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1. Introduction

After a decade of research, financial economists remain unable to account for the
temporal volatility of stock prices. The initial rejections by LeRoy and Porter (1981) and
Shiller (1981) of simple present-value models based on constant.discount rates and rational
expectations have been weakened, but not reversed, by subsequent work. Departures from
present-value prices still appear large and persistent.!

At one time rational bubbles were viewed as a promising alternative hypothesis. In-
terest in this alternative has waned, however, because econometric tests have not produced’
strong positive evidence that rational bubbles can explain asset prices. That is, no one has
produced a specific bubble parameterization which is both simple yet capable of explaining
the data.

In this paper we propose and test empirically a new rational-bubble specification with
both these properties. Our formulation is simple because it introduces no extraneous

sources of variability. Instead, the bubbles we examine are driven exclusively - albeit

! Campbell and Shiller (1887), Flavin (1983), Froot (1988) Klaxdon (l9$), Mankiw, Rm'nor lnd Sh-puo (1988), Marsh
and Merton (1986), and West (1987, 1988a) address shor of the original to d the
simple present-valus model to allow for time-varying discount rates have added little; see Campbell ;nd Shlllc (1988a, 1988b),
Fiood, Hodrick, and Kaplan (xm). and Shiller (1981). Pindyck (1984) suggests that low-fi price fl tions may be
result of tlrm-nrym; risk pnmu driven by changing stock-price volatility. However, Poterbl ;nd Summers (1986) argue that

£

volatility is not sufficiently p to explain a large portion of 1 q price
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nonlinearly - by the exogenous fundamental determinants of asset prices. For this reason
we refer to these bubbles as “intrinsic.”? One striking property of intrinsic bubbles is
that, for any given level of exogenous fundamentals, asset prices remain constant over
time: intrinsic bubbles are deterministic functions of fundamental alone. Thus, this class
of bubbles predicts that stable and highly persistent fundamentals lead to stable and
persistent over- or undervaluations.

Intrinsic bubbles also appear capable of explaining long-term movements in stock
prices. It turns out that the component of prices not explained by the present-value model
is highly correlated with dividends, as an intrinsic bubble would predict. These bubbles
therefore capture the apparent overreaction of prices to dividend changes. For example,
they appear to explain the bull market of the 1960s, a period of high and rising real
dividends, as well as the market decline of the early 1970s. We use our estimated model
to separate out the present-value and bubble components of stock prices, and find that
the former implies a realized return on stocks of about 9.1 percent - very close to the 9.0
percent average for this century.

Of course, other alternative non-bubble hypotheses could conceivably explain our re-
sults. It is well known that any bubble path is observationally equivalent to a present-value
path where the process generating fundamentals may change in the future.3 Our results
could thus be interpreted in principle as evidence of such prospective changes. Indeed,
in an exchange-rate model with stochastic regime changes, we have derived present-value
pricing formulas similar to the bubble formulas derived below.? In this paper, however, we

offer no particular regime-switch model to explain the apparently nonlinear relationship

2The excessive variability of an intrinsic bubble solution comes entirely from its functional form, not from the introduction
of extraneous state variables. In models with stati y pot equilibris, nsset prices generally can be axpressed as functions
of fundamentals alone. However, some of these fundamentals, real interest rates in particular, are endogenous and at least one
ultimate source of their variability could be an extraneous state variable. An intrinsic bubble solution for an asset price is a

duced-form expression that depends only on the factors affecting the y, not on extraneous noise. In other
words, every intrinsic bubble solution is 8 “minimal-state-variable” solution in the sense of McCallum (1083).

2Flood and Garber (1980), Hamilton and Whiteman (1985), and Flood and Hodrick (1986) di this observational
equivalence. Cecchetti, Lam, and Mark (1989) study the empirical properties of particular li fund ls-forcing
processes.

4See Froot and Obstfeld (1989).



between prices and dividends.

A second alternative hypothesis is that stationary fads or noise lie behind the de-
partures from present-value prices.® Both fads and intrinsic bubbles predict that thesé>
departures will be highly persistent. But an important theoretical distinction between
the two is that the former entail short-term speculative profit opportunities, whereas bub-
bles alone do not. In our empirical tests, the intrinsic bubble formulation allows us to
identify separately these two sources of deviation from present-value pricing. While the
predictability of short-term returns may ultimately be useful in explaining certain features
of the data, our results suggest that this predictability is not the main explanation for the
present-value model’s failure.

The paper is structured as follows. Section 2 shows how intrinsic bubbles arise in a
standard present-value model. We compare in section 3 some properties of intrinsic and
extraneous bubbles, Section 4 then turns to the data. We examine the univariate and
bivariate times-series properties of U.S. stock prices and dividends, and argue that an
intrinsic bubble is broadly consistent with the results. In the second part of section 4, we

estimate our model directly and test it against several alternatives. Section 5 concludes.

2. Intrinsic bubbles in a present-value model

Stochastic linear rational expectations models can have a multiplicity of solutions
that depend on exogenous fundamentals but do not depend on extraneous variables such
as time.® In this section we describe how such rational bubbles can arise as nonlinear
solutions to a linear asset-pricing model. Although our choice of 2 specific model is guided
by the empirical application we have in mind, solutions similar to those derived below arise
in a broader class of models.

The model is based on the standard arbitrage condition linking the time series of real

8For examples of models with fads or noise, see Black (1986}, Campbell and Kyle (1988), DeLong, Shleifer, Summers and
Waldman (1988), Shiller (1984), and Summers (1986).

®Included in the category of extraneous variables would be irrelevant fundamentals, such as lagged fundamentals that play
no economic role apart from their effect on expectations.



stock prices to the time series of exogenous dividend payments. Let P; be the real price
ot; a share at the beginning of period ¢, D; real dividends per share paid out over period ¢,
and r the constant, instantaneous real rate of interest. The arbitrage condition we focus
on is
P, = ¢ "Ey(D: + Piy1), (1)
where E;(.) is an expectation conditional on information known at the start of period t.”
The present-value solution for P, denoted by P’ is:
‘ o0
PV =Y el IE (D). (2)
s=t
Equation (2) is a particular solution to the stochastic difference equation (1). It equates a
stock’s price to the present discounted Yalue of expected future dividend payments. We will
always assume that the present value (2) exists, that is, that the continuously compounded
growth rate of expected dividends is less than r.

The present-value formula is the solution to (1) usually singled out by the relevant
economic theory as a unique equilibrium price. It can be derived by applying the transver-
sality condition,

Jim, T E(Ps) =0, ©)
and then observing that successive forward substitutions into (1) converge to (2)-

Equation (1) has solutions other than (2). By construction, these alternative price

paths satisfy the requirement of period-by-period efficiency, but they do not satisfy (3).

