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Lead chalcogenides have exceptional thermoelectric properties and intriguing anharmonic

lattice dynamics underlying their low thermal conductivities. An ideal material for thermo-

electric efficiency is the phonon glass–electron crystal, which drives research on strategies to

scatter or localize phonons while minimally disrupting electronic-transport. Anharmonicity

can potentially do both, even in perfect crystals, and simulations suggest that PbSe is

anharmonic enough to support intrinsic localized modes that halt transport. Here, we

experimentally observe high-temperature localization in PbSe using neutron scattering but

find that localization is not limited to isolated modes – zero group velocity develops for a

significant section of the transverse optic phonon on heating above a transition in the

anharmonic dynamics. Arrest of the optic phonon propagation coincides with unusual

sharpening of the longitudinal acoustic mode due to a loss of phase space for scattering. Our

study shows how nonlinear physics beyond conventional anharmonic perturbations can

fundamentally alter vibrational transport properties.
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T
hermoelectric materials have attracted intense interest in
recent decades owing to their promise in energy applica-
tions, including converting waste heat into electricity and

replacing mechanical cooling systems with more environmentally
friendly solid-state devices1. The challenge has been to improve
the low efficiency of the energy conversion process, which is
characterized by the dimensionless figure of merit, zT, defined as
the ratio of the electronic power factor and the thermal con-
ductivity of the thermoelectric material1. Lead chalcogenides
make good thermoelectric materials2–7 because they have both
high electronic power factors and low thermal conductivities
owing to strongly anharmonic lattice dynamics8–12. An important
strategy for improving the figure of merit is to reduce the phonon
contribution to thermal transport while keeping the electrical
conductivity unchanged, i.e., using the “phonon glass-electron
crystal” approach13–15. Approaches have included increasing
phonon scattering and/or localizing vibrations by introducing
loosely bound rattling atoms in open-structured materials such as
clathrates and skutterudites13,14, nano-precipitates in PbTe16,
nanostructured layered materials17, engineered disorder18, and
dislocations in PbSe19. However, deviations from crystalline order
may also scatter or localize electrons, thereby reducing the elec-
trical conductivity component of the power factor. Hence, it is
desirable to find phonon blocking behavior, such as strong
phonon scattering and localization, in defect-free thermoelectric
crystals.

Although anharmonicity is known to reduce thermal con-
ductivity by increasing phonon scattering rates, it is less well
known that anharmonicity can also localize vibrational energy
even in a perfect crystal20–24. The basic concept is an isolated
point-defect-like intrinsic localized mode (ILM)—also known as
discrete breather—which is a spatially localized vibration that
forms due to interplay of discreteness and anharmonicity20–24.
Anharmonicity causes a change in the local interatomic forces in
the vicinity of a local amplitude fluctuation, shifting the frequency
into gaps or above the cutoff in the spectrum that exist because of
discreteness in the atomic lattice. Once the local vibration is
outside the bands and it no longer resonates with the normal
phonons, it can persist independently as an ILM. Hence, just like
classic impurity modes, ILMs appear as dispersionless modes
outside of the phonon bands. Anharmonicity can also result in
more complex dynamical patterns that can be thought of either as
an interference pattern in extended mode instabilities or as a
superlattice of ILMs25.

An important open question is whether anharmonicity can
drive the localization of lattice vibrational energy within the
phonon bands in a way that is analogous to impurity resonance
modes. An impurity resonance mode occurs when heavy impu-
rities are inserted in a crystal and their vibrations appear dis-
persionless (localized) over most of reciprocal space, but exhibit
anticrossings with the plane wave phonons. Anticrossings alter
the phonon velocities rather than simply increasing phonon
scattering rates26.

Recent ab initio molecular dynamics calculations of PbSe that
explicitly account for strong anharmonicity produce what appears
to be an ILM forming at high temperatures and in resonance with
the acoustic modes10.

