
NBER WORKING PAPER SERIES

INTRINSIC BUBBLES: THE CASE OF STOCK PRICES

Kenneth A. Froot

Maurice Obstfeld

Working Paper No. 3091

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Maasachusetta Avenue

Cambridge, M& 02138

September 1989

The authors are grateful to John Campbell, Steve Durlauf, Jeff Frankel, Greg
Mankiw, Jeff Miron, Andy Rose, Julio Rotemberg, Jeremy Stein, and especially
Jim Stock for helpful comments. We also received uaeful suggeations from
participants-especially the discussant, Ken West-at the 1989 FMME/Suznmer
Institute conference. Bob Barsky and Brad DeLong helped us obtain data. We
are also grateful to the John M. Olin, Alfred P. Sloan, and National Science
Foundations for generous financial support, and to the IMF Research Department
for its hospitality while this draft was completed. This paper is part of
NBER's research program in Financial Markets and Monetary Economics. Any
opinions expressed are those of the authors not those of the National Bureau of
Economic Research.



NBEP. Working Paper #3091
September 1989

INTRINSIC BUBBLES: ThE CASE OF STOCK PRICES

ABSTRACT

Several puzzling aspects of the behavior of United States stock prices can be explained by

the presence of a specific type of rational bubble that depends exclusively on dividends.

We call such bubbles intrinsic" bubbles because they derive all of their variability from

exogenous economic fundamentals, and none from extraneous factors. Unlike the most

popular examples of rational bubbles, intrinsic bubbles provide an empirically plausible

account of deviations from present-value pricing. Their explanatory potential comes partly

from their ability to generate persistent deviations that appear relatively stable over long

periods.

Kenneth A. Froot Maurice Obstfeld
Harvard Business School Department of Economics
Dillon 33 Harvard University
Soldiers Field Cambridge, MA 02138
Boston, MA 02162



1. Introduction

After a decade of research, financial economists remain unable to account for the

temporal volatility of stock prices. The initial rejections by LeRoy and Porter (1981) and

Shiller (1981) of simple present-value models based on constant discount rates and rational

expectations have been weakened, but not reversed, by subsequent work. Departures from

present-value prices still appear large and persistent.1

At one time rational bubbles were viewed as a promising alternative hypothesis. In-

terest in this alternative has waned, however, because econometric tests have not produced

strong positive evidence that rational bubbles can explain asset prices. That is, no one has

produced a specific bubble parameterization which is both simple yet capable of explaining

the data.

In this paper we propose and test empirically a new rational-bubble specification with

both these properties. Our formulation is simple because it introduces no extraneous

sources of variability. Instead, the bubbles we examine are driven exclusively — albeit

Campbell and Shiller (1987), Flavin (1983), Froot (1988), Kleidon (1986), Mankiw, Romer, and Shapiro (1985), Marsh
and Merton (1986), and West (1987, 1988a) address econometnc shortcoming. of the original studies. Att.mp to extend the
simpl, present-value model to allo, for time-varying discount rates have added little; see Campbell and Shill (1988a, 1988b),
F,ood, Rodrick, and Kaplan (1986), and Shiller (1981). Pindyck (1984) suggts that low-frequency pric, fluctuations may be a
result of time-varying risk premia driven by changing stock-price volatility. Howev. Poterba and Summer, (1986) argue that
volatility is not sufficiently persistent to explain a large portion of low-frequency price movements.
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nonlinearly — by the exogenous fundamental determinants of asset prices. For this reason

we refer to these bubbles as "intrinsic."2 One striking property of intrinsic bubbles is

that, for any given level of exogenous fundamentals, asset prices remain constant over

time: intrinsic bubbles are deterministic functions of fundamental alone. Thus, this class

of bubbles predicts that stable and highly persistent fundamentals lead to stable arid

persistent over- or undervaluations.

Intrinsic bubbles also appear capable of explaining long-term movements in stock

prices. It turns out that the component of prices not explained by the present-value model

is highly correlated with dividends, as an intrinsic bubble would predict. These bubbles

therefore capture the apparent overreaction of prices to dividend changes. For example,

they appear to explain the bull market of the 1960s, a period of high and rising real

dividends, as well as the market decline of the early 1970s. We use our estimated model

to separate out the present-value and bubble components of stock prices, and find that

the former implies a realized return on stocks of about 9.1 percent —very close to the 9.0

percent average for this century.

Of course, other alternative non-bubble hypotheses could conceivably explain our re-

sults. It is well known that any bubble path is observationally equivalent to a present-value

path where the process generating fundamentals may change in the future.3 Our results

could thus be interpreted in principle as evidence of such prospective changes. Indeed,

in an exchange-rate model with stochastic regime changes, we have derived present-value

pricing formulas similar to the bubble formulas derived below.4 In this paper, however, we

offer no particular regime-switch model to explain the apparently nonlinear relationship

2Th. excesove vanabllity of an intrinsic bubble solution comes entirely from its functional form, not from the introduction
of extraneous .tat. variabl... In models with stationary sunspot equilibria, asset pnce. generally can be expressed as functions
of fundamental, alone. However, some of the.. fundamentals, real interest rates in particular, are .ndogenoue and at least one
ultimate sourne of their variability could be an extraneous state variable. An intrinsic bubble solution for an asset price is a
reducedforrn expression that depends only on the exogenous factor. affecting the .conesny, not on .xtroneoua noise. In other
words, every intrinsic bubble solution ii a mininial-state-variable solution in the sense of McCallum (1983).

°Flood and Gather (1980), Hamilton and Whiteman (loss), and FlOod and Hodrick (1986) discuss this observational
equivalence. C.ccbetti, Lam, and Mark (1989) study the empirical propertise of particular nonlinear.fundamentals.fcing
processes.

'see Froot and Obstfeld (1989).
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between prices and dividends.

A second alternative hypothesis is that stationary fads or noise lie behind the de-

partures from present_value prices.5 Both fads and intrinsic bubbles predict that these

departures will be highly persistent. But an important theoretical distinction between

the two is that the former entail short-term speculative profit opportunities, whereas bub-

bles alone do not. In our empirical tests, the intrinsic bubble formulation allows us to

identify separately these two sources of deviation from present-value pricing. While the

predictability of short-term returns may ultimately be useful in explaining certain features

of the data, our results suggest that this predictability is not the main explanation for the

present-value model's failure.

The paper is structured as follows. Section 2 shows how intrinsic bubbles arise in a

standard present_value model. We compare in section 3 some properties of intrinsic and

extraneous bubbles. Section 4 then turns to the data. We examine the univariate and

bivariate times-series properties of U.S. stock prices and dividends, and argue that an

intrinsic bubble is broadly consistent with the results. In the second part of section 4, we

estimate our model directly and test it against several alternatives. Section 5 concludes.

