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Figure 1: We evaluate state-of-the-art intrinsic image decomposition algorithms based on their ability to produce seamless, artifact-free

results for image edits. To fairly compare different methods, we automatize the image editing process. Left to right, by Poisson-based inpainting

of the reflectance layer, we remove a logo on a shirt using the metod of Barron et al. [BM15], we add a picnic blanket over a shadow with the

method of Grosse et al. [GJAF09], and add a painting over colored shadows with the method of Bousseau et al. [BPD09].

Abstract

Intrinsic images are a mid-level representation of an image that decompose the image into reflectance and illumination layers.

The reflectance layer captures the color/texture of surfaces in the scene, while the illumination layer captures shading effects

caused by interactions between scene illumination and surface geometry. Intrinsic images have a long history in computer vision

and recently in computer graphics, and have been shown to be a useful representation for tasks ranging from scene understanding

and reconstruction to image editing. In this report, we review and evaluate past work on this problem. Specifically, we discuss

each work in terms of the priors they impose on the intrinsic image problem. We introduce a new synthetic ground-truth dataset

that we use to evaluate the validity of these priors and the performance of the methods. Finally, we evaluate the performance of

the different methods in the context of image-editing applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

The rich visual world that surrounds us is the result of the com-
plex interplay between light and matter. Light reaches an observer
typically after several interactions with physical objects, each of
them having a nontrivial effect on its spectrum, different light wave-
lengths being affected differently depending on the properties of
the material involved. Further, cause and effect can be separated
by a large distance when an object casts a shadow far away from
its actual position. Eventually, all these effects are conflated into
a single image. Considered in its full generality, the image forma-
tion process may seem impossible to invert because the phenomena
involved are too diverse and too complex to be disentangled. Yet,
human observers effortlessly identify shadows and recognize object
colors under all but the most extreme lighting conditions. Intrinsic

decomposition of digital images is a task inspired from this ability.
Originally, Barrow and Tenenbaum [BT78] sought to characterize

properties inherent in a scene such as the color and geometry of
objects independent of viewing conditions. With time, the geomet-
ric aspects of this original goal became associated with stereo and
multi-view reconstruction, and intrinsic decomposition took a more
focused meaning becoming synonymous with reflectance estimation.
In this manuscript, we follow this trend and define intrinsic decom-
position as the task of separating the effect of the scene illumination

from that of the material reflectance. This task relies on a simple im-
age formation model that explains each pixel as the product of two
RGB triplets, one for the light color and one for material reflectance.
This model analyses only the last bounce of the light transport and
makes a number of simplifying assumptions such as “all materials
are Lambertian” and “no participating media”, but it nonetheless
provides a powerful means to reason about light and object colors
that has proven to be useful to many image editing applications.
For instance, recoloring an object in an image is a nontrivial task
even for a uniform-color object because shading variations make
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some parts bright and others dark, possibly in a discontinuous way
if the object exhibits sharp geometric features. The same task with
an intrinsic decomposition is straightforward since the reflectance
of the object is constant. The rest of this manuscript presents the
concept of intrinsic image decomposition in more detail, describes
the main existing algorithms to compute such a decomposition, and
reviews the most common use cases.

While some approaches consider multiple images as input
(from multiple viewpoints [CBLD11, LBP∗12, Laf12, LBD13,
HWU∗14,Duc15,XLL∗16], varying illumination [Wei01,MLKS04,
Yu16], or different focal distances [SSN16]), images with depth
information [BM13, CK13, JCTL14, HGW15], multi-spectral
images [SW09], videos [YGL∗14, BST∗14, KGB14, SYC∗14,
MZRT16], lightfields [GEZ∗16, AG16] or even videos with
depth [LZT∗12], this document focuses on the use of a single RGB
image as input, and emphasizes image editing applications. This is
motivated by the wide availability of this kind of data and the need
for illumination-aware image editing tools.

Aside from pedagogical content, this document makes the follow-
ing contributions. First, we evaluate priors commonly used in the
literature in the context of realistic and complex scenes. Second, we
introduce a small but realistic synthetic ground-truth dataset based
on PBRT [PH10], Mitsuba [Jak10] and LuxRender [Ver07] scenes.
Third, we evaluate 10 recent methods on real photographs in the
context of image editing applications.