Here, we report observations of localization and related
changes in the lattice dynamics in a PbSe crystal using inelastic
neutron and x-ray scattering. Our results reveal that localization
occurs at temperatures close to predicted but involves more
spectral weight than expected and drives unanticipated changes in
the lattice dynamics including an unexpected sharpening of the
longitudinal acoustic (LA) phonon at high temperatures. Rather
than localization occurring with a fraction of the intensity of the
normal phonons, as predicted10, the entire spectral weight of a

large portion of the transverse optic phonon abruptly develops
flat dispersion (zero group velocity) and appears fragmented in
frequency. The localization (flattening) and fragmenting of the
optic phonon is explained in terms of a transition in the anhar-
monic dynamics27,28, which is also detected as a small kink in our
thermal diffusivity measurements similar to that observed with
ILM ordering in NaI28. The observation of in-band localization in
a PbSe crystal not only expands the domain of anharmonic
localization, but also has important ramifications for the low
thermal conductivity10 that is critical to its thermoelectric effi-
ciency1. We find that the rearrangement of spectral features that
comes with localization also fundamentally changes the phase
space for scattering, which explains the sharpening of the LA
phonon. These results show that nonlinear physics beyond con-
ventional anharmonic perturbations can play an important role
in controlling vibrational transport.

Results
Inelastic neutron scattering. The neutron scattering measure-
ments shown in Fig. 1 were obtained using the BT7 triple-axis
thermal spectrometer at the NIST Center for Neutron Scattering
(see Methods), and demonstrate the most prominent changes in
the dynamical structure of PbSe on heating from 300 to 793 K.
The most dramatic change in the phonon dispersion curves
(Fig. 1a) is the complete flattening of the TO phonon dispersion
on heating from 643 K (green circles) to 793 K (magenta trian-
gles). This flattening indicates that the TO phonon does not
propagate at this high temperature. This is the same temperature
range that ab initio simulations predict for an ILM splitting off
from the TO phonon carrying about half of its intensity10. In
contrast, the dispersion curves for the LA and transverse acoustic
(TA) phonons show relatively small energy changes with
increasing temperature.

Figure 1b–d shows how the TO phonon spectral intensity
distribution changes along momentum transfer Q= [H, H, 3]
with temperature. At 300 and 643 K, where the TO mode is
dispersive, the intensity is highest near the (113) zone center. The
energy-resolution (1.3 meV) corrected linewidths at H= 0.8
increase from 2.47 meV at 300 K to 4.3 meV at 643 K, indicating
an increase in phonon scattering with increasing temperature. At
793 K, where the dispersion becomes flat, the intensity distribu-
tion is also mostly flat, shifting away from the (113) zone center.
There is also additional intensity appearing at the bottom of the
spectrum near 3–4 meV, which may be a new feature or more
likely intensity from the TA phonon spreading up from lower
energies. Otherwise, there is no clear evidence of the predicted
splitting in the spectrum within the instrument energy resolution
of 1.3 meV, although the energy width (~5 meV) is much broader
than the resolution and covers that expected for both the TO
phonon and the ILM in the simulations10. The lower edge (~6
meV) is close in energy to the predicted ILM energy of about 5.5
meV and the upper edge is near the upper edge of the predicted
TO phonon10, suggesting that the difference between simulation
and measurement may in part be the sharpness of the split
features. To check for any fine energy structure missed with
thermal neutrons we obtained high-resolution measurements
using the HYSPEC spectrometer at the Spallation Neutron Source
(see Methods).

The time-of-flight cold neutron scattering measurements
shown in Fig. 2a, b provide a high-resolution (~0.3 meV) view
of the dynamical structure of PbSe along Q= [H, H, 3] near the
(113) zone center at temperatures of 294 and 760 K. As expected,
the measurements at 760 K (Fig. 2a) yield an overall spectral
distribution that appears to be between that observed at 643 and
793 K in the triple axis measurements (Fig. 1b, c). However, the
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high-resolution measurement reveals an additional sharp but
weak dispersionless feature near 5.5 meV (indicated by arrow in
Fig. 2a). This feature has an energy width comparable to the
instrument resolution of ~0.3 meV. We also confirmed that this
feature appears on the neutron energy gain side of the spectrum
(see Supplementary Fig. 1). Although it is much weaker, it
matches the in-band ILM feature predicted in ref. 10. Figure 2c
shows the result of an ab initio molecular simulation following
the procedure in ref. 10 but with additional corrections made for
the neutron scattering structure factors (see Methods). The
simulation overestimates the intensity of the ILM feature and