Let {B;}{2, be any sequence of random variables such that
B; = ¢”"Ey(By41)- (4)

Then P, = P® + B; is a solution to (1), which can be thought of as the sum of the
present-value solution and a rational bubble. Clearly, property (4) implies that P; violates

the transversality condition (3).

TIn our empirical implementation of the model below, we allow for errors in the arbitrage equation.
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Rational bubbles are typically viewed as being driven by variables extraneous to the
valuation problem. However, some bubbles may depend only on the exogenous fundamen-
tal determinants of asset value. Wt'a call such bubbles “intrinsic® because their dynamics
age inherited entirely from those of the fundamentals. An intrinsic bubble is constructed
by finding a nonlinear function of fundamentals that satisfies (4). In the above stock-
price model with only one stochastic fundamental factor — the dividend process — intrinsic
rational bubbles depend on dividends alone.

To see what an intrinsic stock-price bubble might look like, suppose that log dividends

are generated by the geometric martingale,

diy1 = p+de + €41, (5)

where u is the trend growth in dividends, d; is the log of dividends at time t, and £;4 is
a normal random variable with conditional mean zero and variance 02.® Using (5), and
assuming that period-t dividends are known when P; is set, we see that the present-value

stock price in (2) is directly proportional to dividends,
Plp Y = xDy, (6)

where x = (" — st/ 2)-1, Equation (6) is essentially a stochastic version of the Gordon
(1962) model of stock prices, which predicts that PfY = (¢" — ¢#)~1D, under certainty.
The assumption that the sum in (2) converges implies that r > u + a?/2.

Now define the function B(D;) as
B(Dy) = CDi\ ’ (7)
where A is the positive root of the quadratic equation

A202/2+Au-r=0, (8)

$Kleidon (1988) uses this specification in his empirical study.
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and ¢ is an arbitrary constant. It is easy to verify that (7) satisfies (4):
¢ " E(B(De1)) = e T Ei(eDf N it Eis1)) ©)

= e-'(éDtAeAﬂ+A20"/2) — e-'(cD;\e') = B(Dy).

By summing the present-value price and the bubble in (7), we get our basic stock-price
equation:

P(D;) = PP* + B(Dy) = PP’ + ¢D}. (10)

Even thoﬁgh (10) contains a bubble (for ¢ 3 0), and thus violates (3), it is driven exclusively
by fundamentals: P(D;) is a function of dividends only, and does not depend on time or
any other extraneous variable. B(D;) is therefore an example of an intrinsic bubble.?

The inequality r > pu + 02/2 can be used to show that A must always exceed 1. It is
this ei(rplo;ive nonlinearity that permits B(D;) to grow in expectation at rate r. We will
assume from now on that ¢ > 0, so that stock prices cannot be negative. Negative stock
pricés would violate free disposability.1°

It might seem paradoxical that movements in a bubbly asset price can be accounted
for completely by movements in fundamentals. Economists are accustomed to an almost
instinctive decomposition of asset prices into two components, one dependent on market
fundamentals, and a second reflecting self-fulfilling beliefs and driven, at least in part, by
extraneous factors. In the context of linear models, for example, McCallum (1983) argues
that bubble solutions can be avoided by
restricting attention to “minimal-state-variable® solutions that depend only on

fundamentals. The possibility of intrinsic bubbles reveals that McCallum’s approach does

®Sargent (1987, pp. 348-349) characterizes a rational bubble as a function B(t, X:) = c"Xg of mn. and s variable X, thn
obeys Ei(Xi41) = X¢. His definition does not imply, h , that bubbies have to t istic time p
To write the bubbie B(D,) defined by (7) in Sargent’s form, llrnply let X, = a"‘:D;\

10Lat A' be the negative root of equation (8). Then the general solution to (1) (within the class of functions P = P(D,)) is:

P(D:) = P! + 1D} + caD}".

We have imposed ¢2 = 0 in (10) on the grounds that the stock price P should go to sero (not to infinity) as dividends D¢ go
to sero. The argument in the text shows that any varisble Y¢ whose logarithm follows s martingale with drift 4 and variance
o2 leads to a bubble solution to (1), P(D¢,Ye) = P!° + B(Y:). Thus, a formula like (7) can be used to construct extraneous
as well as intrinsic bubbies.



not rule out multiple solutions unless some additional requirement — linearity of the price
function, for example - is imposed.!!

Like all rational bubbles, intrinsic bubbles rely on self-fulfilling expectations. Instead
of being driven by extraneous variables, however, these expectations are driven by the
nonlinear form of the price solution itself. Figure 1 shows the family of solutions (10)
for a particular choice of ¢ > 0. The straight line PPYPPY indicates the present-value
sclution (6); this solution implies that E¢(Pyy1/P:) = Ht2 oo A point like 1 on the
bubble path satisfies the arbitrage condition (1) because of Jensen’s inequality. At péint
1, the next innovation in the log of dividends is distributed symmetrically around zero,
but the market’s belief that the relevant price function has the shape shown means that
the expected rise in the stock price, and hence the stock price itself, is higher at point 1

than at the corresponding point 2 on prvpre 12

8. Intrinsic versus extraneous bubbles: A partial comparison

Why should one think that intrinsic bubbles might succeed in characterizing asset
prices when other bubble formulations have failed? In this section we argue that intrin-
sic bubbles have several intuitively appealing properties which are absent in the bubble
parameterizations used previously in empirical studies.

To begin, we need to know why bubble explanations of stock prices have fared so
poorly.!® A first reason might be a belief that prices simply do not diverge from their
present-value levels. There certainly are theoretical arguments for holding this view, but
it has proven difficult empirically to reconcile observed price behavior with a wide range

of present-value models. The theoretical conditions required to rule out rational bubbles

31 Another counterexample comes from models in which calendar time itself is a fund J. Then d inistic time-driven
bubbles of the Flood and Garber (1980) sort satisfy the minimal-state-varisble i

13]¢ is easy to check that various theorems used to identify unigque wlutluu of the form P(D.) to oquilonl like (l) do not
spply under this ion's i For ple, (10) is not within any of the cl d by Luces
(1978), Saracogiu and Su(ent (1918) Gouncmux, Laffont, and Monfort (1982), or Whiteman (lm) '!'ha problam u not that
the p (5) is ) to (10) exist vhen (5) isa hlenbeck
process; see Froot and Obnfeld (1989) Rather, the problem is that d P lddltlonll mtn:hom, such
as linearity of the solution or the ption that all state variables are restricted to values in pact sets. These

assumptions rule out solutions such as (10).
13Flood and Hodrick (1989) present s detailed survey of the empirical literature on bubbles.
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are relatively demanding; these conditions assume substantial, perhaps unrealistic, long-
horizon foresight on the part of economic agents. Short-horizon excess-profit opportunities,
on the other hand, are plausibly quite small.