2. Problem formulation

The intrinsic decomposition problem seeks to decompose an im-
age into the product of illumination and reflectance layers. This
section exposes the motivation behind this problem, as well as var-
ious assumptions and priors that numerically help solve for this
decomposition.

2.1. Intrinsic Decomposition

In a Lambertian scene, material reflectance does not depend on view-
ing direction or illumination incidence. This simplifies light trans-
port and allows for the writing of a simplified (yet exact) physically-
based image formation model. In this context, we have

I(x,λ) = ρ(x,λ)L(x,λ) (1)

where x is the pixel position, λ the light wavelength, I the rendered
image, ρ the diffuse albedo and L is a term which depends on light
and geometry. In the following, we will call ρ the reflectance, and L

the illumination.

This model holds in the continuous image plane domain, but the
spatial filtering and sampling that occur inside real cameras makes
the equality in the equation above break on traditional pixel grids
when geometry, textures or illumination vary within a single pixel,
or in the presence of lens or motion blur. Cameras also often store
non-linearly processed pixel values, for instance, to gamma correct,
enhance or white balance images.

The inverse problem of forming an image using the model in
Eq. 1 is the problem of recovering the reflectance and illumination
given an already formed image. This process is called intrinsic

decomposition. Eq. 1 makes the intrinsic decomposition problem
precisely defined in terms of photometric quantities.

Other techniques also try to understand the role of lighting or
textures in images, or relate to intrinsic decompositions:

• Reflectance map extraction [HS79, RRF∗15]: This generalizes
the intrinsic decomposition problem to the recovery of arbitrary
reflectance functions. Rematas et al. offers a deep learning ap-
proach that recovers a full hemispherical reflectance function per
pixel [RRF∗15] – the reflectance map.

• Shadow extraction. This closely related problem consists of de-
tecting and extracting shadows. Under low-frequency lighting
conditions, shadows become softer and a precise definition of
shadows becomes an issue. Relating this problem to that of in-
trinsic decomposition, Isaza et al. [ISR12] evaluates intrinsic
decomposition methods to detect shadows.

• Light estimation. This tries to uncover the lighting condi-
tions of a scene, for example, by extracting directional light
sources [LMGH∗13] or environment maps [LE10], from an im-
age. This problem becomes difficult in the presence of localized
light sources or inter-reflections, in the absence of a 3d geometric
model of the scene.

• Specularity removal. This is a different intrinsic decomposition
approach that separates the diffuse from the specular reflection
components. While this also extracts intrinsic images in the sense
of Barrow and Tenenbaum [BT78], the term intrinsic decomposi-

tion now most often refers to the separation of the diffuse from
the illumination components (though exceptions exist [BvdW11]).
The interested reader may find further information in the survey
of Artusi et al. [ABC11].

• Color constancy. When a colored object is illuminated by light
sources of different colors, for example in a sunset, or in indoor
lighting, the object appears to humans as having kept its original
color. A common photographic operation is to try and compen-
sate for the light source chromaticity – a process often called
“white balancing” or color constancy correction. This is typically
achieved globally using a grey card or a colored chart [CPCB15].
In the presence of multiple colored light sources at the same time,
this operation can be performed locally [HMP∗08, BBPD12]. A
perfectly local color constancy would recover the illuminant color
at each pixel, which would correspond to the chromaticity of the
illumination layer L(x,λ).

• Texture-Structure decomposition. This separates the high
frequency textural elements from lower frequency struc-
tures [AGCO06]. The definition of a texture, however, depends
on the scale of the observed element. For instance, a forest
canopy can belong to the structure if seen from sufficiently
close, and it becomes part of textures if seen from sufficiently
far. This decomposition has seen applications for intrinsic de-
compositions [JCTL14, BHY15], and image-based material edit-
ing [BBPA15].

