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Abstract

3D dynamic surface tracking is an important research problem and plays a vital role in many 

computer vision and medical imaging applications. However, it is still challenging to efficiently 

register surface sequences which has large deformations and strong noise. In this paper, we 

propose a novel automatic method for non-rigid 3D dynamic surface tracking with surface Ricci 

flow and Teichmüller map methods. According to quasi-conformal Teichmüller theory, the 

Techmüller map minimizes the maximal dilation so that our method is able to automatically 

register surfaces with large deformations. Besides, the adoption of Delaunay triangulation and 

quadrilateral meshes makes our method applicable to low quality meshes. In our work, the 3D 

dynamic surfaces are acquired by a high speed 3D scanner. We first identified sparse surface 

features using machine learning methods in the texture space. Then we assign landmark features 

with different curvature settings and the Riemannian metric of the surface is computed by the 

dynamic Ricci flow method, such that all the curvatures are concentrated on the feature points and 

the surface is flat everywhere else. The registration among frames is computed by the Teichmüller 

mappings, which aligns the feature points with least angle distortions. We apply our new method 

to multiple sequences of 3D facial surfaces with large expression deformations and compare them 

with two other state-of-the-art tracking methods. The effectiveness of our method is demonstrated 

by the clearly improved accuracy and efficiency.

1. Introduction

Many imaging tracking algorithms have been proposed in the last few decades [27]. Several 

approaches have relied on patterns of intensity variation to identify the trajectories of objects 

(or major features) over time by locating its position in the video sequences. However, for 

some specific applications, e.g. expression transfer in motion capture [3, 22] and patient 

setup for critical organ protection in radiation therapy [18], 2D (image-based) tracking 

systems somewhat are sensitive to image noises and cannot provide high resolution tracking 

solution with refined details. In contrast, 3D geometric tracking [33, 18] can capture detailed 
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object geometric information and thus may offer better tracking performance that is desired 

by these applications.

Recently, the rapid development of 3D reconstruction techniques and the increasing need for 

automated 3D image data analysis has generated a great deal of interest in 3D image 

dynamic tracking research [6, 19, 34]. Often the registration among surface frames is 

required, and a correspondence field must be computed to register one surface frame 

nonlinearly onto the other. Although surface registration was well studied in computer vision 

and medical imaging research [23, 28], but dense and accurate registration between dynamic 

noisy image frames is still challenging to compute. One common way to achieve is to first 

map each of the 3D surfaces to canonical parameter spaces via isometry [1, 17] or conformal 

mappings [23]. The surface correspondence problem can be addressed by computing a flow 

in the parameter space of the two surfaces, which induces a correspondence field in 3D. 

Furthermore, specific feature points or landmark curves are enforced either by matching 

differences [26] or boundary conditions [20].

Quasi-conformal mapping is a generalization of conformal mapping and can be used to 

describe general surface mappings. By the quasiconformal Teichmüller theory, there exists a 

unique Teichmüller map (T-Map) among all quasi-conformal mappings between two 

surfaces. The obtained T-map minimizes the maximal dilation. In this paper, we show how 

to use T-map together with dynamic surface Ricci flow method to assist in matching of 3D 

face geometric surface video when there are noises, large deformations and lack of features. 

Fig. 1 illustrates a tracking sequence obtained using our algorithm. We can find that the 

template (represented by the quadrilateral mesh) is automatically transferred to other frames 

with different expressions while enforcing feature point matching on all surfaces.

In our work, we propose two key techniques: dynamic Ricci flow and Teichmüller map. The 

Ricci flow method can deform the surface Riemannian metric by prescribing the target 

Gaussian curvature and surface registration is more efficient based on flat Riemannian 

metrics than general metrics with complicated curvatures. The connectivity of the mesh is 

updated to be Delaunay during the whole flow, which greatly improves the robustness of the 

method, such that it can handle meshes with noises, low quality triangulations. The other key 

tool is Teichmüller map, which models general diffeomorphic mappings between surfaces 

with large deformations. It exists and is unique, especially aligns the landmarks and 

minimizes distortion.

