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Modern quantum chemistry can make quantitative predictions on an immense array of chemical systems. However, the
interpretation of those predictions is often complicated by the complex wave function expansions used. Here we show
that an exceptionally simple algebraic construction allows for defining atomic core and valence orbitals, polarized by the
molecular environment, which can exactly represent self-consistent field wave functions. This construction provides an
unbiased and direct connection between quantum chemistry and empirical chemical concepts, and can be used, for example,
to calculate the nature of bonding in molecules, in chemical terms, from first principles. In particular, we find consistency
with eletronegativities (𝜒), C 1s core level shifts, resonance substituent parameters (𝜎𝑅), Lewis structures, and oxidation
states of transition metal complexes.

I. INTRODUCTION

Chemical concepts as fundamental as atomic orbitals (AOs)
in molecules, covalent bonds, or even partial charges, do not cor-
respond to physical observables and thus cannot be unambigu-
ously defined in pure quantum theory. This leads to the unpleas-
ing situation that quantum chemistry can tell us benzene’s heat
of formation with <2 kJ/mol accuracy,1 but, strictly speaking,
neither that it has twelve localized 𝜎-bonds and a delocalized 𝜋-
system, nor what the partial charges on the carbons are. Chemi-
cal bonds have even been compared to unicorns—mythical crea-
tures of which everyone knows how they look, despite nobody
ever having seen one.2
However, qualitative concepts are of essential importance

for practical chemistry, and thus a large number of compet-
ing techniques were developed for extracting them from quan-
tum chemical calculations. In particular, Bader’s atoms in
molecules3 and Weinhold’s natural atomic/bond orbital analysis
(NAO/NBO)4,5 are widely used for interpreting molecular elec-
tronic structure. Nonetheless, the former is known to produce
counter-intuitive results in many cases,6 and the latter, while un-
doubtedly having brought countless successes in chemical in-
terpretation, is complicated and pre-imposes various non-trivial
assumptions. Concretely, NBO analysis is based on the two
notions that atomic orbitals (AOs) in molecules have spherical
symmetry and can be obtained by a particular complex series of
transformations,4 and that a Lewis-like bonding pattern for any
given molecule exists and only needs to be found—by compar-
ing the wave function to all possible Lewis patterns.7 While nor-
mally applicable, violations of both assumptions are conceivable
in unusual bonding situations, and might then lead to erratic in-
terpretations. Energy decomposition and related techniques8–15
are also important and widely used in interpretation, but have
different aims.
We here present a new technique to connect quantitative self-

consistent field (SCF) wave functions to a qualitative chemical
picture. This technique is essentially free of empirical input,
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allows for computing the nature and shape of chemical bonds,
and is not biased towards any preconceived notion of bonding.
This is achieved by first defining a new intrinsic minimal ba-
sis (IMB),16 a set of perturbed core- and valence AOs which
can exactly describe the occupied molecular orbitals (MOs) of
a previously computed SCF wave function. We will show that
the intrinsic AOs (IAOs) thus defined can be directly interpreted
as the chemical AOs, and that partial charges and bond orbitals
(IBOs) derived from them perfectly agree with both experimen-
tal data and intuitive chemical concepts. In particular, we find
a natural emergence of the Lewis structure of molecules.
Suggestions to use either unpolarized17–20 or polarized21–24

free-atom AOs to interpret molecular wave functions appeared
early in the literature, and methods continue being developed.
Also IMBs spanning occupied orbitals, as this work is con-
cerned with, have been constructed before;16,25–31 a particularly
advanced one was recently introduced by Laikov,31 who also
discusses the literature in the field. However, despite the con-
ceptual advantages of such IMB, so far none of them have found
widespread use comparable to Bader or NAO analysis, and most
are technically rather complex and have not been intensively
tested with regard to empirical laws and facts. Our contribu-
tion is a IMB which is simple and efficient, its use in construct-
ing bond orbitals, and the demonstration that this combination
shows excellent promise for interpreting chemical bonding and
reactivity. The technique thereby provides a firm quantum me-
chanical basis for ubiquitous fundamental concepts.

II. CONSTRUCTION OF INTRINSIC ORBITALS

Assume that we have computed a molecular SCF wave func-
tion |Φ⟩. |Φ⟩ is defined by its occupied MOs |𝑖⟩ = ∑𝜇 |𝜇⟩ 𝐶𝜇𝑖 ,
where 𝜇 ∈ 𝐵1 are basis functions from a large basis set 𝐵1.
The key problem in interpreting wave functions is that the basis
functions |𝜇⟩ cannot be clearly associated with any atom; each
function will contribute most where it is most needed, and due
to 𝐵1’s high variational freedom, this often is not on the atom it
is placed on. On the other hand, if one were to expand the MOs
over a minimal basis 𝐵2 of free-atom AOs (i.e., a basis consist-
ing of AOs calculated with sufficient radial freedom, but e.g.,
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with only AOs 1s,2s,2px-2pz for each C atom), the wave func-
tion would be easy to interpret. But it would be inaccurate, and
might be even qualitatively incorrect, because free-atom AOs
contain no polarization due to the molecular environment. We
thus propose to first calculate an accurate wave function |Φ⟩,
and then to form a set of polarized AOs |𝜌⟩ ∉ 𝐵2 which can
exactly express |Φ⟩s occupied MOs |𝑖⟩.
For this, we first split the free-atom AOs | ̃𝜌⟩ ∈ 𝐵2 into

contributions corresponding to a depolarized occupied space�̃� = ∑ ̃𝑖 | ̃𝑖⟩ ⟨ ̃𝑖| and its complement 1 − �̃�. Let
𝑃12 = 𝜇𝜈∈𝐵1

|𝜇⟩ 𝑆𝜇𝜈 ⟨𝜈| 𝑃21 = 𝜌𝜎∈𝐵2
|𝜌⟩ 𝑆𝜌𝜎 ⟨𝜎|

denote the projectors onto the bases 𝐵1 and 𝐵2, respectively,
where 𝑆𝜇𝜈 /𝑆𝜌𝜎 are inverse overlap matrices in 𝐵1/𝐵2. [Note
that concerning projections from the minimal basis 𝐵2 to the
large basis 𝐵1, 𝑃12 is effectively an identity operator]. Then the
depolarized MOs

