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Abstract

Intraventricular meningiomas (IVMs) account for less than 5% of all intracranial meningiomas; hence their molecular

phenotype remains unknown. In this study, we were interested whether genetic alterations in IVMs differ from

meningiomas in other locations and analyzed our institutional series with respect to clinical and molecular

characteristics. A total of 25 patients with surgical removal of an IVM at our department between 1986 and 2018

were identified from our institutional database. Median progression-free survival (PFS) was 79 months (range of 2–

319 months) and PFS at 5 years was 86%. Corresponding tumor tissue was available for 18 patients including one

matching recurrence and was subjected to targeted panel sequencing of 130 selected genes frequently mutated in

brain cancers by applying a custom hybrid capture approach on a NextSeq500 instrument. Loss of chromosome

22q and 1p occurred frequently in 89 and 44% of cases. Deleterious NF2 mutations were found in 44% of IVMs

(n = 8/18). In non-NF2-mutated IVMs, previously reported genetic alterations including TRAF7, AKT1, SMO, KLF4,

PIK3CA, and TERT were lacking, suggesting alternative genes in the pathogenesis of non-NF2 IVMs. In silico analysis

revealed possible damaging mutations of APC, GABRA6, GSE1, KDR, and two SMO missense mutations differing

from previously reported ones. Interestingly, all WHO°II IVMs (n = 3) harbored SMARCB1 and SMARCA4 mutations,

indicating a role of the SWI/SNF chromatin remodeling complex in aggressive IVMs.
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Introduction

Intraventricular meningiomas (IVMs) are rare tumors; they

account for only 0.5–5% of all intracranial meningiomas and

up to 14% of all intraventricular tumors [5, 12, 19, 26, 35].

The most common tumor location is within the lateral

ventricles (80%), whereas 15% of the IVMs arise from the

third ventricle and 5% are located in the fourth ventricle [12,

13, 19]. They are thought to arise either from the choroid

plexus or the tela choroidea within the ventricular system

[35]. Surgical excision is considered the treatment of choice,

but remains challenging due to deep tumor location, the

presence of eloquent structures adjacent to the ventricles,

and mostly large tumor size at diagnosis [19, 41]. The pa-

tients’ presenting symptoms depend on the tumor location,

but include headache, hydrocephalus, visual impairment,

and motor or sensory deficits [5, 13, 19, 35].

In meningiomas, there is increasing knowledge about their

molecular phenotype. The most common genetic alteration

found in meningiomas involves the tumor suppressor

neurofibromatosis gene 2 (NF2) on chromosome (chr) 22q.

Loss of heterozygosity (LOH) at this chromosomal region is

typically detected in 40–80% of sporadic meningiomas [28,

31, 34]. Moreover, inactivating NF2 mutations can be found

in up to 60% of the tumors, supporting the classical two-hit

hypothesis in meningioma pathogenesis [45]. Genetic

alterations of NF2 include insertions, deletions, nonsense

mutations or affecting splice sites, producing a truncated,

non-functional protein [30]. Despite genetic alterations of
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the NF2 gene, recent studies revealed other important alter-

ations in non-NF2 meningiomas. The second most fre-

quently mutated gene in meningiomas involves the tumor

suppressor TNF receptor associated factor 7 (TRAF7) gene

[9]. This alteration is highly associated with AKT Serine/

Threonine Kinase 1 (AKT1 E17K), Krueppel-like-factor 4

(KLF4 K409Q) or Phosphatidylinositol-4,5-Bisphosphate 3-

Kinase Catalytic Subunit Alpha (PIK3CA) mutations [1, 9].

Less frequently, yet completely independent of NF2/TRAF7

alterations, two recurring smoothened (SMO)-activating

mutations were reported. SMO L412F and SMOW535L re-

sulted in an overexpression of the sonic hedgehog pathway

[9]. Recently, telomerase reverse transcriptase (TERT) muta-

tions in the promoter region were discovered in meningi-

omas. They were present in approximately 6% and were

found to be associated with higher meningioma grades and

early recurrence [46, 49]. Several members of the Switch/Su-

crose Non-Fermentable (SWI/SNF) chromatin remodeling

complex have been implicated in meningioma pathogenesis.