1.1. Related work

The literature for surface registration and tracking is vast. In the following, we only review 

some most related works. The registration/tracking methods are classified by the types of 

mappings they rely on, including near-isometric maps, harmonic/conformal maps and quasi-

conformal maps.

Near-isometry Map—Ovsjanikov et al. [17] show under mild genericity conditions, a 

single correspondence can be used to recover an isometry defined on entire shapes, and thus 

the space of all isometries can be parameterized by one correspondence between a pair of 

points. Huang et al. [7] treated non-rigid registration as an optimization problem and solved 
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it by alternating between correspondence and deformation optimization. This algorithm can 

register objects undergo large deformations. Ovsjanikov et al. [16] proposed the functional 

maps method, which decompose any function on the surface by its eigen functions of the 

Laplace-Beltrami operator, and match the spectrum of the function. The representation is 

compact, suitable for global inference and supports algebraic operations.

Harmonic/Conformal Map—Wang et al. [24, 31] applied harmonic maps for the 

matching the 3D surfaces, because harmonic maps are diffeomorphic under mild conditions 

and minimizes the stretching energy of the map. The work is further generalized in [23], and 

conformal mapping is used to replace the harmonic maps, because conformal geometric 

method is capable of handling surfaces with complicated topologies. Later, Zeng et al. 

introduced Ricci flow method in [30], which can produce conformal mappings for general 

surfaces, especially it can realize the Riemann uniformization [4]. Uniformization converts 

3D geometric problems to 2D ones and simplifies registration, matching. Especially, when 

two topological disks are isometric, in uniformization domain, they differ by a Möbius 

transformation, which can be easily found by only searching for a few correspondences [8, 

9]. Zeng et al. [32] formulated a high-order graph matching problem to search for the 

optimal dense matching result by combining multiple matching criteria. Later in [33], by 

incorporating the uniformizaiton idea, they defined a robust intrinsic distance function for 

measuring the cost of matching two points and a unified framework for intrinsic 3D surface 

tracking even when the two surfaces have inconsistent boundaries and are not isometrically 

deformed.

Quasi-conformal Maps—Quasi-conformal mapping has been applied for registering 3D 

surfaces with large deformations in [28]. The method extracts features and estimates the 

Beltrami coefficient, and using curvautre flow method to solve the Beltrami equation. This 

method finds one quasi-conformal map, whereas our method find the optimal map, the 

Techmüller map. Teichmüller map has been applied for surface registration with landmark 

constraints in [11], which handles topological disks. The method achieves the 

diffeomorphism with least angle distortion. The method is generalized to handle more 

complicated topological types in [14]. Both method focus on solving surface registration 

problem using iterative methods. In our current work, we aim at tracking a sequence 

dynamic surfaces. If each Teichmüller map is constructed from scratch, it will be extremely 

time-consuming. Instead, we utilize the information from previous Teichmüller map, and use 

its Beltrami coefficients as the initial guess for the next step computation. Our design 

improves the efficiency greatly.

1.2. Contribution

This work tackles the 3D dynamic surface tracking problem by applying dynamic discrete 

Ricci flow and Teichmüller mapping, which is

1. Rigorous: the method has solid theoretic foundation, which guarantees the 

existence and uniqueness of solutions to the dynamic Ricci flow as long as the 

target curvature satisfies the Gauss-Bonnet condition.
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2. General: the method applies the Teichmüller mapping, which can handle large 

deformations, instead of those close to conformal mapping or isometric 

mappings, and enforce the alignment of the landmarks. The resulting mapping is 

guaranteed to be homeomorphic and has the least angle distortions.

3. Efficient: the method concentrates the curvature on landmarks and makes 

everywhere else to be flat. This solves the 3D surface tracking/registration 

problems on 2D planar domain, hence greatly reduces the time complexity, and 

improves the efficiency.

2. Theoretic Background

This section introduces the framework for dynamic unified discrete surface Ricci flow and 

Teichmüller map. The theory is based on the variational principle on discrete surfaces 

utilizing the derivative cosine law [13]. The fundamental concepts and basic schemes can be 

found in [12,29].