2. Intrinsic bubbles in a present-value model

Stochastic linear rational expectations models can have a multiplicity of solutions

that depend on exogenous fundamentals but do not depend on extraneous variables such

as time.6 In this section we describe how such rational bubbles can arise as nonlinear

solutions to a linear asset-pricing model. Although our choice of a specific model is guided

by the empirical application we have in mind, solutions similar to those derived below arise

in a broader class of models.

The model is based on the standard arbitrage condition linking the time series of real

&For sxampl. of modeli with fed, or noise, Lee Black (1986), Campbell and Kyle (1988), D.Lon Sbleifsr, Summer, and
Waldman (1988) ShilIer (1984), and Summers (1986).

• Included in the category of extraneous variable, would be irrelevant fundamentals, .uch a. lagged fundamentals that play
no economic role apart from their effect on expectations.
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stock prices to the time series of exogenous dividend payments. Let Pg be the real price

of a share at the beginning of period t,Dg real dividends per share paid out over period t,

and r the constant, instantaneous real rate of interest. The arbitrage condition we focus

—rz,fr, n '— C £.J_/ + rg+1), 1

where E(.) is an expectation conditional on information known at the start of period t.7

The present-value solution for Pg, denoted by pPV, is•

pPV = (2)

Equation (2) is a particular solution to the stochastic difference equation (1). It equates a

stock's price to the present discounted%alue of expected future dividend payments. We will

always assume that the present value (2) exists, that is, that the continuously compounded

growth rate of expected dividends is less than r.

The present-value formula is the solution to (1) usually singled out by the relevant

economic theory as a unique equilibrium price. It can be derived by applying the transver-

sality condition,

lirne3E(P,) =0, (3)

and then observing that successive forward substitutions into (1) converge to (2).

Equation (1) has solutions other than (2). By construction, these alternative price

paths satisfy the requirement of period-by-period efficiency, but they do not satisfy (3).

Let {B}0 be any sequence of random variables such that

B = eTE(B+i). (4)

Then Pg = Pr + Bt is a solution to (1), which can be thought of as the sum of the

present-value solution and a rational bubble. Clearly, property (4) implies that P violates

the transversality condition (3).

?In our empiricel implementation of the model below, we allow for error, in the arbiags .qution.
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Rational bubbles are typically viewed as being driven by variables extraneous to the

valuation problem. However, some bubbles may depend only on the exogenous fundamen-

tal determinants of asset value. We call such bubbles "intrinsic" because their dynamics

s inherited entirely from those of the fundamentals. An intrinsic bubble is constructed

by finding a nonlinear function of fundamentals that satisfies (4). In the above stock-

price model with only one stochastic fundamental factor — the dividend process — intrinsic

rational bubbles depend on dividends alone.

To see what an intrinsic stock-price bubble might look like, suppose that log dividends

are generated by the geometric martingale,

(5)

where p is the trend growth in dividends, d is the log of dividends at time t, and is

a normal random variable with conditional mean zero and variance c2. Using (5), and

assuming that period-t dividends are known when P is set, we see that the present-value

stock price in (2) is directly proportional to dividends,

pPV = icDt, (6)

where ic = (e' — e2/2). Equation (6) is essentially a stochastic version of the Gordon

(1962) model of stock prices, which predicts that P = (er— eM)lDt under certainty.

The assumption that the sum in (2) converges implies that r > p + 02/2.

Now define the function B(Dt) as

B(Dt) = cDi, (7)

where ..\ is the positive root of the quadratic equation

A2a2/2 + Xp — r = 0, (8)

'Kl.idon (1986) uua this specificetion in his empirical study.
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and c is an arbitrary constant. It is easy to verify that (7) satisfies (4):

= e_TEt(cDeA(Is+Et+1)) (9)

= C—r(CDAls+AC/2) = C_t(cD\et) = B(D).

By summing the present-value price and the bubble in (7), we get our basic stock-price

equation:

P(D1) = pPU + B(D1) = pPV + cDi. (10)

Even though (10) contains a bubble (for c 0), and thus violates (3), it is driven exclusively

by fundamentals: P(D1) is a function of dividends only, and does not depend on time or

any other extraneous variable. B(D1) is therefore an example of an intrinsic bubble.9

The inequality r > t + can be used to show that A must always exceed 1. It is

this explosive nonlinearity that permits B(Dt) to grow in expectation at rate r. We will

assume from now on that c > 0, so that stock prices cannot be negative. Negative stock

prices would violate free disposability.'0

It might seem paradoxical that movements in a bubbly asset price can be accounted

for completely by movements in fundamentals. Economists are accustomed to an almost

instinctive decomposition of asset prices into two components, one dependent on market

fundamentals, and a second reflecting self-fulfilling beliefs and driven, at least in part, by

extraneous factors. In the context of linear models, for example, McCallum (1983) argues

that bubble solutions can be avoided by

restricting attention to "minimal-state-variable" solutions that depend only on

fundamentals. The possibility of intrinsic bubbles reveals that McCallum's approach does

'Sargei (1987, pp. 348-349) characterizes a rational bubble as a function (t, X,) = e"X, of time and a variable X, that
obey. E,(X,+,) = X,. His definition does not imply, however, that bubbles have to contain detanninietic time components.
To write the bubble B(D,) defined by (7) in Sargent's form, simply l.t X, = e"cD.1O A' be the negative root of equation (8). Then the general solution to (1) (within th, class of fundions P =P(D,)) is:

P(D,) =P" + c,D + caD'.
w. have imposed 02 = 0 in (10) on the grounds that the stock price P, should go to zero (not to infinity) as dividends D, go
to zero. The argument in the text show, that az' variable 1', whose logarithm follows a martingale with drift ga and variance
2 leadi to a bubble solutioo to (1). P(D,, )') = P" + B(Y,). Thus, a formula like (7) can be used to construct extraneous
as well as intrinsic bubbles.
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not rule out multiple solutions unless some additional requirement —linearity of the price

function, for example — is imposed."

Like all rational bubbles, intrinsic bubbles rely on self-fulfilling expectations. Instead

of being driven by extraneous variables, however, these expectations are driven by the

nonlinear form of the price solution itself. Figure 1 shows the family of solutions (10)

for a particular choice of c > 0. The straight line Pt'P" indicates the present-value

oltLton (6); this solution implies that E1(P+i/P) = +0/2 <er. A point like 1 on the

bubble path satisfies the arbitrage condition (1) because of Jensen's inequality. At point

1, the next innovation in the log of dividends is distributed symmetrically around zero,

but the market's belief that the relevant price function has the shape shown means that

the expected rise in the stock price, and hence the stock price itself, is higher at point 1

than at the corresponding point 2 on pPt1pPI2

3. Intrinsic versus extraneous bubbles: A partial comparison

Why should one think that intrinsic bubbles might succeed in characterizing asset

prices when other bubble formulations have failed? In this section we argue that intrin-

sic bubbles have several intuitively appealing properties which are absent in the bubble

parameterizations used previously in empirical studies.

