 15-day lag. Therefore,

pressure has considerable intraseasonal variability (Fig.

8). It can also change abruptly, as in late September

2001 and late April 2003, when it decreases by 4.0 �

10�7 m s�2 or more in a week. Examination of the spa-

tial structure of the winds suggests that such large, rapid

changes of ZPG are due to Kelvin waves generated in

midbasin by zonally nonuniform wind bursts.

The nature of the upper-ocean dynamical balance,

and the intraseasonal variability of the terms, have im-

portant consequences. For example, the eastward jets

of spring 2002 and 2003 are swift (Fig. 3), partly because

the pressure force prior to these events is close to zero

(Fig. 6) and does not oppose eastward acceleration. The

role of pressure also helps to explain a peculiar feature

in the NCEP simulation. Although the April–May west-

erly wind bursts are somewhat weaker in the NCEP

FIG. 9. Evolution of terms in the zonal momentum equation in the equatorial strip (1°S–1°N, 60°–95°E) from the

control run. (a) The 0–120-m pressure term (gray) and stress (thin); the climatology of the zonal pressure gradient

from Bubnov (1994) is shown by the dots. (b) The 0–120-m zonal acceleration (gray) and sum of the pressure and

stress terms (thin). (c) The 0–120-m vertical (bold) and meridional (thin) advection terms. (d) The 120–200-m zonal

acceleration (gray), pressure (thin), and stress (bold). Units of all terms are 10�7 m s�2.
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results than in QuikSCAT, the speed of the spring jets

are comparable in the NCEP and QuikSCAT control

runs (Fig. 4). The fall jets, and the subsequent westward

pressure force, are much weaker in the NCEP simula-

tion, favoring stronger spring jets (not shown). East-

ward equatorial jets are accelerated to high speed

within days of onset of the westerly winds (Knox 1976;

Philander and Pacanowski 1980). Our results (Figs. 7b

and 9b) suggest that these jets are decelerated by the

pressure gradient force (Cane 1980) within days of the

weakening of the westerly wind bursts. This is the basic

dynamical reason why the response of the equatorial

Indian Ocean to a westerly wind burst is an intrasea-

sonal eastward jet (Masumoto et al. 2005). However,

every burst does not generate a jet. Westerly bursts in

June and July generate intraseasonal eastward jets in

the eastern EqIO, but westerly bursts later in summer,

or in winter (albeit rare) do not, because the pressure-

driven current in these periods is generally westward

(Senan et al. 2003).

In the subsurface layer (1°S–1°N, 60°–95°E and 120–
200 m), the stress is generally quite small or zero, ex-

cept when there is a swift equatorial jet in the upper

ocean (Fig. 9d). The subsurface pressure force changes

sign on semiannual time scales. It is westward following

the major spring and fall jets, and eastward at other times.

The zonal acceleration is small (its magnitude is less

than 2.0 � 10�7 m s�2) compared to that in the upper

ocean. The dominant balance is generally (�u/�t) �

(�1/�)(�p/�x), although occasionally there is a substan-

tial contribution from the stress. In the fall of 1999 and

2001, for instance, the vertical diffusion of eastward

zonal momentum from the upper layer reaches 1.2 �

10�7 m s�2. The vertical advection term generally ac-

celerates eastward flow in the subsurface layer as well,

although it is countered by meridional advection (Fig.

9d). The horizontal mixing and Coriolis terms are small

(not shown). Based on the observed eastward time

mean u at all depths up to 200 m at Gan, McPhaden

(1982) deduced that nonlinearity is important in EqIO

dynamics at thermocline depths (Eriksen 1979; Philan-

der and Pacanowski 1980; Cane 1980). The nonlinearity

of the momentum balance makes it likely that intrasea-

sonal current variability rectifies onto longer time

scales (Waliser et al. 2004; Han 2005). Note that our

model has restoring conditions on sea surface tempera-

ture and salinity.Therefore, it is not suitable to study

rectification, which involves among other things the in-

teraction of wind stress and mixed layer depth changes.