A second reason for the poor empirical track record of bubbles is that the specific pa-
rameterizations that have been tested have also failed. These parameterizations generally
assume that bubbles depend explicitly on time.l4 As a result, they predict upward runs
in stock prices conditional on dividends. There is little evidence, however, either for price
runs or for price-dividend ratios trending deterministically upward through time. These
features of the data suggest that time-driven bubble formulations are too restrictive to
improve our understanding of asset prices.

Some general specification tests have been employed in the hope of detecting bubbles,
without taking a stand on a specific bubble form. Even though these tests may have low
power, they nevertheless reject the no-bubble null frequently. However, they cannot reveal
the precise sotirce of rejection, so they yield no hard evidence that bubbles really are the
culprit.!5 The tendency to ascribe these rejections to sources other than bubbles has been
strengthened, perhaps. excessively, both by the theoretical arguments against bubbles and
the failure of the specific parameterizations mentioned above. However, consideration of
stochastic biubbles that look quite different frqm the typical time-driven examples may
throw a different light on the specification-test results.

How then do intrinsic bubbles look, and why might they do a better job of explaining
prices? First, intrinsic bubbles capture well the idea that stock prices overreact to news
about dividends, as argued by Shiller (1984), among others. Equation (10) implies that
gﬁ = n+:\thA'l > K, 50 that prices move more when dividends change than the present-

value formula (6) would predict.

14See Flood and Garber (1980) and Blanchard and Watson (1982) for specific examples.

18 The general specification test for bubbles used by West (1987) and Casella (1988) can alternatively be interpreted as a test
of model specification, the purpose for which it was originally proposed by Cumby, Huisings, and Obstfeld (1983). A second
type of specification test for bubbl pares the ti ies properties of prices and dividends, which should differ if condition
(1) holds but stock prices contain a rational bubble. See Hamilton and Whiteman (1985) and Diba and Grossman (1988a).
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Intrinsic bubbles may also help explain the time-series behavior of prices. Even though
prices are predicted to grow at the rate of interest, specific realizations may fluctuate within
some limited range for rather long periods. A given dividend realization corresponds to
a unique stock price regardless of the date on which the dividend is announced. Because
dividends are persistent, deviations from present-value prices may also be highly persistent.
An implication of this property is that, even with a very long data series, the fundamentally
explosive nature of an intrinsic bubble might be impossible to detect econometrically.

To illustrate these points, we present some simulations comparing the intrinsic bubble -
in (10) with a particular alternative bubble specification. Each simulation experiment
involves three solutions to the difference equation (1). The first of these is the present-
value price Pf* given by (6); the second is a nonlinear intrinsic bubble of the form (ld),

denoted by Py; and the third is a bubble that depends on time as well as on dividends,
P, = PPY + bDye(r=#=2"/2t, (11)

The precise formulation in (11) is chosen for two reasons: First, it makes the bubble a
function of dividends, and thus allows stock prices to overreact to dividend news, just
as the bubble (10) does. Second, (11) follows the majority of parametric bubble tests in
adopting a specification in which the extraneous variable ¢ affects prices.

Dividends are assumed to follow (5), and in each experiment successive innovations
& are drawn independently from a normal distribution. P‘P" is calculated using estimates
of r, u, and o2 extracted from U.S. stock-price and dividend data, and the values of the
parameters K, ¢, and b are those estimated below in section 4. The simulations are run
over 200 years. However, it is important to note that there is little importance to these
specific choices of parameters and sample size: the qualitative patterns displayed in the
following figures are quite general.

Figure 2 shows a first run in which the simulated intrinsic bubble, B;, does not produce
noticeable explosive behavior within the simulation sample. The percentage overvaluation

9



of stocks is not very different at the end of the sample (the year 2100) than it is around 1970
or 2015. In contrast, the time-driven bubble B explodes decisively starting in mid-sample.

The behavior of the time-driven bubble is similar in Figure 3, but the underlying
dividend realization makes the explosive expected growth of the intrinsic bubble more
apparent. Figures 2 and 3 highlight the sharply different paths for intrinsic bubbles that
different paths of fundamentals can produce.

Diba and Grossman (1988b) have argued on theoretical grounds that stochastic ra-
tional bubbles cannot “pop” and subsequently start up again. This feature, they assert,
makes rationgl bubbles empirically implausible. Figure 4, however, shows an intrinsic
bubble realization thatr falls over time to a level quite close to fundamentals. Indeed, if
dividends follow a process like (5) but without drift, the logarithm of dividends reaches
any given lower bound in finite time with probability one; and we can therefore be sure
that the bubble term in (10) gets arbitrarily close to zero in finite time. For practical
purposes, this is the same as periodically popping and restarting with probability one.
Intrinsic bubbles can get very close to present-value prices, and then diverge. |

Notice that all three simulations share the common feature that the intrinsic bubble
path lies above the time bubble in the early part of the sample, but below it by the sample’s
end. This pattern in the early part of the sample is merely a result of initial conditions, and
is therefore purely arbitrary.!® By contrast, the feature that the time bubble eventually
exceeds the intrinsic bubble is more general. It is easy to show as the sample size t grows,
the probability that P, > B, goes to zero, for any set of initial conditions.}7 Although
the intrinsic bubble ﬁg ultimately exceeds the time-driven bubble ﬁg very rarely in large
samples, when it does, it does so byr an amount large enough to equalize the two bubbles’

expected growth rates. -

“lt_lum out that if model (11) is to have any hope of fitting the data, the estimata of b must be vary close to sero, implying
that Py is very close to P* for the first part of the sample. See Section 4.2 and Figurs 6 below.

3T Proof: Define ¢ = r — 4 — 02/2 and assume, without loss of generality, that the bubbles are equal at ¢ = 0: dDp = eD}.
Then Prob{F; < By} = ProbbDee? < eD?] = Problyt < (A - 1)(ut + 30 _ €} = Prodir - Au~a?/2 < (L., &)/}

Equation (8) implies, however, that r — Au~ ¢7/2 = ¢7(A% = 1)/2 > 0 (recall that A > 1). Since ph'm(z::=l &)/t =0, the
proof is complete.
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This latter property is important empirically. It implies that it would be unusual
to draw a long dividend series whi;h yields an intrinsic bubble that appears as explosive
as a comparable time-driven bubble. Even though intrinsic and time-driven bubbles are
expected to grow at the same rate on average, a long intrinsic-bubble sample path is very

likely to appear less explosive than the path a time-driven bubble such as (11) generates.