To begin, we need to know why bubble explanations of stock prices have fared so

poorly.'3 A first reason might be a belief that prices simply do not diverge from their

present-value levels. There certainly are theoretical arguments for holding this view, but

it has proven difficult empirically to reconcile observed price behavior with a wide range

of present-value models. The theoretical conditions required to rule out rational bubbles

'Another coui.r.xample cornea from models in which calender tim, itself ii a fundamental. Then deterministic time-driven
bubble, of the Flood and Garber (1980) tort satisfy the minirnai.stats-vsriable criterion.

131t is easy to check that variou, theorems used to identify unique solution, of the form P(D.) to squationa Ilk. (1) do not
apply under thie section. assumptions. For example, (10) ii not within any of the classes of solutions coneidsr.d by Lucia
(1978) Saracoglu and Sargent (1978), Gourieroux, Laffont, and Monfort (1982), or Whitemsn (i983). The problem ii not that
the process (5) ii nonetstionaoy. Multiple solutions analogous to (10) exist when (5) ii a mean-reverting Omatetn-Uhl.nbeck
process; see Froot and Obstfeld (1989). Rethar, the problem ii that standard solutions impose additional restrictions, such
as linearity of the solution or the assumption that all state variable, are restricted to assume valu, in compact sets. Thsee
assumptions rul, out solutions such as (10).

'3Flood and Hodrick (1989) present a detailed survey of the empirical literature on bubble,.
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are relatively demanding; these conditions assume substantial, perhaps unrealistic, long-

horizon foresight on the part of economic agents. Short-horizon excess-profit opportunities,

on the other hand, are plausibly quite small.

A second reason for the poor empirical track record of bubbles is that the specific pa-

rameterizations that have been tested have also failed. These parameterizations generally

assume that bubbles depend explicitly on time.14 As a result, they predict upward runs

in stock prices conditional on dividends. There is little evidence, however, either for price

runs or for price-dividend ratios trending deterministically upward through time. These

features of the data suggest that time-driven bubble formulations are too restrictive to

improve our understanding of asset prices.

Some general specification tests have been employed in the hope of detecting bubbles,

without taking a stand on a specific bubble form. Even though these tests may have low

power, they nevertheless reject the no-bubble null frequently. However, they cannot reveal

the precise source of rejection, so they yield no hard evidence that bubbles really are the

culprit.'5 The tendency to ascribe these rejections to sources other than bubbles has been

strengthened, perhaps excessively, both by the theoretical arguments against bubbles and

the failure of the specific parameterizations mentioned above. However, consideration of

stochastic bubbles that look quite different from the typical time-driven examples may

throw a different light on the specification-test results.

How then do intrinsic bubbles look, and why might they do a better job of explaining

prices? First, intrinsic bubbles capture well the idea that stock prices overreact to news

about dividends, as argued by Shiller (1984), among others. Equation (10) implies that

= ,c + AcD > ,c, so that prices move more when dividends change than the present-

value formula (6) would predict.

"See rlood end Gerber (1980) end Blendezd and Watson (1982) for specifIc example..
'°The genel specification test for bubbles used by West (1987) end Cesella (1988) cm elternatively be int.rprst.d i.e test

of model upeciftcatico, the purpose for which it we. origna1ly proposed by Curnby, Hui&inga, end Obetltid (1983). A second
type of specification test for bubbles compares the time-series properties of prices and dividend,, which should differ if condition
(1) hold, but stock prices contain a rational bubble. See Hamilton end Whitemen (1985) end Dibe end Groumen (19$Se).
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Intrinsic bubbles may also help explain the time-series behavior of prices. Even though

prices are predicted to grow at the rate of interest, specific realizations may fluctuate within

some limited range for rather long periods. A given dividend realization corresponds to

a unique stock price regardless of the date on which the dividend is announced. Because

dividends are persistent, deviations from present-value prices may also be highly persistent.

An implication of this property is that, even with a very long data series, the fundamentally

explosive nature of an intrinsic bubble might be impossible to detect econometrically.

To illustrate these points, we present some simulations comparing the intrinsic bubble

in (10) with a particular alternative bubble specification. Each simulation experiment

involves three solutions to the difference equation (1). The first of these is the present-

value price P given by (6); the second is a nonlinear intrinsic bubble of the form (10),

denoted by Pt; and the third is a bubble that depends on time as well as on dividends,

= + bDte(T_a2/2)t. (11)

The precise formulation in (11) is chosen for two reasons: First, it makes the bubble a

function of dividends, and thus allows stock prices to overreact to dividend news, just

as the bubble (10) does. Second, (11) follows the majority of parametric bubble tests in

adopting a specification in which the extraneous variable t affects prices.

Dividends are assumed to follow (5), and in each experiment successive innovations

are drawn independently from a normal distribution. Pr is calculated using estimates

of r, , and 2 extracted from U.S. stock-price and dividend data, and the values of the

parameters ,c, c, and b are those estimated below in section 4. The simulations are run

over 200 years. However, it is important to note that there is little importance to these

specific choices of parameters and sample size: the qualitative patterns displayed in the

following figures are quite general.

Figure 2 shows a first run in which the simulated intrinsic bubble, P, does not produce

noticeable explosive behavior within the simulation sample. The percentage overvaluation

9



of stocks is not very different at the end of the sample (the year 2100) than it is around 1970

or 2015. In contrast, the time-driven bubble P explodes decisively starting in mid-sample.

The behavior of the time-driven bubble is similar in Figure 3, but the underlying

dividend realization makes the explosive expected growth of the intrinsic bubble more

apparent. Figures 2 and 3 highlight the sharply different paths for intrinsic bubbles that

different paths of fundamentals can produce.

Diba and Grossman (1988b) have argued on theoretical grounds that stochastic ra-

tional bubbles cannot "pop" and subsequently start up again. This feature, they assert,

makes rational bubbles empirically implausible. Figure 4, however, shows an intrinsic

bubble realization that falls over time to a level quite close to fundamentals. Indeed, if

dividends follow a process like (5) but without drift, the logarithm of dividends reaches

any given lower bound in finite time with probability one; and we can therefore be sure

that the bubble term in (10) gets arbitrarily close to zero in finite time. For practical

purposes, this is the same as periodically popping and restarting with probability one.

Intrinsic bubbles can get very close to present-value prices, and then diverge.

Notice that all three simulations share the common feature that the intrinsic bubble

path lies above the time bubble in the early part of the sample, but below it by the sample's

end. This pattern in the early part of the sample is merely a result of initial conditions, and

is therefore purely arbitrary.16 By contrast, the feature that the time bubble eventually

exceeds the intrinsic bubble is more general. It is easy to show as the sample size grows,

the probability that Pt > goes to zero, for any set of initial conditions.17 Although

the intrinsic bubble Pt ultimately exceeds the time-driven bubble F very rarely in large

samples, when it does, it does so by an amount large enough to equalize the two bubbles'

expected growth rates.

"It turn, out that if model (11)ie to have any hope of fitting the data, the estimate oft esuit b. var, close to s.ro implytng
that P, is vy close to r for the first part of the eample. See Section 4.2 and Figure 6 b.low.

