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Intratumor heterogeneity inferred 
from targeted deep sequencing as a 
prognostic indicator
Bo Young Oh1, Hyun-Tae Shin2, Jae Won Yun  2, Kyu-Tae Kim3, Jinho Kim2, Joon Seol Bae2, 

Yong Beom Cho4,5, Woo Yong Lee4,5, Seong Hyeon Yun4, Yoon Ah Park4, Yeon Hee Park6, 

Young-Hyuck Im6, Jeeyun Lee  6, Je-Gun Joung2, Hee Cheol Kim4 & Woong-Yang Park2,5,7,8

Tumor genetic heterogeneity may underlie poor clinical outcomes because diverse subclones could 

be comprised of metastatic and drug resistant cells. Targeted deep sequencing has been used widely 

as a diagnostic tool to identify actionable mutations in cancer patients. In this study, we evaluated 

the clinical utility of estimating tumor heterogeneity using targeted panel sequencing data. We 

investigated the prognostic impact of a tumor heterogeneity (TH) index on clinical outcomes, using 

mutational profiles from targeted deep sequencing data acquired from 1,352 patients across 8 cancer 
types. The TH index tended to be increased in high pathological stage disease in several cancer types, 

indicating clonal expansion of cancer cells as tumor progression proceeds. In colorectal cancer patients, 

TH index values also correlated significantly with clinical prognosis. Integration of the TH index with 
genomic and clinical features could improve the power of risk prediction for clinical outcomes. In 

conclusion, deep sequencing to determine the TH index could serve as a promising prognostic indicator 

in cancer patients.

Intratumor heterogeneity (ITH) refers to the concept of a single tumor being comprised of many di�erent sub-
populations of cells1. �ese cell subpopulations can show distinct morphological and phenotypic patterns, with 
di�erences of gene expression and metastatic potential2. An increasing number of studies have observed ITH at 
distinct regions or in individual cells, and each cell subpopulation harbors a group of mutations that are likely 
to occur at the same stage3. Oncogenic mutations within a subclone are likely to play a crucial role in cancer 
recurrence, metastasis, and chemoresistance. ITH can be a great challenge when providing therapy. Pro�ling the 
composition of a tumor cell population could play a signi�cant role in personalizing the therapeutic options for 
individual patients. With the recent advances in precision medicine using next-generation sequencing, charac-
terization of ITH can allow for a better understanding of tumorigenesis and the development of personalized 
therapeutic strategies for cancer patients.

Both genotypic and phenotypic characterization of ITH could help improve personalized cancer treatment 
strategies4. On the genotypic level, the identi�cation of somatic mutations is critical to detect the speci�c genomic 
abnormalities of cancer patients. Continuous accumulation of mutated cells during tumor progression promotes 
the generation of clusters or subpopulations of tumor cells. �us, ITH, genetic diversity within individual tumors, 
is currently one of the challenging issues in cancer research5. Precise detection of actionable variants is important 
for molecular targeted therapeutics. ITH data are also valuable to identify factors associated with drug resistance 
and tumor recurrence6.

Genome sequencing has enabled the determination of tumor characteristics in diverse cancer types, includ-
ing pancreatic cancer7, breast cancer8, renal cell carcinoma9, secondary acute myeloid leukemia10, primary 

1Department of Colorectal Surgery, Hallym University Sacred Heart Hospital, Hallym University College of 
Medicine, Anyang, Korea. 2Samsung Genome Institute, Samsung Medical Center, Seoul, Korea. 3New York Genome 
Center, New York, NY, USA. 4Department of Surgery, Samsung Medical Center, Sungkyunkwan University School 
of Medicine, Seoul, Korea. 5Department of Health Sciences and Technology, Samsung Advanced Institute of 
Science and Health Technology, Sungkyunkwan University, Seoul, Korea. 6Division of Hematology and Oncology, 
Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. 
7Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea. 8GENINUS 
Inc., Seoul, Korea. Correspondence and requests for materials should be addressed to J.-G.J. (email: jegun.joung@
samsung.com) or H.C.K. (email: hc111.kim@samsung.com) or W.-Y.P. (email: woongyang.park@samsung.com)