4. Application to the U.S. stock market

In this section we turn to U.S. stock market data to examine the empirical performance
of our model. In doing so, we generalize slightly the model in section 1 to allow for errors

in the initial arbitrage equation. Thus, time-t prices are now given by:
P= e_'Eg(Dg + P¢+1) +e Ty, (1’)

where u; is an error term, assumed to be independent of dividends at all leads and lags
and to have unconditional mean zero.!®

Equation (1') allows us to express (10) as the statistical model,
P; = eqD; + cDi\ + €, (12)

in which ¢o = & = (¢’ — e#*"/2)~1 and ¢, is the present value of the errors in (1",
€ =32, e"("‘+1)E¢(u,). The error u; is a predictable single-period excess return,
and ¢; is its infinite-horizon counterpart. These excess returns could be interpreted, for
example, as the result of time-varying effective income tax rates, provided that those rates
are conditionally independent of D;.1% One could also think of u; as partly reflecting a

fad - a shock to the demand for stocks which is unrelated to efficient forecasts of future

18 This distributional is ily strong. Our tests below will produce consistent parameter estimates pro-
vided only that E¢(€eyjlur) = -0 V] 2 0. The evidence in the first appendix below supports this pti The st
assumption that E¢(€e4jlue) = 0 V5 is needed for consistent inferences.

1%More formally, suppose that dividends are taxed at the marginal rate §; at time ¢, and that the rate follows the process

begr = P01 + we,

with 0 € ¢ < 1 and with # and D, independently distributed at all leads and lags. It is then easy to show that the present
discounted value of future dividend receipts satisfles P?* = xDy+¢¢, where ¢ = -p(t'—n"”"/’)"hD., and E(¢¢|D,) =0 Vs,
Furthermore, this step leads to specification (13) below.
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dividends. Thus, our empirical specification allows us to identify separately bubble and

fad components of stock prices.2®

Estimation of (12) is complicated by collinearity among the regressors. To mitigate
this problem, we divide (12) by D; to express the price-dividend ratio as a nonlinear

function of dividends:
P,
D,
where the new error term, n; = ¢;/D;, satisfies E(n,|D,) = 0, Vs. The null hypothesis of

o+ (:D;\-1 + ¢, (13)

no bubble implies that ¢g = « and ¢ = 0; whereas the bubble alternative in (10) predicts
that ¢g = « and ¢ # 0.

In the estimation below we use the Standard and Poor’s stock-price and dividend
indexes from the Securities Price Indez Record, as extended backwards in time by Cowles
et al. (1939). Following Barsky and DeLong (1989), we examine the period 1900-88, using
nominal stock prices recorded in January of each year and deflated by the January PPL
Dividends are annual averages of nominal data for the calendar year, deflated by the year-
average PPL.2! Of course, we would like to have data on beginning-of-period-t dividends
to match the beginning-of-period-t price, P;. Because these are not available, we use the

average of period-t dividends as our measure of D, 2223

4.1. The price-dividend relation

In dériving (13), we assumed that the log dividend process follows a martingale with

20 Campball and Shiller (1987, 1988, 1088b), for le, rule out ratioral bubbles from the start, and therefore attribute

deviations from present-value pricing entirely to a i y fad t
31 Although the price and dividend un- have been n:tended back to 1871, we chose to begin our sample st 1900 for two
Firet, the position of the ¢ portfolio b iner ly restrictive as one goes back in time. By the 1870«

the portfolio is comprised of just 11 railroad stocks. Second, whereas January values for the PPI are available after 1900, only
annual sverages axist prior to 1900. Becauss many other suthors (e.g., Campbell and Shiller 1987) have used the longer series,
we also ran all of the statistical tests below on the 1871-1086 sample. The results were qualitatively unaffected.

32 A potential problem with this choice is that Dy may not be completely knwn at the be(lnmn‘ of pormd ¢t. Nevertheless,
we soe two reasons why D, is likely to be a better messure of the dividend i dinb f{-period-t price,
P,, than is the sverage period-t-1 dividend, D,_,. Fimt, P; is not recorded on January 1, but is itself an sversge over the
period-¢ month of J y. 8 d, to mitigate the effects of any time lapse betwesn the determination and actual distribution
of dividends, it is better o use average period-¢ dividends than those from period ¢ — 1. In any case, unless otherwise mentioned
the results below are not importantly different when average period-t — 1 dividends are used to proxy for beginning-of-period-¢
dividends.

331 applying our specification to the aggregate astock market, & natural question is how an intrinsic bubble dependent on
aggregate dividends could arise. One possibility is that each firm's share price equals the present value of its own dividends,
plus an intrinsic bubble on aggregate dividends. (This would require that an individual ﬂrm s dividends do not Granger cause
sggregate dividends.) Such a formulation would remove the incentive for toi the ket price of their firms'
shares by altering the timing of dividend paymaents.
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trend. While this particular stochastic process is chosen for simplicity, we wish to be
sure that it is at least a reasonable approximation to actual dividend behavior. In the
first appendix below, we describe several univariate and bivariate tests of the log dividend
specification in (5). We find little evidence against the martingale hypothesis: log dividend
changes are essentially unpredictable when conditioning on the lags of log dividends and /or
log price-dividend ratios.?¢ The data estimate the parameters in (5) as 4 = 0.011 and
o = 0.122.

A general implication of (13) is that stock prices may appear to overreact to changes in
dividends. Also, (13) predicts that price-dividend ratios are nonstationary and positively
correlated with dividends. This subsection presents a brief empirical examination of these
basic implications of intrinsic bubbles.

First, what does the present-value model predict for the sensitivity of prices to changes
in dividends? From (6) a one dollar change in dividends should raise prices by x dollars.
Using the fact that the the sample-average gross real return on stocks is ¢” = 1.090 per
annum, we have that x = (¢" — c“'“’z/z)“1=(l.090 - c.011+.122’/2)—1 = 14.0. In general
if P, and D, are cointegrated of order (1,1), then under the present-value model the
cointegrating coefficient should be approximately x. Equation (6) also implies that the
elasticity of prices with respect to dividends is 1. If the log stock price p; and d; are
cointegrated, it is also with a coefficient of 1.

The first line of Table 1 presents estimates of x, obtained by regressing prices on
dividends. The coefficient is estimated to be 36.7 — much larger than the value of 14.0
predicted by our present-value model.2’ If P, and D; are cointegrated then the OLS
estimate of the cointegrating factor, while consistent, is biased in small samples. In order
to bound the cointegrating coefficient, we run the reverse regression - projecting D; on P;

- in the second line of Table 1. This produces an even larger estimate of x, 1/.0233 = 42.9.

34Some of this evidence may be controversial. We have placed our discussion in the first appendix b the ial
aspects are tangential to our main argument,

5 Similar estimates of the cointegrating factor are obtained by Campbell and Shiller (1987), Diba and Grossman (1968a),
and West (1687), among others.
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These values seem too large to be consistent with the present-value model. Even the lower
of the two would imply that the requirgd rate of return on stocks less the expected growth
rate of dividends is an implausibly low 1/36.7 = 2.7 percent per annum. (The actual value
over our sample period is 7.1 percent.) The third and fourth lines of Table 1 perform
analogous regressions in logs instead of levels. Here the cointegrating coefficient predicted
by the present-value model is 1, but the estimates are again much higher — between 1.59 and
1/.5563=1.80. These estimates suggest that simple present-value models cannot explain
why price-dividend ratios are so high given historical stock returns, or, equivalently, why
returns have been so high given price-dividend ratios.