{| ̃𝑖⟩} = orth{𝑃12𝑃21 |𝑖⟩} (1)

are obtained by projecting the accurate MOs |𝑖⟩ from the main
basis 𝐵1 onto the minimal basis 𝐵2 (which cannot express po-
larization) and back. As a consequence, the | ̃𝑖⟩ lie completely
within the space spanned by {𝑃12 | ̃𝜌⟩ , | ̃𝜌⟩ ∈ 𝐵2} and thus the
free-atom AOs 𝑃12 | ̃𝜌⟩ can be exactly split into one subspace
corresponding to the occupied orbitals (span{�̃�𝑃12 | ̃𝜌⟩}) and a
second subspace corresponding to the virtual valence orbitals
(span{(1 − �̃�)𝑃12 | ̃𝜌⟩}). We can then get the polarized AOs|𝜌⟩ from the free-atom AOs | ̃𝜌⟩ by simply projecting their con-
tributions in �̃� and 1 − �̃� onto their polarized counterparts𝑂 = ∑𝑖 |𝑖⟩ ⟨𝑖| and 1 − 𝑂:

|𝜌⟩ = 𝑂�̃� + (1 − 𝑂)(1 − �̃�) 𝑃12 | ̃𝜌⟩ . (2)

Thus, to construct the polarized AOs, it is sufficient to load a
tabulated free-atom basis, calculate its overlap with the main ba-
sis and within itself, and perform the numerically trivial projec-
tion (2). Contrary to the related approach of Ref. 16, no func-
tional optimization or reference to virtual orbitals is required.
In this article we will also symmetrically orthogonalize the vec-
tors obtained by (2), to arrive at an orthonormal minimal basis
which divides the one-particle space into atomic contributions;
the latter will be referred to as intrinsic atomic orbitals (IAOs).
While the construction makes reference to free-atom AOs

through basis 𝐵2, it must be stressed that these are not empir-
ical quantities. Free-atom orbitals can be calculated with any
high-level quantum chemistry program. However, in practice
this is not even required because they are already tabulated as
part of several standard basis sets; here we take the AO func-
tions of cc-pVTZ, which are spherically averaged ground-state
Hartree-Fock orbitals. (Further technical comments on the IAO
construction and the choice and nature of the free-atom orbitals
are provided in the appendices B and C).
Since IAOs are directly associated with atoms, they can be

used to define atomic properties like partial charges. Let us de-
note the closed-shell SCF density matrix as 𝛾 = 2 ∑𝑖 |𝑖⟩ ⟨𝑖|,

CH4 HCN
Method/Basis C H H C N
IAO/def2-SVP𝑎 –0.49 +0.12 +0.21 –0.01 –0.20
IAO/def2-TZVPP𝑎 –0.52 +0.13 +0.22 –0.01 –0.21
IAO/def2-QZVPP𝑎 –0.52 +0.13 +0.22 –0.01 –0.21
IAO/cc-pVTZ𝑎 –0.52 +0.13 +0.22 –0.01 –0.21
IAO/aug-cc-pVTZ𝑎 –0.52 +0.13 +0.22 –0.01 –0.21

Bader/TZ2P𝑏 +0.05 –0.01 +0.19 +0.82 –1.01

Mulliken/DZ𝑏 –0.98 +0.25 +0.34 +0.03 –0.38
Mulliken/DZP𝑏 +0.05 –0.01 +0.16 +0.28 –0.44
Mulliken/TZ2P𝑏 +0.61 –0.15 –0.02 +0.27 –0.25

IAO/cc-pVTZ𝑐 –0.49 +0.12 +0.22 –0.03 –0.19
IAO/cc-pVTZ𝑑 –0.49 +0.12 +0.21 –0.03 –0.18

TABLE I. (a) Hartree-Fock partial charges via Eq. (3). (b) Kohn-
Sham/BP86 partial charges6 via the Bader and Mulliken methods. (c)
As 𝑎, but with Huzinaga MINI32 for basis 𝐵2 instead of MINAO (ap-
pendix B). (d) As 𝑐, but with 𝐵2 functions taken from ANO-RCC.33,34

where 𝑖 are the occupied MOs. We can then define

𝑞𝐴 = 𝑍𝐴 − 𝜌∈𝐴 ⟨𝜌|𝛾|𝜌⟩ (3)

as the partial charge on atom 𝐴, where 𝑍𝐴 is the atom’s nu-
clear charge and 𝜌 its IAOs. Tab. I shows that the partial charges
obtained are insensitive to the basis set, follow trends in elec-
tronegativities, and some defects seen in other methods (e.g.,
Bader’s description of the CN bond in HCN as ionic) are ab-
sent. Partial charges will be further analyzed below.
IAOs provide access to atomic properties, but it is often de-

sirable to get a clearer picture of molecular bonding. We now
show that by combining the IAOs with orbital localization in
the spirit of Pipek-Mezey (PM),35 one can explicitly construct
bond orbitals (IBOs), without any empirical input, and entirely
within the framework of MO theory. A Slater determinant |Φ⟩
is invariant to unitary rotations |𝑖 ⟩ = ∑𝑖 |𝑖⟩ 𝑈𝑖𝑖 amongst its
occupied MOs |𝑖⟩. We can thus define the IBOs by maximizing

𝐿 = atoms
𝐴

occ
𝑖 [𝑛𝐴(𝑖 )]4 (4)

with respect to 𝑈𝑖𝑖 . Here 𝑛𝐴(𝑖 ) = 2 ∑𝜌∈𝐴 ⟨𝑖 |𝜌⟩ ⟨𝜌|𝑖 ⟩ is the
number of |𝑖 ⟩’s electrons located on the IAOs 𝜌 of atom 𝐴.
This construction effectively minimizes the number of atoms an
orbital is centered on. Technical notes (e.g., on the choice of ex-
ponent 4) and an explicit algorithm to perform the optimization
are given in appendix D.
Fig. 1 shows IBOs computed for the acrylic acid molecule.