As most existing model studies of the Indian Ocean

use monthly mean wind forcings, it is instructive to ex-

amine the dynamics of the upper-ocean zonal current in

the seasonal experiment, where the wind stress has no

subseasonal variability. The dominant zonal momen-

tum balance is, once again

�us

�t
� �

1

�
s

�ps

�x


�

�z
��

s
�us

�z
�, 
3�

where a superscript s denotes variables in the seasonal

run. However, the partitioning between the terms is

quite different from that in the control run. The vari-

ability of the upper-ocean acceleration is much smaller

in the seasonal run; the daily standard deviation of

(�us/�t) is 1.16 compared to 2.70 for the daily (�u/�t)

(Table 2). The variability of the zonal pressure force is

comparable in the two runs; although the standard de-

viation of the stress is only 70% larger in the control

run, the net nonlinearity is 200% larger. Normalized by

the variability of the acceleration, however, the vari-

ability of the pressure is twice as large, the stress is 30%

larger, and the net advection 15% larger in the seasonal

run. The slowly varying currents in the seasonal run

arise from the small difference between the (generally

positive) stress and the (negative) pressure terms, with

a substantial contribution from nonlinearity.

b. Experiments with idealized winds

The response of the EqIO to westerly wind bursts is

studied with the help of two experiments (Table 1). The

initial stratification of the model ocean is uniform,

taken to be the annual mean Levitus temperature and

salinity averaged over 10°S–25°N, 30°–110°E. A spa-

tially uniform, purely zonal wind stress forces the

ocean. In the 20-day burst run, it increases smoothly to

0.1 N m�2 in 10 days, and drops to 0 in the next 10 days.

In the 60-day burst run, �x increases to 0.04 N m�2 in 10

days, remains constant for 40 days, and drops to 0 by

day 60. The 60-day experiment can be considered an

idealization of fall, when the ocean is forced for about

2 months by westerly winds; often �x strengthens and

TABLE 2. Standard deviation of terms in the zonal momentum

equation in the upper-equatorial Indian Ocean (0–120 m; 1°S–
1°N, 60°–95°E).

Term

Control

run

Seasonal

run

Control

run

Seasonal

run

(normalized

by acceleration)

Acceleration 2.61 1.13 1 1

Pressure 1.51 1.40 0.58 1.24

Stress 2.22 1.36 0.85 1.20

Vertical advection 0.90 0.42 0.35 0.37

Meridional advection 0.51 0.21 0.20 0.19

Zonal advection 0.19 0.13 0.07 0.12

Net advection 0.83 0.28 0.32 0.25
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relaxes abruptly (0.1 N m�2 change in a week). Note

that upper-ocean ZPG is generally weak at the start of

the fall westerly winds (Fig. 9).

The initial response of the upper ocean to the 20-day

burst is an accelerating eastward equatorial jet (Fig.

10a). First and second baroclinic mode upwelling

Kelvin waves and downwelling Rossby waves are gen-

erated at the boundaries to satisfy the no-volume-flux

condition. The n � l Kelvin wave propagates east at

about 2.4 m s�1, reaching the eastern boundary on day

30; it lowers sea level, counteracting the elevation due

to the wind-forced equatorial convergence. The n � l

Rossby wave moves west at 0.8 m s�1. The westward

pressure force associated with these waves (Fig. 10c)

arrests the acceleration of the eastward jet (Philander

and Pacanowski 1980). (The surface dynamic height

gradient selectively depicts the n � l mode, as discussed

before.) The boundary-generated Kelvin and Rossby

waves give rise to westward u at almost all longitudes in

the upper ocean by day 60. Upwelling Rossby waves,

generated by the reflection of upwelling Kelvin waves

at the eastern boundary starting at day 30, are associ-

ated with an eastward pressure force (Fig. 10c). In the

subsurface ocean, westward u (Fig. 10b) is decelerated

by the ZPG associated with an n � 2 Rossby wave

moving west at about 0.5 m s�1 (Fig. 10d). Comparison

with term balances suggests that the upper- (subsur-

face) ocean ZPG estimated from the dynamic height

gradient has an error of up to 10% (30%).