underestimates the intensity of the distributed spectral weight
associated with the TO phonon that dominates the observed
dynamical structure factor. This measured TO spectrum is
reminiscent of that in NaI, where a fragmentation and flattening
of the spectrum was attributed to conventional gap ILMs ordering
in a dynamical pattern27. The high-energy resolution measure-
ments of the TO phonon at 294 K (Fig. 2b) are in good agreement
with the triple-axis measurements at 300 K (Fig. 1d) and do not
show evidence of the large splitting predicted by simulations
(Fig. 2d), although there is the hint of a weak feature just below
the TO phonon near the (113) zone center that is also evident in
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Fig. 1 Triple-axis thermal neutron scattering measurements of the phonons PbSe. a Summary of the temperature dependence of the measured phonon

dispersion for the transverse acoustic (TA), longitudinal acoustic (LA), and transverse optic (TO) phonons folded into the first zone along phonon

wavevector q= [h, h, 0]. The data points were determined by fitting Lorentzians to the data. The flattening of the TO phonon at 793 K indicates a phonon

group velocity, vg= dE/dq, that goes to zero (localization). b–d Temperature dependence of the spectral intensity distribution for the TO phonon measured

in the (113) zone along scattering wavevector Q= [H, H, 3]. Data sets are offset for clarity. e, f Temperature dependence of the spectral intensity

distribution for the LA and TA phonons. The TA appears despite the longitudinal geometry because of finite Q resolution effects. Surprisingly, the LA

phonon is sharper at 793 K than at 643 K. Intensity bars are in counts. Error bars are statistical and represent one s.d.
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the simulation. Since uncertainties in the simulation temperature
scale exist10, we also include an additional simulation at 1000 K,
Fig. 2e. This spectrum shows a flatter, more fragmented TO
phonon, more like the observations. Furthermore, there is a shift
of TO phonon spectral intensity away from the (113) zone center,
similar to a shift observed in going from 643 to 793 K in the triple
axis measurement (Fig. 1b, c). There is also a stiffening of the TA
phonon at 1000 K in the simulation, which supports the idea that
the additional intensity appearing at the lowest energies in Fig. 1b
is from the TA phonon shifting up into the measured range.

As shown in Fig. 1e, f, a large anomalous decrease in the energy
linewidths is observed for the LA phonon measured along Q=
[H, H, 0] with heating from 643 to 793 K, the same temperature
where localization of the TO phonon occurs (Fig. 1a–d).
Typically, phonon lines broaden with heating as scattering rates
increase with increasing phonon population, but in this case the
opposite occurs. The LA phonon is broader at 643 K than at 793
K (c.f. Fig. 1e, f). The TA phonon also appears in this spectrum
even though it should be excluded by the polarization factor in
longitudinal geometry. The TA appears because the relaxed out-
of-plane angular (or Q) resolution of the BT7 spectrometer
introduces a transverse polarization component near the zone
center. This “forbidden” TA mode plus the background intensity
makes determining energy linewidths challenging, especially at
the lower energies. Therefore, to better quantify linewidths we
performed additional measurements using inelastic x-ray scatter-
ing (IXS), which has the benefit of reduced background and better
out-of-plane angular resolution.