2.1. Smooth Surface Ricci Flow

Suppose (S, g) is a surface with a Riemannian metric g, one can choose the isothermal 

coordinates, such that g = e2u(x,y)(dx2 + dy2). The Gaussian curvature is given by 

, where Δ is the Laplace operator .

Definition 2.1 (Conformal Mapping) Given two Riemannian surfaces (S, g) and (T, h), a 

smooth mapping φ : S → T is called conformal, if the pull-back metric induced by φ and the 

original metric differ by a scalar function: φ*h = e2ug, where u : S → ℝ is a scalar function.

Intuitively, a conformal mapping preserves angles and maps infinitesimal circles to 

infinitesimal circles. In practice, Hamilton's Ricci flow is a powerful tool to compute 

conformal deformation by prescribing target curvatures.

Definition 2.2 (Hamilton's Ricci Flow) Given a closed Riemannian surface (S, g), the 

normalized Ricci flow is defined as

(1)

where χ(S) is the Euler characteristic number of the surface, A(0) is the initial total area.

Hamilton and Chow proved that the surface Ricci flow converges to the constant curvature 

metric.
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2.2. Discrete Surface Ricci Flow

Practically, surfaces are represented as triangular meshes. A discrete metric on a mesh is the 

edge length function, denoted as l : E → ℝ+, which satisfies the triangle inequality. The 

discrete Gauss curvature is the angle deficit, defined on vertices, K : V → ℝ,

(2)

where  is the corner angle at υi in the face [υi, υj, υk], and ∂M represents the boundary of 

the mesh.

The discrete Gaussian curvature are determined by the discrete Riemannian metric via the 

cosine law,

(3)

The Gauss-Bonnet theorem still holds in the discrete case. The total curvature equals to the 

product of 2π and the Euler characteristic number χ,

(4)

The cotangent edge weight plays an important role. Given an interior edge [υi, υj] adjacent 

to two faces [υi, υj, υk] and [υj, υi, υl], the cotangent weight is defined as

(5)

if the edge is on the boundary, adjacent to the face [υi, υj, υk], then the cotangent weight is

(6)

A triangulation of the mesh is called Delaunay, if all cotangent edge weights are non-

negative.

Given a triangular mesh M, the discrete conformal factor is a function defined on each 

vertex u : V → ℝ, the length of an edge [υi, υj] is given by
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(7)

where βij is the initial edge length.

Definition 2.3 (Discrete Surface Ricci Flow) The discrete surface Ricci flow is defined as

(8)

where K̄i is the target curvature at the vertex υi, and the discrete metric is given by Eqn.7. 

During the flow the triangulation is updated to be Delaunay.

The existence to the Ricci flow is recently proven,

Theorem 2.4 (Discrete Uniformization[5]) Given a target curvature K̄ satisfying the Gauss-

Bonnet condition in Eqn.4, and for each vertex K̄i ∈ (−∞, 2π), then there exists a solution to 

the Ricci flow Eqn.8. The solution is unique up to a constant.

Furthermore, the discrete Ricci flow is the negative gradient flow of the discrete Ricci 

energy:

(9)

The gradient of the Ricci energy is (K̄i − Ki)
T, the Hessian matrix consists of cotangent edge 

weights Eqn. 5,

(10)

and the diagonal elements are

(11)

The first row in Fig. 2 shows a conformal mapping from a human face to a disk, where 

infinitesimal circle shapes are preserved on both surfaces.
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2.3. Teichmüller Mapping

Quasi-conformal mapping is a generalization of conformal mapping, which preserves 

orientation between surfaces with bounded conformality distortions. Suppose φ : ℂ → ℂ is 

a diffeomorphism, then the Beltrami coefficient μ of the φ is given by

(12)

The quasi-conformal mapping maps infinitesimal circles to infinitesimal ellipses. The ratio 

between the longer axis and the shorter axis of the infinitesimal ellipse is denoted by (1 + |

