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Short Note

Intrinsic and layer-induced vertical transverse isotropy

Andrey Bakulin∗

INTRODUCTION

Anisotropy caused by fine layering is often considered re-
sponsible for the differences between velocities obtained in
sonic-log and seismic experiments. Understanding the link be-
tween the two is critical, especially in the current era of most
wells being (highly) deviated.

Vertical sonic velocities may be upscaled according to
Backus (1962) to deduce interval vertical velocities for seismic
frequencies. However, few experimental observations relate
complete properties of fine layers to seismic anisotropy ob-
served at seismic scale, which is necessary if we want to predict
and explain reflection moveout for both P- and S-waves (Sams
et al., 1993; Sams and Williamson, 1994; Kebaili and Schmitt,
1996; Vernik and Fisher, 2001). Partly this is caused by fine lay-
ers themselves being anisotropic (e.g., shales). For a medium
with two constituents (such as sand and shale), the anisotropic
parameters of both layers should be known to predict the prop-
erties of the effective compound (Backus, 1962). In addition,
effective medium averaging is a nonlinear procedure which
gives little insight into what to expect.

A discussion was sparked by Thomsen’s (1986) paper on how
seismically measured anisotropy values relate to the properties
of the thin layers and their intrinsic anisotropy (Levin, 1988).
Although numerical schemes have existed for a long time, the
physics behind them was not always clear. The situation is ex-
emplified by Frank Levin’s comment that “predicting the delta
of a transversely isotropic solid from component delta’s is not
easy” (Levin, 1988).

This note intends to improve understanding of how each
Thomsen coefficient for effective transversely isotropic media
with a vertical symmetry axis depends on the parameters of the
individual constituents and the elastic contrasts between layers.

EXACT AVERAGING

Within our current abilities, most sedimentary rocks can
be described by vertical transverse isotropy (VTI) (Thomsen,
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1986). Each VTI constituent is defined by a stiffness matrix
with five independent elements:

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66


, (1)

where c66= (c11− c12)/2. The composite effective medium
is also VTI according to the following averaging equations
(Backus, 1962; Molotkov and Khilo, 1985):

c11 = 〈c13/c33〉2/〈1/c33〉−
〈
c2

13

/
c33
〉+〈c11〉, (2)

c12 = c11 − 〈c11〉 + 〈c12〉, (3)

c13 = 〈c13/c33〉/〈1/c33〉, (4)

c33 = 〈1/c33〉−1, (5)

c44 = 〈1/c44〉−1, (6)

where c66= (c11− c12)/2=〈c66〉. Here, 〈·〉denotes the thickness-
weighted average of corresponding parameters of individ-
ual constituents, for example, 〈α〉=φ1α1+φ2α2 with φ1 and
φ2= 1−φ1 being their relative thicknesses.

Once the stiffnesses are obtained, they can be recast into
Thomsen notation commonly used in reflection seismology:

VP0 ≡
√

c33

ρ
, VS0 ≡

√
c44

ρ
, (7)

ε ≡ c11 − c33

2c33
, (8)

1708



Intrinsic and Layer-Induced Anisotropy 1709

δ ≡ (c13 + c44)2 − (c33 − c44)2

2c33(c33 − c44)
, (9)

γ ≡ c66 − c44

2c44
, (10)

where VP0 and VS0 are vertical velocities of P- and S-waves, ρ
is the density, and ε, δ, and γ are the dimensionless Thomsen
(1986) anisotropic parameters.

WEAK-ANISOTROPY AND WEAK-CONTRAST
APPROXIMATION

It is difficult to develop physical intuition for understand-
ing and predicting the outcome of the exact equations (2)–(6)
and (7)–(10). Even for isotropic constituents, the results are
not intuitive. Several studies have attempted to derive some
conclusions from numerical calculations and analysis of spe-
cial cases (Berryman, 1979; Brittan et al., 1995; Shapiro and
Hubral, 1996; Anno, 1997; Berryman et al., 1999; Werner and
Shapiro, 1999) considering only isotropic constituents.

We will analyze the case of VTI constituent layers. We
first make two simplifying assumptions before proceeding with
analysis:

1) The anisotropy of each constituent is weak. In the case
of VTI layers, this means the Thomsen parameters are
much smaller than unity (|ε|¿ 1, |δ|¿ 1, and |γ |¿ 1).