Inelastic x-ray scattering. The IXS measurements shown in Fig. 3
were obtained on the HERIX-30 instrument at the Advanced
Photon Source (see Methods), and provide an accurate measure
of the LA phonon energy linewidths at 294 and 770 K. The
phonons in the spectra in Fig. 3a were fit using Lorentzians with
adjustable widths convoluted with a fixed 1.5 meV width instru-
ment resolution function (see Supplementary Fig. 2). The “for-
bidden” TA mode is still present but relatively weaker than in the
triple-axis neutron measurements (Fig. 1e, f) and the background
scattering is negligible. Figure 3b shows the Lorentzian compo-
nent of the linewidths for the LA phonon at both temperatures.

The LA phonon linewidths are all about a factor of two larger at
294 K than at 770 K and increase slightly closer to the (220) zone
center at lower energies. The determined dispersion of the LA
mode, shown in Fig. 3c, is in good agreement with the neutron
result (reproduced from Fig. 1a). The change in linewidth, Γ,
indicates that the LA phonon lifetime (τ= ħ/Γ) is twice as long at
770 K as it is at 294 K, which has significant implications for the
thermal conductivity since this is a high velocity mode. To
understand how the LA phonon scatters less frequently at high
temperatures despite the increase in phonon population we turn
to ab initio molecular dynamic simulations.

Scattering phase space calculations. In addition to the phonon
thermal population factors, the temperature dependence of
phonon scattering rate is governed by a phase space of possible
scattering processes that conserve energy and momentum29. It is
dominated by three-phonon processes, where energy and
momentum conservation require frequencies ω1 ± ω2= ω3 and
momenta q1+ q2+ q3=G, where G is a reciprocal lattice vector.
The manifold of all allowed scattering channels is what we denote
the scattering phase space. When the temperature dependence of
the phonon dispersion curves is weak, this manifold can be
considered constant and the temperature dependence of the
phonon linewidths is controlled by the occupation factor, leading
to the expectation that linewidths increase with increasing tem-
perature. In PbSe, however, the scattering phase space changes
with temperature, giving rise to the unexpected increase in
phonon lifetime with increased temperature (Figs. 1e, f and 3).
This change is illustrated in Fig. 4, where by choosing the first
frequency to be the TO mode at the zone center, ω1= TO(Γ), we
consider scattering with the LA mode, ω2= LA(q2), and other TO
modes, ω3= TO(−q1−q2). The phase space for this type of
scattering is the surface shown in Fig. 4. As is evident, increasing
temperature shrinks the available phase space for scattering,
which explains the anomalous sharpening of the LA linewidths.

Thermal diffusivity and structure analysis. The abrupt flatten-
ing and fragmenting of the TO phonon on heating from 643 to
793 K (c.f. Fig. 1) suggests a transition in the anharmonic
dynamics. If ILMs organize in PbSe like they appear to in NaI27,28
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then this could explain the flat TO phonon. This is illustrated
with a simple model in ref. 27 using an array of soft force con-
stants to represent an ILM superlattice in NaI; the result is a local
mode, a flat optic band, and optic mode fragmentation27. The
physical reason for the flattening is that everywhere the optic
mode wavevector matches a multiple of the superstructure of
ILMs a standing wave results (indirect localization), and this
tends to flatten the optic band overall. In other words, the pho-
nons become trapped between ILMs. Because such dynamical
pattern transition enthalpies/entropies are very small they can be
missed by conventional scanning calorimetry methods, which

tend to smear out small features, but the laser flash method was
shown to be sensitive to these transitions in single crystals of
NaI28. Therefore, we performed additional thermal diffusivity
measurements on our PbSe crystal using a laser flash system (see
Methods).

Figure 5a shows that there is a small negative kink in the
thermal diffusivity measured on our crystal at 750 K. This feature
is at the right temperature to explain the flattening and
fragmenting of the TO phonon at 793 K. To rule out any
overlooked structural transition across this temperature we also
examined the single crystal diffraction pattern from the HYSPEC
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measurements and found no new Bragg reflections across the
transition (Fig. 5b) and the temperature dependence of the
deduced lattice parameter appears consistent with thermal
expansion (Fig. 5c). Taken together, the ILM feature (Fig. 2),
the flattening and fragmenting of the TO phonon (Figs. 1 and 2),
and the corresponding dip in the thermal diffusivity (Fig. 5a) are
all consistent with a transition in the anharmonic dynamical
pattern similar to that observed in NaI28. This interpretation ties
the TO phonon flattening to the ILM and underlying anharmonic
dynamics.

