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Intrinsic activation energy for twin wall motiona)
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Even in a topologically perfect crystal, a moving twin wall will experience forces due to the discrete nature
of the lattice. The potential energy landscape can be described in terms of one of two parameters: the
Peierls energy, which is the activation energy for domain wall motion in a perfect crystal; and the Peierls
stress, the maximum pinning stress that the potential can exert. We investigate these parameters in a one
order parameter discrete Landau-Ginzburg model and a classical potential model of the ferroelastic perovskite
CaTiO3. Using the one order parameter model we show that the Peierls energy scales with the barrier height
of the Landau double well potential and calculate its dependence on the width of the wall numerically. In
CaTiO3 we calculate the Peierls energy and stress indirectly from the one order parameter model and directly
from the interatomic force field. Despite the simplicity of the one order parameter model, its predictions of
the activation energy are in good agreement with calculated values.

PACS numbers: 62.20.Dc, 61.72.Mm

I. INTRODUCTION

The motion of ferroelastic or ferroelectric-ferroelastic
twin walls plays a significant role in determining the elas-
tic, dielectric, piezoelectric and ferroelectric properties
of a number of materials of scientific and technological
interest.1–6 The lower mantle of the Earth is known to
consist mainly of magnesium silicate perovskite, a ferroe-
lastic polymorph of MgSiO3. Recent work has explored
the possibility that the seismic properties of the lower
mantle, such as attenuation, can be explained in terms
of the elastic response of domain walls. The large piezo-
electric and dielectric coefficients of barium titanate and
lead titanate have been shown to have significant con-
tributions from the motion of twin walls. Finally, ferro-
electric switching, which is currently being exploited for
computer random access memory applications, is known
to be entirely due to the motion of twin walls.
To understand the properties of these materials, and

the systems in which they are found, we must under-
stand the factors which affect the motion of twin walls.
Unlike magnetic domain walls, with widths of 100’s of
nanometres, ferroelastic and ferroelectric walls are atom-
istically thin, with wall widths of the order of the unit cell
parameter.7 We must understand their behaviour from
an atomic perspective. In essence this requires an un-
derstanding of the energy landscape through which twin
walls move.
A schematic of this energy landscape is shown in Fig. 1.

As a wall moves through the crystal it experiences a po-
tential which oscillates between Eminimum at local minima

a)W. T. Lee, E. K. H. Salje, L. Goncalves-Ferreria, M. Daraktchiev
and U. Bismayer. Physical Review B 73:214110 (2006). “Copyright
(2006) by the American Physical Society.”
b)Electronic mail: wlee@esc.cam.ac.uk

x

E

EPeierls

Esaddle

Eminimum

Point defect

Figure 1. The energy landscape experienced by a domain
wall moving through a crystal containing a point defect. The
bold line shows the potential experienced by the wall while
the thin lines show the local equilibrium energy of the wall
Eminimum and the saddle point energy of the transition state
from one local minimum to another Esaddle. Far from a defect
the difference between these two energies, i.e. the activation
energy needed for the wall to move is called the Peierls energy
EPeierls.

and Esaddle at transition states (saddle points) between
two minima. If the motion of the wall is a thermally ac-
tivated process then the mobility of the wall depends on
the difference between these two energies.

µwall = µ0 exp

(

−

Esaddle − Eminimum

kT

)

(1)

As shown in the figure there are two contributions to
the potential energy landscape. These can be labelled
intrinsic and extrinsic. The intrinsic contribution to the
energy landscape is present even in a chemically and
topologically perfect crystal and is due to the periodic-
ity of the lattice. This contribution is parameterised by
the Peierls energy EPeierls, which is the activation energy
for twin wall motion far from point defects. The second,
extrinsic contribution to the energy landscape is due to
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defects in the perfect lattice such as vacancies, impurity
atoms, dislocations and other twin walls.