Somatic SWI/SNF-related matrix-associated actin-

dependent regulation of chromatin subfamily B

member 1 protein (SMARCB1) mutations have been

identified in rare spontaneous meningiomas [6, 20].

Recent studies revealed the association of meningioma

location and distinct mutations. For instance, NF2/

chr22loss meningioma meningiomas typically originate

from the lateral regions and posterior fossa, while the

vast majority of non-NF2 meningiomas commonly har-

bor location-specific mutations in SMO (olfactory

groove), KLF4/TRAF7 (medial skull base), and AKT1/

TRAF7 (anterior skull base) [1, 6, 9, 20]. However, no

molecular data exist on molecular alterations in IVMs.

Hence, we were interested whether genetic alterations in

IVMs differ from meningiomas in other locations and

investigated our institutional series on a molecular level.

Materials and methods
Clinical data, tumor samples and DNA isolation

Our institutional database was screened for patients with

surgical resection of an IVM at the Department of Neuro-

surgery at the University Hospital Heidelberg, Germany

between 1986 and 2018. Demographic, tumor-related

(tumor location, tumor size, WHO grade, histological sub-

type), treatment-related and outcome data were collected

retrospectively from medical charts’ review and magnetic

resonance imaging (MRI) studies. Tumor size was calcu-

lated by MRI scans with the formula Volume = (Width^2 x

Length)/2. Progression-free survival (PFS) was defined as

the interval from 1st surgery until last MRI scan while fol-

low-up was defined as the interval from 1st surgery until

last patient contact. The extent of resection (EOR) was de-

termined on the basis of surgical reports or early postop-

erative MRI scans if available. EOR was categorized in

gross total resection (GTR, Simpson °I-III) or subtotal

resection (STR; Simpson °IV-V) according to Simpson’s

grading. Fresh tumor material obtained intraoperatively

was immediately snap-frozen and stored at − 80 °C until

further processing. Histological diagnosis and grading of

IVMs was based on the World Health Organization Clas-

sification of Central Nervous System Tumors in use at the

time of 1st surgery. Only tissue samples with a vital tumor

cell content > 60% as determined on hematoxylin and

eosin stained slides by a board-certified neuropathologist

(Department of Neuropathology, University Hospital Hei-

delberg, Germany) were processed further. DNA was ex-

tracted from tumor tissues using the AllPrep Kit

(QIAGEN, Venlo, Netherlands) according to the manufac-

turer’s instructions. DNA amount was quantified by

NanoDrop ND-1000 spectrophotometer (Thermo-Scien-

tific, Waltham, MA, USA) and then stored at − 80 °C until

further analysis. The institutional review board at Heidel-

berg Medical Faculty approved this study. Written in-

formed consent was retrieved from all patients.

Targeted panel sequencing

IVM tissue samples were profiled by targeted panel se-

quencing. The panel contained 130 genes reported to be

frequently mutated in brain tumors including meningi-

omas as described previously [47]. The panel was de-

signed to assess the frequency of known mutations and

was not designed to detect novel mutational events. Not-

ably, all mutations described in meningiomas at the time

of the design of this panel are covered. Sequencing was

done by applying a custom hybrid capture approach

(Agilent Technologies, CA, USA) on a NextSeq500 in-

strument (Illumina, San Diego, CA, USA) with an aver-

age coverage of over 500-fold.

Data processing

Raw data were processed as described before [47].

Briefly, raw data were de-multiplexed and converted into

the fastq format with the “bcl2fastq” tool from Illumina.

With the data in the standard fastq format, quality

checks were performed with the tool fastqc. The result-

ing fastq files were processed with BWA mem to align

the reads to the reference genome (currently GRch37 is

used) [32]. From the generated bam-files, duplicated se-

quences were removed with picard tools, at which point

the files are ready for further data processing. For single

nucleotide variant calling, we used SAMtools MPileUp,

while for InDel calling Platypus was utilized [25]. For

further filtering to remove low quality calls the following

filter steps are used (a) read depth greater or equal 40,

genotype quality greater or equal 99, minimum allele

frequency of 1%, at least 10% reads from each strand.

Filtered results were then annotated by annovar [53]

with additional information from databases such as

dbSNP, 1000 Genomes Project and COSMIC as well as
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SIFT, PhyloP, PolyPhen2, LIB-LRT, and MutationTaster.