To test whether these estimates are statistically incompatible with the present-value
model, we examine various measures of the price-dividend ratio for nonstationarity. Table 2
reports Phillips-Perron unit root tests for the theoretically warranted “spread”, P; — 14Dy,
as well as the price-dividend ratio in levels, Pg/Dg,b and in logs, ps — d;. Results of tests
with and without time trends are reported. Under the present-value model, we should
reject nonstationarity in each of these regressions. Yet in five of six cases we cannot reject
the unit-root hypothesis. Of course, the power of these tests may be low, but the evidence
for stationarity seems too ambiguous to justify ruling bubbles out by assumption.28

In sum, the evidence presented in this section has three important implications for
our argument. First, prices are too sensitive to current dividends to be consistent with
a simple present-value model. The implication, of course, is that the portion of stock

prices unexplained by such a model must be highly correlated with dividends.?” Second

3¢ Some of our resuits may be sensitive to the timing of dividends. Diba and Grossman (1988s), for axample, use lagged
dividends and defiate by the WPL. They find that the log price-dividend ratio, pe — de—1, is stationary. Using lagged dividends,
but deflating by the PPI, Campbell and Shiller (1088a) also reject nonstationarity. Tests using iagged dividends, however, may
reject too fi ly under the ption that pe — de actually contains a unit root. Campbell and Shiller (1987) find resuits
similar to those reported above for the spread, Pe — x D¢, using data from 1871-1986. All of these suthors acknowledge that the
evidence is not clear cut, but their maintained sssumption that price-dividend ratios are stationary is critical to interpreting
their indings.

2T We are certainly not the first to notice this fact, which is essentially a robust restatement of Shiller's (1981) volatility
findings. More specifically, West's (1087) general specificaticn test and Campbell and Kyle's (1988) noise trading model explait
the excess sensitivity of prices to dividend changes. Durlauf and Hall (1988) ind noise in prices that is more highly correlated
with prices themselves than with dividends. Their definition of noise, however, is not the difference between prices and
multiple of current dividends, but the difference between prices and an ex post measure of the present value of future dividends.

14



this overreaction cannot be explained by other variables which are incorporated into stock
prices and which help forecast future dividends. If, for example, when dividends are high
investors tend to get other reliable information that dividends will grow more quickly than
previously expected, then this information is likely to be incorporated in stock prices,
which therefore should Granger-cause dividends. The results in the first appendix suggest,
however, that this is the not case. Finally, a specification such as (13) has at least the

potential to explain these failures of the present-value model.

4.2. A direct test for intrinsic bubbles

To see if this potential is at all realized, we turn in Table 3 to estimates of (13) and
several related expressions. Before interpreting the estimates, however, some discussion of
econometric issues is in order.

The regressor in (13) presents difficulties because it is explosive. Two additional
assumptions are necessary for valid statistical inferences. If the t-statistic of ¢ = 0 is to
have the usual distribution we require that: i) The residuals, n;, are distributed normally
- but not necessarily identically or independently — with unconditional mean zero; and is)
the dividend innovations, ;, are distributed independently of the residuals n, at all leads
and lags. The second appendix provides a proof that the standard t-statistic does indeed
approximate a normal distribution under these assumptions, despite the presence of the
exploding regressor, D -1,

The other aspect of estimation that requires discussion is estimation of the standard
error of the residual n,. Because theory gives us no guide to n¢’s serial correlation, the
usual standard errors may be incorrect. We try to account for this possibility in two
ways. First, we estimate (13) by OLS, but correct the residuals using Newey and West’s
(1987) covariance-matrix estimator for serial correlation of unknown form. This estimator

also allows for conditional heteroskedasticity.?® Second, since the residuals appear to be

38]¢ is sensible to think of the residual in (12), ¢, as nmvm( at . nte lmul-r to that of dividends (see footnote 19) ln luch
a case, we would not expect n; to exhibit much diti t ity. Indeed, in our estimates the heterosk Y

corrected standard errors were similar to the uncorrected standard errors.
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well described by a first-order autoregressive process, we compute maximum likelihood
estimates of the parameters under the assumption that the residuals are AR(1).

F'ma.lly, there is the issue of how to estimate the exponent, A, and the present-value
multiplier, K. In some of the regressions below we do not estimate A concurrently with
the other parameters. Instead, we use the point estimates from the log dividend process
obtained earlier, together with the mean return on stocks over the period to compute
A = 2.74.29 In other regressions we do estimate all parameters simultaneously, without
imposing additional restrictions. The restriction that ¢g = & = 14.0 is not imposed on the
constant term in (13), even though it holds under both the null and alternative hypotheses.
Instead, we use the unrestricted estimate of ¢ as a kind of sensibility check on our model.

The first two lines of Table 3 report estimates of (13) using OLS and maximum
likelihood, respectively. These two regressions constrain A to equal 2.74. In both cases, & is
statistically very significant. The estimates are comparable in magnitude and significance
for the two estimation methods.30 In the third and fourth lines we estimate all of the
parameters of the model simultaneously. The point estimates of ¢g are similar to those
above, although X is estimated to be larger and ¢ correspondingly lower.3! The larger
standard error for ¢ is expected here because the estimates of ¢ and A are highly collinear.3?
Rather than using a t-test to judge the importance of the nonlinear term, it is therefore
more appropriate to compute an F-test of the no-bubble hypothesis, ¢ = 0,A = :\, where )

is the unrestricted estimate of A reported in the third and fourth lines, respectively. This

39 We tried s variety of parametaer estimates for r, x, and 02, These do have a minor sffect on the P but are unimportant
for the general regression results reported below.
30We also tried estimating an extended form of (183),

‘
— =co+ :lD:" + czD;\ “l4m,

where A’ is the negative root from equation (8). Our estimates of r, 4 and 0%, suggest that A’ = —4.22. Because )’ < 0 and
dividends have s positive trend, estimates of D‘\ =1 will be of vanishing importance in explaining prices. Indeed, when we
included D‘\ =Y in the re(mncn, |t htd no effect on the estimate of ¢;. Furth , €2 Was i isaly estimated and varied
widely across different asti As we expected, there d to be no evidence thn thc second nonlinear term
helped in explaining stock prices. We th-nfou do not report these results.

31 Despite these difl: in point estimates, there is virtually no improvement in R?. A likelihood ratio test cannot reject
the hypothesis that line (3) is no improvement over line (1) of Table 3.