Here 16 of 19 occupied MOs can be expressed to >99% by
charge with IAOs on one or two centers, respectively. The
three other MOs are part of a 𝜋-system: The oxygen 𝑝 lone
pairs (which have about 7% bonding character), and the C=C𝜋-bond (which has about 3% contributions on the third C atom,
and about 1% on the doubly-bonded O). In total, we see a direct
correspondence of the obtained IBOs with the classical bonding
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FIG. 1. IBOs of acrylic acid: a and b: two 𝑠𝑝-hybrid and two 𝑝 lone
pairs (1-center orbtials). c and d: eight 𝜎-bonds and two 𝜋-bonds (2-
center orbitals). Core orbitals are not shown. There are a total of 19
IBOs, expanded over 29 IAOs (5 for each C,O and 1 for each H).

picture: 𝜎-bonds, 𝜋-bonds, and lone pairs are exactly where ex-
pected, and the 𝜋-system is slightly delocalized. We stress again
that these 19 IBOs are exactly equivalent to the occupied MOs
they are generated from: Their anti-symmetrized product is the
SCF wave function, and this is a valid representation of its elec-
tronic structure. Note that the IBO construction makes no refer-
ence to the molecule’s Lewis structure whatsoever; the classical
bonding picture thus arises as an emergent phenomenon rooted
in the molecular electronic structure itself, even if not imposed.
The major improvement of IBOs over PM orbitals is that they

are based on IAO charges instead of the erraticMulliken charges
(cf. CH4 in Tab. I). As a result, IBOs are always well-defined,
while PM orbitals are unsuitable for interpretation because they
are unphysically tied to the basis set19 (they do not even have a
basis set limit). IBOs lift this weakness while retaining and even
improving on PM’s computational attractiveness.

III. CONSISTENCY WITH EMPIRICAL FACTS

Our hypothesis is that IAOs offer a chemically sound defi-
nition of atoms in a molecule. But since these are not phys-
ically observable, this claim can only be backed by consis-
tency with empirical laws and facts.36 We thus now investi-
gate whether partial charges derived from IAOs follow expected
trends based on electronegativities, C 1s core level shifts, and
linear free-energy relationships for resonance substituent effects
(Taft’s 𝜎𝑅). We then go on to see how IBOs reflect bonding in
some non-trivial molecules (Section III B), and how coordina-
tion complex oxidation states manifest themselves in terms of
IAOs (Section III C).

A. Partial charges: electronegativities, core level shifts,
and substituent effects

We saw in Tab. I that, unlike Mulliken charges, IAO charges
are insensitive to the employed basis set, and unlike Bader
charges, IAO do not erronously describe the CN bond in HCN
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FIG. 2. (a): IAO partial charges in CH3X (X=F, Cl, Br, H) plotted
against 𝜒(𝐶) − 𝜒(𝑋). Δ𝜒 = 0 is marked by a dotted line. (b): Partial
charges in YH4 (Y=C, Si, Ge), the x-axis is 𝜒(𝐻) − 𝜒(𝑌).
as ionic. We now follow Ref. 6 and investigate IAO charges
in relation to electronegativity 𝜒 diffences. We start with the
series CH3X (X=F, Cl, Br, H). Due to the (Allen37) electroneg-
ativities (F: 4.193, Cl: 2.869, Br: 2.685, C: 2.544, H: 2.300),
we expect halogens to have a negative charge, getting smaller in
the series, and hydrogen to have a positive charge. As shown
in Fig. 2a, this is what we find. In Fig. 2b, we show the se-
ries YH4 (Y=C, Si, Ge). We find charges in close correspon-
dence with 𝜒 (C: 2.544, Si: 1.916, Ge: 1.994), and the inver-
sion that 𝜒(Si) < 𝜒(Ge) is properly reflected. If we extrapolate
the curves in a and b to Δ𝜒 = 0, we find in both cases that𝑞(𝑋) ≈ 0 and 𝑞(𝑌) ≈ 0, respectively. That is, if there is no dif-
ference in electronegativity, IAO partial charges predict no bond
polarization. This consistency with empirical electronegativi-
ties is further reflected in the almost linear shapes of the curves.
In the series CH4−𝑛F𝑛 (n=0…4), we find C partial charges of
-0.52, -0.01, 0.44, 0.85, 1.23. The charge increase by ≈0.5e−
per fluorine atom agrees with the understanding of CF bonds in
organic chemistry38 and earlier calculations,39 contrary to the
much smaller charges found in Hirshfeld and Voronoi deforma-
tion density (VDD) analysis.6
A different test of IAO charges can be performed by com-

paring to experimental data which are known to be highly cor-
related with charge states of specific atoms 𝐴. A prime example
for this is the C 1s core-level ionization energy shift due to the
molecular environment. This shift can be estimated40 as

ΔIPC 1s = 𝑘 ⋅ 𝑞𝐴 + 𝐵≠𝐴
𝑞𝐵𝐑𝐴 − 𝐑𝐵 + Δ𝐸relax, (5)

where the second term is an estimate for the electrostatic po-
tential of the other atoms 𝐵, the last term is a contribution
due to core orbital relaxation, and 𝑘 is a (hybridization de-
pendent) proportionality constant. This model has been em-
ployed to calibrate widely used electronegativity equilibration
models,41 and has been found to be perfectly correlated with
both experimental42 and theoretical43 mean dipole derivatives
(which for the molecules studied here can be interpreted as
charges,43 but not generally44). In Fig. 3 we show the results
obtained with IAO partial charges based on Hartree-Fock wave
functions for all the sp3 hybridized molecules as studied in Ref.
42. IAO charges where used both for the abscissa and 𝑉 , the
second term in Eq. (5). Δ𝐸relax was calculated at Hartree-Fock
level by a ΔSCF procedure. We here obtain a linear regres-
sion coefficient of 𝑟 = 0.997, or 𝑟 = 0.9995 if the two outliers
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FIG. 3. Partial charge on sp3 carbon versus experimental C 1s ioniza-
tion energy shift corrected for core relaxation effects and electrostatic
potentials of the other cores (Eq. (5)), relative to methane.

CF3CF3 and CH3C≡CH3 are excluded. This is the same level
of correlation as obtained with dipole moment derivatives,42 and
much higher than for CHELPS, Bader, or Mulliken charges.43
One advantage of Hilbert-space based partial charges over

real-space partial charges is that they can be split not only into
atomic contributions, but also orbital contributions. Recently
Ozimiński and Dobrowolski45 used this freedom to introduce a
set of descriptors for the electronic 𝜎- and 𝜋-substituent effects,
called sEDA and pEDA, and showed that they are both inter-
nally consistent and highly correlated with empirical substituent
effect parameters like Taft’s 𝜎𝑅. Concretely, for a substituted
benzene R-C6H5, the pEDA parameter is defined as the num-
ber of 𝑝𝑧 electrons on the six carbon atoms of the benzene ring,
relative to the unsubstituted benzene:

pEDA = 6
𝑖=1 𝑞Ci2pz (C6H6) − 6

𝑖=1 𝑞Ci2pz (R-C6H5), (6)