There have been attempts to understand this energy
landscape using both experimental and simulation meth-
ods. Experimentally, it is clear that extrinsic pinning
due to point defects is far more significant than lattice
pinning,2,3,6 which is often too small to detect, except
by very sensitive methods.8 Simulations of oxygen va-
cancies in ferroelastic calcium titanate9 and ferroelectric
lead zirconate10 have already been carried out, show-
ing that an oxygen vacancy has an energy approximately
1 eV lower in the wall than in the bulk. These simula-
tions provide information about Eminimum, but in order
to complete the picture, calculations of Esaddle are also
necessary.

In this work we only consider intrinsic pinning, We
investigate pinning in a one order parameter discrete
Landau-Ginzburg model, building on previous work by
Ishibashi11 and Combs and Yip12,13. Then we investi-
gate intrinsic pinning in an empirical potential model
of orthorhombic calcium titanate CaTiO3 developed by
Calleja et al.9 We compare the predictions of the one or-
der parameter model with the results of a transition state
calculation and show a good agreement between the two
values.

II. A ONE PARAMETER MODEL

In this section we investigate the intrinsic pinning of
domain walls in the discrete Landau-Ginzburg or φ4

model.7 Intrinsic pinning in this model has been inves-
tigated by Ishibashi and Combs and Yip.11–13 We re-
port the results of a numerical calculation of the pinning
energy showing, in agreement with previous work, that
when the wall width is two lattice spacings the activation
energy is practically zero.

The most successful theoretical tool for describing
phase transitions in ferroelectric and ferroelastic materi-
als is Landau-Ginzburg theory.14,15 Through the Landau-
Ginzburg free energy the theory provides a framework
which can be used to predict both macroscopic be-
haviour, such as the specific heat capacity16 and elastic
constants17 of a material going through a phase transi-
tion, and microstructural details, such as the structure
of domain walls.15,18

Usually a continuum formulation of the Landau-
Ginzburg free energy is used, in which the discrete nature
of the lattice is neglected.7,15 This approach has been
very successful even in predicting the structure of twin
walls, where the continuum approximation might be ex-
pected to break down. It is not possible to calculate the
Peierls energy within the continuum limit and so we use
a discrete form of the Landau-Ginzburg energy,

F =
∑

i

∆E

[

(

Q2
i − 1

)2
+
(w

a

)2

(Qi+1 −Qi)
2

]

(2)

The first term is a double well potential, where ∆E is
height of the barrier between the two walls. The second
term is the discrete analogue of the Ginzburg term. w
is the wall width and a is the lattice spacing. These
quantities are illustrated in Fig. 2.
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Figure 2. Dimensional quantities of the general model.
(a) The Landau double well potential is characterised by an
energy barrier ∆E. (b) The discrete nature of the lattice
means the model contains two lengthscales: a the lattice pa-
rameter and w the wall width.

Dimensional analysis tells us that the Peierls energy
EPeierls must be given by

EPeierls = ∆Ef (w/a) (3)

where f is to be determined. It is easy to deduce the
limiting values of f(x) in the cases when x is very small
or very large.
In the case w = 0 the free energy of the discrete

Landau-Ginzburg model is

F =
∑

i

∆E
(

Q2
i − 1

)2
(4)

The system consists of a collection of independent order
parameters Qi moving in double well potentials. The do-
main wall moves when one order parameter flips from one
state to another. The activation energy for this process
is ∆E and thus

lim
x→0

f (x) = 1 (5)

If w is very large then the discrete nature of the lattice is
irrelevant and a continuum approximation may be used.
In the continuum theory the energy of a domain wall is
independent of its position, and thus there is no activa-
tion energy for domain wall motion

lim
x→∞

f (x) = 0 (6)

For intermediate cases we calculate f(x) numerically.
We calculate the energy of a single wall in a 200 site
system, both without constraints (Eminimum) and with
the constraint that Q100 = 0 (Esaddle). The difference
between the two energies divided by ∆E gives us f(x),
shown in Fig 3. The figure shows that when the wall
width is twice the lattice parameter the Peierls energy is
already practically zero.
In a crystal the width of a twin wall can be affected

by two parameters: temperature and velocity. Elemen-
tary Landau-Ginzburg theory predicts that the twin wall
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Figure 3. Dependence of the activation energy on the ratio
between wall width and lattice parameter.

width should diverge as T approaches Tc.
15 This predic-

tion has been confirmed experimentally.19 As the temper-
ature approaches Tc the activation energy for wall motion
will decrease. The second factor which can affect the wall
width is the velocity of the wall. If the speed of the wall
v approaches the velocity of sound in the material c then
the width of the wall is ‘Lorentz contracted’ by a factor
of

√

1− v2/c2 (7)

As a wall accelerates the forces it experiences due to the
lattice potential increase.