33The derivative of the likelihood function with respect to the parameters ¢ and A includes the highly correlated terms D‘\'
and ¢o{A ~ 1)D}~? (recall that A is estimsted to be greater than 2).
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hypothesis is rejected strongly at any reasonable level of significance.33

The finding that ¢ is statistically positive suggests that prices become increasingly
overvalued relative to the no-bubble price, PP”, as dividends rise. Similarly, when dividends
are low, the bubble component of price shrinks — P, approaches Pf" . The dotted curve in
Figure 1 graphs the relationship between fundamentals and prices implied by ¢ > 0. The
size of the bubble - the distance between P; and P/" - explodes for extreme values of the
dividend. Of course, if realized dividends have not spent much time in the explosive range,
the bubble component may be quite small.

Note also that the model’s estimates of ¢y are sensible. All four estimates from Table
3 imply that P:’" is measured on average to be about 14 times current dividends; indeed,
each estimate is statistically indistinguishable from x = 14.0, the value predicted by the
present-value model above. In our estimates of (13), f’,” Y = éyD; turns out to be consistent
with the long-run average return on stocks because the nonlinear dividend term soaks up
a reasonable amount of the excessive sensitivity of actual prices to dividends.

The economic significance of the bubble is, of course, another matter. How large is
the bubble component in prices, and how well does the model track actual price move-
ments? Figure 5 helps explore these issues. It compares actual stock prices with the
model’s estimate of both P" (the no-bubble component of prices) and ; (the model’s
estimated price inclusive of the bubble terms). Figure 5a presents comparable graphs of
price-dividend ratios.34 The figures are striking in two respects.

First there is the sheer size of the bubble itself - the distance between P; and }A’,” It
has grown over time and has been particularly large during the post-World War II period.
Indeed, the estimates suggest that at this writing the no-bubble level of the Dow-Jones
Average is 1,210 — less than 50 percent of its current value! The difference B, — P{m is

estimated to be this large recently because the levels of both dividends and price-dividend

23 Formally, we should (and will in the next version) include a x?2 test of this hypothesis. For now, nota that setting ¢ = 0 in
(18) yields an R? of O, against the R2s reported in Table 3.

34Figures 5 and 5a use the estimated coefficients from the third line of Table 8. However, this choice is immaterial to the
results: it is almost impossible to distinguish visually among all the models estimated in Table 8.
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ratios are historically high.

Secqnd, Figure 5 indicates that Pg explains a good deal of actual stock price move-
ments; The sustained runup in prices from 1950 to 1968 appears to be captured by the
model, as does the post- World-War-II tendency for stocks to sell at historically large multi-
ples of dividends. The model also does a plausible job of explaining the variability of stock
prices. >Note from Figure 5 that the variance of dividends appears to have fallen relative
to the variance of prices over the sample. Stock-price variability has been somewhat of a
puzzle not only because it is so large, but also because it has not declined over time as
rapidly as has the variability of dividends. Figure 5 and (13) together suggest a resolution
to this paradox: stock price volatility has not fallen with that of Aividends because the
level of dividends — and therefore the scope for volatility due to an intrinsic bubble - has
been historically high.3% |

Of course, the “fit” of P, in Figure 5 cannot be judged without a standard of com-
parison. Because there are an infinite number of Bubble specifications which depend on
time and/or other extr;neous \;ariab]es, sufficient excavation would allow us in principle
to fit perfectly the actual price path. We merely compare our restrictive version of a divi-
dend bubble with the similarly restrictive time-driven bubble P, defined in (11). Figure 6
graphs the predicted values of the present-value price, }.’tp", and the bubble-inclusive price,
}3¢, from OLS estimates of that equation. The parameter estimates are presented in the
first two lines of Table 4. _

It is immediately clear from Table 4 and Figure 6 that the time-bubble, B - Pf v is
neither statistically nor economically very important for understanding stock prices. In
addition, the estimates of the constant term, b, are less reasonable than those of ¢p in

Table 3. Correlation with dividends clearly is not enough to enable the time-driven bubble

38 To gee how much the estimated sensitivity of prices to dividends has changed over time, recall that dP, /dD, = Kk+eADA-1,
Using the sstimates from Table 3 we can compute rough estimates of dPy/dD,, which can be intarpreted as the model's
prediction of the coefficient in & "cointegrating” regrassion of prices on dividends. Using sverage dividends over the period
1961-88 we find {using line 2 of Table 3) dP;/dD: & 14.2+ (-26)(2.74)(7.86"74) = 39.9. Similarly, over the period 1900-60,
dP,/dD; #s 14.2 + (.28)(2.74)(4.31'-7¢) = 23.2. The estimated sensitivity of prices to dividends has therefore nearly doubled
over the post-World War II period. .
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to explain stock prices.

To round out this section, the rest of Table 4 presents estimates of ¢g and ¢ in (13)
adding various additional terms: the time-driven bubble term in (14) and a linear time
trend. When the price-dividend ratio is regressed on these terms in isolation, they are sta-
tistically significant. However, neither remains statistically significant when the nonlinear
term in (13), D; —1 is added to the regression. Note that even the sign of the coefficients
on the time bubble and linear trend become negative when D;\'l is added. The coefficient
on the nonlinear terms, however, remains statistically significant and essentially unchanged
in magnitude.

To see if the nonlinearity in dividends of (13) is important, lines (5) and (6) in Table
4 add a linear dividend term, Dy, to the regression. Analogously to the lines above, D, is
positive and statistically significant on its own. But when D;\'l is included, the sign of the
coefficient on D, is reversed. The sign and magnitude of ¢ is once again not importantly

affected.
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5. Summary and concluding remarks

This paper has proposed a class of rational bubbles that depend exclusively on ex-
ogenous fundamentals. This general class of solutions has intuitive appeal because it does
not require the introduction of extraneous variables yet captures the idea that prices can
be excessively volatile relative to fundamentals.

We applied a basic version of our model to U.S. stock-market data. The estimates
strongly reject the hypothesis that there is no bubble. They also help to reconcile the
historical return on stocks with the level of the price-dividend ratio (and with its correlation
with dividends), something that present-value models appear unable to do. In addition,
the estimates imply that the bubble component in today’s stock prices is very large.

The test statistics above have desirable statistical properties because of the tight
parametric form of intrinsic bubbles. Unlike general specification tests, our estimates are
consistent under both the null and alternative hypothesis.

Our formulation allows variables such as the price-dividend ratio to predict excess re-
turns. To carry out statistical inference we do require that dividends themselves cannot be
used to forecast returns, but, in any case, there is little direct evidence to the contrary. By
relaxing the present-value assumption, the tests allow the data to allocate deviations from
the present-value model across a bubble term and predictable excess returns. Our interpre-
tation of section 4’s results is that, once intrinsic bubbles are permitted, the predictability
of excess returns no longer appears to be the central cause of the simple present-value
model’s failure.