Previous thermal conductivity measurements on PbSe poly-
crystals do not show a clear kink but do show a plateau and in
some cases a slight upturn above 750 K19,30. This makes sense if
we consider that even small residual strains between grains can
smear out the transition temperature if the energies involved are
small enough to be comparable to variations in the local elastic
strain energy31. Because the objective was to isolate intrinsic
localization from impurity/defect localization, care was taken to
maintain high purity (see Methods) and consequently our PbSe
was not optimally doped for thermoelectric performance, having
a maximum zT ~ 0.45 (Supplementary Fig. 3). Interestingly, for
high-performance PbSe thermoelectrics with vacancy-induced
dislocations there is instead an anomalous downturn in the
thermal conductivity above ~750 K that results in a significantly

enhanced figure of merit19. An intriguing possible explanation for
this could be that scattering of the LA phonon by dislocations
compensates for the decrease in phonon–phonon scattering rates
caused by the loss of phase space (Figs. 3 and 4), leaving only the
phonon blocking effect of localization.

Discussion
Our results reveal anharmonic localization in PbSe both in the
form of an ILM feature and a transition to a flattened and frag-
mented TO phonon that we attribute to indirect localization
resulting from an anharmonic pattern. Burlakov25 derived
anharmonic patterns in discrete lattices theoretically from an
interference of extended mode instabilities and then noted that
the resulting pattern can be regarded as a lattice of ILMs. Some
challenges remain in fully reproducing such patterns from our ab
initio simulations and there appears to be a difference in the
temperature between theory and experiment. Nevertheless, the
most striking features of the experiments, including the ILM, and
the fragmenting and flattening of the TO phonon, are present in
the simulation.

While anharmonic localization halts the propagation of the TO
phonon, which reduces thermal conductivity, the doubling of the
lifetime of the LA phonon increases thermal conductivity. Pre-
vious ab initio simulations10 indicate that localization cuts the LA
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Fig. 5 Thermal diffusivity anomaly absent a structural transition. a Thermal diffusivity measured using laser flash method on a piece of the same crystal

used in the neutron scattering measurements. Lower panel shows a closeup view of a small negative kink in the data near 750 K (line is guide to the eye).

b Single crystal diffraction pattern measured on the HYSPEC instrument above and below the temperature of the kink. The rings are aluminum powder

rings from the crystal holder, which were used to calibrate the instrument when determining the PbSe lattice parameter. c Lattice parameter as a function

of temperature determined by fitting the single crystal diffraction peaks. The refined lattice parameter of 6.124 ± 0.0005 Å at 300 K is in good agreement

with the known value (the Al rings were used to calibrate the instrument assuming an Al lattice parameter of 4.046 Å at room temperature)

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09921-4

6 NATURE COMMUNICATIONS |         (2019) 10:1928 | https://doi.org/10.1038/s41467-019-09921-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


contribution by about half by blocking the LA mode at the ILM
energy. On the other hand, the doubling of the LA phonon life-
time at lower frequencies compensates for this in the pure crystal.
However, our simulations indicate that this increased lifetime of
the LA mode is a coincidence of how the phase space for scat-
tering processes becomes reconfigured as localization develops.
Hence, these anharmonic mechanisms are not optimized in PbSe
to achieve the lowest possible thermal conductivity and conse-
quently highest thermoelectric performance. A search for mate-
rials with a more optimal combination of localization and
scattering should be explored both computationally and experi-
mentally to understand all microscopic mechanisms controlling
transport properties. As our results show, anharmonic interac-
tions of strength beyond perturbative magnitudes can lead to
fundamentally changed lattice transport properties.