2) There is a weak contrast between the two constituents,
|1c33/c̄33|¿ 1 and |1c44/c̄44|¿ 1.

The average stiffness c̄33= 1/2(c(1)
33 + c(2)

33 ) and the difference
1c33= c(2)

33 − c(1)
33 are expressed as functions of stiffnesses of the

first (c(1)
33 ) and second (c(2)

33 ) constituents. Similar quantities are
defined for the shear stiffness c44. Note that the whole range
0< c(2)

33 /c
(1)
33 <∞ is mapped into −2<1c33/c̄33 < 2.

Here we are making weak-anisotropy and weak-contrast as-
sumptions. To utilize them together, we also assume that the
Thomsen parameters ε, δ, and γ , along with normalized jumps
1c33/c̄33 and 1c44/c̄44, are small quantities of the same order.
These assumptions are quite reasonable for many sedimentary
sequences and are often used in anisotropic processing and
AVO analysis (Thomsen, 1993; Rüger, 2002).

Linearization of the effective stiffness matrix in these small
quantities leads to the interesting result that the effective
anisotropic parameters ε, δ, and γ depend only on the cor-
responding Thomsen coefficients of the constituents:

ε = 〈ε〉, (11)

δ = 〈δ〉, (12)

γ = 〈γ 〉. (13)

Such results may be expected from the physics of wave prop-
agation: in the limit of zero frequency, the effective media prop-
erties are independent of the order of layers for any number of
constituents. For media with two constituents, this means the
effective elastic properties should be independent of the signs
of 1c33 and 1c44 and, thus, may not contain linear terms in
contrasts.

Additional physical meaning of these results is most easily il-
lustrated for γ . For isotropic constituents (c(1)

66 = c(1)
44 , c(2)

66 = c(2)
44 ),

the overall anisotropy γ is proportional to 〈c44〉−〈1/c44〉−1. One

can verify with simple algebra that if averaged quantities are
different by some small amount 1, then to the first order in
1 the geometric mean average is equivalent to the arithmetic
mean average. Thus, we conclude that (1) to the first order
in elastic parameter contrasts isotropic layering does not pro-
duce effective anisotropy; (2) effective anisotropy arises only
if the constituents have intrinsic anisotropy; and (3) each effec-
tive anisotropic parameter is the thickness-weighted average
of the corresponding parameters of the constituent layers.

To verify the accuracy of formulas (11)–(13), we compare
them with the exact Thomsen parameters computed using
equations (2)–(10). For two examples from Table 1, we focus
only on predicting the effective Thomsen parameters ε, δ, and
γ because the vertical velocities of P- and S-waves can be com-
puted easily from logs using exact equations (5)–(7). Figure 1
shows that, despite substantial values of anisotropic parame-
ters and contrasts reaching 30%, the maximum error does not
exceed 0.03.

SECOND-ORDER APPROXIMATION (STRONGER
CONTRASTS)

What happens if the property variation among the con-
stituents is not small? The elastic parameter contrast lumps
together the density and velocity contrasts. Consider the ap-
proximate linear relation derived from equation (7):

1c33

c̄33
= 1ρ

ρ̄
+ 21VP0

V̄P0
. (14)

If, for example, we have a 20% density and 15% velocity con-
trast, this may result in a 1c33/c̄33 of about 50%. In this case
the linearizations described above lead to erroneous predic-
tions because the anisotropy caused by vertical heterogeneity
is nonnegligible. To include these effects, we will obtain second-
order approximations with respect to both intrinsic anisotropy
and the contrasts in the elastic moduli. In so doing, we can
gain useful insight into how effective anisotropy is influenced
by intrinsic anisotropy, anisotropy induced by vertical hetero-
geneity, and by their interaction.

This exercise has two objectives: (1) to gain clear understand-
ing of the main factors that control the magnitude of effective
anisotropy in the case of stronger contrast between the VTI
constituents and (2) to develop useful approximations allow-
ing us to compute each Thomsen coefficient using fewer input
parameters.