Received: 27 June 2018

Accepted: 28 February 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-41098-0
http://orcid.org/0000-0002-9029-8036
http://orcid.org/0000-0002-4911-6165
mailto:jegun.joung@samsung.com
mailto:jegun.joung@samsung.com
mailto:hc111.kim@samsung.com
mailto:woongyang.park@samsung.com


2SCIENTIFIC REPORTS |          (2019) 9:4542  | https://doi.org/10.1038/s41598-019-41098-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

glioblastoma11, and lung cancer12. High-throughput sequencing technologies, such as whole-exome sequencing 
(WES), have been used to measure ITH, identifying clonal architecture, evolution patterns, and drug resistance 
mechanisms of tumors9,13–15. From WES, somatic mutations are identi�ed, and the allele frequency of each muta-
tion is quanti�ed. However, sequencing from bulk tissue yields only an average of the mixed subpopulations of 
cells16. Despite this limitation, subclones can be identi�ed by diverse computational approaches using WES of 
bulk tissue17.

Recently, a cancer panel based on high-depth next-generation sequencing technology was used to accurately 
identify mutations in numerous oncogenes18–20. Its advantages include high sensitivity of detection for identify-
ing rare mutations as well as minor alleles with lower depth. To measure the heterogeneity of mutations within a 
limited set of oncogenes in a clinical setting, a cancer panel is needed; however, this approach for ITH pro�ling 
has not yet been fully investigated. �erefore, it would be useful to implement and validate this method to pro�le 
heterogeneity in cancers, in order to better-inform treatment decisions.

In this study, we measured tumor heterogeneity (TH) via deep sequencing of a customized set of genes and 
used it to calculate a TH index. We further validated the deep sequencing results using heterogeneity measure-
ments from WES. In addition, we tried to identify the clinical signi�cance of the TH index for the diagnosis and 
treatment of cancer patients.

Results
Use of cancer panel sequencing data to measure tumor heterogeneity. We measured the TH 
index of 1,352 tumor samples from 8 cancer types using targeted panel sequencing data (Fig. 1a, Table S1). �e 
TH index was calculated using Shannon’s index21 with variant allele frequencies (VAFs) of mutated loci in 381 
cancer-related genes. First, we checked that the TH indices from the cancer panel sequencing were consistent 
with those measured using WES by comparing data generated from the same 40 breast cancer patient samples. 
Although we performed targeted sequencing on approximately 1.8–2.0% of total genes, TH indices from the WES 
data correlated highly with the TH indices from the cancer panel sequencing data (Spearman rs = 0.70, p < 0.001) 
(Fig. 1b).

Next, we examined whether the TH index measurement was a�ected by decreasing the number of genes 
on the panel. We down-sampled the sequenced regions by selecting a smaller number of genes to assess the 
minimal dimension of panel sequencing for tumor heterogeneity measurement (Table S2). When we decreased 
the number of gene regions for TH index estimation, the TH indices did not correlate well with the original 
value from the WES data (Fig. 1c and Fig. S1). �e TH indices obtained from 300 genes were quite similar to 
those obtained using 381 genes (rs = 0.87); however, the correlation decreased markedly when we used 50 genes 
(rs = 0.50). �is indicates that when fewer genes were analyzed, the TH index of tumor samples could have been 
calculated incorrectly.

We also investigated the landscape of TH indices across cancer types, comparing publicly available WES and 
targeted panel sequencing data. We measured the TH index for 8,578 tumors of 21 cancer types (Table S3) listed 
in �e Cancer Genome Atlas (TCGA). Tumor heterogeneity implies that subclones may also exist within a tumor. 
�e TH index correlated with the number of subclones in each sample (Fig. S2), wherein the tumors with more 
subclones had a higher TH index (Lower vs. higher clonal samples: p < 2.2 × 10−16). �e TH indices of individual 
tumors in each cancer type were distributed widely (Fig. S3a), and uterine carcinosarcoma (UCS), rectal adeno-
carcinoma (READ), colon adenocarcinoma (COAD), and ovarian cancer (OV) were observed to be more heter-
ogeneous than other tumor types. By contrast, kidney renal clear cell carcinoma (KIRC) and thyroid carcinoma 
(THCA) were relatively homogeneous. �e pattern of tumor heterogeneity did not match tumor purity and the 
number of mutations (correlation with the medians of cancer types: rs = 0.06, p = 0.79 and rs = 0.02, p = 0.91, 
respectively) (Fig. S3b,c); that is, a cancer type with high heterogeneity was not caused by having a sample with 
a high percentage of tumor content or mutation number. However, within a cancer type, the TH indices were 