The second and higher baroclinic modes are clearer

in longitude–depth sections (Fig. 11). On day 20, the

eastward jet dominates the flow in the upper 100 m or

so; the n � l Kelvin wave front has arrived just west of

the Chagos ridge at 73°E, and the Rossby wave front at

83°E (Fig. 11a). On day 30, the n � l Kelvin wave has

reached the eastern boundary (see Fig. 10c), and the

n � 2 Kelvin wave is west of 65°E (Figs. 11b and 10d).

Forty days later, the n � l and n � 2 direct Rossby

waves are west of 73°E; the reflected upwelling Rossby

waves, which have higher amplitude than the direct

Rossby wave, are associated with the eastward subsur-

face u in the eastern basin (Fig. 11c). Snapshots of the

horizontal currents show the propagation of the re-

flected Rossby wave, and suggest that it has a vertical

structure resembling a second baroclinic mode (Figs.

11e and 11f), with zero crossing in the upper ocean. The

direct Rossby wave is also discernible at subther-

mocline depth, to the west of the reflected wave (Fig.

11f). Eventually, n � 2 and higher baroclinic mode

Rossby waves give rise to increasingly surface-

intensified eastward u (Fig. 11d) that effectively moves

slowly westward at about 0.3–0.4 m s�1, as seen in Figs.

FIG. 10. The 20-day burst experiment. Time–longitude plot of (a) 0–80-m u (m s �1) and (b) 120–160-m u at the equator. (c) The zonal

gradient of the surface dynamic height (10�7 m s�2) with respect to 500 m. (d) Same as in (c) but for the dynamic height at 120 m. The

slopes of the lines in (c) denote the phase speeds of the fastest Kelvin (2.4 m s�1) and Rossby (0.8 m s�1) waves and in (d) are consistent

with n � 2 Kelvin and Rossby wave speeds.
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10a and 10d. There is evidence of higher baroclinic

mode Kelvin waves near the western boundary. How-

ever, these are attenuated by the midbasin (Figs. 11b,

10c, and 10d). Generation of the n � 2 Kelvin wave

does not appear to be sustained for long, possibly due

to upwelling, which rapidly reduces the directly wind-

forced eastward volume flux near the western bound-

ary.

The evolution of the equatorial u in the 60-day burst

experiment is qualitatively similar. It takes about a

month longer to replace the eastward jet by the west-

ward flow in the 60-day run (Fig. 12) than it does in the

20-day run (not shown). The momentum balance sug-

gests that upper-ocean westward u cannot appear until

the westerly wind stress is switched off (Philander and

Pacanowski 1980). The upper-ocean zonal pressure

force is westward in the first 80 or 90 days in both the

60- (Fig. 12a) and 20-day runs; subsequently, it is

weakly eastward. As in the control run, the upper-

ocean zonal acceleration is mainly due to stress and

pressure; nonlinearity strengthens the jet and prolongs

the eastward flow by several days (Philander and

Pacanowski 1980) (Figs. 12b and 12c). The pressure

force in the subsurface ocean has the same sign as in the

upper layer until days 50 or 60, after which it is east-

ward for just over 2 months (Fig. 12d). The adjustment

of the upper 200 m of the ocean to a single westerly

burst is essentially complete [i.e., (�u/�t) becomes small]

in 6–7 months in both experiments.