Notwithstanding our empirical results, we, too, find the notion of bubbles somewhat
problematic. It is difficult to believe that the market is literally stuck for all time on a path
along which price-dividend ratios eventually explode. If the market began on such a path,
surely investors would at some point attempt the kind of infinite-horizon arbitrage which
rules bubbles out in theoretical models; and since fully rational agents would anticipate
such attempts, bubbles could never get started. It seems to us an empirical question,
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however, whether this much i’oresight should be ascribed to the market. Perhaps agents do
not really have as clear a picture of the distant future as the simplest rational expectations
models suggest. Stock prices and dividends could follow a nonlinear relation such as the
one we estimate for some time before market participants catch on to the unreasonable

implications of very high dividend realizations.
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6. Appendix 1: Time-series properties of dividends

In deriving (13), we assumed that the log dividend process follows a martingale with
trend. We examine briefly the time-series evidence on the dividend-generating process to
see if it is consistent with this assumption.

We first test to see if the data can reject the hypothesis that the log dividend process,
dy, contain a unit root.36 We perform the unit-root tests allowing for alternative assump-
tions about the presence of a time trend. Neither produces significant evidence against
the unit-root hypothesis at the 10 percent level. This result suggests that we can estimate
consistently the parameters of the dividend process, u and o, by an OLS regression of
the change in log dividends on a constant. As noted in the text, the data report these as
# = 0.011 and ¢ = 0.122.%7

Of course, if the solution in (7) is to be correct, investors’ conditional expectation
of d;+1 must equal u + d¢. It follows that the disturbance {41 in (5) must not only
be unpredictable given the past history of dividends, it must also be unpredictable given
any broader time-t information set. In particular, because investors’ forecast of future
dividends must depend on current dividends only, stock prices (which presumably reflect
information beyond that in dividends) should not help current dividends predict future
dividends. This is a strong assumption, so we check to see how well it fares in the data.

Table Al reports tests for Granger-causality from prices to dividends. In the first
line, we regress log dividend changes on a constant, and the lags of both log dividend
changes and log price-dividend ratios. Because the price-dividend ratio should include all
information relevant for forecasting future dividends, it should pick up any forecastable
non-trend component of dividend changes. The table reports the sum of the coefficients

on p; — d; and it lags, as well as an F-test of the hypothesis that these coefficients are

26The tests are those proposed by Phillips and Perron (1986) and Phillips (1987). We ailow for fourth-order serial correlation
in the residuals, as suggested by those suthors. For similar tests see Kleidon (1986) and Campbell and Shiller (1987).

37 There is some evidence that the residuals in this regression are not white, indicating that a more complex ARIMA process
might perform better. The Durbin-Watson statistic was 1.65 — which is inconclusive — and a Q-27 test rejects the hypothesis
of no serial correlation in the residuals st a 3.8 percent level of significance.
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jointly zero. This test shows that we cannot reject the hypothesis that p; — d; has no
incremental power for forecasting future dividend changes.3¢ This formulation, however,
is unnecessarily restrictive. If log prices and log dividends are cointegrated of order (1,1)
but with a coeficient other than 1, our inferences_ may not be valid. In the second line
of Table A1, we therefore run a less restrictive regression, which asks directly whether log
prices Granger-cause log dividends. Once again, the data do not reject the hypothesis that
log prices have no incremental predictive power for future log dividends.3®

In their tests of the present-value model, Campbell and Shiller {1987) report evidence
to the contrary - that the spread does Granger—cause future dividend changes. However,
these rejections appear to depend exclusively on a different convention for dating prices
and dividends: those authors use the beginning-of-period price, P;41, and the average of
the previous period's dividend, D¢, to predict average period-t+1 dividends, De A0 1f
P, ;1 contains cleaner, more up-to-the-minute information about the beginning-of-period-
t+1 dividend than does the time-averaged variable D;, then one would expect to find
Granger-causality using the Campbell-Shiller dating convention, even when stock prices
contain no information beyond that in the past history of dividends. Furthermore, as we
argued above (footnote 22), substantial information about the current year's dividends
could become available during the month of January. There is therefore little basis for
rejecting the hypothesis that prices do not Granger-cause dividends. While the view that
prices contain information beyond that in current dividends is certainly a plausible one,

there just is not much evidence in its favor in these data.#! We conclude that (5) is a

38 We also ran this test in levels rather than logs, using what Campball and Shiller (1987) call the spread, P — &Dy, in piace
of the log price-dividend ratio, and AD, in place of Ad,. The results, using various measures of 5, are not importantly different
from thosz reported abovs.

3% 3ims, Stock and Watson (1988) and West (1988b) give the asymptotic justification for this proced In both reg
tests we used s lag length of 4. Similar tests on alternative lag lengths yielded the same results. Wa also duplicated these tests
on the 1871-1986 data set used by Campbell and Shiller (1987), with no change in the results.

40 Following the dating convention mentioned at the beginning of section 4, we instead use the beginning-of-period-t price,
P:, along with D¢ to predict Dyy;. Engle and Watson (1985) also use this convention, and obtain Granger-causality results
similar to ours.

41 We ran the regressions reported in Table Al using Campbell and Shiller’s dating convention, and found results similar to
theirs. Campbell and Shiller choose their dating convention because - unlike us - they are concerned with pradicting prices (in
addition to dividends). However, if there is substantial additional information about future dividends in stock prices, then one
might nevertheless expect to find that prices Granger-cause dividends using our dating convention. The results in Table Al,
however, suggest that this is not the case.
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reasonable empirical approximation to the true process generating dividends.
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7. Appendix 2: Derivation of the finite-sample distribution of ¢ in (13).

Consider the model, Y; = ¢g + ¢X: + n¢, where t = 1...T, Y; = Pt/ Dy, ¢ is a parameter

to be estimated, X; = DA =1 and the log of D, evolves according to (5):

¢
de=pt+do+ ) & (A1)
s=1

Data with sample means removed are denoted by y; and z,. Let Z represent the random
sequence of regressors from time 1 to T, a particular realization of which is given by z.
We wish to derive the distribution of the test & = ¢, where ¢ is the OLS estimate of ¢. To

do this we require the following assumptions:

Assumption I: The residuals, n¢, are normally, but not necessarily identically. or
independently, distributed with unconditiona! mean 0 and autocorrelation function 5(k).

Assumption 2. The dividend innovations, £, are independently distributed of the

residuals, 5, at all leads and lags, and have mean 0 and variance al.