Figure 1. Tumor heterogeneity measurement from cancer panel sequencing. (a) Tumor heterogeneity (TH) 
indices and tumor purities for 1,352 tumors from 8 types of cancer. Each point corresponds to a sample. Tumor 
purities were sorted and the red horizontal line indicates the median value. (b) Scatter plot between TH indices 
measured using either cancer panel sequencing or whole-exome sequencing. (c) Correlation between TH 
indices calculated using 381 genes and those indices using a subset of those genes.
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correlated positively with tumor purity, while the correlation with the number of mutations was not always posi-
tive (Table S4). �is indicates that the TH index was not mainly determined by the number of mutations.

�e correlation between the TH index and the overall survival of patients was signi�cant in several cancer 
types, such as OV, adrenocortical carcinoma (ACC), and head and neck squamous cell carcinoma (HNSC), but 
not signi�cant for READ (Fig. S3d). In addition, there was a pattern of increasing heterogeneity according to the 
pathological stage in ACC, HNSC, lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (Fig. S3e). 
�e degree of clonal diversity might increase with increasing tumor stage as cells become more invasive. For some 
types of cancer, we could not present patterns of heterogeneity since there was no information available regarding 
their pathological stages.

Correlation of tumor heterogeneity with clinical outcome of refractory colorectal cancers.  
Colorectal cancer (CRC) tumor samples had high TH indices in the TCGA (Fig. S3a) and the in-house cancer 
panel sequencing data (Fig. 1a). �e purity of the TCGA COAD and READ samples was higher than in our CRC 
dataset. CRC includes major subtypes of COAD and READ. While TCGA samples are well-curated sets with 
high purity for the purpose of study, in a clinical setting, quality control criteria for samples di�er. �us, it is very 
possible that the pattern of tumor heterogeneity did not match the tumor purity across cancer types.

To validate advanced cases, we analyzed an additional 304 formalin-�xed para�n-embedded (FFPE) tissue 
samples from colorectal cancer patients treated with palliative chemotherapy (Table 1). Among these CRC cases, 
half of the patients were classi�ed as stage IV, having synchronous metastases at initial diagnosis. Although the 

Characteristics Number of patients (n = 304)

Age, median (years) 54.5

Gender, n (%)

  Male 186 (61.2%)

  Female 118 (38.8%)

CEA, n (%)

  <5 ng/ml 173 (56.9%)

  ≥5 ng/ml 120 (39.5%)

  Unknown 11 (3.6%)

Location of primary tumor, n (%)

  Colon 201 (66.1%)

  Rectum 103 (33.9%)

Stage, n (%)

  I 10 (3.3%)

  II 30 (9.9%)

  III 125 (41.1%)

  IV 139 (45.7%)

Cell type, n (%)

  WD/MD 253 (83.2%)

  PD/MUC/SRC 51 (16.8%)

Lymphatic invasion, n (%)

  Yes 170 (55.9%)

  No 124 (40.8%)

  Unknown 10 (3.3%)

Vascular invasion, n (%)

  Yes 135 (44.4%)

  No 158 (52.0%)

  Unknown 11 (3.6%)

Perineural invation, n (%)

  Yes 117 (38.5%)

  No 171 (56.2%)

  Unknown 16 (5.3%)

Tumor budding, n (%)

  Yes 189 (62.2%)

  No 73 (24.0%)

  Unknown 42 (13.8%)

Adjuvant treatment, n (%)

  Yes 294 (96.7%)

  No 10 (3.3%)

Table 1. Demographic and clinical information of colorectal cancer patients.

https://doi.org/10.1038/s41598-019-41098-0


4SCIENTIFIC REPORTS |          (2019) 9:4542  | https://doi.org/10.1038/s41598-019-41098-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

remaining patients were stage I to III at initial diagnosis (without distant metastases) and had received curative 
surgery, most of them eventually su�ered recurrence or resistance to conventional chemotherapy.