For a second-order approximation each Thomsen parameter
is given by a simple equation of the following form:

ε = 〈ε〉 + εis + εis−an+ εan, (15)

where 〈ε〉 is the first-order term that depends on intrinsic
anisotropy only, εis is the second-order isotropic term from

Table 1. Models used to test the accuracy of equations
(11)–(13). For the first constituent, VP0P0 = 3 km/s, VS0S0 = 1.5 km/s,
and ρρ = 2.4 g/cm33. (Any other set of parameters can be used
that leads to the same c3333 = ρρV 22

P0P0 and c4444 = ρρV 22
S0S0.)

Case
1c33

c̄33

1c44

c̄44
ε1 ε2 δ1 δ2 γ1 γ2

1 30% −30% 0.05 0.25 0.0 0.20 0.05 0.25
2 25% 30% 0.05 0.25 0.0 0.20 0.05 0.25
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vertical heterogeneity obtained by replacing the VTI con-
stituents by isotropic layers with the same vertical velocities,
εis−an is the second-order crossterm arising from the coupling
of vertical heterogeneity and intrinsic anisotropy, and εan is the
second-order term from intrinsic anisotropy only.

In the remainder of this section, we analyze the second-
order approximation in more detail. Inspection of isotropic
terms reveals that when the shear modulus is constant, then
δis= εis= γis= 0. This is a well-known result for isotropic lay-
ers (Postma, 1955) and is indeed a special case of more general
fact that the effective models made up of isotropic constituents
with a constant shear modulus are always isotropic irrespec-
tive of their shape (Hill, 1963). Analysis also shows that when
c44/c33= (VS0/VP0)2= const, then δis= 0. This case was first dis-
cussed by Krey and Helbig (1956).

Effective parameter γ

The effective γ is represented by

γ = 〈γ 〉 + γis + γis−an+ γan, (16)

where

γis = 1
2
φ1φ2

(
1c44

c̄44

)2

, (17)

γis−an = φ1φ2
1c44

c̄44
1γ, (18)

γan = 0. (19)

In the case of |1c44/c44|À |1γ |, the third term γis−an can be
neglected and

γ ≈ 〈γ 〉 + γis. (20)

As follows from equation (17), γis > 0, which is a strict con-
straint for isotropic constituent layers.

FIG. 1. Thomsen parameters of two-component VTI media as functions of the fraction of the first constituent φ=φ1 (φ2= 1−φ1).
Shown are the exact solutions (solid lines) and weak-anisotropy, weak-contrast approximations (dashed) [equations (11)–(13)].
Parameters are listed in Table 1; plots (a)–(c) correspond to case 1, whereas (d)–(f) correspond to case 2.

Equation (20) explains the results of Werner and Shapiro
(1999), who have found that the contributions of intrinsic
anisotropy and anisotropy caused by vertical variations of the
elastic moduli must be summed up to obtain the effective
anisotropic parameter γ . However, they consider only the case
of intrinsic anisotropy constant for all layers (γ1= γ2=〈γ 〉),
which is a special case of equation (20).

Effective parameter δ

The effective δ is represented by

δ = 〈δ〉 + δis + δis−an+ δan, (21)

where

δis = 2φ1φ2
c̄44

c̄33

[
1c33

c̄33
− 1c44

c̄44

]
1c44

c̄44
, (22)

δis−an = 0, (23)

δan = −1
2
φ1φ2

(1δ)2(
1− c̄44

c̄33

) . (24)

For most subsurface boundaries we do not expect the contrast
|1δ| to be higher than 0.1–0.2, which implies that |δan|< 0.025
(for c̄44/c̄33= 1/4). Clearly, δan may be neglected in practice
because it is smaller than 0.03–0.04, which is the minimum
expected uncertainty in estimating interval δ from field data
(Grechka et al., 2002).

Therefore, we can use a simplified approximation similar to
equation (20),

δ ≈ 〈δ〉 + δis. (25)

The effective δ is a simple sum of averaged intrinsic anisotropy
〈δ〉 and a purely isotropic contribution δis related to fluctuations
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in vertical elastic parameters. The last term in equation (25)
has been extensively studied for isotropic components (Anno,
1997; Berryman et al., 1999; Brittan et al., 1995), and conclu-
sions may be readily transferred and applied to the case of VTI
constituents.