"Proof- Define = r — p — e2/2 and auume, without lou of genaIity, that the bubbl are equal at t = 0: eDo = cDt.

Then Prot[, < P, = ProbfbD,e' < Prob[.,lt < (A — 1)(p + ', = Probjr — Ap — a'/S < (E, .)/t).
Equation (8) implies, however, that r — Ap — 02/2 = 2(A2 — 1)/2 > 0 (recall that A > 1). Since piOa(...., £.)/l = 0, the

proof i, complete.
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This latter property is important empirically. It implies that it would be unusual

to draw a long dividend series which yields an intrinsic bubble that appears as explosive

as a comparable time-driven bubble. Even though intrinsic and time-driven bubbles are

expected to grow at the same rate on average, a long intrinsic-bubble sample path is very

likely to appear less explosive than the path a time-driven bubble such as (11) generates.

4. Application to the U.S. stock market

In this section we turn to U.S. stock marketdata to examine the empirical performance

of our model. In doing so, we generalize slightly the model in section 1 to allow for errors

in the initial arbitrage equation. Thus, time-t prices are now given by:

Pt = e_TEt(Dt + Pt+i) + e'Ut,

where u is an error term, assumed to be independent of dividends at all leads and lags

and to have unconditional mean zero. 18

Equation (1') allows us to express (10) as the statistical model,

Pt = coDt + cD + t, (12)

in which c = = (er — e(2/2)_1 and Ct is the present value of the errors in (1'),

The error u IS a predictable single-period excess return,

and is its infinite-horizon counterpart. These excess returns could be interpreted, for

example, as the result of time-varying effective income tax rates, provided that those rates

are conditionally independent of D.'9 One could also think of Ug as partly reflecting a

fad — a shock to the demand for stocks which is unrelated to efficient forecasts of future
'Tbia distributional auumption is unnecessarily strong. Our tests below will produce conantent p.rsm.tw tinsat pro-

vided only that E,(,+iIu,) = 0 Vj 0. The evidence in the first appendix below supports this assumption. Tb. stronpr
assumption that £,(t,+,)u,) = 0 Yj is needed for consistent inferences.

"More formally, suppose that dividends are taxed at the marginal rate 9, at time I, and that lb. rat, follows the process

•s+1 = p9, +w,+i

with 0 � p < 1 and with 9, and D, independently distributed at all leade and lags. It ii then easy to show that the pr.s.nt
discounted valu. of futur, dividend receipts satisfies P," = ii.D,+e,, whsr. c, = _p(e_pgC+'/3)_hi,Ds, and E(,jD.) = 0 Ye.
Furthermore, this step leads to specification (13) below.
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dividends. Thus, our empirical specification allows us to identify separately bubble and

fad components of stock prices.20

Estimation of (12) is complicated by collinearity among the regressors. To mitigate

this problem, we divide (12) by D1 to express the price-dividend ratio as a nonlinear

function of dividends:

(13)

where the new error term, , = e1/D1, satisfies E(ritID,) = 0, Vs. The null hypothesis of

no bubble implies that c0 = K and c = 0; wherea.s the bubble alternative in (10) predicts

that c = K and c 0.

In the estimation below we use the Standard and Poor's stock-price and dividend

indexes from the Securities Price Index Record, as extended backwards in time by Cowles

et a!. (1939). Following Barsky and DeLong (1989), we examine the period 1900-88, using

nominal stock prices recorded in January of each year and deflated by the January PPI.

Dividends are annual averages of nominal data for the calendar year, deflated by the year-

average PPI.2' Of course, we would like to have data on beginning-of-period-t dividends

to match the beginning-of-period-t price, P. Because these are not available, we use the

average of period-t dividends as our measure of Dt.2223

4.1. The price-dividend relation

In deriving (13), we assumed that the log dividend process follows a martingale with

°°Caonpb.ll and Shiller (l987 l988 1988b), for example, rule Out rational bubble. from the start, and therefore attribute
deviations from present-value pricing entirely to a stationary fad component.

21Although the price and dividend series have been extended back to 1871, we chose to begin our sample at 1900 for two
reaaogw. First, the composition of the market portfolio becomes increasingly restrictive as on. goes back in time. By the 1570e
the portfolio ii comprised of just 11 railroad stocts. Second, whereas January value. for the PPI are available after 1900, only
annual averages exist prier to 1900. B.catw. many other authors (e.g., Campbell and Shiller 1987) have used the longer series,
we alan ran all of the statitical tests below on the 1871.1986 sample. The resulte wars qualitatively unaffeded.

32A potential problwn with this choice is that A may not be completely known at the beginning of period I. Nevertheless,
we see two reasons why D, Ii likaly to be a better measure of the divide.d information contained in beginning-of-period-i price,
P,, than ii the average period-I-i dividend, D,..1. First, P, is not recorded on January 1, but ii itself an average over the
period-I month of January. Second, to mitigate the effects of any time lapse between the determination and actual distribution
of dividend., it is better to use average period-I dividends than thos, from period 1—1. In any case, unless otherwise mentioned
the results below are not importantly different when average period-i — 1 dividend, are used to pry for beginning-of-period-i
dividends.

231n applying our specification to the aggregate stock market, a natursi question is how an intrinsic bubble dependent on
aggrate dividends could arise. One possibility is that each firma share price equal the present valu, of it. own dividends,
pius an intrinsic bubble on aggregate dividends. (This would require that an individual firm', dividends do not Granger cause
aggregate dividends.) Such a formulation would remove the incentive for managers to influence the market pric. of thea firma'
shares by altering the timing of dividend payments.
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trend. While this particular stochastic process is chosen for simplicity, we wish to be

sure that it is at least a reasonable apprcscimation to actual dividend behavior. In the

first appendix below, we describe several univariate and bivariate tests of the log dividend

•peciflcation in (5). We find little evidence against the martingale hypothesis: log dividend

changes are essentially unpredictable when conditioning on the lags of log dividends and/or

log price-dividend ratios.24 The data estimate the parameters in (5) as p = 0.011 and

a = 0.122.

Ageneral implication of (13) is that stock prices may appear to overreact to changes in

dividends. Also, (13) predicts that price-dividend ratios are nonstationary and positively

correlated with dividends, This subsection presents a brief empirical examination of these

basic implications of intrinsic bubbles.

First, what does the present-value model predict for the sensitivity of prices to changes

in dividends? From (6) a one dollar change in dividends should raise prices by ic dollars.

Using the fact that the the sample-average gross real return on stocks is eT= 1.090 per

annum, we have that c = (e' — e12/2)_1=(1.09O — e.011+.1222/2)1 = 14.0. In general

if Pt and D are cointegrated of order (1, 1), then under the present-value model the

cointegrating coefficient should be approximately c. Equation (6) also implies that the

elasticity of prices with respect to dividends is 1. if the log stock price Pt and d are

cointegrated, it is also with a coefficient of 1.