�e shape of the TH index distribution curve (average 1.30 ± 0.24) resembled that of a normal distribution 
(Fig. 2a and Table S5). We determined the cuto� between high and low heterogeneity (TH index = 1.30) based on 
the average TH. We examined whether the heterogeneity of this cohort of CRC patients was associated with clini-
cal outcome. �ere was a signi�cantly higher proportion of high-TH cancers at more advanced stages, with 40.0% 
in stage I, 43.3% in stage II, 44.8% in stage III, and 56.8% in stage IV (linear-by-linear association test, p = 0.046) 
(Fig. 2b). In survival analysis for TH indices, there was a signi�cant di�erence between the low-TH (n = 152) and 
high-TH (n = 152) groups with regard to progression-free survival (p = 5.5 × 10−4) (Fig. 2c). �is suggests that 
higher heterogeneity could be considered a bad prognostic factor for recurrence in CRC patients. However, this 
result may be due to the higher number of patients with stage IV cancers in the high-TH group (Fig. 2b). �us, 
subgroup analyses were performed according to the presence of metastases (Fig. 2d). In those patients without 
metastasis (stages I to III), we observed a signi�cant di�erence in progression-free survival according to heteroge-
neity (p = 0.012), suggesting that TH might be a determining factor for recurrence or metastasis in CRC patients 
with curative resection. However, there was no di�erence in progression-free survival based on heterogeneity in 
patients with metastasis (stage IV) (p = 0.97). �is may be because the tumors in stage IV patients had already 
metastasized, and thus many factors other than heterogeneity might a�ect their survival when compared with 
stage I to III patients. In addition, we tested the relationship between survival and TH index for patients with 
other cancer types, including breast and gastric cancers. We observed similar results for breast cancer: patients 
with high TH indices had poor progression-free survival (p = 0.034) (Fig. S4). However, the TH indices for gastric 
cancers among other available clinical data did not correlate with survival patterns.

Improved prediction of clinical outcome using combined genetic and clinical information.  
Several clinical features, including lymphatic invasion (LI), vascular invasion (VI), perineural invasion (PNI), 
and tumor budding (TB), correlate with poor clinical outcomes for colorectal cancer patients22–24. In our cohort, 
LI, VI, PNI, and TB also correlated signi�cantly with poor clinical outcomes. We examined whether adding the 
TH index as a prognostic marker would increase the accuracy of measuring prognosis (Fig. 3a). �e TH index 
combined with LI, VI, PNI, and TB revealed distinct survival di�erences among patient groups (p = 2.5 × 10−3, 
3.4 × 10−6, 5.9 × 10−4, and 4.9 × 10−3, respectively). When the TH index was integrated with the genomic and/
or clinical variables, the power of risk prediction (C-index) appeared to improve (p < 2.2 × 10−16, t-test between 
with TH index and without TH index) (Fig. 3b). �e combination of TH index, genetic alterations (in the APC, 

Figure 2. Tumor heterogeneity measurement from cancer panel sequencing of colorectal cancer. (a) Histogram 
and distribution of tumor heterogeneity (TH) indices. (b) Survival plot comparing patients with high and 
low tumor heterogeneity. (c) Di�erences in TH indices based on pathological stage (I, II, III, and IV). (d) 
Progression-free survival curves according to TH in stages I/II/III, or IV.
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KRAS, and TP53 genes), and clinical features exhibited a higher power of risk prediction than the use of any of 
these factors individually.

Discussion
In this study, using a cancer panel designed to cover the genomic regions of frequently mutated loci, we demon-
strated the clinical utility of measuring TH, particularly for CRC. �e strength of our study is that we proved 
clearly that a limited set of cancer-related genes is suitable to assess the degree of TH. We demonstrated that TH 
measurements from a cancer gene panel correspond well with those from WES and re�ect the degree of clonality 
accurately. Furthermore, this measurement can help predict metastatic potential, cancer invasion, and patient 
outcomes in combination with other prognostic markers.

Many studies have investigated TH in several types of cancer, including LUAD, renal cell carcinoma, and 
chronic lymphocytic leukemia, based on observations of the molecular pro�les of copy number alterations and 
mutations12,13,25,26. �ese studies usually measured tumor heterogeneity using WES data16,27,28. We addressed the 
challenge of using reduced genomic information to determine TH. Clinically actionable information could be 
identi�ed using a handful of druggable genes that are used widely in the clinic. We could expand the utility of 
cancer panel sequencing to acquire additional prognostic information on patients.