Due to a lack of matched germline controls, data was

compared with publicly available germline databases

such as dbSNP, 1000 Genomes Project as described be-

fore [21]. Copy number variation plots were generated

with the R bioconductor package seqCNA [36]. Auto-

matic scoring for the detection of chromosomal gains

and losses was verified by manual assessment of the re-

spective loci for each individual profile as described [48].

In silico prediction of possible pathogenic mutations

To identify novel, not previously reported mutations in

IVMs, we used previously published in silico algorithms

including SIFT, PhyloP, PolyPhen2, LIB-LRT, and Muta-

tionTaster to predict the impact of missense mutations on

the protein function [2, 56]. As purely sequence-based

prediction tool, SIFT classifies non-synonymous single nu-

cleotide polymorphisms on the basis of the evolutionary

conversation of amino acids within protein families. Muta-

tionTaster uses evolutionary conservation and splice site

prediction, whereas PhyloP is solely based on DNA se-

quence conservation. PolyPhen-2 incorporates sequence-

based and structural features as input if the 3D structure

of the target protein is known. LRT uses a sequence evolu-

tionary model to calculate the probability of possible dam-

aging mutations. Due to the specific weaknesses of each

prediction tool, a common strategy is to combine results

of various approaches [15, 16]. Therefore, only genes were

included for which all five algorithms resulted in the pre-

diction of possibly damaging mutations.

Results

Tumor characteristics and clinical outcome of IVM

patients

From a consecutive cohort of more than 2200 meningiomas

treated at our department between 1986 and 2018, we iden-

tified 25 patients diagnosed with IVM (1.1%) (Table 1). The

median age at diagnosis was 58 years (range 14–75 years)

with a female preponderance (female:male = 2.15:1). The pa-

tients’ presenting symptoms included headache (36.4%), psy-

choorganic syndrome (18.2%), motor deficits (13.6%), visual

impairment (13.6%), papillary stasis (4.5%), and hydroceph-

alus (4.5%) (Table 2). In eight patients (36.4%), IVMs were

incidental findings. 22 IVMs were graded as WHO°I (88%)

and 3 IVMs as WHO°II (12%) (Fig. 1a, Table 1). Regarding

histological subtypes, the transitional subtype was the most

frequent one (n = 12, 48%), followed by the fibroblastic sub-

type encountered in 7 cases (28%) (Fig. 1b). The most com-

mon tumor location was within the lateral ventricles (80%)

with the left lateral ventricle more frequently affected in 52%

of all cases (n = 13) compared to the right lateral ventricle

(38%, n = 7; Fig. 1c). In 4 cases (16%), tumors occurred

within the third ventricle while only one IVM (4%) arose

within the fourth ventricle. The median tumor size was 43

Table 1 Clinical data of patients with intraventricular

meningioma (n = 25)

clinical data n = 25 [%]

Sex [n]

Male 8 32

Female 17 68

Age [years]

Mean 48

Median 54

Range 14–75

WHO Grade [n]

WHO°I 22 88

WHO°II 3 12

Histological Subtype [n]

Fibroblastic 7 28

Transitional 12 48

Atypical 3 12

Mixed/Unknown 3 12

Location [n]

Trigonal left 13 52

Trigonal right 7 28

Third ventricle 4 16

Fourth ventricle 1 4

Tumor recurrence [n]

Recurrence 5

Extent of Resection [n]

GTR (Simpson °I-°III) 23 92

STR (Simpson °IV-°V) 1 4

Unknown 1 4

Postoperative treatment [n]

Radiotherapy 2

Chemotherapy 0

Pre-operative tumor volume [cm3]

Median size 36.7

Mean Size 43.0

Range 0.8–134.6

Follow-up [months]

Median 13

Mean 50

Range 0.7–399

Progression free survival

At 5 years 86%

Median [months] 79 (2–319)
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cm3, ranging from 0.8 to 134.6 cm3, calculated from pre-

operative contrast-enhanced T1-weighed MRI scans. GTR

was achieved in 92% of the tumors (n = 23/25). Only one

tumor underwent STR and in one IVM, the EOR was un-

known. Two patients with meningioma WHO°II received

postoperative radiotherapy. The median follow-up was 13

months (range 0.7 to 399months). Meanwhile, radiographic

tumor recurrence/progression was observed in five patients

(n = 5/25, 20%). Median PFS was 79months (range 2–319

months). PFS at 5 years among all tumors was 86% (Fig. 1d).

