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Abstract Intravenous lipid emulsion (ILE) is an adjunctive
antidote used in selected critically ill poisoned patients.
These patients may also require administration of advanced
cardiac life support (ACLS) drugs. Limited data is available
to describe interactions of ILE with standard ACLS drugs,
specifically epinephrine. Twenty rats with intra-arterial and
intravenous access were sedated with isoflurane and split
into ILE or normal saline (NS) pretreatment groups. All
received epinephrine 15 μm/kg intravenously (IV). Contin-
uous mean arterial pressure (MAP) and heart rate (HR) were
monitored until both indices returned to baseline. Standard-
ized t tests were used to compare peak MAP, time to peak
MAP, maximum change in HR, time to maximum change in
HR, and time to return to baseline MAP/HR. There was a
significant difference (p=0.023) in time to peak MAP in the
ILE group (54 s, 95 % CI 44–64) versus the NS group (40 s,
95 % CI 32–48) and a significant difference (p=0.004) in
time to return to baseline MAP in ILE group (171 s, 95 % CI
148–194) versus NS group (130 s, 95 % CI 113–147). There
were no significant differences in the peak change in MAP,
peak change in HR, time to minimum HR, or time to return

to baseline HR between groups. ILE-pretreated rats had a
significant difference in MAP response to epinephrine; ILE
delayed the peak effect and prolonged the duration of effect
of epinephrine on MAP, but did not alter the peak increase in
MAP or the HR response.
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Introduction

Since its introduction in 1961, intravenous lipid emulsion
(ILE) has evolved from a component of total parenteral
nutrition, to a drug delivery vehicle, to its most recent role
as an adjunct in resuscitation of local anesthetic induced
cardiovascular collapse [1]. Current literature strongly sup-
ports the administration of ILE to patients who develop
cardiac arrest after receiving an overdose of a local anes-
thetic such as bupivacaine [2–4]. Following this trend of
expanding utility, ILE has been shown to be efficacious in
the emergency treatment of neurotoxicity and cardiotoxicity
that results from a variety of cardiovascular and psychoac-
tive drug classes. Animal studies have established benefit
from ILE in various models of toxicity including verapamil
[5, 6], propranolol [7], amiodarone [8], and clomipramine
[9]. Case studies have demonstrated successful use of ILE in
haloperidol induced cardiac arrest [10], lamotrigine
overdose [11], and in resuscitations of patients with
combination ingestions of quetiapine/sertraline [12] and
buproprion/lamotrigine [13].

Existing data on ILE demonstrates a theoretical benefit in
patients presenting in extremis due to various toxic inges-
tions, a population that is difficult to treat and often refrac-
tory to standard interventions; ILE may be an important tool
in poisoning resuscitations. Several mechanisms have been
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proposed for ILE’s antidotal properties including the
creation of an expanded lipid compartment in the blood
and the modulation of myocardial electrolyte concentra-
tions and/or energy supply [1]. How it reverses the
effects of toxic agents or how it may affect subsequent-
ly administered therapeutic maneuvers is not clear. Crit-
ically ill poisoned patients who received ILE may
require ALCS drugs, given the severe nature of their
conditions. Studies suggest ILE may affect lidocaine
[14] and amiodarone [8] administration, but minimal
literature exists on ILE’s interaction with other impor-
tant ACLS agents, specifically epinephrine.

A range of results have been described in the few studies
that explore co-administration of epinephrine and ILE in
resuscitations. Hiller et al. reported the combination of ILE
and epinephrine resulted in a faster return of spontaneous
circulation in a rat model of bupivacaine overdose, but that
there was a more sustained recovery in animals given ILE
alone [15]. Another study reported that ILE decreased
the response of an isolated rat artery to endogenous and
exogenous norepinephrine in vitro [16].