Once a zonal pressure gradient is set up by a westerly

wind burst, its relaxation time can be longer than the

burst duration. An important finding is that the vari-

ability of the ZPG in the upper 200 m has an intrinsic

80–100-day time scale. The burst experiments suggest

that the pressure time scale is independent of the forc-

ing duration. We propose that this internal time scale

explains the absence of a spectral valley between the

intraseasonal and semiannual variabilities of the ZPG

FIG. 11. Depth–longitude structure of u (m s�1) at the equator from the 20-day burst experiment on days (a) 20, (b) 30, (c) 70, and

(d) 110. Snapshots of horizontal currents on (e) day 45 at 105 m and (f) day 70 at 300 m.
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and u in the eastern EqIO (Fig. 8). Our finding is con-

sistent with the presence of a statistically significant

90-day peak in observed sea level in the eastern EqIO

(Qiu et al. 1999; Han et al. 2001). Previous studies using

ocean models forced by NCEP reanalysis winds show

that the 90-day variability in sea level and zonal current

is associated with equatorial waves (Han et al. 2001;

Han 2005). The NCEP zonal wind stress has a 90-day

spectral peak, leading to the suggestion that the strong

90-day ocean response in the model is mainly due to

resonant excitation of n � 2 waves, as well as to directly

wind-forced variability. [The possibility of resonance

on a semiannual scale was proposed by Jensen (1993)

and others (SM).] However, the QuikSCAT zonal wind

stress does not have a 90-day peak. Therefore, it is not

likely that the 90-day time scale of the ocean variability

is due to the 90-day wind forcing. The 90-day scale is

intrinsic to the equatorial Indian Ocean adjustment to

westerly �x. Second, the burst experiments suggest that

upward phase propagation in the subsurface ocean (not

shown) is associated with baroclinic Rossby waves gen-

erated at the eastern boundary; boundary waves are

also responsible for the qualitatively different evolution

of the pressure force in the upper and subsurface ocean

(see Fig. 9).

The burst runs show that an easterly wind is not nec-

essary for the generation of transient upper-ocean west-

ward flow or eastward undercurrents, which is in agree-

ment with previous work (SM; Cane 1980). Eastward

subsurface u, appearing in the eastern EqIO weeks af-

ter the end of a westerly wind burst, can subsequently

lie beneath westward u (Figs. 11 and 12). An EUC is

therefore expected twice a year (Bubnov 1994; Reppin

et al. 1999), following the sustained westerly winds in

October–December and April–May. An estimate of the

contribution of the easterly �x winds to EUC transport

comes from the “equatorial �x � 0 experiment” (Table

1). A zonal wind stress is prescribed to be zero within 4°
of the equator from 15 December 2001 to 15 April 2002

(Fig. 13a); there are two episodes of significant easterly

�x in this period (see Fig. 6). The 15 February–15 April

2002 EUC transport between 2°S–2°N and 60–200-m

depth, averaged over 60°–90°E, is about 15.5 Sverdrups

(Sv � 106 m3 s�1) in the control run and 12 Sv in the

experiment (Fig. 13b); the EUC speed is 20%–30%

higher in the control run (Figs. 13c and 13d). Although

the easterly winds are not essential to generating the

EUC in the Indian Ocean, they can enhance the sub-

surface eastward transport.

The relatively short time scale of adjustment for the

equatorial Indian Ocean is associated with basin size.

Giese and Harrison (1990) forced a model of the Pacific

with a stationary 20-day westerly wind burst with zonal

and meridional extents of 20° and 6°, respectively. A

succession of free first, second, and higher mode baro-

clinic Kelvin waves generated by the westerly wind

burst is seen east of the forcing region. Due to the large

zonal extent of the Pacific basin, n � l, 2, and 3 Kelvin

wave packets are well separated in longitude by day 60.