Methods
PbSe single-crystal synthesis and characterization. Single crystalline PbSe was
prepared in a two-step process using Pb and Se materials with 99.999% metals-
based purity. First, polycrystalline PbSe was obtained by reacting Pb and Se in a
quartz ampoule at 1100 °C. The resulting material was crushed and placed into a
quartz ampoule with a tapered bottom, which had been prepared by washing with
nitric acid, rinsing with deionized water, and drying. A large single crystal (>10 g)
was grown using the gradient freeze method. During this crystal growth, the quartz
ampoule was supported by a quartz rod, which resulted in a cold finger effect that
caused a crystal to be grown at the top of the ampoule due to vapor transport. This
additional crystal proved useful because it cleaved easily, allowing the small needles
utilized in inelastic x-ray measurements to be obtained and sealed under argon.
The Hall effect is a natural probe of the defect levels in PbSe. Hall effect mea-
surements were performed using a Quantum Design Physical Property Measure-
ment system with maximum applied fields of ±6 T, and electrons were found to be
the free carriers (Hall coefficient RH < 0). The Hall carrier density, nH= 1/RHe
where e is the fundamental charge, was ≈2 × 1017 cm−3 and 2 × 1018 cm−3 for
pieces of the main ingot and vapor transport crystal, respectively. X-ray analysis
showed that the large single crystal had a low-angle boundary (~3°) along one edge,
and this was removed by cutting this section away with a diamond saw. The larger
remaining 8-g single crystal was used for neutron scattering.

Triple-axis inelastic thermal neutron scattering. The 8-g single crystal of PbSe
was measured using the BT7 triple-axis spectrometer at the NIST Center for
Neutron Research32. The spectrometer was operated with filtered fixed final neu-
tron energy of 14.7 meV with horizontal collimation33 120′:80′:80′:120′, and the
crystal was mounted in a furnace with the (HHL) reflections in the scattering plane
using a vanadium holder. Vanadium is used for holders because of its incoherent
neutron scattering cross-section and because it can withstand high temperatures.
The instrument used pyrolytic graphite PG(002) for the monochromator and the
analyzer. To measure the transverse optic mode near the zone center, where an
ILM had been predicted10, measurements were performed along Q= [H, H, 3] at
11 equally spaced points in H from the (113) zone center to H= 0.75, which is half
way to the zone boundary. The LA mode was measured along Q= [H, H, 0] at 15
equally spaced points in H from the (220) zone center to H= 2.35. Scans were
repeated at temperatures, T= 300, 643, and 793 K.

Time-of-flight inelastic cold neutron scattering. To look for any fine energy
structure high-energy-resolution measurements were performed on the same 8 g
crystal using the HYSPEC time-of-flight cold neutron spectrometer at the Spalla-
tion Neutron Source of Oak Ridge National Laboratory34. The crystal was again
aligned in the (HHL) plane in a furnace using the same vanadium holder as with
the triple-axis measurements. Measurements were performed at T= 294 and 770 K
with an incident neutron energy of Ei= 17 meV and an energy resolution of ΔE ~
0.3 meV (FWHM) at 5 meV, the energy of the predicted sharp local mode fea-
ture10. A volume of data in Q-E space was obtained by rotating the angle between
the [100] axis and the incident beam in 0.5° steps and combining the data using the
HORACE software package35. The data were collected at each angle from −45° to
+90° to obtain a complete data set. Additional counting was done in the range
from −90° to −20° to obtain better statistics in the region of particular interest
within the (113) zone.

Inelastic x-ray scattering. Additional phonon measurements were performed
using IXS for the benefits of much smaller background and better out-of-plane Q
resolution than the neutron scattering measurements. Measurements of the LA
phonon were performed on a ~20 μm thick by 1 mm long splinter of the PbSe
single crystal using the HERIX-30 X-ray spectrometer at beamline 30-ID-C at the
Advanced Photon Source (APS)36,37 with 23.7 keV (λ= 0.5226 Å) focused to a
beam size of 35 μm× 10 μm. The ~20 μm thickness was chosen to maximize the
scattering signal in transmission IXS measurements. The instrumental energy

resolution for IXS scans was 1.5 meV (FWHM), smaller than the measured line-
widths. The PbSe single crystal splinter was loaded in a 100 μm ID glass capillary
with 6 μm walls and sealed under 1/3 an atmosphere of argon as a high-
temperature exchange gas. The capillary was then attached to a copper heater using
silver paint and sealed under a beryllium dome for high temperature measure-
ments. Measurements of the LA phonon were performed along Q= (2+ ς, 2+ ς,
0) at T= 294 and 770 K.