A major challenge of intrinsic image decomposition is that the
image formation model I = ρL is ill-posed because if ρ0 and L0
satisfy the model, i.e., I = ρ0 L0, then aρ0 and 1

a L0 also satisfy the
model for any nonzero a, including the case where a is spatially vary-
ing (Fig. 2). Concretely, this means that the absolute ground-truth
decomposition is unattainable unless additional absolute measure-
ments are available, e.g., using a light meter, which is not the case
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Figure 2: The intrinsic decomposition ambiguity. Top row. An input

image I is decomposed into the product of reflectance and illumi-

nation layers ρ and L using [BPD09]. Bottom row. The product of

these altered reflectance and illumination layers ρ′ and L′ exactly

reconstructs the input image I.

in practice. While absolute values cannot be estimated, relative ac-
curacy can be reached and is useful, e.g., to identify regions of
constant albedo or illumination. For this reason, decompositions
that differ only by a constant multiplicative factor are considered
equivalent [Hor74]. Such solutions provide the same relative esti-
mates since the constant multiplicative factor vanishes when one
takes the ratio of any two values. And in this context, the notion of
exact solution still exists and corresponds to any decomposition that
is equal to the ground truth up to a constant multiplicative factor.
This also enables the quantitative evalution of the accuracy. For
instance, one can use computer-generated images for which ground
truth is available as a benchmark. Instead of directly reporting the
error between a given decomposition and the ground truth as is often
the case in other contexts, one first searches for the multiplicative
factor that minimizes the error, which is the value reported. We will
discuss further how to evaluate results later in the manuscript. How-
ever, even considering relative accuracy, the image formation model
leaves room for too much freedom: the model still holds when a

is spatially varying. In fact, twice as many unknown values (ρ and
L) as known quantities (I) have to be estimated. To attain satisfac-
tory decompositions, priors and constraints are needed to reduce
the number of unknown variables and disambiguate the problem.
This represents the heart of intrinsic decomposition research, and is
discussed next.

2.2. Common priors

Priors statistically model one’s beliefs about intrinsic decomposi-
tions and help disambiguating decompositions. A number of priors
have been introduced in the literature, as well as assumptions and
user constraints, detailed below and summarized in table 8. In the
following, we assume the camera sensor response curve has been
properly taken care of (for instance, by directly working on raw
images or using photometric calibration techniques [KGS05]).

Monochromatic illumination (MI). Often, the illumination layer
is assumed to be grayscale. Up to a white balancing step of the
input photograph, this corresponds to the use of a single light
color and reduces the illumination layer to a single scalar value
per pixel L(x) instead of L(x,λ). This is the most common as-
sumption (see Table 8), and only few approaches allow for colored
lights [CSBC09, BPD09, CCFI14, BM15, TNY15] ( [BM13] for
RGB-D images). It is interesting to note that the monochromatic
assumption often only applies to the light color as seen by the cam-
era. That is, the light itself need not be monochromatic as long as
the integral of its energy distribution over wavelengths is the same
for each color sensor. The main disadvantage of this assumption
is that inter-reflections are most often colored [CRA11], and so,
this assumption often fails to capture illumination effects that are
due to indirect lighting. However, the monochromatic illumination
assumption can be considered as a prior by designing a soft penalty
for strongly colored illuminations while still allowing for colored
lighting. For instance, Chang et al. [CCFI14] use a Gaussian Process
that correlates color channels, and favors grayscale illuminations.

Input I Illumination L Reflectance ρ

Monochrome
illumination L′

Recovered ρ′

Figure 3: If the monochromatic illumination assumption is used,

colored shadows cannot be removed from the reflectance layer. First

row. The input image I is decomposed into reflectance and (col-

ored) illumination layers ρ and L. Second row. We desaturate the

illumination layer L′, and recover the corresponding reflectance

image ρ′ = I
L′ , hence simulating the best intrinsic decomposition

achievable assuming grayscale illumination. This new reflectance

partly contains the colored shadow. The monochromatic illumina-

tion assumption is still widely used to date (table 8).

Retinex (R). Following a series of experiments involving colored
light sources illuminating patterns resembling Piet Mondrian’s paint-
ings, Land et al. [LM71] determined that the human eye made sense
of relative intensities to form a representation of material reflectance.
In this representation, sharp transitions (or edges) are perceived
as changes in reflectance properties, while smoother variations are
seen as changes in illumination. They coined the term Retinex, from
Retina and Cortex, for the eye representation of lightness – a percep-
tual quantity correlated with reflectance. They further built a Retinex