As ILE gains acceptance as an important pharmacologic
option in a variety of resuscitation situations, any potential
interactions with standard ACLS drugs should be elucidated
so that therapy may be adjusted accordingly. No study has
directly examined the relationship between epinephrine and
ILE. The present study aimed to determine if ILE would
affect the physiologic response, namely changes in mean
arterial pressure (MAP) and heart rate (HR), to epinephrine
in an animal model.

Methods

Study Design

This was a laboratory study using a rat model of epinephrine
exposure. Approval was obtained from the Lifespan/Rhode
Island Hospital Institutional Animal Care and Use Committee
prior to its commencement. All care and handling of animals
were in accord with National Institutes of Health guidelines
for ethical animal research.

Animal Handling and Preparation

Twenty male Sprague–Dawley rats weighing 225–250 g
were obtained with femoral arterial and femoral venous
catheters placed by the vendor prior to delivery (Harlan
Laboratories, Indianapolis, IN, USA). Animals were housed
in single cages and allowed access to food and water ad
libitum. All catheters were assessed for patency and flushed
with heparin/saline solution according to the manufacturer’s
recommendations.

Sedation/Analgesia

Anesthesia was induced with 5 % isoflurane and maintained
with 1.5–2 % isoflurane via nose cone for the duration of the
study. The animals were spontaneously breathing and not
paralyzed. Adequacy of anesthesia was periodically evaluated
by toe pinch or tail pinch method.

Respiratory and Hemodynamic Monitoring/Data
Acquisition

Throughout the experiment, respiratory rate, ECG rhythm,
HR and MAP were recorded continuously via an external
respiratory probe, subcutaneous 3 three lead ECG, and a
femoral arterial line, respectively. The data was collected
electronically using the MP100 system from Biopac with
Acknowledge Version 3.9.1 software (Goleta, CA, USA).
Due to significant HR variability using the software’s
standard calculation methods, HR data was screened for
potential spurious values. For all measurements in question
(i.e., differed significantly from previous or subsequent
values or was less than 100 bpm), the HR was manually
measured from the ECG tracing by the authors to ensure
accuracy.

Dose–Response Protocol

As a wide range of epinephrine dosing in rat models is
reported in the literature [15, 17, 18], preliminary work
to determine appropriate dosing of epinephrine in this
model was performed. A dose–response relationship was
established by dividing six animals into three groups of
two. Each group received a single intravenous dose of
epinephrine (2, 15, or 30 μm/kg) and the hemodynamic
response to each dose was recorded until the animals
returned to baseline indices. Two micrograms per kilo-
gram of epinephrine produced an inconsistent and brief
elevation of MAP. Thirty micrograms per kilogram of
epinephrine resulted in hemodynamic instability, ECG
changes and rapid death in both animals. Administration
of 15 μm/kg produced a reliable increase in MAP for a
duration of time that was deemed appropriate for the
study before they returned to baseline. This dose was
used for the remainder of the study.

Drug Exposure

Twenty animals were randomized into two equal groups—
ILE and normal saline (NS) groups. Each animal was sedat-
ed and both arterial and venous catheters were accessed and
monitoring was initiated. After a 3-min stabilization period,
each animal received either an ILE (20 % intravenous lipid
emulsion, Baxter, Deerfield, IL, USA) 15 cm3/kg bolus over
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seven minutes or NS 15 cm3/kg bolus over 7 min. This ILE
dose was selected based on previous rat models of ILE
resuscitation which have successfully used doses ranging
from 10 to 19 cm3/kg [4, 6, 7]. Two minutes after comple-
tion of the infusion and once MAP/HR returned to baseline,
a bolus dose of intravenous epinephrine (15 μm/kg) was
administered. The animals were observed until HR and
MAP returned to baseline for 3 min. Upon completion of
the experiment, animals were euthanized by carbon dioxide
asphyxiation.