III. TWIN WALL MOTION IN CATIO3

To test the validity of the above approach we com-
pared the value of the activation energy calculated by the
method described above with a direct transition state en-
ergy calculation. We used an empirical potentials model
to investigate twin walls in CaTiO3. We calculate the
structure of the twin walls of the system and calculate
the Peierls energy and stress.
CaTiO3 is a ferroelastic, but not ferroelectric, per-

ovskite. The crystal structure consists of corner linked
TiO6 octahedra with Ca atoms distributed between the
octahedra. At high temperatures the crystal structure is
cubic but at room temperature the crystal structure is
orthorhombic, with a space group of Pbnm and a Glazer
octahedral tilt system of a−a−c+.20,21 The crystal struc-
ture and the coordinate system used in this work is shown
in Fig. 4. When measurements of wall widths are given
below they are given in units of the pseudocubic unit cell,
containing a single formula unit.

A. Structure of static twin walls.

In this work we consider a ferroelastic wall perpen-
dicular to the x-axis. The structure of the wall can
be described in terms of order parameters and strains.
The Glazer tilt system allows us to define order parame-
ters (Qx, Qy, Qz) associated with rotations of octahedra
about the x-, y-, and z-axes (θx, θy, θz). If the position

x

z
x

y

Figure 4. Crystal structure of CaTiO3, showing the coordi-
nate system used in this work. Ca atoms are shown in black,
the octahedra have O atoms at their vertices and Ti atoms at
the centres.

of an octahedron in the crystal is labelled by integers
(ix, iy, iz), then the order parameters are defined by

θx = Qx(−1)ix+iy+iz (8)

θy = Qy(−1)ix+iy+iz (9)

θz = Qz(−1)ix+iy (10)

The compatibility conditions limit the strains which can
vary across an interface. For an interface perpendicular
to the x-axis only the strains ǫxx, ǫxy and ǫzx can be non-
zero. Furthermore the symmetry of the crystal constrains
the strain ǫzx to be zero. The strain ǫxy is the ferroelastic
strain. This changes sign across a ferroelastic wall. The
strain ǫxx is a secondary strain, which only takes non-zero
values within the wall.
Calleja et al.9 developed an empirical potential set

for this mineral and investigated the interaction between
oxygen vacancies and twin walls in a configuration con-
taining 26× 10× 6 cells. The authors simulated a single
domain structure and then rotated part of their config-
uration through 90◦ to generate twin walls. This proce-
dure generates an interface consisting of the combination
of a ferroelastic twin wall (with an order parameter Qy)
with an antiphase boundary (with an order parameter
Qz). These two types of wall can exist independently so
in this work we consider simple ferroelastic twin walls in a
system of 14×6×4 octahedra implemented in DL POLY

22

using Calleja et al.’s potential set. Periodic boundary
conditions make it impossible to simulate a single twin
wall so instead we simulate a system with two walls. The
order parameters and strains in the walls relaxed at abso-
lute zero are shown in Figs. 5 and 6. The order parameter
Qy and the shear strain ǫxy change sign across the walls.
Fitting Qy to a hyperbolic tangent profile gives a wall
width w = 1.3a. Qx, Qz, and ǫxx show anomalies across
the wall. This is the behaviour expected from secondary
order parameters.18

B. Activation energy for twin wall motion in CaTiO3.

We compare two methods of calculating the Peierls en-
ergy EPeierls. The first method is an indirect calculation