The first line of Table 1 presents estimates of c, obtained by regressing prices on

dividends. The coefficient is estimated to be 36.7 — much larger than the value of 14.0

predicted by our present-value model.25 if P and D are cointegrated then the OLS

estimate of the cointegrating factor, while consistent, is biased in small samples. In order

to bound the cointegrating coefficient, we run the reverse regression —projecting D on P
— in the second line of Table 1. This produces an even larger estimate of ic, 1/.0233 = 42.9.

'Som. of thi, evidence may be controversial. We have placed our discuseion in the ftr,t appendix bscaua. the controv,r,ial
aspect, are tangential to our main argument.

26Similar estimates of the cointegrating factor are obtained by Campbell and Shiller (1987), Diba and Grossman (1918a),
and Welt (1987), among other,.
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These values seem too large to be consistent with the present-value model. Even the lower

of the two would imply that the required rate of return on stocks less the expected growth

rate of dividends is an implausibly low 1/36.7 = 2.7 percent per annum. (The actual value

over our sample period is 7.1 percent.) The third and fourth lines of Table 1 perform

analogous regressions in logs instead of levels. Here the cointegrating coefficient predicted

by the present-value model is 1, but the estimates are again much higher —between 1.59 and

1/.5563=1.80. These estimates suggest that simple present-value models cannot explain

why price-dividend ratios are so high given historical stock returns, or, equivalently, why

returns have been so high given price-dividend ratios.

To test whether these estimates are statistically incompatible with the present-value

model, we examine various measures of the price-dividend ratio for nonstationarity. Table 2

reports Phillips-Perron unit root tests for the theoretically warranted "spread", P —l4Dt,

as well as the price-dividend ratio in levels, Pt/D1, and in logs, Pt — d. Results of tests

with and without time trends are reported. Under the present-value model, we should

reject nonstationarity in each of these regressions. Yet in five of six cases we cannot reject

the unit-root hypothesis. Of course, the power of these tests may be low, but the evidence

for stationarity seems too ambiguous to justify ruling bubbles out by assumption.26

In sum, the evidence presented in this section has three important implications for

our argument. First, prices are too sensitive to current dividends to be consistent with

a simple present-value model. The implication, of course, is that the portion of stock

prices unexplained by such a model must be highly correlated with dividends.27 Second

2Som. of our reeulta may be sensitive to tha tinung of dividends. Dibe end Grossman (1988.), for .xaznple, use lagged
dividends and deflate by the WPI. They find that the log price-dividend ratio, p. —Si_i. ii .tatien.ry. Using lagged dividend.,
but dallating by the PPI, Campbel and Shiller (1988a) alec reject nonsts&ionarity. Te.te using legged dividends, however, may
reject too frequently under the assumption that p, — d, actually contains a unit root. Campbell and Shiller (1987) find results
similar to those reported above for the spread, P. — aD,, using data from 1871-1986. All of thee. .utho.e acknowledge that the
evidance is not clear cut, but their maintained auumption that price-dividend ratio. are stationary is critical to intpreting
their findings.

27We are certainly not the first to notice this fact, which is essentially a robust restatement of Shill.r's (1981) volatility
findings. More specifically, west's (1987) general specification test and Campbell end Kyle's (1988) noise trading model exploit
the exCess sensitivity of prices to dividend chengas. Durlauf and HaIl (1988) find nois, in pric, that is more highly correlated
with prices themselves then with dividends. Their definition of noise, however, is not the difference between prices and a
multiple of current dividends, but the difference between prices and an ax post measure of the present value of futtwe dividends.
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this overreaction cannot be explained by other va.riables which are incorporated into stock

prices and which help forecast future dividends. If, for example, when dividends are high

investors tend to get other reliable information that dividends will grow more quickly than

previously expected, then this information is likely to be incorporated in stock prices,

which therefore should Granger-cause dividends. The results in the first appendix suggest,

however, that this is the not case. Finally, a specification such as (13) has at least the

potential to explain these failures of the present-value model.

4.2. A direct test for intrinsic bubbles

To see if this potential is at all realized, we turn in Table 3 to estimates of (13) and

several related expressions. Before interpreting the estimates, however, some discussion of

econometric issues is in order.

The regressor in (13) presents difficulties because it is explosive. Two additional

assumptions are necessary for valid statistical inferences. If the t-statistic of c = 0 is to

have the usual distribution we require that: 1) The residuals, ,,are distributed normally

— but not necessarily identically or independently —with unconditional mean zero; and ii)

the dividend innovations, , are distributed independently of the residuals v at all leads

and lags. The second appendix provides a proof that the standard t-statistic does indeed

apprcscimate a normal distribution under these assumptions, despite the presence of the

exploding regressor, D'.

The other aspect of estimation that requires discussion is estimation of the standard

error of the residual Because theory gives us no guide to ,'s serial correlation, the

usual standard errors may be incorrect. We try to account for this possibility in two

ways. First, we estimate (13) by OLS, but correct the residuals using Newey and West's

(1987) covariance-matrix estimator for serial correlation of unknown form. This estimator

also allows for conditional heteroskedasticity.28 Second, since the residuals appear to be

311t is peneible to think of the residual in (12), c, u growing at crete gimilar to that of dividends (see footnote 19). In .uch
a cue, we would not expect q, to exhibit mud, conditional heteroihedasticity. Indeed, in our eetimat the h.tero,k.daaticity-
corrected standard error, were similar to the uncorrected standard error..
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well described by a first-order autoregressive process, we compute maximum likelihood

estimates of the parameters under the assumption that the residuals are AR(1).

Finally, there is the issue of how to estimate the exponent, A, and the present-value

multiplier, K. In some of the regressions below we do not estimate A concurrently with

the other parameters. Instead, we use the point estimates from the log dividend process

obtained earlier, together with the mean return on stocks over the period to compute

A = 2.74.29 In other regressions we do estimate all parameters simultaneously, without

imposing additional restrictions. The restriction that c0 = K = 14.0 is not imposed on the

constant term in (13), even though it holds under both the null and alternative hypotheses.

Instead, we use the unrestricted estimate of c0 as a kind of sensibility check on our model.

The first two lines of Table 3 report estimates of (13) using OLS and maximum

likelihood, respectively. These two regressions constrain A to equal 2.74. In both cases, is

statistically very significant. The estimates are comparable in magnitude and significance

for the two estimation methods.30 In the third and fourth lines we estimate all of the

parameters of the model simultaneously. The point estimates of co are similar to those

above, although A is estimated to be larger and c correspondingly lower.31 The larger

standard error for c is expected here because the estimates of c and A are highly collinear.32

Rather than using a t-test to judge the importance of the nonlinear term, it is therefore

more appropriate to compute an F-test of the no-bubble hypothesis, c= 0, A = , where A

is the unrestricted estimate of A reported in the third and fourth lines, respectively. This

29We tried a variety of parameter estimates for,, , and 02. Thee. do have a minor effecton the exponent but are unimportant
for the genesal regreuion result. reported below.