Machine reproducing the reflectance of a grayscale color wheel
based on a 1D strip of sensors. This approach has been extended
in 2-d by Horn [Hor74] who provides numerical tools and physical
interpretations of the 2-d Retinex problem. The Retinex model fails
for hard shadows or occlusion boundaries since they produce strong
edges associated with illumination variations, but it works reason-
ably well for smooth surfaces. This prior is often implemented by
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thresholding gradients [Hor74], using a sparse norm on reflectance
gradients [BST∗14] or similarly, on differences between adjacent
gradients [BHY15], using Gaussian Processes [CCFI14] or other
probabilistic frameworks [LB14], or using a quadratic penaly term
in a non-linear optimization energy [SYJL11,SY11]. It has also been
implemented as a sparse TV norm on shading gradients [CRA11].
The piecewise flatness of reflectance values can be modeled via a
smoothness term on the reflectance [BM15], by clustering pixels
into superpixels [BHY15, ZIKF15], or using Conditional Random
Fields (CRFs) [BHY15].
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Figure 4: This illustrates the gradient norm of the reflectance and

illumination components. The last column shows the log-histogram

of gradient occurrences. A smoother illumination layer would ex-

hibit a steeper decreasing curve for illumination gradients than for

reflectance gradients. This is however hardly the case in practice:

in cluttered scenes, occlusion boundaries dominate and produce

strong gradients in both the reflectance and illumination layers.

Edge is either a reflectance or illumination change (EoI). This
states that it is unlikely for a single image edge to result from both
a change of illumination and reflectance at the same time [LM71].
This has been used to classify image gradients [Hor74, GJAF09,
LSX09, TFA05]. However, this assumption is unlikely to hold at
occlusion boundaries: in this case, a silhouette edge separates an
occluding surface whose normal is parallel to the image plane (as-
suming orthographic projection) [BM15] from an occluded surface
whose normal can be arbitrary. This change in normal direction
often coincides with a change in illumination, and in many cases,
these two surfaces will have different reflectances as well. This prior
can be seen as a strong version of the Retinex prior.

Chrominance variations are more likely to be reflectance varia-

tions (CR). When chrominance varies abruptly, this is more likely
due to a change of reflectance than illumination [GJAF09, TFA05,
ZTD∗12].This can be implemented as a varying gradient threshold
for abrupt changes in chrominance [TFA05, GJAF09], by weight-
ing chrominance and luminance differently in the pairwise cost
functions used in CRF-based frameworks [BBS14, ZKE15], or by
introducing a quadratic penalty term which enforces smooth re-
flectance only in places where the chrominance is smooth [SY11].
A similar observation concludes that if hue variations correlate posi-
tively with intensity variations, this is more likely due to changes in
reflectance [JSW10].

Low rank reflectances (LRR). This assumes that locally, within a
small neighborhood, reflectance values form a 2-d affine subspace
of the RGB space [BPD09]. This prior can be seen as a reflectance
smoothness prior.

Sparse reflectance values (SRV). This assumes that most color
variations are due to illumination, and that, in fact, few different
reflectance values make up a typical image. This assumption is ex-
pected to work best for photographs of man-made scenes. This is
often implemented via a color clustering step [GMLMG12, BBS14,
LYZ15], or a sparsity constraint on reflectance [SY11], or even
using superpixels [BHY15]. Alternatively, this prior can be cast in
the realm of information theory. Using compression-based complex-
ity measures, Nicola et al. show reflectance has lower complexity
than illumination [SF15]. Similarly, Barron and Malik minimize
the entropy of the log-reflectance [BM15] to obtain parsimonious
reflectance values.

Some reflectance values are more likely (RML). Barron and Ma-
lik [BM15] assumes some reflectance values are more likely than
others. This is implemented by building a 1-d histogram of log-
reflectance values of a ground truth dataset, and using it as a prior.
This prior helps disambiguate the overall light color from reflectance
colors: a blue pixel will be more likely the result of a white light
illuminating a blue object, rather than a magenta light illuminating
a cyan object, if cyan reflectances are a priori less likely than blue
reflectances.

Mean correlates with variance (MV). Under illumination varia-
tions, the local mean of pixel values within a neighborhood should
vary in the same direction as the local variance [JSW10]. This is
due to the fact that illumination acts multiplicatively on reflectance,
which can be detected via correlation analysis.

Planckian lighting (PL). Under skylight and a narrow-band cam-
era sensor, it can be shown that pixels belonging to objects of the
same reflectance form a single line in log-RGB space when varying
the lighting condition [CPCN13, FDL04, LYZ15]. This is often im-
plemented by clustering lines of log-RGB pixel values, similar to the
color lines model [OW04] (though not performed in the log-domain),
or via entropy minimization [FDL04].