In our series, no tumor-related death occurred.

Analysis of copy number variations reveal recurrent

monosomy of 22q and 1p

From our clinical cohort of 25 IVM patients, correspond-

ing tumor samples were available for 18 patients including

one matching recurrent WHO°II tumor (n = 15 WHO°I;

n = 2 WHO°II, n = 1 recurrent WHO°II tumor) and were

analyzed by targeted panel sequencing as described before

[47]. This panel includes 130 of the most frequent gene

mutations in brain tumors and covers all relevant gene

mutations described in meningiomas. Chromosomal loss

was most frequent (89%) at chromosome (chr) 22q, where

the well-known tumor suppressor NF2 is located (Fig. 2a).

Second most recurrent chromosomal alteration was loss

of chr 1p in 44% of cases. Other chromosomal losses in-

cluded chr 6/7/18 with a frequency of 17%, and all other

alterations at chr 3, 12, 13, 17 and 21 affected single cases

only. Gains were rarely detected in our IVM cohort (Fig.

2b). Only chr 1, 6, 20, and 21 showed gains in single cases.

Figure 2c depicts a representative sample of chr 1p, 8, 14,

and 22q loss. In summary, loss of chromosomes 22q and

1p seems to be a frequent event in IVMs.

IVMs frequently harbor NF2 mutations and aggressive

IVMs harbor SMARC mutations

Next, we focused on the most common genetic alterations

reported so far in meningiomas, including the NF2,

SMARCB1, as well as TRAF7, AKT1, SMO, KLF4, PIK3CA,

and TERT in non-NF2 mutated meningiomas (Fig. 3) [51].

NF2 was the most frequently affected gene in 44% of the

tumor samples (n = 8/18). In detail, in four cases the NF2

gene was disrupted by frameshift mutations (n = 4/18, 22%),

in three cases we discovered a stop-gain mutation (n = 3/18,

17%) and in one case a mutation causing a splicing error of

Table 2 Presenting symptoms of patients with intraventricular

meningioma

Presenting symptoms [n] [%]

Headache 8 36.4

Incidental finding 8 36.4

Psycho-organic syndrome 4 18.2

Motor deficit 3 13.6

Visual impairment 3 13.6

Papillary stasis 1 4.5

Hydrocephalus 1 4.5

Fig. 1 Clinical and demographic data of patients with intraventricular meningiomas (n = 25). Distribution of WHO grade (a), histological subtype

(b) and location (c) among our series of 25 patients with IVMs. Progression-free survival (PFS) was determined on follow-up MRI scans (d)
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the NF2 gene was detected (n = 1/18, 6%) (Table 3). Not-

ably, 7 out of 8 female patients harbored NF2 mutations.

According to the literature, TRAF7 is the most often af-

fected gene in non-NF2 mutated meningiomas [1, 9]. In our

series of IVMs, we failed to identify any alterations in the

TRAF7 gene. Only few synonymous single nucleotide varia-

tions (SNV) were detected which were already known poly-

morphisms. Interestingly, two SMO mutations (R168H and

P698R) were identified in our set of IVMs, but they differed

from the known activating SMO mutations L412F and

W535L previously described in olfactory groove meningi-

omas [1, 9]. Krueppel-like factor 4 (KLF4) mutations

(K409Q) have a high prevalence in secretory meningiomas

but were not observed in our IVM cohort [43]. Further-

more, the AKT1 gene was altered in one patient only; how-

ever, the discovered 3′-UTR mutation (rs17846826) has

unknown clinical significance. Finally, only one TERT muta-

tion (A279T) was detected in one WHO°I tumor, which dif-

fers from the previously reported TERT alterations in

meningiomas (C228T and C250T). The low-incidence

SMARCB1 R377H mutation was detected in one WHO°II

IVM and its corresponding tumor recurrence. In the other

WHO°II IVM, a SMARCA4 (G1644S) mutation was de-

tected. Taken together, NF2 mutation was the most fre-

quent event in IVMs, whereas other common genetic

alterations reported in the literature were not detected.

However, aggressive IVMs harbor SMARC mutations indi-

cating the involvement of the SWI/SNF complex genes in

the pathogenesis of aggressive IVMs.