30We also tried estimating an extended form of (13),

= to +cjD,' +c2D,"' + 'I.,

where A' is the negative root from .quaton (8). Our estimates of,, ,s and 2, .ugge.t that A' = —4.23. B.cate A' < 0 end
dividenda have a positive trend, estimates of D,A'.I will be of vanishing importance in explasning prices. Indeed, when we
included D ' in the regression, it had no effect on the estimate of c. Furthermore, c was imprecisely estimated and varied
widely across different estimation technique.. As we expected, there seemed to be no evidence that the aecond nonlinear term
helped in explaining stock prices. We therefore do not report these reeults.

these differences in point estimates, there is virtually no improvement in R2. A likelihood ratio test cannot reject
the hypothesis that line (3) ii no improvement over line (1) of Table 3.

°°The derivative of the likelihood function with respect to the parameters c and A includes the highly correlated terms
and co(A — 1)D2 (recall that A is estimated to be great than 2).
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hypothesis is rejected strongly at any reasonable level of significance.33

The finding that c is statistically positive suggests that prices become increasingly

overvalued relative to the no-bubble price, r,as dividends rise. Similarly, when dividends

are low, the bubble component of price shrinks — Pt approaches The dotted curve in

Figure 1 graphs the relationship between fundamentals and prices implied by c > 0. The

size of the bubble — the distance between F, and r — explodes for extreme values of the

dividend. Of course, if realized dividends have not spent much time in the explosive range,

the bubble component may be quite small.

Note also that the model's estimates of c are sensible. All four estimates from Table

3 imply that is measured on average to be about 14 times current dividends; indeed,

each estimate is statistically indistinguishable from ic = 14.0, the value predicted by the

present-value model above. In our estimates of (13), r = t0D, turns out to be consistent

with the long-run average return on stocks because the nonlinear dividend term soaks up

a reasonable amount of the excessive sensitivity of actual prices to dividends.

The economic significance of the bubble is, of course, another matter. How large is

the bubble component in prices, and how well does the model track actual price move-

ments? Figure 5 helps explore these issues. It compares actual stock prices with the

model's estimate of both r (the no-bubble component of prices) and A (the model's

estimated price inclusive of the bubble terms). Figure 5a presents comparable graphs of

price..dividend ratios.34 The figures are striking in two respects.

First there is the sheer size of the bubble itself —the distance between F, and F,". i
has grown over time and has been particularly large during the post-World War H period.

Indeed, the estimates suggest that at this writing the no-bubble level of the Dow-Jones

Average is 1,210 — less than 50 percent of its current value! The difference Pt — r is
estimated to be this large recently because the levels of both dividends and price-dividend

"Formally we should (end will in the next version) include a ,c test of this hypothesis. For now, not, that s.tt,ng c = 0 in
(13) yi.ldi an R2 of0, e.gainat the R°s reported in Table S.

'4Figur,s 5 and Ss use the estimated coefficient. from the third line of Table S. However, this cboic. is jrnmst.rial to the
result,: it ii almost impossible to distinguish visually among all the model, estimated in Table S.

17



ratios are historically high.

Second, Figure 5 indicates that P explains a good deal of actual stock price move-

ments. The sustained runup in prices from 1950 to 1968 appears to be captured by the

model, as does the post-World-War-fl tendency for stocks to sell at historically large multi-

ples of dividends. The model also does a plausible job of explaining the variability of stock

prices. Note from Figure 5 that the variance of dividends appears to have fallen relative

to the variance of prices over the sample. Stock-price variability has been somewhat of a

puzzle not only because it is so large, but also because it has not declined over time as

rapidly as has the variability of dividends. Figure 5 and (13) together suggest a resolution

to this paradox: stock price volatility has not fallen with that of dividends because the

level of dividends — and therefore the scope for volatility due to an intrinsic bubble — has

been historically high.35

Of course, the "fit" of Ft in Figure 5 cannot be judged without a standard of com-

parison. Because there are an infinite number of bubble specifications which depend on

time and/or other extraneous variables, sufficient excavation would allow us in principle

to fit perfectly the actual price path. We merely compare our restrictive version of a divi-

dend bubble with the similarly restrictive time-driven bubble P1 defined in (11). Figure 6

graphs the predicted values of the present-value price, Pr, and the bubble-inclusive price,

F1, from OLS estimates of that equation. The parameter estimates are presented in the

first two lines of Table 4.

it is immediately clear from Table 4 and Figure 6 that the time-bubble, P1 —pPV

neither statistically nor economically very important for understanding stock prices. In

addition, the estimates of the constant term, b0, are less reasonable than those of co in

Table 3. Correlation with dividends clearly is not enough to enable the time-driven bubble

35To see how muth the .,timated sensitivity of prices to dividend, has changed over tim., r.csll that 4P,/dD, = +
Using the satimates from Table 3 we can compute rough estimates of 4P./d.D,, which can be interpreted es the model's
prediction of the coefficient in a cointegratin( regression of prices on dividends. Using averag, dividends over the period
1961-88 we find (using line 2 of Table 3) dP,/d.D, 14.2 + (.26)(2.74)(7.86') = 399. Similarly, over the period 1900-60,

dP,/dD, 14.2 + (.26)(2.74)(4.S1'") = 23.2. The estimated sensitivity of prices to dividends has therefore nearly doubled
over the postWorld War 11 period.
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to explain stock prices.

To round out this section, the rest of Table 4 presents estimates of so and c in (13)

adding various additional terms: the time-driven bubble term in (14) and a linear time

trend. When the price-dividend ratio is regressed on these terms in isolation, they are sta-

tistically significant. However, neither remains statistically significant when the nonlinear

term in (13), D1, is added to the regression. Note that even the sign of the coefficients

on the time bubble and linear trend become negative when D' is added. The coefficient

on the nonlinear terms, however, remains statistically significant and essentially unchanged

in magnitude.

To see if the nonlinearity in dividends of (13) is important, lines (5) and (6) in Table

4 add a linear dividend term, D, to the regression. Analogously to the lines above, D is

positive and statistically significant on its own. But when D1 is included, the sign of the

coefficient on De is reversed. The sign and magnitude of c is once again not importantly

affected.

19



5. Summary and concluding remarks

This paper has proposed a class of rational bubbles that depend exclusively on ex-

ogenous fundamentals. This general class of solutions has intuitive appeal because it does

not require the introduction of extraneous variables yet captures the idea that prices can

be excessively volatile relative to fundamentals.

We applied a basic version of our model to U.S. stock-market data. The estimates

strongly reject the hypothesis that there is no bubble. They also help to reconcile the

historical return on stocks with the level of the price-dividend ratio (and with its correlation

with dividends), something that present-value models appear unable to do. In addition,

the estimates imply that the bubble component in today's stock prices is very large.

The test statistics above have desirable statistical properties because of the tight

parametric form of intrinsic bubbles. Unlike general specification tests, our estimates are

consistent under both the null and alternative hypothesis.