where Ozimiński defined this quantity based on NAO popula-
tion analysis4 with a specified type of wave function and ba-
sis set. In order to demonstrate the potential of IAO charges
in the interpretation of chemical reactivity, in Fig. 4 we show
that the same kind of correlation with empirical substituent
constants is also obtained when calculating pEDA from IAO
charges (𝑟 = 0.966) instead of NAO charges (𝑟 = 0.94345).
While Fig. 4 still shows considerable scatter, it must be stressed
that linear free energy relationships are not strict laws; rather,
they are a form of condensing highly complex interactions into
an effective, easy to handle, descriptor, in order to facilitate pre-
dicting reactivity trends. Consequently, neither the accuracy of
the relationships themselves is much better than the correlations
obtained here (see, e.g., Fig. 1 in Ref. 46), nor is the inter-
nal consistency of different ways of evaluating its substituent
constants (e.g., r=0.982 for 𝜎𝑅 from protonation equilibria ver-
sus 𝜎𝑅 from F-NMR shifts of para- and meta-substituted fluo-
robenzenes, see Sec. 1.D of Ref. 47). This does not diminish
their usefulness. Calculating such EDA descriptors as obtained
here is computationally trivial, which makes them an attractive
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FIG. 4. Correlation of pEDA based on IAO/Hartree-Fock charges ver-
sus 𝜎𝑅 substituent constants taken from Tab. IV of Ref.47.

quantity in the study of unusual substituents not be contained
in common tables, or for testing if the substituents behave dif-
ferently for different hosts than benzene. Indeed, a similar idea
to Ozimiński’s has been considered previously,48 but was much
less practical due to being based on carefully crafted real-space
integration because Hilbert space approaches were considered
unreliable.48

B. Non-trivial bonding in terms of bond orbitals

A deeper insight into the nature of a molecule’s bonding can
be obtained by calculating its bond orbitals. As previously noted,
IBOs are an exact representation of SCF wave functions, and
we have seen in Fig. 1 that they normally reflect the classical
bonding concepts one to one. However, in many molecules the
Lewis structure does not tell the entire story. Therefore we now
probe how IBOs reflect bonding in some well known, but in
different senses non-trivial molecules.
Benzene: A straight application of the IBO construction pro-

duces the orbitals a–e shown in Fig. 5. As expected, both the CC
and the CH 𝜎-bonds of the system are completely localized, and
can be be expressed to >99%with IAOs on only the two bonded
centers. As a prototypical delocalized system, this does, how-
ever, not hold for the 𝜋 system. Two aspects are important: (i)
The three 𝜋 orbitals cannot be expressed with IAOs on less than
four centers each (in c–e having the weights 1.000, 0.444 (or-
tho), and 0.111 (para)), and (ii) there are two different maximal
localizations of the functional Eq. (4), orbitals c–e and orbitals
c–e rotated by 60∘ in real space. If in Eq. (4) we had chosen to
maximize ∑ 𝑛𝐴(𝑖)2 instead of ∑ 𝑛𝐴(𝑖)4, there would even be a
continuum of maximal localizations, also including orbitals f–h
(which look closer to classical 𝜋-bonds), and everything in be-
tween. Both kinds of local 𝜋-orbitals have been discussed by
England and coworkers.49 In this case the classical resonance
structure reflects the nature of the bonding well.
Cyclopropane: According to its Lewis structure, cyclo-

propane is a simple alkane. However, one could expect that
the massive ring strain must have some impact on the bond-
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FIG. 5. IBOs of benzene: a six CC 𝜎-bonds, and b six CH 𝜎-bonds,
both localized, and c-e one of the two equivalent IBO sets representing
the delocalized 𝜋-system of three orbitals. f-h: See text

ing. Nevertheless, if we calculate the IBOs of this molecule
(Fig. 6, a and b), we find six CH single bonds and three CC sin-
gle bonds, all perfectly localized (to >99%) on the two bonded
centers, with no delocalization whatsoever. However, a closer
look reveals that while the carbon part of the CH bond orbitals
has about 28% 𝑠 character and 72% 𝑝 character, (close to the
ideal 𝑠𝑝3 hybrid values of 1/4𝑠 + 3/4𝑝), the CC bonds only have
18% 𝑠 character and 82% 𝑝 character. So although they are lo-
calized single bonds, they must be considered an intermediate
between a regular 𝑠𝑝3-hybrid 𝜎-bond and a 𝜋-bond. This ex-
plains the well-known similarity in reactivity to alkenes.50 The
bent bonds have previously been discussed in Refs. 50–52 and
references therein.
Diborane: B2H6 has been a serious challenge to the classi-

cal bonding picture, with even scientists like Pauling champi-
oning an ethane-like structure until proven wrong irrefutably.53
Its bridged structure was popularized in 1943,54 and spawned
investigations culminating in Lipscomb’s 1976 Nobel price for
his “studies on the structure of boranes illuminating problems of
chemical bonding”. One could think that this molecule presents
a challenge to a IBO bonding analysis. However, IBOs are just
the most local exact description of a first-principles wave func-
tion, and their construction does not make any reference to any
perceived nature of the bonding. Consequently, for IBO analy-
sis diborane is not different than other molecules, and it uncov-
ers diborane’s two two-electron three-center bonds (Fig. 6d) just
as its six standard 𝜎-bonds (c), without any problems.
Sulfur trioxide: SO3 is one of the simplest “hypervalent”

molecules, apparently violating the octet rule. While a direct𝑑-orbital bonding has been ruled out,55–57 hypervalent species
remain a debated topic to this day.58–60 An IBO analysis of SO3
finds two oxygen lone pairs, one 𝜎- and one 𝜋-bond (Fig. 6e) per
oxygen. Formally this calls for describing the SO bonds as dou-
ble bonds. However, the 𝜋-bonds have only a small bonding
component (83% on oxygen, 15% on sulfur), so it is a matter

a c e

b d f

FIG. 6. IBO of some molecules with non-Lewis bonding: a CC banana
bond and bCH 𝜎-bond of cyclopropane, cBH 𝜎-bond and dBHB 2e3c
bond of diborane, e SO 𝜋-bond and f SO 𝜎-bond of sulfur trioxide.
of taste whether they should be called true 𝜋-bonds or not. But
in any case, they are highly localized (98% on two centers) and
clearly not resonating, so the resonance structure