μ|)/(1 − |μ|), which describes the eccentricity of the infinitesimal ellipse. The orientation of 

infinitesimal ellipse is given by the angle between the longer axis and the real axis, i.e., θ = 

1/2 argμ. Hence, μ measures the local conformality distortion of φ, and if φ is conformal then 

‖μ‖∞ is 0, φ is diffeomorphic then ‖μ‖∞ < 1. The maximal dilation of φ is given by (φ) = 

(1 + ‖μ‖∞)/(1 − ‖μ‖∞). The second row of Fig. 2 shows a quasi-conformal mapping between 

a face surface and a disk. Note the circles on the disk are mapped to ellipses on the face 

surface.

Definition 2.5 (Teichmüller Mapping (T-Map)) Suppose φ : S1 → S2 is a quasi-conformal 

mapping. φ is a Teichmüller mapping associated with quadratic differential q = fdz2, where 

f : S1 → ℂ is a holomorphic function, if its associated Beltrami coefficient is of the form: 

μ(φ) = kf/̄|f| for some constant 0 ≤ k ≤ 1.

Given two homeomorphic surfaces, the Teichmüller map exists and is unique and it 

minimizes the maximal dilation (φ). Fig. 3 illustrates a Teichmüller mapping between two 

human facial surfaces with markers. The Teichmüller mapping maps infinitesimal circles on 

the male face to infinitesimal ellipses on the female face, such that all ellipses are with the 

same eccentricity. In our work, the facial surfaces are punctured at the feature points, Ricci 

flow is applied to compute surface conformal flattening with special curvature settings on 

the feature points. Later, we pursue Teichmüller maps between the punctured surfaces which 

is the diffeomorphism with the least conformality distortion.

3. Algorithms

Fig. 4 illustrates the algorithm pipeline of our method. Frame (a) is the input surface; (b) 

shows the identified facial features and generated cut graph; (c) shows the flat-cone metric 

computed by surface Ricci flow method; (d) is the T-map between it and the template 

surface, and (e) illustrates the final dynamic facial surface mapping result.

Input Data

They are raw geometric data obtained from a 3D scanning system [25], without any digital 

geometric processing, such as denoising, smoothing etc. The input surfaces are with gray 

level or color texture image.
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Feature Extraction

Using facial texture images as input, we applied machine learning methods similar to [21]

[35] to extract major facial features points (part of the feature points are shown in Frame 

(b)). They include eye corners, mouth corners, nose hole boundaries, apexes of the 

cheekbone and so on. The contours of the eye regions, the mouth region and the whole face 

region are obtained by connecting the sequential feature points along them. Further the eye 

regions and the mouth region are cut off along their contours and the region exterior to the 

whole face region is removed by cutting along the face contour. Then we compute a 

spanning tree of all feature points, and find the short paths from the tree to all the 

boundaries. The union of the tree and the shortest paths is called the cut graph (the blue lines 

in Fig. 4 (b)). By slicing the surface along the cut graph, the facial surface becomes a 

topological disk.

Metric Flattening By Ricci Flow

Algorithm 1 sketches the outline of metric flattening process with dynamic Ricci flow. 

Surface Ricci flow provides a powerful tool to generate canonical spaces between different 

surface frames, even with large deformations. We adopt Ricci flow to map all surfaces to a 

canonical space where each feature point has a designed Gaussian curvature while Gaussian 

curvature are zero for other points. Frame (c) shows the flat metric with cone singularities 

using dynamic Ricci flow method where the curvatures are concentrated on the feature 

points. In Figure 1 frame (a), the quadrilateral mesh is treated as the template mesh. Each 

feature point corresponds to a vertex in the template, for each interior feature point, if the 

valence is 3, then the target curvature is π/2, if the value is 5, then the target curvature is 

−π/2; for feature points on the boundaries, the target curvatures are zeros. The target 

curvatures for all the other vertices are zeros by default. After obtaining the flat metric, we 

slice the surface along the cut graph, and flatten the surface on the plane. The regular grids 

on the plane are pulled back to the surface, the red curves are the horizontal lines, the blue 

curves are the vertical lines. Since the cut graph is mapped to the domain boundary on the 

parametric space, we can see on Frame (c) that these curves are broken across the cut graph. 