Note that the OLS estimate of ¢ is given by:
. T
éz) = %‘T?% = E( _2)'h Ewt'h, (42)
t=1%¢ t=1 a-
where the w; are a random set of weights, which by assumption 2 are independently
distributed of the n;'s. By assumptions 1 and 2 we have that the linear combination in
(A2), for a given sample path of the regressors, z, is a weighted average of normals, and

is therefore normally distributed:
é(z) —c~ N(0, (z'z)"1z' Dz(z'z)7?), (A3)

where D; ; = §(i — j). Notice that since the distribution of é depends on the particular
realization, z, the unconditional distribution of ¢ will be a mixture of normals, and will
therefore have fat tails. Nevertheless, under both the null and alternative hypotheses, ¢ is
estimated consistently.
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Even though the unconditional distribution of é is not normal, the t statistic for
é(z) = c is distributed N(0,1) in finite samples, provided that D is known. To see this
note that from (A3) the ¢ statistic is given by:

é(z)—c
Vv (2'z)~ 1z’ Dz(z'z)~1

Because this distribution does not depend on the sample realization, z, it holds uncondi-

~ N(0,1). (A4)

tionally. This is true under both the null and alternative hypotheses.

Of course, (A4) assumes that D is known. If D must be estimated, then the expression
on the right-hand side of (A4) does not have a t distribution in finite samples (which would
be the case if n; were serially ’uncorrelated), but will instead converge in distribution as

T —s oo to N(0,1).
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Figure 1
Intrinsic-Bubble Price Paths
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Figure 2
Simulated Stock Price Paths
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Figure 3
Simulated Stock Price Paths
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Figure 4

Simulated Stock Price Paths
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Table §
Cointegrating Regressions

Row / Regression Equation Cointegrating R*2 W OF
Coefficient

(1) 36.65 0.85 0.57 87
R:a-fﬂD, €1.63)

() 0.023 0.85 0.69 87
Dy=a+ph (0.001)

H Pt = a+ fd, 1.591 0.88 0.69 87
(0.06)

=a+

(&) d‘ ﬂm 0.556 0.88 0.70 87

(0.020)

Notes to Table 1: Cointegrating regressions are estimated using OLS, with uncorrected stan-

dard errors in parentheses. Sample period for all regressions was 1900-88.



Tsble 2
Unit Root Tests

Row / Series with time without time
trend trend

(1) Log Dividends -0.1644 -0.0545
-2.56 -1.40

(2) Price-Dividend Spread, P - 14.0 0 -0.1355 -0.0702
-2.08 =14

(3) Price-Dividend Ratio, P / D -0.2157 -0.1343
-2.99 2.1

(4) Log Price-Dividend Ratic, p - d -0.2122 -0.1315
-3.55 ** -2.55

Notes to Table 2: Figures reported are the coefficients B in the following regressions: with
trend, Azis1 = fo + P1z¢ + Bat; and without trend, Azyy = Bo + Pi1z,. Standard errors are
constructed allowing for an MA(4) process in the residuals. T-statistics reported beneath the point
estimates are for the test §; = 0. *, **, *** represent significance at the ten, five, and one percent
levels, respectively, using confidence intervals proposed by Phillips and Perron (1986) and Perron
(1987).



Table 3
Estimates of

Pe/Di = o+ ;D,‘"

F-test

Row / Estisstion method c0 c 1% ¢ =0 R*2 [ DF

1. oLs 12.24 0.34 0.57 0.7 87
(1.14) (0.05)v**

2. Maximum Likel ihood 14.18 0.26 0.75 1.9 86
(.7 (0.06)"**

2. oLS 14.63 0.04 2.61 128.0 *** 0.57 0.73 86
(2.28) €0.12) (1.15)°**

S. Maximum Likelihood 16.55 0.01 3.9 9.62 *** 0.75 1.92 85

(2.02) (0.02) (1.45)*

Notes to Table 3: OLS regressions report Newey-West standard errors, allowing for fourth-
order serial conditional and heteroskedasticity. (Higher orders of serial correlation did not yield
larger standard errors.) Maximum likelihood estimates specify the error term as an AR(1) process.
# %+ s renresent statistical significance at the ten, five, and one percent levels, respectively.

Sample period for all regressions was 1900-88.



Figure 5
Actual and Predicted Stock Prices




Figure 5a
Actual and Predicted Log Price-Dividend Ratios
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Figure 6
Actual and Predicted Stock Prices
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Table &
Estimates of Alternetive Models

P./Di = co+ D} + g Xy

Row / Estimetion method c0 3 ] R~2 ow of

1. OLS, time bubble 18.28 0.030 0.1 0.35 87
(1.47) €0.013)**

2. OLS, time bubble 11.85 0.377 -0.008 0.57 0.75 86
(1.09) (0.060)*** (0.010)

3. OLs, linear trend 13.68 0.15 0.35 0.43 87
(2.22) (0.05)%e*

4. OLS, linear trend 12.43 0.364 -0.019 0.57 0.75 86
(1.39) (0.066)*** (0.052)

5. OLS, linear dividends 6.88 2.273 0.55 0.70 87
(2.02) (0,39)vee

6. OLS, linear dividends 18.09 0.684 2.397 0.57 0.70 86
(8.62) (0.448) (3.32)

1. Maximum Likelihood, time bubble 18.34 0.027 0.75 2.04 86
(2.16) (0.014)*

2. Maximum Likelihood, time bubble 14.48 0.223 0.008 0.75 1.9 85
(1.86) (0.075)*** (0.012)

3. Maximum Likelihood, linear trend 14.02 0.145 0.75 1.99 86
(2.87) (0,054)***

4. Maximum Likelihood, Linear trend 13.19 0.190 0.060 0.75 1.93 85
(2.16) (0.084)** (0.056)

5. Maximum Likelihood, linear 11.39 1.530 0.75 1.93 86

dividends (2.76) (0.420)***
6. Maximem Likelihood, linear 26.56 0.904 -4.372 0.76 1.9 a5

dividends (6.64) (0.404)** (2.710)




Notes to Table 4: The variable X; is given by: a time bubble (X; = e("“"”)‘); a linear
trend (X; = t); and linear dividends (X; = D,). OLS regressions report Newey-West standard
errors, allowing for fourth-order serial conditional and heteroskedasticity. (Higher orders of serial
eorrelation did not yield larger standard errors.) Maximum likelihood estimates specify the error
torm as an AR(1) process. *, ** *** represent statistical significance at the ten, five, and one

percent levels; respectively. Sample period for all regressions was 1900-88.



Teble A1

Tests for Whether Prices Grenger-cause Dividends

Row / Regression Equation F-test [ brd ow OF leg
(p-value) tength
1) Adﬁ.l = a(L)Ad' +ﬂ(L)(A _“) ?63;:) 0.13 1.96 7 4
@ diyy = a{L)d + S(L)p: 1.868 0.9 1.98 ] 4
(0.12)

Notes to Table A1: Granger causality tests are estimated using OLS. The sum of the coefficients
on the log price-dividend ratio in line (1) and on the log of price in line (2) are reported. In the
parentheses below these are probability values from F-tests of the hypothesis that §; = 0, Vi.
Alternative lag lengths were also tried for these regressions, but did not change the results. The
sample period for all regressions is 1900-88.