Our formulation allows variables such as the price-dividend ratio to predict excess re-

turns. To carry out statistical inference we do require that dividends themselves cannot be

used to forecast returns, but, in any case, there is little direct evidence to the contrary. By

relaxing the present-value assumption, the tests allow the data to allocate deviations from

the present-value model across a bubble term and predictable excess returns. Our interpre-

tation of section 4's results is that, once intrinsic bubbles are permitted, the predictability

of excess returns no longer appears to be the central cause of the simple present-value

model's failure.

Notwithstanding our empirical results, we, too, find the notion of bubbles somewhat

problematic. It is difficult to believe that the market is literally stuck for all time on a path

along which price-dividend ratios eventually explode, If the market began on such a path,

surely investors would at some point attempt the kind of infinite-horizon arbitrage which

rules bubbles out in theoretical models; and since fully rational agents would anticipate

such attempts, bubbles could never get started. It seems to us an empirical question,
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however, whether this much foresight should be ascribed to the market. Perhaps agents do

not really have as clear a picture of the distant future as the simplest rational expectations

models suggest. Stock prices and dividends could follow a nonlinear relation such as the

one we estimate for some time before market participants catch on to the unreasonable

implications of very high dividend realizations.
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6. Appendix 1: Time-series properties of dividends

In deriving (13), we assumed that the log dividend process follows a martingale with

trend. We examine briefly the time-series evidence on the dividend-generating process to

see if it is consistent with this assumption.

We first test to see if the data can reject the hypothesis that the log dividend process,

d, contain a unit root.36 We perform the unit-root tests allowing for alternative assump-

tions about the presence of a time trend. Neither produces significant evidence against

the unit-root hypothesis at the 10 percent level. This result suggests that we can estimate

consistently the parameters of the dividend process, ,u and a, by an OLS regression of

the change in log dividends on a constant. As noted in the text, the data report these as

= 0.011 and a = 0.l22.

Of course, if the solution in (7) is to be correct, investors' conditional expectation

of d6 must equal i + dt. It follows that the disturbance in (5) must not only

be unpredictable given the past history of dividends, it must also be unpredictable given

any broader time-t information set. In particular, because investors' forecast of future

dividends must depend on current dividends only, stock prices (which presumably reflect

information beyond that in dividends) should not help current dividends predict future

dividends. This is a strong assumption, so we check to see how well it fares in the data.

Table Al reports tests for Granger-causality from prices to dividends. In the first

line, we regress log dividend changes on a constant, and the lags of both log dividend

changes and log price-dividend ratios. Because the price-dividend ratio should include all

information relevant for forecasting future dividends, it should pick up any forecastable

non-trend component of dividend changes. The table reports the sum of the coefficients

on p — d and it lags, as well as an F-test of the hypothesis that these coefficients are

"The tests ere those proposed by Phillips end Perren (1986) end Phillips (1987). We allow for fourth-order serial corrsletion
in the residual,, as suggested by those suthori. For similar tests see Kleidon (1986) end Cisnpbell end Shiller (1987).

"There is some evidence thet the residuals in this regreasion ire not white, indicating thet e more complex AIUMA process
might perform better. The Durbin-Wat,on stititic was 1.65 — which is inconclusive — and e Q-27 test reject, the hypothesis
of no serial corralation in the residuals et a 3.8 percent level of signifIcance.

22



jointly zero. This test shows that we cannot reject the hypothesis that Pt —d has no

incremental power for forecasting future dividend changes.38 This formulation, however,

is unnecessarily restrictive. If log prices and log dividends are cointegrated of order (1, 1)

but with a coefficient other than 1, our inferences may not be valid. In the second line

of Table Al, we therefore run a less restrictive regression, which asks directly whether log

prices Granger-cause log dividends. Once again, the data do not reject the hypothesis that

log prices have no incremental predictive power for future log dividends.39

In their tests of the present-value model, Campbell and Shiller (1987) report evidence

to the contrary — that the spread does Granger-cause future dividend changes. However,

these rejections appear to depend exclusively on a different convention for dating prices

and dividends: those authors use the beginning-of-period price, Pj, and the average of

the previous period's dividend, D, to predict average period-t+l dividends, D11.4° If

Pt+i contains cleaner, more up-to-the-minute information about the beginning-of-period-

t+l dividend than does the time-averaged variable D1, then one would expect to find

Granger-causality using the Campbell-Shiller dating convention, even when stock prices

contain no information beyond that in the past history of dividends. Furthermore, as we

argued above (footnote 22), substantial information about the current year's dividends

could become available during the month of January. There is therefore little basis for

rejecting the hypothesis that prices do not Granger-cause dividends. While the view that

prices contain information beyond that in current dividends is certainly a plausible one,

there just is not much evidence in its favor in these data.41 We conclude that (5) is a

"W.also ran this t.st In evils rather then logs, using whet Campbell end Shill.r (1981) call the sprasd, P, — aD,, in plam
ofthe log price.dividend ratio, end AD, in place of Ad, Tb. results, using various m..sursa of a, ar, not importantly different
from those reported above.

"Sims, Stock end Watson (1988) end West (1988b) give the asymptotic justification for thi. procedure. 1 both regreuisn
tests we used a lag length of 4. Similar tests on alternative lag lengths yielded the same result.. Wa also duplicated these tests
on the 1871-1986 dat. set used by Campbell end Shiller (1987), with no change in the result..

'°Following the dating convention mentioned at the beginning of section 4, we instead use the beginning-of-period-f price,
P,, along with D, to predict D,+,. Engle and Watson (1985) also use this convention, and obtain Grenger-camality results
similar to our,.

"We ran the regressions reported in Table Al using Campbell and Shillsz's dating convention, and found results similar to
theirs. Campbell and Shiler choose their dating convention because — unlike us — they are concned with pr.diodng pncu (in
addition to dividends). However, if there is substantial additional information about future dividends in stock prices, then one
might nevertheless expect to find that prices Grang.cause dividends using our dating convention. The results in Table Al,
however, suggest that this is not the case.
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reasonable empirical approximation to the true process generating dividends.

24



7. Appendix 2: Derivation of the finite-sample distribution of 8 In (13).

Consider the model, Yt =c + cXt + 'it, where t = 1...T, Y = Pt/Dg, c is a parameter

to be estimated, X = Dr', and the log of D evolves according to (5):

dt = t + d0 +

Data with sample means removed are denoted by Vt and x. Let i represent the random

sequence of regressors from time 1 to T, a particular realization of which is given by x.

We wish to derive the distribution of the test ê = c, where 6 is the OLS estimate of c. To

do this we require the following assumptions:

Assumption 1: The residuals, 'it, are normally, but not necessarily- identically or

independently, distributed with unconditional mean 0 and autocorrelation function 5(k).

Assumption 2: The dividend innovations, are independently distributed of the

residuals, 'ii, at all leads and lags, and have mean 0 and variance u2.