Non-local constraints (NLC). The goal of this prior is to find pix-
els that are most likely of the same reflectance value within an image.
The idea is to compare texture descriptors, such as pixel neighbor-
hoods, and if two descriptors agree, they most likely represent the
same structure repeated at a different location [STL08, ZTD∗12].
This introduces long-range reflectance constraints. The difficulty lies
within the comparison function, which assumes neighbors can be
compared in a way agnostic to illumination variations... a chicken-
and-egg problem! In practice, simply dividing pixel color values by
their intensity (i.e., taking the pixel chromaticity) often serves as a
good proxy [STL08, ZTD∗12].

User-defined constraints (UC). The difficulty of automatic intrin-
sic decomposition has led researchers to rely on the user to add
constraints. This typically involves asking the user to mark pairs of
pixels of similar reflectance or illumination, or brush areas of similar
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Input image Reflectance masks log-RGB scatterplot

Figure 6: A Planckian lighting prior assumes that under skylight,

pixels of the same reflectance belong to a single straight line in log-

RGB space. We use outdoor linear images and plot log-RGB color

distributions of two constant reflectance surfaces (second column).

This hardly results in distinct lines. This prior may produce artifacts

when used on images taken in uncontrolled settings.

reflectance or brush absolute illumination values [BPD09]. These
constraints make the decomposition interactive instead of fully auto-

matic. While this requires effort from users, this often yields better
decompositions. This is simply accomplished by adding these con-
straints in a linear system [BPD09, BST∗14] or similarly adding a
quadratic penalty term [SYJL11].

Figure 7: Scribbles help disambiguate intrinsic decomposition. Us-

ing a single input photograph, we do not expect fully automatic meth-

ods to differentiate a picture of an object displayed on a wall from an

actual 3D object. From left to right, input photograph, illumination

layer obtained using the method of Bonneel et al. [BST∗14] without,

and then with user interactions to remove illumination variations

within each picture on the wall.

Data-driven (DD). Similar to user-defined constraints on a spe-
cific image, machine learning approaches leverage ground-truth
decomposition databases to guide further decompositions. For in-
stance, classifiers have been trained via the output of the 875,833
comparisons across 5,230 photos of the Intrinsic in the Wild
dataset [BBS14], which provides a data-driven prior often imple-
mented using a Convolutional Neural Network [NMY15, ZKE15,
ZIKF15]. The method of Tappen et al. [TAF06] use a Mixture
of Experts Estimator to predict gradients (and other local linear
constraints) learned from simple images of crumpled paper (see
Sec. 4.1), while the earlier method [TFA05] uses an AdaBoost clas-
sifier on rendered images of fractals and ellipses. In a simpler way,
a ground-truth dataset can be used to learn the hyper-parameters
of a model by cross-validation [BBS14, CCFI14, BM15]. Barron
and Malik [BM15] also build non-parametric models to construct
an absolute color prior using the MIT and OpenSurfaces [BUSB13]
datasets.

Human faces. In the specific context of human faces, additional
information may be used. In particular, Li et al. [LZL14] uses a
known skin reflectance model and a dataset of 3d face geometries.

While this state-of-the-art report focuses on single image intrinsic
decompositions for image editing applications, we will briefly men-
tion other specific priors and assumptions that have been introduced
in the context of more general intrinsic decompositions.

Temporal consistency. Working on videos, reflectance can
be assumed to remain temporally consistent across video
frames [LZT∗12, BST∗14]. RGB-D videos allow for easier tracking
via the 3d reconstructed scene [LZT∗12], when RGB videos would
require an illumination agnostic optical flow in the case of moving
shadows [BST∗14] (again, a chicken-and-egg problem).

The ambient occlusion model. Using multiple images of the same
object under various lighting conditions, Hauagge et al. [HWBS16]
replace the illumination term in the intrinsic decomposition by a
scaled ambient occlusion term. Ambient occlusion estimates the
fraction of the hemisphere visible from any point in the scene,
regardless of the lighting conditions.

2.3. Numerical techniques

Various numerical techniques have been investigated to account for
(part of) these priors, some of which were described in Sec. 2.2.
The mathematical formulation of these priors and of the image
formation model matters in practice and is key to designing practical
algorithms. We next review a few standard approaches.