O

O

O

S O

O

O

S O

O

O

S

—commonly found in textbooks—is at best misleading.61
While also the present picture results in a bond order of about
1.3, here the bonds are static and near uncorrelated with each
other, unlike in a truly delocalized system like benzene. The
simple bonding picture consisting of polar two-center bonds has
also been obtained by Cunningham and coworkers in a valence
bond analysis.57
Bifluoride anion: We see a similar discrepancy to textbook

knowledge in the description of FHF−. This molecule, still
actively researched,62–65 is alternatively cited as the strongest
known hydrogen bond,66 or as an example for a 4-electron 3-
center (4e3c) bond (since an influential paper by Pimentel67).
However, IBO analysis reveals that it can be perfectly described
by six F lone pairs and two HF single bonds, all completely lo-
calized. Since the bonds are very polar, there is again no viola-
tion of the octet rule: In fact, the H orbital has a population of
only 0.6 electrons total (out of the up to two electrons it theoreti-
cally could harbor), and the nature of bonding in this molecule is
not very different than in HF. That such “4e3c” bonds are often
just two polar 2e2c bonds was previously noted by Ponec and
coworkers,68 but this view is not yet generally accepted.69,70

C. Oxidation states of transition metal complexes

The occupancies of individual orbitals, as provided by IAOs,
can also be employed to define oxidation states of coordinated
transition metals (TMs). This may seem surprising because
oxidation states are known to be a vague concept71 and it is
well established that no simple relationship to partial charges
exists.72–74 However, Sit and coworkers recently introduced an
interesting perturbative argument which may elucidate the situ-
ation, at least for weakly bonded TMs:75
For a free, isolated TM ion the oxidation state is unambigu-
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ously defined (as its ionic charge), and the ion’s d spin-orbitals
are either fully occupied (𝑛 = 1) or fully unoccupied (𝑛 = 0).
Sit and coworkers75 then argue that only the fully occupied d
spin-orbitals are relevant for the TMs oxidation state, and that
this remains to be the case in a coordinated environment: While
some overlap of these d orbitals with ligand orbitals may oc-
cur, it is normally weak, and thus the bonding and anti-bonding
orbitals formed between the TM and the ligand are occupied
equally. Consequently, a d-orbital with occupation 𝑛 = 1.0 in
the free ion remains at 𝑛 ≈ 1.0 in the complex, while all other d-
orbital occupations result from ligand donation74 to (and bond-
ing with) previously empty d-orbitals. We can thus find the free
ion correponding to a coordinated TM, and therefore its oxi-
dation state, by simply counting the number of d spin orbitals
with 𝑛 ≈ 1.0. This analysis contains two assumptions: (i) the
ligands should not be able to withdraw d electrons from the TM
instead of bonding to them and (ii) the occupation numbers of
the d electrons can be identified.
To address (ii), Sit an coworkers75 employed a projection

onto unpolarized free-ion d AOs, which were additionally not
orthogonalized to other orbitals. IAOs might provide a better
basis for obtaining such occupations because they take envi-
ronment polarization into account and they partition all elec-
trons of the molecule into atomic contributions, without double-
counting or missing electrons. In the IAO basis one can thus
simply diagonalize the TM’s 5 × 5 d-orbital block of the spin-
orbital density matrix in order to obtain the sought after occu-
pation numbers (for alpha and beta spin separately), or, alter-
natively, see how many IBOs fully localize to the TM center.
We here applied the diagonalization method to the TM clus-
ters studied in Ref. 76. These are the octahedral ML6 clus-
ters with M=V(II), Mn(II), Mn(III), Fe(II), Fe(III), Ni(II), and
Zn(II) combined with ligands L= Cl−, H2O, CN− and CO. For
Cl− (a weak-field ligand) only high-spin complexes are consid-
ered, for CN− and CO (both strong-field ligands) only low-spin
complexes, and for H2O both high-spin and low-spin calcula-
tions are performed. The results are reported in Tab. II. In all
complexes we see a clear distinction between the fully and non-
fully occupied d orbitals (in most cases occupations very near to
1.0 are obtained), and the number of such 𝑛 ≈ 1 orbitals is per-
fectly consistent with the formal oxidation state as predicted by
Sit. The largest deviations are seen for the CO ligand; this may
be related to CO’s strong 𝜋-acceptor properties, which could
cause a violation of condition (i) mentioned above. But in any
case, the assignment of oxidation states appears to be straight-
forward and unambiguous for the complexes considered here.
The combination of Sit’s analysis with the here proposed IAO
technique may thus offer a useful method for classifying oxida-
tion states also in less transparent complexes.

IV. CONCLUSIONS AND OUTLOOK

The proposed IAOs offers a simple and transparent way to
relate chemical intuition to quantum chemistry. In particular,
the fact that most simple bonds can be expressed to >99% with
IAOs on only two atoms strongly indicates that IAOs can be in-
terpreted as chemical valence orbitals in molecules. That prop-

erties of individual such orbitals can then be directly calculated,
as shown in Fig. 4, may turn out to be a decisive factor in future
research on chemical reactivity. Similarly, IAOs may greatly
simplify the construction of realistic tight-binding model Hamil-
tonians and their use in eludicating complex correlated elec-
tronic structure phenomena.77,78

The proposed IBOs can help to uncover the nature of bond-
ing in molecules—due to their unbiased nature also in unusual
cases. However, the IBO construction’s simplicity, ease of im-
plementation, and high runtime efficiency make it an excellent
choice also where localized orbitals are used for purely technical
reasons (e.g., in local electron correlation methods).
We acknowledge funding through ERC Advanced Grant

320723 (ASES).

Appendix A: Availability of the IAO and IBO techniques

The techniques have been implemented into the development
version of Molpro and will become available with its next pub-
lic release. Additionally, a complete example implementation
of the IAO and IBO constructions will be made available at
http://www.theochem.uni-stuttgart.de/˜knizia/ (Python source).