On the parameter domain, Dulaunay triangulation is applied to refine the mesh quality.

Algorithm 1: Dynamic Discrete Surface Ricci Flow.
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Algorithm 2: Teichmüller Mapping.

Input: Two triangular meshes S and T, corresponding interior landmark constraints , 

, and a threshold δ of Beltrami coefficient difference

Output: A Teichmüller map φ : S → T which matches landmarks

1 Compute initial edge length and edge weight in S, set n ← 0

2 Initially set Beltrami coefficient μ0 to be zero everywhere (or copy from previous frames),

3
Set n ← n + 1, and compute a constrained harmonic map φn : (S, μn) → T, such that φn aligns the corresponding 
landmarks given above;

4 Compute the Beltrami coefficient νn define on each face using Eqn. 12

5 Project the Beltrami coefficient νn to obtain μn+1 using Eqn. 13

6 Repeat step 3 through 5, until ‖μn − μn+1‖ < δ for each face. Then the final Teichmüller map is given by φn.

Teichmüller Map

The template in Figure 1 frame (a) is a quadrilateral mesh. We treat each face as a unit 

planar square, then the template has a flat metric with cone singularities. We use T to 

represent the template quadmesh, d the flat-cone metric. For each surface Si in the sequence, 

with the flat-cone metric gi, we can compute the Teichmüller map φi : (Si, gi) → (T, d). 

Algorithm 2 briefs the procedure and a detailed description is next.

Generalized Harmonic Map

The Teichmüller map is obtained via the generalized harmonic map with a given Beltrami 

coefficient μ. In our implementation, the Beltrami coefficient is defined on faces μ : F → ℂ 
We locally isometrically embed each neighborhood of the surface (S, g) on the complex 

plane, and obtain complex local coordinates z. For each face [υi, υj, υk], we define a local 

linear map, w = z + μz,̄ then compute the cotangent edge weight wij according to Equation 5. 

The mapping φ is harmonic, if and only if
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By isometrically embedding (T, d) on the plane locally, we can choose any local coordinates 

to represent the mapping φ, and the above equation holds independent of the choice of the 

local coordinates. The above equation means, the image of each vertex is the weighted 

center of the images of its neighbors, which is called the mean value property of the 

harmonic map [20]. For a boundary vertex υi, the image φ(υi) is the projection of the 

weighted center to the boundary. In the computation, each time we move the image of an 

interior vertex to its weighted center, and the image of a boundary vertex to the projection of 

its weighted center to the boundary until the algorithm converges.

Beltrami Coefficient Projection

In order to obtain the Teichmüller map, at each iteration, we update the Beltrami coefficient, 

such that its norm is constant everywhere. In the n-th iteration, After calculating a 

generalized harmonic map φn : (S, g, μn) → (T, d), we compute the Beltrami coefficient of 

φn using the formula of Eqn.12, denoted as νn. Then we set μn+1 as

(13)

where Ai is the area of the i-th face, cn is the mean value of the norm of the Beltrami 

coefficient on all faces. By iteratively perform Beltrami coefficient projection, and compute 

generalized harmonic map, we obtain a sequence of νn (Beltrami coefficient of φn), μn+1 

(projection of νn), φn+1 : (S, μn+1, g) → (S, t) (generalized harmonic map), eventually the 

algorithm converges to the unique T-map.

Quadrilateral Mesh Generation

The Teichmüller maps between the template surface and each frame are obtained by the 

above methods. The template surface is a canoical quadrilateral mesh, the mappings push 

forward the quadmesh to all frames, this induces a consistent quadrilateral tesselation among 

all the frames.