Novel mutations in intraventricular meningiomas

Subsequently, we analyzed our targeted gene panel for other

frequent genetic alterations (Fig. 4). Apart from NF2, the

most affected genes in our IVM cohort were NTRK2 (39%,

n = 7/18), BRCA1 (33%, n = 6/18), KMT2D (22%, n = 4/18),

CDKN2A (18%, n = 3/18), and CDKN2C (18%, n = 3/18).

NTRK2 (neurotropic receptor tyrosine kinase 2) encodes a

neurotrophin receptor, which is known to play a role in glio-

magenesis [8, 29]. However, we only detected untranslated

region (UTR) mutations in seven WHO°I IVMs with

Fig. 2 Chromosomal aberrations of intraventricular meningiomas (n = 18). Frequency of chromosomal losses (a) and gains (b) in intraventricular

meningiomas assessed by copy number variants. Representative copy number plot derived from sequencing data with LOH of chr 1p, 8, 14 and

22q (c)
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unknown clinical significance. BRCA1, a well-known breast

cancer tumor suppressor, was altered in 4 WHO°I IVMs

and in one WHO°II and its recurrent tumor (n = 6/18). The

identified missense mutations suggested to be most likely

benign according to ClinVar [10]. KMT2D plays a critical

role in regulating development, differentiation, metabolism,

and tumor suppression [17]. We found four different muta-

tions in the KTM2D gene in three WHO°I IVMs (P2390L,

M3870I, and P4620L) and in one WHO°II IVM (E1833G)

and its corresponding tumor recurrence, whereof only one

mutation (M3870I) has been previously reported with a

most likely benign clinical course. The common missense

Fig. 3 Common genetic alterations in NF2 and non-NF2 meningiomas (n = 18). Representation of WHO grade, histological subtype, sex, age and

common genetic alterations found in meningiomas including NF2, TRAF7, AKT1, SMO, KLF4, PIK3CA, TERT, SMARCB1, and SMARCA4. Frequency of

mutations except SNV is given in %/IVMs analyzed. IVMs with detected LOH of chr 1p or 22q are depicted in grey

Table 3 In silico predictions of possible damaging mutations

Gene Nucleotide Substitution Exon Amino Acid change Type of Mutation

APC G5827A 14 V1943I missense

G5881A 16/17 V1961I missense

GABRA6 G805A 7 V269I missense

GSE1 C2171T 10 S724L missense

C2264T 10 S755L missense

C2483T 11 S828L missense

KDR G2443C 17 E815Q missense

SMO G503A 2 R168H missense
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variant at CDKN2A (rs3731249) was found in two WHO°I

IVM samples, which has been shown to be associated with

increased susceptibility to acute lymphoblastic leukemia

[58]. However, the nonsynonymous mutation CDKN2A

A79V and three UTR mutations in the CDKN2C gene

(rs41285700; rs41285702) were not reported previously.

In silico prediction of possible pathogenic genes

By using in silico algorithms including SIFT, PhyloP,

PolyPhen2, LIB-LRT, and MutationTaster, we were

able to identify five possible pathogenic mutations:

APC, GABRA6, GSE1, KDR, and SMO (Table 3). In

one NF2-mutated IVM WHO°I, we detected two mis-

sense mutations (V1943I and V1961I) in the Aden-

omatous polyposis coli (APC) gene, which is a crucial

tumor suppressor in the WNT/b-Catenin pathway.

The GABRA6 (Gamma-Aminobutyric Acid Type A

Receptor Alpha6 Subunit) mutation V269I (n = 1

WHO°I IVM) is associated with epilepsy, but, until

now, has not been linked to cancer [22]. GSE1 (gen-

etic suppressor element 1), a proline-rich protein, also

known as KIAA0182, was found in two WHO°I IVMs

Fig. 4 Gene panel. Tabularly overview of all investigated genetic alterations covered by the targeted sequencing panel. Frequency of occurrence

is given in %/IVMs analyzed (n = 18)
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and has been shown to possess oncogenic properties

in human breast cancer cells, gastric cancer and in

neuroepithelial stem cells [7, 14, 24]. Finally, regard-

ing KDR, kinase insert domain receptor, we found

one missense mutation E815Q in one WHO°I IVM,

which has not been reported previously.