�e integration of TH and clinical features has useful clinical implications for treatments targeting cancer 
progression and drug response. �e genomic heterogeneity caused by continuous mutational processes in�uences 
the clinical outcome greatly for patients. Speci�cally, metastatic progression is a multistep process involving phe-
notypic changes of primary tumor cells caused by genetic and epigenetic alterations that facilitate dissemination 
and tissue invasion29,30. Although there are many reports concerning proto-oncogenes and tumor suppressor 
genes, less is known about the molecular events responsible for metastatic progression. We suggest that a more 
thorough understanding of ITH would be helpful to develop treatment strategies using this concept as a progres-
sion marker of metastatic and recurrent tumors. In the present study, we con�rmed the clinical usefulness of ITH 
using cancer panel sequencing and by applying our results to patients with metastatic or recurrent CRC.

In this study, we focused on a comprehensive determination of TH via targeted panel sequencing analysis in 
cancer patients. We demonstrated that the proposed method of measuring TH index was highly clinically rele-
vant. In the near future, this could help clinicians determine if an adjuvant therapy could be helpful a�er curative 
resections. In conclusion, our analytical approach could help to measure the heterogeneity of each tumor and will 
contribute to the development of improved personalized treatments for cancer patients.

Methods
Patients. All methods were performed in accordance with the relevant guidelines and regulations. �is study 
was performed by collecting retrospective data. �e Institutional Review Board (IRB) of the Samsung Medical 
Center approved this study. Among all the patients, written informed consent was obtained unless it was prac-
tically impossible, in which case the IRB waived their consent. A total of 1,352 samples were obtained from 
cancer patients at the Samsung Medical Center from 2014 to 2016. All patients underwent surgical resection for 

Figure 3. Integration of genetic and clinical information. (a) Survival plots combining tumor heterogeneity 
(TH) with clinical features, including lymphatic invasion (LI), vascular invasion (VI), perineural invasion 
(PNI), and tumor budding (TB). Kaplan-Meier curves with patients grouped by clinical features and TH index 
(−, low; −, high; +, low; +, high). �e log-rank test measured between two groups (a clinical feature (−) & low 
TH index, and a clinical feature (+) & high TH index). (b) Powers of risk prediction (C-index) integrated with a 
genomic and/or a clinical feature. Genetic alterations include APC, KRAS, and TP53.
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a primary tumor and con�rmed carcinoma from di�erent origins, such as the colorectum, ovary, breast, lung, 
kidney, stomach, and pancreas. We had clinical information for 304 Korean patients diagnosed with CRC; their 
characteristics are summarized in Table 1.

Isolation of genomic DNA and quality control. Patient tissue DNA was obtained by FFPE depa-
ra�nization and a Maxwell 16 CSC DNA FFPE kit (Promega, Madison, WI, USA). �e purity, amount, and 
median size of extracted DNA were measured using a Nanodrop 8000 UV-Vis spectrometer (�ermo Scienti�c 
Inc., Wilmington, DE, USA), Qubit 2.0 �uorometer (Life Technologies Inc., Grand Island, NY, USA), and a 
2200 TapeStation Instrument (Agilent Technologies, Santa Clara, CA, USA). In addition, the ∆Ct value was 
determined using real-time PCR (Agilent Technologies) with a Mx3005p instrument (Agilent Technologies, 
USA), FFPE QC kit (Illumina, cat no/ WG-321–1001), and Brilliant Ultra-Fast SYBR Green qPCR (Agilent 
Technologies, cat no. 600882). DNA was only sequenced if it met our quality criteria: (i) purity: absorption ratio 
(260 nm/280 nm) >1.8, 260 nm/230 nm >1.8; (ii) total amount >250 ng; (iii) degradation: ∆Ct value <2.0, or 
DNA median size >0.35 kb.

Sequencing by customized cancer panel. To obtain cancer panel sequencing data, CancerSCAN probes 
were designed to enrich the exons of 381 genes. In brief, the cancer panel sequencing data were generated by 
DNA shearing, library construction, and sequencing on a HiSeq 2500 sequencing platform (Illumina, San Diego, 
CA, USA) according to manufacturer’s protocol. Libraries were constructed by end repair, A-tailing, paired-end 
adaptor ligation, ampli�cation, hybridization, indexing, and enrichment using a SureSelectXT reagent kit, HSQ 
(Agilent Technologies). �e sequencing reactions were performed with the 100-bp paired-end mode of the 
TruSeq Rapid PE Cluster kit and TruSeq Rapid SBS kit (lllumina).