Both approximation (25) and the exact equation (9) show
that no information about constituents ε (or c11) is required.
The presence of the isotropic term can make the effective δ
smaller than min(δ1, δ2) or larger than max(δ1, δ2), as noted by
Levin (1988).

Therefore, approximation (25) resolves the issue of predict-
ing the effective δ for VTI constituents raised by Levin (1988)
in his reply to Thomsen’s original paper (1986). Indeed, sim-
ple inspection of equations (22) and (25) leads to the following
conclusions for two possible cases.

In the first case, the second-order isotropic term δis is small
compared to 〈δ〉. This happens when

1) the contrasts are small enough to neglect the second-
order term δis, which corresponds to the first-order ap-
proximation considered above.

2) 1c44/c̄44= 0. In this case of a constant shear modulus, δis

is always zero irrespective of how large 1c33/c̄33 is.
3) 1c44/c̄44=1c33/c̄33. This is equivalent to the case of a

constant VS0/VP0 or c44/c33. It can be recognized by ac-
knowledging that to the first order,

c(2)
44

c(2)
33

= c(1)
44

c(1)
33

(
1+ 1c44

c̄44
− 1c33

c̄33

)
. (26)

Again, δis is always zero for any contrasts in the elastic
moduli.

For all three cases above we only need to know the con-
stituent δ to estimate the effective δ, and we always have
min(δ1, δ2)<δ<max(δ1, δ2). This is a significant simplification
compared to the exact Backus equation (9), where three stiff-
nesses (or VP0, VS0, and δ) must be known to predict the effec-
tive δ.

In the second case, the second-order isotropic term δis is com-
parable to 〈δ〉. This might happen only for sizeable contrasts
between the constituents that also exhibit strong variations in
the VS0/VP0 ratio so that the term1c44/c̄44−1c33/c̄33 may be-
come considerable. As to the sign of δis, Anno (1997) notices
that a typically observed positive correlation between VS0 and
VS0/VP0 leads to negative effective δ (δis) for purely isotropic
layering. Utilizing relation (26), such a correlation may be re-
cast in our notation as

1c44

c̄44
≥ 0 and

1c33

c̄33
− 1c44

c̄44
≤ 0, (27)

or

1c44

c̄44
≤ 0 and

1c33

c̄33
− 1c44

c̄44
≥ 0. (28)

For either case (27) or (28), equation (22) predicts negative δis.
As suggested by Anno (1997), the sign of the effective δ can
indeed discriminate the cases of isotropic layering (character-
ized by negative δ) from the cases of shale intrinsic anisotropy,
which typically exhibit positive δ. In more realistic situations of
interleaving isotropic and VTI layers, one should apply equa-
tion (25) to interpret effective δ.

Effective parameter ε

Effective ε is represented by

ε = 〈ε〉 + εis + εis−an+ εan, (29)

where

εis = 2φ1φ2

(
c̄44

c̄33

)2[ c̄33

c̄44

1c33

c̄33
− 1c44

c̄44

]
1c44

c̄44
, (30)

εis−an = φ1φ2
c̄44

c̄33

[
2
1c44

c̄44
1δ+ c̄33

c̄44

1c33

c̄33
(1ε−1δ)

]
, (31)

εan = −1
2
φ1φ2(1δ)2. (32)

Similar to the analysis for δ, εan∼ (1δ)2 and may be safely
neglected in most cases of practical importance. Also, as in the
case of δ, the isotropic term (30) vanishes when either the shear
modulus is constant or when 1c44/c̄44= c̄33/c̄441c33/c̄33.

When the constituents δ are unknown but small, we can ap-
proximate equation (29) as

ε ≈ 〈ε〉 + εis + ε̃is−an, (33)

where ε̃is−an is a simplified coupling term (31) expressed as

ε̃is−an = φ1φ2
1c33

c̄33
1ε. (34)

In most cases, however, the whole crossterm εis−an is small
and may also be neglected, yielding a simple approximation
similar to those for γ and δ:

ε = 〈ε〉 + εis. (35)

Both approximations (33) and (35) allow us to compute the
effective ε without knowledge of the constituents δ.