Discussion

Despite growing interest in the molecular pathogenesis

of meningiomas, intraventricular meningiomas have not

been investigated on a molecular level yet. They com-

prise a rare subset of meningiomas and remain challen-

ging in the clinical setting due to their delicate location

and their unhindered growth within the ventricles. In

this study, we analyzed our institutional cohort of 25 pa-

tients with IVMs which is among the largest published

IVM cohorts to date [19]. To unravel the underlying

genetic alterations, we performed targeted panel sequen-

cing of 18 IVMs including one matching recurrent

tumor. We discovered loss of chr 22q and 1p in 89 and

44% of the cases, respectively. NF2 mutations were

found in 44% of the cases, while common genetic alter-

ations in meningiomas of other locations (TRAF7,

AKT1, SMO, KLF4, PIK3CA, and TERT) were lacking

in non-NF2-associated cases. Interestingly, we found the

low-incidence SMARCB1 and SMARCA4 mutations in

WHO°II IVMs. Furthermore, two SMO mutations and

one TERT mutation different from the ones previously

described were detected. Regarding possible alternative

pathogenic genes covered by the panel, we detected

APC mutation and in silico predicted pathogenic muta-

tions of GABRA6, GSE1, KDR.

Patient demographics, presenting symptoms, tumor lo-

cation, WHO grade and histological subtypes of our pa-

tient cohort matched with the findings of a recent

systematic review that summarized all 681 IVM cases

published so far [39]. In eight patients (36.4%), intraven-

tricular meningiomas were incidental findings which is

in accordance with the literature for incidental findings

of intracranial meningiomas of all locations (38–42%)

[27, 55]. In this analysis, out of 494 cases with outcome

data available, 26 (5.3%) tumors relapsed within a mean

interval of 26 months [39]. In our institutional cohort,

median PFS was 79months and PFS at 5 years was 86%.

Copy number profiles were calculated from the low-

resolution the sequencing array data. This method was

previously described and showed high concordance com-

pared to 450 k methylation data, but may differ from high-

resolution techniques such as array comparative genomic

hybridization [47, 50]. Evaluation of the CNV plots re-

vealed chromosomal losses at chr 22q in 89% of the sam-

ples. At this chromosomal arm, the critical tumor

suppressor NF2 is located. LOH at chromosome 22q is an

early event in the tumorigenesis of meningiomas and

occurs with a frequency of 40–80% [28, 31, 34]. The sec-

ond most prevalent chromosomal alteration in our cohort

was the loss of chr 1p in 44% of the samples. According to

the literature, partial or complete loss of chromosome 1p

is the second most frequent chromosomal abnormality

found in meningiomas and is associated with more aggres-

sive and recurrent meningiomas while rarely occurring in

WHO°I meningiomas [4, 18, 31, 33]. In our cohort,

chromosomal loss of 1p was detected in all WHO°II IVMs

(n = 2 WHO°II, n = 1 recurrent WHO°II tumor), but also

in 33% (n = 5/15) of WHO°I IVMs.

Next, we focused on the most prevalent genetic

alterations reported in meningiomas so far, including NF2,

SMARCB1, as well as TRAF7, AKT1, SMO, KLF4,

PIK3CA, and TERT in non-NF2 mutated meningiomas [1,

9, 20]. NF2 was affected in 44% of our tumor samples (n =

8/18) by frameshift mutations (n = 4/18), stop-gain muta-

tions (n = 3/18) and splicing error (n = 1/18), which is in

accordance with the literature as the primary inactivated

tumor suppressor in meningiomas [6, 9, 28]. Interestingly,

7 out of 8 female patients (87%) harbored NF2 mutations

which is in line with the largest dataset available which

reported on 112 NF2-mutated meningiomas including 79

female patients corresponding to a female preponderance

of approximately 70% [9]. The tumor suppressor TRAF7,

which exclusively occurs in non-NF2 meningiomas, is the

second most altered gene with mutations occurring in ap-

proximately 25% of cases [1, 9]. However, in our IVM

cohort, we failed to identify any alterations in the TRAF7

gene. KLF4 K409Q mutations were exclusively found in the

presence of TRAF7 mutations and are commonly associ-

ated with secretory meningiomas [9, 43]. Due to lack of

secretory meningiomas and TRAF7 mutations in our co-

hort, the absence of KLF4 K409Q in our cohort may be ex-

pected. SMO activating mutations (L412F and W535L)