These waves reflect as Rossby waves at the eastern

boundary; however, the Rossby waves give weak west-

ward u even with a 2.0 N m�2 wind burst, except near

the eastern boundary. The Rossby waves in our 20-day

burst experiment carry a much larger u signal to the

central and western Indian Ocean because of the small

basin size and the larger fetch of our zonally uniform

wind burst. We note that free Kelvin waves forced in

midbasin by westerly bursts are apparent in the Indian

Ocean as well. For example, the intraseasonal east-

ward-propagating u signals in August–November 2002

(Figs. 6, 7b, and 7c) appear to be associated with n � l

FIG. 12. Evolution of terms in the momentum equation in the

central Indian Ocean (1°S–1°N, 70°–80°E) from the 60-day burst

experiment: (a) 0–120-m u (gray), pressure term (bold), and stress

(thin); (b) 0–120-m zonal acceleration (thin) and sum of pressure

and stress terms (bold); (c) 0–120-m zonal (gray), meridional

(thin), and vertical (bold) advection terms; and (d) 120–200-m

pressure term (bold) and u (gray). Units of all terms are 10�7

m s�2; u is in m s�1.
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and n � 2 free downwelling Kelvin waves forced by

zonally nonuniform �x (Fig. 7c).

5. Conclusions

Accurate, high-frequency QuikSCAT surface wind

stress data are used to force an Indian Ocean general

circulation model. Comparison with satellite sea level

and new in situ observations from the eastern EqIO

shows that the model simulation of equatorial upper-

ocean currents, thermocline depth, and zonal pressure

gradient is fairly accurate on intraseasonal to interan-

nual scales. When the model is forced by daily NCEP

winds, the intraseasonal variabilities of the model cur-

rents and subsurface temperature have large differ-

ences with observations. The realism of the QuikSCAT

simulation is due to the quality of the satellite wind

product. Most of the intraseasonal variability in the

equatorial waveguide is directly forced by the variabil-

ity of the wind. A part of the intraseasonal variability

near the western boundary and in the eastern Indian

Ocean arises from dynamic instability of the seasonal

flows. The QuikSCAT simulation captures the ob-

served intraseasonal variability in spite of the presence

of instability. An important implication is that equato-

rial Indian Ocean circulation in the open ocean is a

deterministic response to wind forcing. Away from

western boundaries, instabilities cannot grow to large

amplitude because their energy is rapidly removed by

propagating waves (Philander 1990; Sengupta et al.

2001).

Climatologies suggest that zonal wind speed in-

creases with distance from the Indian Ocean equator;

the line of zero zonal wind lies close to the equator at

most longitudes, particularly in summer and winter

(Saji and Goswami 1996). The NCEP reanalysis winds

are reasonably accurate in the Bay of Bengal or Ara-

bian Sea, but the intraseasonal variability of the zonal

wind has a weak bias in the EqIO. Westerly wind

bursts, associated with atmospheric convection in the

central and eastern EqIO, are weak in the reanalysis

product (Goswami and Sengupta 2003). The high-

resolution QuikSCAT zonal wind consists of a series of

intraseasonal westerly wind bursts, which are most in-

tense in the central and eastern EqIO. Between July

1999 and December 2003, strong westerly bursts are

absent only in the winters of 2001–2002 and 2002–2003,

and in June–July 2003 (Fig. 6). The zonal scale of the

wind bursts is comparable to the size of the basin except

in summer, when they occur in the east. The zonal wind

stress has a distinct variability on semiannual and in-

traseasonal (10–30 and 30–60 days) time scales. The

zonal upper-ocean current at the equator also has two

distinct, directly wind forced, spectral peaks at semian-

nual and 30–60-day periods. The spring Wyrtki jet con-

sists of a single intraseasonal event with a lifetime of

30–50 days at 90°E. The fall Wyrtki jet is longer lived,

but is modulated on intraseasonal time scales, or actu-

ally consists of two or more intraseasonal jets. There

are one or two intraseasonal eastward jets each summer

in the eastern EqIO (the monsoon jets), but not in

winter. The subsurface u is mainly semiannual (Gent et

al. 1983; Masumoto et al. 2005), with some intrasea-

sonal variability forced by the zonal pressure force.