Targeted exome-sequencing analysis. Sequence reads were mapped to the human genome (hg19; 
downloaded from http://genome.ucsc.edu) using the program Burrows-Wheeler Aligner31. Duplicate reads were 
removed using Picard (http://picard.sourceforge.net/) and Samtools (http://samtools.sourceforge.net/). Single 
nucleotide variants were identi�ed using MuTect 1.1.44 (https://github.com/broadinstitute/mutect) and LoFreq 
0.6.1532, with default parameters, and the results from the two callers were merged. For panel sequencing, an 
in-house algorithm was used to �lter out likely false-positive variants33. Suspected germline variants based on the 
allele frequency of normal samples were �ltered out. Public databases including dbSNP138, COSMIC, and TCGA 
as well as in-house single nucleotide polymorphism (SNP) databases were used for the �ltering, and ANNOVAR 
(http://www.openbioinformatics.org/annovar/) was used to annotate the detected variants.

Measurement of heterogeneity. Heterogeneity measurement was based on Shannon’s index, which is 
a popular index to measure species diversity21,34. For the VAFs of mutated loci in each tumor, VAFs ∈ [0, 100] 
were obtained, the VAFs were assigned to i-th of N bins, and then Shannon’s index (H’) was calculated using the 
probability distribution (pi) belonging to the bins (i = 1, …, N):

∑′ = −
=

H p pln
i

N

i i
1

here, we set the bin size to 10, yielding enough information to represent the distribution for proportions of VAFs.

Purity estimation. Computational estimation of tumor purity using panel sequencing data is more challeng-
ing than from exome or whole-genome sequencing data because the limited DNA regions in panel sequencing 
contain insu�cient genomic alterations for its calculation. About half of the samples were ideal for purity estima-
tion. To estimate tumor purity, we �rst identi�ed copy-neutral regions. In those copy-neutral regions, the minor 
allele frequencies of known SNPs were near 0.5. Considering only those SNPs, their read densities were shown to 
be the most prominent peak in the read coverage distribution observed across the SNPs. Regions of copy number 
gain and loss were inferred based on their adjusted coverage values, considering the copy number-neutral regions. 
Once the copy-neutral, gain, and loss regions were clari�ed, the following formula could be used to compute the 
purity (the maximum of the purity values estimated at multiple positions was used) by measuring the alternative 
allele frequency (AAF):

= + − + −
⁎ ⁎P Y P P X PAAF ( (1 ))/( 2(1 )),

where X and Y represent the numbers of all and alternative alleles at each group of SNP clusters in the tumor, 
respectively. P is the tumor purity ranging from 0 to 1. More details are available in a separate manuscript33.

TCGA data. Clonality information was obtained from previous results measured using PyClone and 
EXPANDS tools28. Purity information for each cancer was taken from a previous Pan-cancer study35. Somatic 
mutations and their VAF information were obtained from Broad Genome Data Analysis Center Firehose (https://
gdac.broadinstitute.org/).

Survival analysis. The significance of the selected genes for clinical outcome was represented using 
Kaplan-Meier survival analysis using the R survival package (http://CRAN.R-project.org/package=survival). 
�e powers of risk prediction were measured using the coxph function in the survival package. We performed the 
analysis with 500 iterations of subsets that were selected by random sampling.

https://doi.org/10.1038/s41598-019-41098-0
http://genome.ucsc.edu
http://picard.sourceforge.net/
http://samtools.sourceforge.net/
https://github.com/broadinstitute/mutect
http://www.openbioinformatics.org/annovar/
https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/
http://CRAN.R-project.org/package=survival


7SCIENTIFIC REPORTS |          (2019) 9:4542  | https://doi.org/10.1038/s41598-019-41098-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

Data Availability
�e data sets generated and/or analysed during the current study are not publicly available due to medical con-
�dentiality. �ey are only available from a formal data access committee at the Samsung Medical Center, upon 
reasonable request.
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