Appendix B: Notes on the free-atom atomic orbitals

Effectively, the only empirical input to the entire IAO/IBO
construction is the choice of the atomic state from which the
free-atom AOs are calculated. For the data presented in the pa-
per (except for the TMs of Tab. II), we used spherically averaged
ground-state Hartree-Fock orbitals; these were simply taken
from the contracted functions of the cc-pVTZ basis sets79–81
(the set is called “MINAO” in Molpro). These AOs are suf-
ficiently accurate for the present purpose, but in principle one
could re-calculate them with a larger freedom in the radial space
of the occupied AOs. For pragmatic reasons we used minimal
basis subsets of cc-pVTZ82 also for the TMs, but in this case
cc-pVTZ is derived from averages over important states instead
of ground states only.82 The impact of this choice should be
checked at a later point in time.
While one could argue for using AOs from a promoted state83

or valence state,84 we here prefer the ground state as reference.
This choice is made mainly because it is both observable and
unique, and because this way the presented theory obtains the
property of generalized observability as defined by Cioslowski
and Surján.85 Initial numerical experiments indicated that in
most cases neither choice (ground state, valence state, or pro-
moted state) makes a large difference to results obtained via IAO
analysis, and that the presented method is less sensitive to the
choice of the free atom state than Hirshfeld or VDD methods.6
However, some further research on how to best deal with cases
in which the atomic character in the molecule differs consider-
ably from the ground state may be warranted.
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Complex 𝑆𝑍 d orbital occupation

Fe(II); expected 6 singly occupied d orbitals

[FeCl6]4− A 1.00 1.00 1.00 1.00 1.00
(spin 4) B 1.00 0.06 0.06 0.01 0.01

[Fe(H2O)6]2+ A 1.00 1.00 1.00 0.06 0.06
(spin 0) B 1.00 1.00 1.00 0.06 0.06

[Fe(H2O)6]2+ A 1.00 1.00 1.00 1.00 1.00
(spin 4) B 1.00 0.05 0.05 0.01 0.01

[Fe(CN)6]4− A 0.97 0.97 0.97 0.21 0.21
(spin 0) B 0.97 0.97 0.97 0.21 0.21

[Fe(CO)6]2+ A 0.93 0.93 0.93 0.31 0.31
(spin 0) B 0.93 0.93 0.93 0.31 0.31

Fe(III); expected 5 singly occupied d orbitals

[FeCl6]3− A 1.00 1.00 1.00 1.00 1.00
(spin 5) B 0.15 0.15 0.03 0.03 0.03

[Fe(H2O)6]3+ A 1.00 1.00 1.00 0.13 0.11
(spin 1) B 1.00 1.00 0.13 0.11 0.03

[Fe(H2O)6]3+ A 1.00 1.00 1.00 1.00 1.00
(spin 5) B 0.09 0.09 0.03 0.02 0.01

[Fe(CN)6]3− A 0.99 0.99 0.99 0.33 0.28
(spin 1) B 0.99 0.99 0.33 0.28 0.01

[Fe(CO)6]3+ A 0.98 0.96 0.96 0.41 0.37
(spin 1) B 0.96 0.96 0.41 0.37 0.02

Complex 𝑆𝑍 d orbital occupation

Mn(II); expected 5 singly occupied d orbitals

[MnCl6]4− A 1.00 1.00 1.00 1.00 1.00
(spin 5) B 0.05 0.05 0.01 0.01 0.01

[Mn(H2O)6]2+ A 1.00 1.00 1.00 0.05 0.05
(spin 1) B 1.00 1.00 0.05 0.05 0.01

[Mn(H2O)6]2+ A 1.00 1.00 1.00 1.00 1.00
(spin 5) B 0.04 0.04 0.01 0.01 0.00

[Mn(CN)6]4− A 0.98 0.96 0.96 0.20 0.19
(spin 1) B 0.96 0.96 0.20 0.19 0.01

[Mn(CO)6]2+ A 0.94 0.90 0.90 0.32 0.30
(spin 1) B 0.90 0.90 0.32 0.30 0.01

Mn(III); expected 4 singly occupied d orbitals

[MnCl6]3− A 1.00 1.00 1.00 1.00 0.20
(spin 4) B 0.20 0.11 0.02 0.02 0.02

[Mn(H2O)6]3+ A 1.00 1.00 1.00 0.11 0.09
(spin 2) B 1.00 0.11 0.09 0.02 0.01

[Mn(H2O)6]3+ A 1.00 1.00 1.00 1.00 0.11
(spin 4) B 0.11 0.08 0.02 0.01 0.00

[Mn(CN)6]3− A 0.99 0.99 0.98 0.29 0.26
(spin 2) B 0.98 0.29 0.26 0.01 0.01

[Mn(CO)6]3+ A 0.97 0.97 0.95 0.38 0.36
(spin 2) B 0.95 0.38 0.36 0.02 0.02

Complex 𝑆𝑍 d orbital occupation

Ni(II); expected 8 singly occupied d orbitals

[NiCl6]4− A 1.00 1.00 1.00 1.00 1.00
(spin 2) B 1.00 1.00 1.00 0.05 0.05

[Ni(H2O)6]2+ A 1.00 1.00 1.00 1.00 1.00
(spin 2) B 1.00 1.00 1.00 0.05 0.05

[Ni(CN)6]4− A 1.00 1.00 0.99 0.99 0.99
(spin 2) B 0.99 0.99 0.99 0.20 0.20

[Ni(CO)6]2+ A 0.99 0.99 0.97 0.97 0.97
(spin 2) B 0.97 0.97 0.97 0.28 0.28

V(II); expected 3 singly occupied d orbitals

[VCl6]4− A 1.00 1.00 1.00 0.12 0.12
(spin 3) B 0.12 0.12 0.03 0.03 0.03

[V(H2O)6]2+ A 1.00 1.00 1.00 0.07 0.07
(spin 3) B 0.07 0.07 0.02 0.01 0.01

[V(CN)6]4− A 0.94 0.94 0.94 0.19 0.19
(spin 3) B 0.19 0.19 0.01 0.01 0.01

[V(CO)6]2+ A 0.90 0.90 0.90 0.25 0.25
(spin 3) B 0.25 0.25 0.01 0.01 0.01

Complex 𝑆𝑍 d orbital occupation

Zn(II); expected 10 singly occupied d orbitals

[ZnCl6]4− A 1.00 1.00 1.00 1.00 1.00
(spin 0) B 1.00 1.00 1.00 1.00 1.00

[Zn(H2O)6]2+ A 1.00 1.00 1.00 1.00 1.00
(spin 0) B 1.00 1.00 1.00 1.00 1.00

[Zn(CN)6]4− A 1.00 1.00 1.00 1.00 0.88
(spin 0) B 1.00 1.00 1.00 1.00 0.88

[Zn(CO)6]2+ A 1.00 1.00 0.99 0.99 0.99
(spin 0) B 1.00 1.00 0.99 0.99 0.99

TABLE II. IAO d-orbital occupations of octahedral ML6 coordination complexes. Shown are the eigenvalues of the 5 × 5 block of the alpha-spin
(A) and beta-spin (B) density matrices. Sub-captions note the number of fully occupied d orbitals expected for a TM of the given oxidation state75.
Orbital occupations we regard as near 1.0 are highlighted.
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Appendix C: Technical notes on the IAO construction