4. Experimental Results

We implemented our method using generic C++, on a Windows platform with 3.5GHz Intel 

Core i5 processor and 16GB memory with NVIDIA GTX960 graphics card with 1024 

CUDA cores. The Ricci flow and Teichmüller map methods are implemented with cuSparse 

linear algebra library [15]. The 3D human facial surfaces were scanned from a high speed 

and high resolution, phase shifting scanner, as described in [25]. The acquisition speed is 30 

frames per second, each frame consists of about 100k sampling points with bothgray-level 

and color texture images.
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4.1. Dynamic Human Facial Expression Tracking

Figure 5 illustrates the registration result between two frames with a large facial 

deformation. The quadrilateral mesh on the smiling face is the template mesh, where the 

vertices with valences 3 or 5 are treated as registration constraints. There are a total of 28 

singularities, including features points such as the eye corners, the nose holes, the mouth 

corners and the boundary of the template region obtained using machine learning method 

[35]. We first use Ricci flow to concentrate all the curvatures on these singularities and make 

the rest part of the surface to be flat. Then we compute the Teichmüller map between two 

surfaces with flat-cone Riemannian metrics, and the feature constraints. The mapping 

minimizes the angle distortion and produces a diffeomorphism. We randomly select a set of 

sampling points on the source surface (front), namely the smiling face, and display their 

images on the target surface (rear), the face with curious expression. We connect each pair of 

corresponding points with straight lines. We can find that these feature points are well 

mapped. Note that the two facial surfaces differ by a dramatic expression change. It 

demonstrates the accuracy of our surface matching method.

Figure 6 further demonstrates the result for tracking a sequence of 3D faces with large 

expression deformations (a tracking demonstration video is provided in our supplementary 

material). From the results, we can observe that the template connectivity (visualized by the 

quadrilateral mesh) is consistently attached to the facial surface and all the interior vertices 

of the template are tightly glued to right points on the target surfaces without any sliding 

effect. In contrast, the sliding effect is obvious in the result of a conventional method [33] 

(as in the supplementary material). By a simple visual checking, we can find that our method 

achieves better tracking results.

4.2. Robustness and Correctness Validation

We tested our method for 4 actors, more than 20 sequences of 3D facial surfaces with large 

expression deformations. Fig. 6 shows on tracking result of a male facial surface with 

different expressions. The expression deformation is relatively large, including mouth and 

eye opening/closing, non-symmetric facial twisting. The boundaries of the surfaces are 

noisy, with partial occlusions, incomplete geometric data. The geometry of the eye lids are 

bumpy, because the scanning speed is slower comparing to the eye blinking. Note that all the 

computations are carried out on the raw data, directly obtained by the 3D scanning system, 

without any digital geometry processing, such as mesh simplification, denoising, or 

smoothing. Our dynamic Ricci flow and Teichmüller mapping methods are robust enough to 

process the raw data, produce the desired flat metric with cone singularities and generate 

smooth tracking sequences.

To demonstrate the correctness of our facial tracking results, we compute the Beltrami 

coefficient μn for each mapping φn between the first frame S0 and every other frame Sn in 

the sequence and compute the L∞ norm of the Beltrami coefficient. We draw the norms of 

the Beltrami coefficients in Fig. 7, the horizontal axis is the index of the frame number n, the 

vertical axis is ‖μn‖∞. It is obvious that all the L∞ norms are less than 1. It means that all the 

mappings are homoeomorphisms. Besides, all the norms are close to 0. It means that the 

conformality distortions are small. Furthermore, from the curve we can observe that the 
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mapping between faces with similar expressions has less distortion than the mapping 

between faces with large expression deformation. The experimental results match our 

intuition.

4.3. Tracking Accuracy and Efficiency Comparison

In order to quantify the registration accuracy, we apply the following metric. The n-th facial 

surface is denoted as Sn, the mapping between S0 and Sn is φn : S0 → Sn. We manfully 

select a set of markers {p1, p2 …, pk} ⊂ S0, and their corresponding points on Sn as 

. Then we measure the distance between the automatic computational 

result φn(pi) and the manually prescribed the image ,

where Ln is the length of the diagonal of the bounding box of the surface Sn and k = 100.