have been previously identified with a predilection of olfac-

tory groove meningiomas [1, 9]. In our cohort, two WHO°I

IVMs displayed two distinct SMO mutations (R168H and

P698R) which differ from the ones already known. The lo-

cation of the SMO R168H missense mutation is highly con-

served among the human, mouse, and drosophila proteins,

and is positioned adjacent to a cystine residue, so the

R168H change may influence protein structure, function,

and hedgehog signaling [54]. The SMO P698R mutation is

predicted by in silico analysis as pathogenic but to date

functional data for this mutation is lacking. Finally, the

TERT A279T mutation was found in our IVM cohort,

which deviates from the previously reported TERT muta-

tions in meningiomas (C228T and C250T) [46]. Functional

data in esophageal cancer cells overexpressing TERT

A279T induced telomere dysfunction but interestingly de-

creased proliferation of these cells [57]. In one WHO°II and

its corresponding recurrent tumor, the already known

driver mutation SMARCB1 R377H was detected [6, 52].
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Moreover, in the second WHO°II IVM, we detected a

SMARCA4 missense mutation G1644S. SWI/SNF com-

plexes play a critical role in coordinating chromatin archi-

tecture and gene expression. They alter the structure of

reconstituted chromatin particles in an ATP-dependent

manner and make chromatin more accessible for transcrip-

tion factor binding [44]. This is of particular interest since

several families with multiple meningiomas and schwanno-

mas harbor germline mutations in the SWI/SNF core com-

plex unit SMARCB1. Less frequent, sporadic mutations

occur in WHO°I and WHO°II meningiomas concurrently

with NF2 mutations and are associated with poorer prog-

nosis [52]. Moreover, mutation in SMARCB1 are typically

found in rhabdoid tumors and epithelioid sarcomas [44].

Even more rarely, a SMARCA4 mutation has been reported

in one anaplastic meningioma [11]. Taken together, mem-

bers of the SWI/SNF complex may play a role in the patho-

genesis of aggressive IVMs [11, 44].

A number of studies highlight the importance of the Wnt

signaling pathway in meningioma [38]. APC plays a major

role as a tumor suppressor by forming the beta-catenin de-

struction complex together with AXIN and GSK-3b. Gross

deletion was detected in approximately half of meningiomas

[37]. The two missense mutations (V1943I and V1961I)

found in one WHO°I IVM were not described previously

but according to our in silico analysis may be damaging and

might therefore increase the Wnt signaling. Furthermore,

we discovered in silico predicted pathogenic mutations of

GABRA6, GSE1 and KDR. The GABRA6 mutation is asso-

ciated with childhood absence epilepsy but, to date, has not

been linked to cancer [22]. GSE1, also known as KIAA0182,

has been shown to possess oncogenic properties in human

breast cancer cells and gastric cancer and accelerates

tumorigenesis in neuroepithelial stem cells of Gorlin syn-

drome patients, who are predisposed to medulloblastoma

due to PTCH1 mutation [7, 14, 24]. One KDR missense

mutation E815Q was found in one WHO°I IVM, which has

not been reported previously. KDR, also known as VEGFR2,

plays an important role in angiogenesis which is essential for

the growth of any solid tumor [40]. KDR mRNA and protein

expression levels have been investigated several times in

meningiomas and found contradicting results [23, 40, 42].

Nevertheless, activating mutations of KDR (D717V and

A1056T) have been discovered in angiosarcomas and have

been verified in vitro [3]. Up to now, no data for the mis-

sense mutation E815Q is available. Taken together, APC,

KDR and GSE1 mutations might contribute to meningioma

growth, however, validation by Sanger sequencing and func-

tional analyses are needed to strengthen these preliminary

findings.

Conclusion
In conclusion, NF2 mutations were the most frequent

genetic alteration in our cohort of IVMs, whereas other

common genetic alterations previously reported in

WHO°I meningiomas of distinct tumor locations were

not found. However, members of the chromatin remod-

eling complex SWI/SNF SMARCB1 and SMARCA4 may

play a role in the pathogenesis of aggressive IVMs.
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