Eastward equatorial jets accelerate within days of the

onset of westerly winds. If the jets have a lifetime of

20–50 days, as the direct observations show, they must

FIG. 13. Zonal wind stress and zonal flow in the control run

(gray) and the equatorial �x � 0 experiment (black): (a) 2°S–2°N,

60°–90°E average �x (10�1 N m�2) for December 2001–July 2002,

(b) 2°S–2°N, 60°–90°E averaged zonal transport (Sv) in the 60–
200-m depth range, (c) depth–latitude section of 60°–90°E aver-

age u (m s�1), and (d) as in (c) but for the equatorial �x � 0

experiment.
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be rapidly decelerated. Experiments with 20- and 60-

day zonally uniform westerly wind burst forcings sug-

gest that the westward pressure force associated with

Kelvin and Rossby boundary waves decelerates east-

ward jets within days of the weakening of a burst. The

simulation suggests that large, abrupt pressure changes

are due to Kelvin waves generated in midbasin by zon-

ally nonuniform wind bursts. Westerly bursts in the

central EqIO create a westward pressure force in the

east in about 15 days. The relatively small basin size

ensures that the westward pressure force propagates

rapidly to the central EqIO. Apart from the semiannual

and intraseasonal peaks, the upper-ocean zonal pres-

sure gradient and currents have an 80–100-day variabil-

ity (Fig. 8), which is absent from the QuikSCAT zonal

wind. The wind burst experiments confirm that the 90-

day response is independent of the time scale of the

forcing. It arises from the natural time scale of the evo-

lution of the zonal pressure force associated with

boundary waves. In other words, the 90-day time scale

is intrinsic to the equatorial adjustment of the Indian

Ocean to intraseasonal westerly winds.

In all generality, the evolution of the equatorial cir-

culation is a nonlinear problem because the pressure

force depends on the zonal flow. However, the stron-

gest nonlinearity in the upper-ocean zonal momentum

balance comes from the vertical advection term w(�u/�z)

(Fig. 9; Table 2). Fluctuations of the vertical velocity w

and vertical shear of u are both more responsive to

fluctuating stress than to the zonal pressure force. Al-

though nonlinearity is a significant component of the

dynamical balance, it does not dominate the evolution

of u (Fig. 9b) (Sengupta et al. 2001). There is an east-

ward equatorial undercurrent in July–September each

year, in addition to the spring undercurrent. Neither the

westward current in the upper ocean nor the subse-

quent eastward flow (the observed early spring and late

summer EUC) requires easterly winds; they are mainly

generated by variable westerly winds via wave-

mediated equatorial adjustment. For example, the con-

tribution of the December 2001–March 2002 easterly

winds to the transport of the February–April 2002 east-

ward undercurrent is only 20%. In general, the re-

sponse to wind bursts is determined by the wind stress

and zonal pressure force, with a substantial contribu-

tion from nonlinearity. The quantitative dynamical bal-

ance is rather different in an experiment where the

model is forced by smoothed seasonally varying winds

with no wind bursts. The current in the seasonal run

evolves slowly in response mainly to the difference be-

tween the seasonal stress and the seasonal pressure

force, which have comparable magnitudes (Table 2) but

differ in phase. The satellite and in situ observations

show that continual intraseasonal changes in stress and

pressure do not permit the upper-equatorial Indian

Ocean such a slow approach toward equilibrium. Our

analysis of zonal currents in the upper 200 m of the

ocean, based on new wind observations, focuses on the

simplest features of the dynamics of the intraseasonal

and seasonal variabilities. We have not examined the

interannual variability because the QuikSCAT wind

record is not long, nor have we addressed more in-

volved questions such as the possibility of rectification,

or of resonance. The present results might provide a

basis for further investigation of these and related ques-

tions.
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