The explicit matrix form of the projector 𝑃12 for contra-
variant indices (like basis orbital coefficients) is

𝐏12 = 𝐒−11 𝐒12,
where [𝐒1]𝜇𝜈 = ⟨𝜇|𝜈⟩ (𝜇, 𝜈 ∈ 𝐵1) is the overlap matrix within
basis 𝐵1 and [𝐒12]𝜇𝜎 = ⟨𝜇|𝜎⟩ (𝜇 ∈ 𝐵1, 𝜎 ∈ 𝐵2) the overlap
matrix between𝐵1 and𝐵2. An explicit proof of this form can be
found in Eq. (3) of Ref. 86 (note that a projector to a space 𝑌 is
defined by mapping any point 𝑥 to its closest point 𝑦 ∈ span(𝑌),
i.e. 𝑃𝑥 = argmin𝑦∈𝑌 ‖𝑥 − 𝑦‖2), but it also can be easily seen by
considering the index form 𝐶𝜇𝑖 = ∑𝜈𝜎 𝑆𝜇𝜈𝑆𝜈𝜎𝐶𝜎𝑖 , where the
inverse overlap matrix 𝑆𝜇𝜈 ≡ [𝐒−11 ]𝜇𝜈 within 𝐵1 is used to con-
vert one index (𝜈) back from covariant to contra-variant. (See
Ref. 87 for an in-depth discussion of the non-orthogonal tensor
formalism in the context of quantum chemistry). The projector𝑃21 is obtained by exchanging all indices 1,2. Note that if the
main basis 𝐵1 is sufficiently large (as is normally the case), the
vectors from 𝐵2 can be expressed almost exactly in 𝐵1; thus,𝑃12 is very close to the identity operator and only included for
completeness.
Let 𝐂 denote the orbital coefficient matrix of |𝑖⟩ =∑𝜇 |𝜇⟩ 𝐶𝜇𝑖. Then the matrix form of Eqs. (1),(2) become:

�̃� = orth(𝐒−11 𝐒12𝐒−12 𝐒21𝐂),𝐀 = 𝐂𝐂𝑇 𝐒1�̃��̃�𝑇 𝐒1𝐏12 + (1 − 𝐂𝐂𝑇 𝐒1)(1 − �̃��̃�𝑇 𝐒1)𝐏12.
The orthonormalization is defined as

orth(𝐂) = 𝐂[𝐂𝑇 𝐒1𝐂]−1/2,
where 𝐗−1/2 denotes the matrix inverse square root (however,
the procedure is invariant to the concrete type of orthogonaliza-
tion used). The resulting [𝐀]𝜇𝜌 is the coefficient matrix of the
not-yet-orthogonal IAO |𝜌⟩ = ∑𝜇 |𝜇⟩ 𝐴𝜇𝜌 (𝜇 ∈ 𝐵1, 𝜌 ∈ 𝐵2).
Here 𝜌 should be considered as an index of the free-atom AO
the perturbed AO |𝜌⟩ corresponds to. The vectors 𝐀 are subse-
quently multiplied by [𝐀𝑇 𝐒1𝐀]−1/2 from the right to arrive at a
symmetrically orthogonalized set of IAO coefficients.
For applications where runtime performance or formula sim-

plicity is of utmost importance (like in analytic gradients), the
simpler formula 𝐀 ≈ (𝐒−11 + 𝐂𝐂𝑇 − �̃� ̃𝐂𝑇 )𝐒12 may also be
useful. This formula also leads to a set of AOs which spans
the occupied space and gives very similar results in practice.
However, it would be obtained if (2) were replaced by |𝜌⟩ =(1 + 𝑂 − �̃�) | ̃𝜌⟩ = 𝑂�̃� + (1 + 𝑂)(1 − �̃�) | ̃𝜌⟩ and thus can be
seen to polarize the virtual space in the wrong direction.
We note that actual inverse overlap matrices should not be

used, because this could lead to numerical problems if large and
diffuse basis sets were used.88 Rather, 𝐗 = 𝐒−1𝐁 is a shorthand
notation for “solve 𝐒𝐗 = 𝐁” using a Choleksy or spectral de-
composition of 𝐒. Alternatively, twice multiplying with 𝐒−1/2
instead of once with 𝐒−1 is also numerically stable.88
Let us now discuss why |𝜌⟩ of Eq. (2) spans the occupied

space of the MOs. Let �̃� = ∑𝑖 | ̃𝑖⟩ ⟨ ̃𝑖| and 𝑂 = ∑𝑖 |𝑖⟩ ⟨𝑖|
as before. Then 1 = �̃� + (1 − �̃�) is a resolution of the

identity in the space spanned by {𝑃12 |𝜌⟩ , 𝜌 ∈ 𝐵2}, and bothspan{�̃�𝑃12 |𝜌⟩} and span{(1−�̃�)𝑃12 |𝜌⟩} are subspaces of cer-
tain integer dimension. If we now form span{𝑂�̃�𝑃12 |𝜌⟩} (first
term of Eq.(2)), then this space will span the occupied orbtials,
provided that the obtained space has the same dimension as the
number of occupied orbtials, 𝑛occ. The reason for this is simply
that any set of orbitals which retains 𝑛occ independent directions
after projection with 𝑂 = ∑𝑖 |𝑖⟩ ⟨𝑖| will have this property. In
the current case this is a very weak requirement, effectively say-
ing that the molecular wavefunction can be described—to some
degree—in terms of free-atomAOs. In practice it will always be
given for valence states. Also, in the concrete form of Eq. (2),
the occupied space projection 𝑂�̃� is not affected by the second
term (1 − 𝑂)(1 − �̃�), which acts in the orthogonal subspace and
can thus not interfere with the first term.