Simulation methods. First principles molecular dynamics simulations were carried
out using the projector augmented-wave (PAW) method38 as implemented in the
Vienna Ab initio Simulation Package (VASP)39–42, including polar effects on
phonons43. Exchange and correlations were treated using the AM05
functional44,45, and 600 eV was used as the plane-wave energy cutoff. The mole-
cular dynamics were carried out for ~50,000 time steps of 2 fs each with a 5 × 5 × 5
repetition of the unit cell (250 atoms), with temperature controlled by a
Nose–Hoover thermostat46,47. The trajectories were analyzed with the temperature
dependent effective potential method (TDEP)10,29,48, extracting second and third
order force constants from which the theoretical S(Q, E) was calculated29,49,50.

The scattering function for coherent excitation creation was derived from the
resulting momentum-resolved energy spectrum using51

Scohþ1 Q; Eð Þ /
X

j;q;G

nj qð Þ þ 1
D E

ωj qð Þ F Qð Þj j2 ´ δ E � �hωj

� �

δ Q� q� Gð Þ: ð1Þ

In this equation, upper case Q is the scattering wavevector, lower case q is the
excitation wavevector, and G is a reciprocal-lattice wavevector. The factor nj(q)+1

is the Bose–Einstein population nj ¼ 1= exp
�hωj

kT

h i

� 1
� �

plus one for phonon

creation. The delta functions guarantee conservation of energy and momentum in
the scattering process. The structure factor F(Q) is given by

F Qð Þ ¼
X

d

bd
ffiffiffiffiffiffiffi

Md

p Q � ejd
� �

exp iQ � rð Þ exp �Wdð Þ; ð2Þ

where the sum is over the atoms in the unit cell. The mass of the dth atom in the
unit cell is Md, bd is its neutron scattering length, r is its position vector, and exp
(−Wd) is the Debye–Waller factor. For each wavevector, q, the atomic
displacements for a given branch is characterized by the polarization vectors ejd(q)
for the atoms in the unit cell.

Thermoelectric properties. Thermal diffusivity was measured using a NETZSCH
LFA457 laser flash system. It follows ASTM E146152. The system uses an Nd-YAG
laser to deposit a short heat pulse (0.1–1.0 ms) to heat up the front surface of a
sample and an InSb IR detected measures the back-surface temperature rise.
Thermal diffusivity is calculated using Cowan’s method53 with pulse-width cor-
rection. Thermal diffusivity was measured from 300 to 800 K in 50 K increments
under argon purge gas at 100 ml/min. At each set point, three measurements were
carried out. Thermal diffusivity results can be used to calculate thermal con-
ductivity using: κ= αρCP in which α is thermal diffusivity, ρ is density, and CP is
the specific heat54.

Seebeck coefficient and electrical resistivity of the PbSe crystal was measured
using a ULVAC-Riko ZEM-3 system. The measurement was carried in −0.09MPa
static helium after 3 cycles of helium gas purge and rotary pump evacuation. The
sample was measured from 323 to 578 K in 50 K increments and from 578 to 794 K
in 25 K increments. The sample temperature is determined by the average of the
two R-type thermocouple probes in contact with the specimen. At each set point,
resistivity was measured before temperature gradients were applied. Three
temperature gradients at 10, 15, and 20 °C were applied to the bottom of the sample
in order to determine Seebeck coefficient. Details of the measurement, system
calibration, and accuracy can be found in ref. 55.

Data availability
The data that support the findings of this study are available from the corresponding
author on request.
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