3
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Figure 5. The behaviour of the order parameters across the
wall. The order parameters are described in equation 8. Qy

shows a hyperbolic tangent variation across the wall, and Qx

and Qy show anomalies at the wall.
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Figure 6. Strain behaviour across the twin wall. The fer-
roelastic strain ǫxy follows the order parameter Qy, while the
secondary strain ǫxx shows an anomaly within the wall.

using equation 3. Secondly we perform a direct calcula-
tion of the transition state energy. These two energies are
in good agreement. We also calculate the Peierls stress
σPeierls which is the maximum restoring stress the wall
can exert.
To calculate the Peierls energy EPeierls using equa-

tion 3, we first calculate ∆E from the interfacial energy γ
of the twin walls. From ∆E and the value of the function
f for w/a = 1.3 we can calculate EPeierls. Finally, assum-
ing a sinusoidal variation of the energy as the wall moves
through the lattice we can calculate the Peierls stress
σPeierls. The stages of the calculation are summarised in
Tab. I
To calculate the Peierls energy directly we perform a

transition state calculation on our system. We start with
initial and final states which differ in that the two twin
walls of the system are each translated by one lattice pa-
rameter in the same direction. The difference in atomic
coordinates between these two states defines the reaction
coordinate. We moved the system from the initial to the
final state in 100 steps, relaxing all the degrees of freedom
perpendicular to the reaction coordinate. At each step
we calculated the force along the reaction coordinate and,
by numerical integration of the work done by that force,
the Peierls energy and stress. (This approach was neces-

Indirect Calculation

γ 0.116 Jm−2

∆E 0.034 Jm−2

w/a 1.13

f(w/a) 0.016

EPeierls 0.530mJm−2

σPeierls 4.35MPa

Direct Calculation

EPeierls 0.313mJm−2

σPeierls 2.57MPa

Table I. Indirect and direct calculation of the activation en-
ergy and Peierls stress. The results of the calculations are in
good agreement.

sary because DL POLY cannot directly resolve the energy
differences involved.) Again the results of these calcula-
tions are summarised in Tab. I.
The agreement between our two results is very good—

less than a factor of two—especially given the small value
of the Peierls energy compared with the interaction en-
ergy of a twin wall with an oxygen vacancy, which, as
noted above, is of the order of 1 eV. The residual dis-
crepancy may be due to the complexity of the system.
Equation 3 was developed for a domain wall which can
be described by a single order parameter. As shown in
Figs. 5 and 6 at least five parameters show anomalies
across the wall. The energies of these anomalies may
lead to an overestimation of ∆E calculated from the in-
terfacial energy γ of the wall.

C. Simulation of a moving domain wall

Our results suggest that if a pressure greater than
σPeierls ≈ 3MPa is applied to a twin wall it will move
freely, rather than as a thermally activated process. In
this section we demonstrate that this is the case by molec-
ular dynamics simulation. Working in an NV T ensemble
we shear the system to generate a force on the walls and
observe their motion.
In order to calculate the force on the wall generated

by a shear stress we need to calculate the Eshelby force
on the wall.23 The stress on a wall σWall generated by an
externally applied shear stress σxy is given by

σWall = 4σxyǫxy (11)

where ǫxy is the spontaneous strain of the transition. For
CaTiO3 ǫxy = 4× 10−3 (see Fig. 6).
We started with a configuration of 26×10×6 octahedra

from the simulation of Calleja et al, containing, as noted
above, both ferroelastic walls and antiphase boundaries.
On annealing at 10K using DL POLY the antiphase bound-
aries spontaneously moved together and annihilated each
other, leaving only the ferroelastic walls. DL POLY does
not allow the direct imposition of a constant shear stress

4



Timestep 1.0 fs

Thermostat relaxation time 0.5 ps

Simulation duration 10.0 ps

Initial shear stress on crystal 6.0GPa

Initial pressure on walls 100.0MPa

Peierls stress 3.0MPa

Table II. Parameters used in the simulation of a moving twin
wall. The stresses acting on the system and the wall are only
initial values. As the walls move in response to the forces
these stresses will relax.