Appendix D: Technical notes on the IBO construction

IBOs retain the attractive computational properties which
made PM orbitals so successful, and even improve on them.
Just as PM orbitals, IBOs can be obtained by successive 2×2
rotations on the occupied MOs.35 For IBOs this can be done di-
rectly in the orthogonal IAO basis; it is thus cheaper and better
behaved than PM localization, which is done in the full, non-
orthogonal basis and can be problematic for large or diffuse ba-
sis sets.19,89 As for PM orbitals,90,91 also for IBOs the analytic
gradient with respect to geometric perturbations can be deter-
mined, enabling their use in geometry optimizations.
Concretely, we used the following algorithm for IBO local-

ization: First, the SCF occupied MOs |𝑖⟩, expressed in terms
of the original basis 𝐵1, are transformed into the orthonormal
IAO basis via 𝐂IAO = orth(𝐀)𝑇 𝐒1𝐂 (with 𝐂 from Sec. C.
Since the IAOs span the occupied space, this transformation is
lossless). Then a series of unitary transformations amongst the|𝑖⟩ is performed, as described next, modifying the set of or-
bital coefficients 𝐂IAO. Finally the new MOs, now localized,
but still expressed via 𝐂IAO in terms of IAOs, are transformed
back to 𝐵1 according to 𝐂B1 = orth(𝐀)𝐂IAO. In total we thus
obtain a new set of localized MOs, expressed in terms of 𝐵1,
which is related by an unitary transformation to the input SCF
MOs. Consequently both MO sets represent identical determi-
nants, and thus any observable property determined from either
orbital set is identical.
The iterative optimization is performed as follows: Let |𝑖⟩ =∑ |𝜌⟩ 𝐶𝜌𝑖 denote the occupied MOs expressed in terms of or-

thonormal IAOs |𝜌⟩ (the 𝐶𝜌𝑖 denoting the matrix elements of𝐂IAO). We then iterate the following process: For each occu-
pied orbital pair 𝑖, 𝑗 with 𝑗 < 𝑖:

• Set 𝐴𝑖𝑗 = 0 and 𝐵𝑖𝑗 = 0. Then for each atom 𝑋, incre-
ment 𝐴𝑖𝑗 and 𝐵𝑖𝑗 as either

𝐴𝑖𝑗 = 𝐴𝑖𝑗 + 4𝑄2𝑖𝑗 − (𝑄𝑖𝑖 − 𝑄𝑗𝑗)2
𝐵𝑖𝑗 = 𝐵𝑖𝑗 + 4𝑄𝑖𝑗(𝑄𝑖𝑖 − 𝑄𝑗𝑗)
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(for localization power 𝑝 = 2, as in PM35) or as

𝐴𝑖𝑗 = 𝐴𝑖𝑗 − 𝑄4𝑖𝑖 − 𝑄4𝑗𝑗 + 6(𝑄2𝑖𝑖 + 𝑄2𝑗𝑗)𝑄2𝑖𝑗+ 𝑄3𝑖𝑖𝑄𝑗𝑗 + 𝑄𝑖𝑖𝑄3𝑗𝑗𝐵𝑖𝑗 = 𝐵𝑖𝑗 + 4𝑄𝑖𝑗(𝑄3𝑖𝑖 − 𝑄3𝑗𝑗)
(for localization power 𝑝 = 4, as in Eq. (4)), where the
charge matrix elements of atom 𝑋 are defined as

𝑄𝑖𝑗 = 𝜌∈𝑋 𝐶𝜌𝑖 𝐶𝜌𝑗 .
• Calculate the rotation angle 𝜙𝑖𝑗 = 14 arctan2(𝐵𝑖𝑗 , −𝐴𝑖𝑗)
(where arctan2(𝑦, 𝑥) = arctan(𝑦/𝑥), taking the quadrant
into account). Then rotate the orbtials |𝑖⟩, |𝑗⟩ by

|𝑖 ⟩ = cos(𝜙𝑖𝑗) |𝑖⟩ + sin(𝜙𝑖𝑗) |𝑗⟩ ,|𝑗 ⟩ = − sin(𝜙𝑖𝑗) |𝑖⟩ + cos(𝜙𝑖𝑗) |𝑗⟩ . (D1)

The orbitals are updated in-place; i.e., in the 𝑖, 𝑗 iteration,
subsequent pairs 𝑖, 𝑗 already see the rotated orbtials be-
fore the entire loop is passed.

The formulas for 𝜙𝑖𝑗 are obtained by considering the functional𝐿(𝜙𝑖𝑗) = ⟨𝑖 |𝑛𝑋|𝑖 ⟩𝑝 + ⟨𝑗 |𝑛𝑋|𝑗 ⟩𝑝 where |𝑖 ⟩ and |𝑗 ⟩ are
defined as in (D1) and 𝑝 = 2 or 𝑝 = 4, and maximizing it with
respect to 𝜙𝑖𝑗 . For 𝑝 = 2 the given 𝜙𝑖𝑗 exactly maximizes the
functional, for 𝑝 = 4 some high order terms in𝜙𝑖𝑗 are neglected.
We found this approach to work exceedingly well in practice

and it typically converges in 5 to 10 iterations over all 𝑖, 𝑗 pairs.
We believe this to be a consequence of the intrinsic molecular
electronic structure, which apparently has a very deep attrac-
tor at the localized orbital solution corresponding to the Lewis
structure (where present).
A final comment is required regarding the exponent 𝑝 = 4 in

Eq. (4). In Eq. (4), we prefer 𝑝 = 4 over the exponent 𝑝 = 2
of PM because the former leads to discrete localizations in aro-
matic systems, while the second does not: For example, in ben-
zene the orbital rotationHessian has a zero eigenmode if 𝑝 = 2 is
used, but not for 𝑝 = 4. For other systems both exponents lead
to effectively identical results. An exponent of 4 has recently
also been found to be effective in diminishing orthogonaliza-
tion tails in more traditional orbital localization methods.92,93

Appendix E: Methods used in the test calculations

Molecules were built and pre-optimized with Avogadro.94
Geometry optimizations were done with Molpro,95 and
employed DF-MP2/aug-cc-pVTZ96,97 for the molecules in
the discussion of electronegativities and DF-RKS/PBE/def2-
TZVPP98–100 for everything else. The complexes in Tab. II were
not optimized, but average metal-ligand distances were taken
from Ref. 101 and combined with 𝑟OH = 0.96Å, 𝛼HOH =104.5∘ (for H2O), 𝑟CN = 1.15Å (for CN−) and 𝑟CO = 1.15Å
(for CO). Geometries and reference values are available upon
request.

IAO and IBO calculations were performed either with a
development version Molpro or the demonstration script ibo-
ref.py, which is available on the author’s homepage. Calcu-
lations employed def2-TZVPP99 orbital basis sets and univ-
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obtained results).
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