We study two other methods for comparison, optimal flow method [10, 2] and Markov 

Random Field (MRF) method [33] and compare our cost functions with theirs.

We implemented the optical flow algorithm in [10] based on [2]. We project the left part of 

the face to a 640 × 480 perspective view selected to maximize visibility and apply the 

optical flow algorithm to establish correspondences between two frames. For the template 

points that belong to the projected part, we compute the cost function defined in [33] and 

choose the correspondence with lowest cost as the matching result. We linearly interpolate 

the correspondence of other points within the template that are visible. For MRF approach, 

they consider the set of all possible 3D surface matchings defined by specifying triplets of 

correspondences in the uniformization domain, then they introduce a new matching cost 

between two 3D surfaces. The lowest feature differences across this set of matchings that 

cause two points to be corresponded, become the matching cost of that particular 

correspondence. The matching cost is computed in the uniformization domain. This 

matching cost is then combined with regularization terms that enforce spatial and temporal 

motion consistencies, into a maximum a posteriori (MAP) problem which they approximate 

using a Markov Random Field (MRF).

We compared the average distance error of facial sequence tracking, using our algorithm, 

optical flow and MRF, respectively. Fig. 8 shows the comparison results, the horizontal axis 

is the frame index n and the vertical axis is the normalized distance error. It is obvious that 

the optical flow method in [10] produces the largest error, and when the deformation 

between two frames is large, the MRF in [33] degrades more significantly than our method.

Furthermore, from a practical point of view, MRF method may get stuck at the local 

optimas. It makes the coding and debugging more challenging. In contrast, our algorithms 

can reach the unique global optimum easily, therefore the implementation and the debugging 

are much easier. We further compare the time complexity of our method and that of MRF 

method [33]. Both methods are speeded up by using GPUs and tested with same surfaces 
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sequence. It takes more than 30s to register two surfaces with 100k vertices by MRF 

method, takes about 5s by our algorithm. It is obvious that our method is much faster.

In [33], Zeng et al. combine MRF optimization and conformal geometry so they assume the 

expression deformation is near-isometric or conformal. However, by examining the curves in 

Figure 7, we see that the mapping is most likely to be quasi-conformal. Especially for faces 

with large expression changes, the mappings are far from conformal. Hence the assumption 

in [33] seems incorrect. Instead, we use Teichmüller mapping theory, which is able to handle 

general mappings, especially with large deformations. Although further investigation is 

warranted, it may partially explain why we achieved more accurate results in Fig. 8.

5. Conclusion and Future Work

This work introduces a novel method for 3D dynamic surface tracking based on discrete 

surface Ricci flow and Teichmüller mapping. The current method depends on machine 

learning based feature extraction, and focuses on human facial surfaces. In future, we will 

also study tracking general dynamic surfaces with larger deformations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

3D Facial tracking results: the quadrilateral mesh on the first frame is the template mesh. 

The vertices with 3 or 5 valences are singularities, the eye corners, nose hole and mouth 

corners are feature points, the boundary points of the quad mesh are also treated as feature 

points. We concentrate all the curvatures on the singularities and make the rest part of the 

face to be flat by using Ricci flow. We calculate the Teichmüller map between two 

consecutive surfaces with flat-cone metrics, all the singularities and feature points are treated 

as constraints. The template is automatically transformed to each frame in the dynamic 3D 

facial surface sequence and the feature points are matched consistently across surfaces.
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Figure 2. 

Conformal mapping (top row) preserves infinitesimal circles; quasi-conformal mapping 

(bottom row) maps infinitesimal ellipses to infinitesimal circles.
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Figure 3. 

Teichmüller mapping between two human facial surfaces with markers (white dots), all 

ellipses are of the same eccentricity.
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Figure 4. 

Algorithm pipeline.
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Figure 5. 

Each sampling point and its corresponding point are connected by a straight line.
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Figure 6. 

3D surface tracking for facial surfaces with large expression changes.
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Figure 7. 

The norms of the Beltrami coefficients.
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Figure 8. 

Comparison with the MRF method in [33] and optical flow method in [10].
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