Data Analysis

The sample size was calculated to detect a difference of 1.5
times the standard deviation (power=90 %, p=0.05), i.e., 45
beats per minute (bpm) difference in heart rate, 7.5 mmHg
difference in MAP, and 10 s difference in onset or duration
of effect. Standardized two tailed t tests were used to com-
pare both groups with respect to weight, baseline HR and
baseline MAP, peak change in MAP/HR, time to peak
change in MAP/HR, and time to return to baseline MAP/HR
in the ILE and saline groups. Statistical analysis was per-
formed with Graphpad Prism for Windows (Version 6.01,
San Diego, CA, USA).

Results

Descriptive Statistics

Between the ILE and control groups, there were no signif-
icant differences between weight (264 vs. 269 g, p=0.19),
baseline HR (363 vs. 357 bpm, p=0.63) and baseline MAP
(86 vs. 86 mmHg, p=0.98). There was no significant differ-
ence in MAP or HR between ILE and NS groups prior to
infusion or immediately prior to epinephrine infusion
(Tables 1 and 2).

Experimental Arm

There was a marked decrease in HR after epinephrine ad-
ministration, however the was no significant difference in
maximum change (decrease) in HR (p=0.38) between the
ILE and NS groups (231 bpm, 95 % CI 198–264 vs
212 bpm, 95 % CI 175–249). There was no difference in
time to minimum HR (p=0.13) in ILE or NS (38 s, 95 % CI
22–54 vs 26 s, 95 % CI 19–33) or time to return of HR to
baseline (p=0.09) in either group (168.6 s, 95 %CI 103–
234.2 vs 230 s, 95 % CI 185.1–275.5; Fig. 1 and Table 1).

There was a marked increase in MAP immediately fol-
lowing epinephrine administration. There was no significant
difference (p=0.29) in the peak MAP of the ILE group
(75.4 mmHg, 95 % CI 66–85) versus the saline group
(69.9 mmHg, 95 % CI 64–76). There was a significant
difference (p=0.023) in time to peak MAP in the ILE group
(54 s, 95 % CI 44–64) versus the saline group (40 s, 95 % CI
32–48) and a significant difference (p=0.004) in time to
return to baseline MAP in ILE group (171 s, 95 % CI

Table 1 Comparison of ILE and NS groups. HR reported in bpm, time
reported in seconds. Mean values given (interquartile range in
parentheses)

ILE NS p value

HR at start of ILE
or NS infusion

363.2 (343.6–380.1) 357.4 (328.8–385.3) 0.63

HR at start of
epinephrine
infusion

340.3 (325.3–358) 344 (325.5–356.5) 0.68

Maximum
decrease in HR

231 (202–268) 212 (159–249) 0.38

Time to minimum
HR

38 (27–39) 26 (17–32) 0.13

Time to return to
baseline HR

168.6 (96–267) 230 (182.5–282) 0.09

Table 2 Comparison of ILE and NS groups. MAP reported in mmHg,
time reported in seconds. Mean values given (interquartile range in
parentheses)

ILE NS p
value

MAP at start of ILE or NS
infusion

85.9 (73.75–91) 85.8 (78.25–91.5) 0.98

MAP at start of epinephrine
infusion

82.5 (76.75–89) 77.9 (67–86.75) 0.30

Peak increase in MAP 75.4 (68.5–86.75) 69.9 (63.5–75.5) 0.29

Time to peak MAP 54 (40–62.5) 40 (30–50) 0.02

Time to return to baseline
MAP

171 (147.5–200) 130 (117.5–150) 0.004
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148–194) versus saline group (130 s, 95 % CI 113–147;
Fig. 2 and Table 2).

Discussion

We observed profound bradycardia immediately following
epinephrine administration in this rat model, likely second-
ary due to a baroreflex mechanism. ILE did not have a
statistically significant effect on the magnitude, onset, or
duration of this effect.

ILE delayed both the onset and resolution of epinephr-
ine’s effect on MAP but did not change the magnitude of its
effect. The mechanism responsible for this finding is un-
clear, but current theories of ILE’s biochemical action may
provide some insight.