Note that the OLS estimate of c is given by:

6(x) = Etit'it = 2)'i = t5t'it, (A2)
E=1 zt t=1 ::= 5

where the iit are a random set of weights, which by assumption 2 are independently

distributed of the 'it'S. By assumptions 1 and 2 we have that the linear combination in

(A2), for a given sample path of the regressors, x, is a weighted average of normals, and

is therefore normally distributed:

6(z) — c — N(O, (z'z)'z'Dz(z'zY1),

where Di,, = S(i — j). Notice that since the distribution of 6 depends on the particular

realization, z, the unconditional distribution of 6 will be a mixture of normals, and will

therefore have fat tails. Nevertheless, under both the null and alternative hypotheses, C is

c3t:mated consistently.
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Even though the unconditional distribution of is not normal, the t statistic for

(z) = c is distributed N(O, 1) in finite samples, provided that D is known. To see this

note that from (A3) the t statistic is given by:

c(z) — c
N(O 1). (A4)

/(x'z)— 'x'Dx(z'z)'

Because this distribution does not depend on the sample realization, r, it holds uncondi-

tionally. This is true under both the null and alternative hypotheses.

Of course, (A4) assumes that D is known. If D must be estimated, then the expression

on the right-hand side of (A4) does not have a t distribution in finite samples (which would

be the case if were serially uncorrelated), but will instead converge in distribution as

T—+ootoN(O,1).
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Figure 1

Intrinsic-Bubble Price Paths

n(D)



(V

/I

0

/II
to



11

16

15

14

13

12

11

10

6

6

Figure 3
Simulated Stock Price Paths
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Simulated Stock Price Paths
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Tble I
Cointegrat lug Regress ens

Row I Regression Equation Countegrating R2 DV OF

Coefficient

36.65 0.85 0.57 87

P1=a+BD1 (1.63)

(2) 0.023 0.85 0.69 87
D1=a+8P, (0.001)

(3) P1 = a + 8d( 1.591 0.88 0.69 87

(0.06)

= a + fip,
(4) 0.556 0.88 0.70 87

(0.020)

Notes to Table 1: Cointegrating regressions are estimated using OLS, with uncorrected stan-

dard errors in parentheses. Sample period for all regressions was 1900-88.



TSbLe 2
Urnt Root Tests

Row / Series with time wthaut time
trend trend

(1) Log Dividends -0.1644 -0.0545

-2.56 -1.40

(2) Price-Dividend Spread. P - 14.0 0 -0.1355 -0.0702

-2.08 -1.14

(3) Price-Dividend Ratio, P / 0 -0.2157 -0.1343

-2.99 -2.11

(4) Log Price-Dividend Ratio p - d -0.2122 -0.1315
-3.55 " -2.55

Notes to Table 2: Figures reported are the coefficients fl in the following regressions: with

trend, z,+1 = o + thz + t; and without trend, = fib + flizt. Standard errors are

constructed allowing for an MA(4) proceme in the residuals. T-.tatistic.a reported beneath the point

estimates are for the teat flj = 0. , represent significance at the ten, five, and one percent

levels, respectively, using confidence intervals proposed by Phillipe and Perron (1986) and Perron

(1987).



Tible 3
Estimetes of

P,/Ds=co+cD1

-test
Row / Estimetioi, method cO C .1 c .0 R2 DU DF

1. OLS 12.24

(1.14)
o.

(0.05)
0.57 0.71 87

. Max1ImJI LikeLthood 14.18

(1.77)

0.26

(0.06)
0.75 1.91 86

2. OLS 14.63

(2.28)
0.86
(0.12)

2.61
(1.15)"

128.0 ••• 0.57 0.71 86

5. Max,eui, !.iketihood 16.55

(2.02)
0.01

(0.02)
3.29

(1.45)"
9.62 " 0.75 1.92 85

Notes to Table 3: OLS regressions report Newey—West standard errors, allowing for fourth-

order serial conditional and heteroekedasticity. (Higher orders of serial correlation did not yield

larger standard errors.) Maximum likelihood estimate. specify the error term as an AR(1) process.

•, represent statistical significance at the ten, five, and one percent levels, respectively.

Sample period for all regressions was 1900-88.
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TabLe 4

Eatltn of AttentIve maSts

= co+cD1 +9X0

Row I Estiation method tO c • r2 OW OF

1. 015, time b.tbLe 18.28

(1.4?)
0.030

(O.O13'
0.21 0.35 87

2. 015, time bstbte 11.85

(1.09)
0.377

(0.060)n*
.0.008
(0.010)

0.5? 0.75 86

3. 015, Linear trend 13.68

(2.22)
0.15

(0.O5)
0.35 0.43 87

4. 015, Linear trend 12.43

(1.39)

0.364

(0.066)'

-0.019

(0.052)

0.57 0.75 86

5. 015, Linear dividends 6.88

(2.02)
2.273

(0.39)
0.55 0.70 87

6. OLS, Linear dividends 18.09

(8.62)
0.684

(0.448)
2.397
(3.32)

0.57 0.70 86

1. Masiatr LikeLihood, time bttbLe 18.34

(2.16)
0.027

(0.014)
0.75 2.04 86

2. Nasiin.sn LikeLihood, time bu.tbLe 14.48

(1.86)
0.223

(0.075)'
0.008

(0.012)
0.75 1.94 85

3. I4asim.m LikeLihood, Linear trend 14.02

(2.87)

0.145

(0.054)"

0.75 1.99 86

4. PtasiumJe LikeLihood, Linear trend 13.19

(2.16)

0.190

(0.084)**

0.060

(0.056)

0.75 1.93 85

5. macma LikeLihood, Linear

dividende

11.39

(2.76)

1.530

(0420r'

0.75 1.93 86

6. Naxieuii Likelihood, Linear
dividends

24.54
(6.64)

0.904

(0.404)'
-4.372
(2.710)

0.76 1.91 85



Notes to Table 4: The variable Xg is given by: a time bubble (K = a linear

trend (X = t); and linear dividends (X( = D1). OLS regressions report Newey-West .tandard

errors, allowing for fourth-order serial conditional and heteroskedasticity. (Higher orders of serial

eoevsiatios did not yield larger standard errors.) Maximum likelihood estirna&ss specify the error

tm as an AR(1) process. , , represent statistical significance at the ten, five, and one

percent levels, respectively. Sample period for ..ll regressions was 1900-88.
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TabLe Al

Tests for I5ieth.r Prices Gruercsaa Divider

Row / Regression Equation F-test 52 OW OF leg

(p-v.Lue) length

d+i = a(L)A4f + fl(L)pt — 0.812 0.13 1.96 75 4

(2) d.1 = a(L)d* + (L)pg 1.8 0.91 1.98 75 4

(0.12)

Notes to Table Al: Grenger causality tests are estimated using OLS. The sum of the coefficients

on the log price-dividend ratio in line (1) and on the log of price in line (2) are reported. In the

parentheses below these are probability values from F-tests of the hypothesis that = 0, Vi.

Alternative lag lengths were also tried for these regressions, but did not change the results. The

sample period for all regressions is 1900-88.