CONCLUSIONS: MOST LIKELY ROCK PHYSICS
APPROXIMATION

In practice, one usually has some a priori rock physics infor-
mation about velocities and anisotropies. Therefore, utilizing
expressions (15) and (17)–(32), one can quantify plausible con-
tributions of various terms and select an appropriate approxi-
mation. In most practical cases, it should be either the linear ap-
proximation [equations (11)–(13)] or simplified second-order
approximation [equations (16)–(20), (25), (33), or (35)], de-
pending on the fluctuations of c33 and c44.

The linear approximation is particularly attractive because
it does not require any information on the vertical velocities
apart from the fact that their variation is small (say, 1c33/c̄33

and1c44/c̄44 are less than 30%). Moreover, each linearized ef-
fective Thomsen parameter depends only on the corresponding
Thomsen parameters of the constituents. It is straightforward
to prove that the linear approximation remains valid for any
number of constituent layers. Its generalization to more com-
plex anisotropy will be discussed in a forthcoming paper.

Approximations introduced in this study may also be useful
to analyze VTI rocks permeated with sets of parallel fractures.
For example, Bakulin et al. (2000, 2002) show that if set(s)
of vertical fractures are added to VTI (finely layered) back-
ground, then anisotropic parameters of effective orthorhombic
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media can be conveniently approximated as the sum of intrin-
sic VTI anisotropy parameters and isotropic fracture-induced
contributions. Complementing this result with current conclu-
sions, we may further decompose effective orthorhombic coef-
ficients to the sum of intrinsic Thomsen parameters of individ-
ual fine layers and fracture-induced contributions.

The second-order approximation becomes necessary when
the contrasts in elastic moduli become significant (>30–40%).
Full second-order approximations do not give any computa-
tional advantage because they require the same input as the
exact equations. However, they are instructive in analyzing
the role of individual contributions into the overall anisotropy.
Such analysis leads to further simplifications [equations (33)
and (35)] that reduce the number of input parameters; for
example, the effective ε can be found without using the con-
stituent δs.

Let us compare the performance of equations (16), (20), (25),
(33), and (35) with that of the exact equations with the follow-
ing objectives: (1) to show that the second-order approxima-
tion is likely to be sufficient in describing the overall subsurface
anisotropy and (2) to demonstrate the value of approximations
that require fewer input parameters. In the first two models
(Table 2) we consider the extreme behavior of correlated (both
VP0 and VS0 increase) and anticorrelated (VP0 increases while
VS0 decreases) P- and S-velocities. Figures 2a–f demonstrate

FIG. 2. Effective Thomsen parameters of two-component VTI media as functions of the fraction of the first constituent φ = φ1
(φ2 = 1 − φ1). Shown are the exact solutions (solid lines), first-order (dashed) [equations (11)–(13)], and simplest second-order
(dash-dotted) [equations (20), (25), (35)] weak-anisotropy, weak-contrast approximations with only the isotropic second-order
term. The dotted lines for γ and ε correspond to second-order approximations (16) and (33) with extra terms. Parameters are listed
in Table 2: plots (a)–(c) correspond to model 1, (d)–(f) to model 2, (g)–(i) to model 3.

that in both cases the maximum error of the second-order ap-
proximations is of reasonable size and does not exceed 0.07
when three terms are used. The parameters of model 3 are
taken from the real case study by Vernik and Fisher (2001),
who analyze sand–shale sequences from the deepwater Gulf
of Mexico. Figures 2g–i show that the maximum error while
using all suggested approximations does not exceed 0.015.

Table 2. Models used to test the accuracy of the second-order
weak-anisotropy, weak-contrast approximations. For the first
constituent layer, VP0P0 = 3.2 km/s, VS0S0 = 1.55 km/s, and ρρ =
2.45 g/cm33. (Any other set of parameters can be used that leads
to the same c3333 = ρρV 22

P0P0 and c4444 = ρρV 22
S0S0.)

1c33

c̄33

1c44

c̄44

Model

(
c(2)

33

c(1)
33

) (
c(2)

44

c(1)
44

)
ε1 ε2 δ1 δ2 γ1 γ2

1 90% 70% 0.05 0.25 0.20 0.0 0.05 0.25
(2.64) (2.08)

2 30% −80% 0.05 0.2 0.05 0.15 0.05 0.2
(1.35) (0.43)

3 −45% −27% 0.05 0.0 0.02 0.0 0.15 0.0
(0.63) (0.76)
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