Three major theories are frequently cited to explain ILE’s
effects. The first postulates that the concentrated lipid solu-
tion creates a compartment in the plasma, a “lipid sink”,
which sequesters highly lipophilic drugs, preventing them
from affecting other tissues. The tendency for bupivacaine
to preferentially move into the lipid phase of plasma in the
presence of ILE has been demonstrated in both in vivo and
in vitro models, lending support to this theory [4, 19]. A
second speculated mechanism is that ILE may increase
myocardial calcium levels leading to improved contractility
[20, 21]. A third possibility is that ILE may improve myo-
cardial ATP synthesis by increasing the amount of available
fatty acid substrate [22, 23]. A fourth possibility is that some
combination of these factors is involved and the beneficial
effect of ILE depends upon which effect predominates in a
particular scenario.

One potential explanation for the observed phenome-
non in our study is interference at the level of receptor
binding. ILE may delay the initial delivery or binding of
epinephrine to its receptors and/or delay its dissociation.
Sequestration of epinephrine into a lipid compartment
created by ILE would explain delayed delivery. However,

given that epinephrine is primarily a water soluble com-
pound with a partition coefficient of −1.37 [24], this
should not occur to any great extent.

Another potential mechanism for interaction may be a
physiologic alteration at the level of the receptor’s action on
the cell. Epinephrine acts on beta-1, beta-2 and alpha 1
adrenergic receptors [25]. Epinephrine-mediated blood pres-
sure increase occurs primarily through activation of alpha 1
adrenergic receptors, which are G protein coupled receptors
distributed on the peripheral vasculature. Activation of the
G-protein mechanism leads to smooth muscle contraction,
and thus vasoconstriction, via calcium influx [26]. ILE has
been shown to alter myocardial calcium homeostasis [20,
27], but its effect on calcium levels in vascular smooth
muscle has not been well studied. ILE has also been shown
to enhance alpha 1 mediated vasoconstriction [28] and re-
duce endothelium-mediated vasodilation after sustained in-
fusion [29]. While the doses used for antidotal ILE therapy
are insufficient to directly affect vascular tone itself, it may
prolong the actions of epinephrine by elevating intracellular
calcium levels and facilitating vasoconstriction or limiting
subsequent vasodilation.

Another explanation would hinge on the third postulated
mechanism of ILE action. Myocardial contraction is primar-
ily driven by beta-oxidation of free fatty acids, a process
which accounts for 50–70 % of myocardial ATP production
[30]. ILE, which is composed primarily of long chain fatty
acids, provides a potential source of energy for the myocar-
dium. The increased energy demand imposed by epineph-
rine administration may be offset by the energy surplus
created by ILE, prolonging the duration of epinephrine’s
action.

Further research is needed to better evaluate the mecha-
nism of this interaction, of ILE’s antidotal properties, and of
ILE’s physiologic effects in general. This study does raise
the question of whether this delay of action by ILE is an
epinephrine specific effect, or if it occurs with other drugs.
Potential interactions between ILE and other ACLS drugs
and vasopressors are yet unknown.

Limitations

Our study has several limitations. As this is an animal study,
the generalizability of the findings to human cardiovascular
physiology is uncertain. Given the short duration of these
effects, the impact of this finding on clinical practice with
regard to co-administration of these two drugs is unclear.
However, it is possible that the effect may be more pro-
nounced when the two drugs are co-administered to patients
that have much slower metabolic rates than rats, and have
significantly depressed cardiac output (as in cardiac arrest or
peri-arrest states).
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Also, the study animals were hemodynamically normal
without concomitant pathology or toxic ingestion, which is
not true of the patient population in which these drugs will
be administered simultaneously.

Conclusion

ILE delayed and prolonged the MAP effect of adminis-
tered epinephrine. Our results provide further evidence
that lipid solubility may not be the only factor when
considering ILE’s effect on other drugs. As ILE becomes
an increasingly ubiquitous adjunct to the resuscitation of
the critically ill intoxicated patient, additional research is
imperative to better characterize the implications and
interactions of ILE therapy on concomitant standard
therapies.
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