t (ps)

x/a

0 2 4 6 8 10

−6

−3

0

3

6

Figure 7. Observed motion of the two twin walls of the
simulated system.

so instead we sheared the whole system (both coordi-
nates and velocities) through an angle of 0.3◦, generating
an initial shear stress. (The NV T ensemble prevents the
relaxation of this stress by a macroscopic shear of the sys-
tem.) The Eshelby force on the wall exceeded the Peierls
stress and so motion of the wall was observed. The pa-
rameters of the simulation are summarised in Tab. II.
In response to these forces the walls move as shown in
Fig. 7. Initially the walls accelerate because the pressure
acting on them is higher than the Peierls stress. The
walls traverse several unit cells and then decelerate, as
the stress acting on them decreases.

IV. CONCLUSIONS

A complete picture of twin wall motion in ferroelastic
and ferroelectric materials would shed light on questions

such as the fatigue problem in ferroelectric memories
and the contribution of twin wall motion to the seismic
properties of the Earth’s lower mantle. Such a picture
requires an understanding of the energy landscape
through which the twin wall moves in the presence and
absence of point defects. We have shown that the Peierls
energy and stress of a ferroic material can be accurately
estimated using an indirect approach by mapping the
system on to a one order parameter model.

ACKNOWLEDGMENTS

The authors wish to thank Mark Calleja for provid-
ing the atomic configuration used as a starting point in
section III C.

1R. J. Harrison and S. A. T. Redfern, Physics of the Earth and
Planetary Interiors 134, 252 (2002).

2R. J. Harrison, S. A. T. Redfern, A. Buckley, and E. K. H. Salje,
J. Appl. Phys. 95, 1706 (2004).

3R. J. Harrison, S. A. T. Redfern, and E. K. H. Salje, Phys. Rev.
B 69, 144101 (2004).

4A. J. Moulson and J. M. Herbert, Electroceramics (Wiley (Chich-
ester, UK), 2003).

5D. Damjanovic and M. Demartin, J. Phys. Cond. Matt. 9, 4943
(1997).

6J. F. Scott, Ferroelectric Memories (Springer, Berlin, 2000).
7E. K. H. Salje, S. A. Hayward, and W. T. Lee, Acta Crystallogr.
Sect. A 61 (2005).

8H. Ma, W.-J. Kim, J. S. Horwitz, S. W. Kirchoefer, and J. Levy,
Phys. Rev. Lett 91, 217601 (2003).

9M. Calleja, M. T. Dove, and E. K. H. Salje, J. Phys. Cond. Mat.
15, 2301 (2003).

10L. He and D. Vanderbilt, Phys. Rev. B 68 (2003).
11Y. Ishibashi, Journal of the Physical Society of Japan 46, 1254
(1979).

12J. A. Combs and S. Yip, Phys. Rev. B 28, 6873 (1983).
13J. A. Combs and S. Yip, Phys. Rev. B 29, 438 (1984).
14L. D. Landau and E. M. Lifshitz, Statistical Physics, vol. 1
(Butterworth–Heineman, Oxford, 1980), 3rd ed.

15E. K. H. Salje, Phase transitions in ferroelastic and co-elastic

crystals (Cambridge University Press, Cambridge, UK, 1990).
16E. K. H. Salje, ed., Physical properties and thermodynamic be-

haviour of minerals (Dordrecht, D. Reidel Publishing Co, 1988),
chap. Structural phase transitions and specific heat anomalies.

17M. A. Carpenter and E. K. H. Salje, Eur. J. Mineral. 10, 693
(1998).

18W. T. Lee, E. K. H. Salje, and U. Bismayer, Phase Transitions
76, 81 (2003).

19J. Chrosch and E. K. H. Salje, J. Appl. Phys. 85, 722 (1999).
20S. A. T. Redfern, J. Phys. Cond. Matt. 8, 8267 (1996).
21A. M. Glazer, Acta Cryst. B 28, 3384 (1972).
22W. Smith and T. R. Forester, J. Mol. Graph. 14, 136 (1996).
23J. D. Eshelby, J. Elasticity 5, 321 (1975).

5