A log-transform often conveniently rewrites the product I = ρ×L

into a sum log I = logρ+ logL [LM71, Hor74]. Changing the name
of these variables (here, lowercase letters denoting log values), this
can be written as i = r + l, simplifying a non-linear to a linear
relationship. Numerical tools from linear algebra can then be used,
particularly when priors can also be expressed as linear relationships
(for example, as the result of the minimization of a quadratic energy).
This often leads to sparse linear systems [GJAF09]. Interestingly,
log-transforms also often render these methods robust to gamma
correction as log Iγ = γ log I. Priors evoking smoothness or sparsity
can often be expressed using gradients – for instance, methods based
on the Retinex theory may classify image gradients as belonging
to either the illumination layer or the reflectance layer [TFA05]. In
conjunction with the log-transform, the intrinsic decomposition can
be advantageously rewritten as ∇ log I =∇ logρ+∇ logL.

When priors cannot be easily cast as linear constraints (or
quadratic penalty terms), full non-linear solvers have been used,
such as l-BFGS [LZL14, BM15].

Alternatively, a probabilistic approach can be taken via
CRFs [BBS14]. Here, priors are expressed via probabilistic models
as exponentially decreasing functions of some energies, whose joint
negative log-likelihood is minimized for. In traditional CRFs, mes-
sage passing is used to minimize the energy function, though Bell et
al. [BBS14] approximate it via high-dimensional filtering.

Finally, with the recent advances in machine learning and the
availability of ground-truth datasets, learning-based approaches have
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emerged. These methods guide the decomposition by directly classi-
fying image gradients that are propagated using a Markov Random
Field (MRF) [TFA05], more generally regress image filters that are
propagated via a pseudo-inverse [TFA05], or use full-fledged convo-
lutional neural networks [TNY15] or deep belief networks [TSH12].
Jointly learning depth and intrinsic decomposition via deep convolu-
tional network has seen some success [SBD15], and joint estimation
of shape, illumination (as a spherical low-frequency environment
map) and intrinsic decomposition performs well [BM15]. Recently,
multiple works emerged which learn a reflectance prior from the
pairwise judgments of Bell et al. [BBS14] with convolutional neural
networks: Narihira et al. [NMY15] learn a lightness classifier, Zhou
et al. [ZKE15] integrate the learned priors into Bell et al. [BBS14]’s
CRF framework, and Zoran et al. [ZIKF15] solve a quadratic pro-
gram on super-pixels with these data-driven priors. Other prelim-
inary work on deep architectures for intrinsic decompositions are
under investigation [Vit15, SL16, LVVG16].

3. Typical applications

Decomposing an image into illumination and reflectance compo-
nents has several applications. First, this allows for understanding
scenes better. For instance, it could be used to understand the role
of the illumination with respect to intrinsic reflectance color in the
popular blue-black dress meme [LSHC15] (see Fig. 9). Although
the actual dress is blue and black, 30% of people perceive this
dress as white and gold, due to a different perception of the illumi-
nant [LSHC15] and other biological factors [RHTP16].

Input Reflectance Illumination Reflectance Illumination
[BPD09] [BM15]

Figure 9: Left. The decomposition of Bousseau et al. [BPD09]

may help understand the color variations of this popular dress

meme [LSHC15]. Right. Although being one of the best performing

methods, the priors introduced by Barron et al. [BM15] swap the

illumination and reflectance layers. In this example, the priors for

the reflectance layer perhaps better describe the illumination layer

and vice-versa.

Understanding scenes is what makes computer vision systems
powerful. As such, intrinsic decompositions have been used in com-
puter vision: Kong and Black [KB15] use the intrinsic decomposi-
tion as a robust feature for transferring depth estimates in videos,
Kong et al. [KGB14] use the reflectance for improving optical flow
estimates in the context of intrinsic videos, and Ye et al. [YGL∗14]
use their intrinsic video decomposition to spatially segment videos.
Isaza et al. [ISR12] assess intrinsic decomposition algorithms to
detect shadows on outdoor scenes, but found that residual textures
often remain in the shading layer.

In computer graphics, giving access to illumination and re-
flectance layers has large potential for artistic image manipulations.
Editing the textures of images in a way that preserves illumination
variations is often given as an example to illustrate the success of
intrinsic decomposition methods [BHY15, BPD09, BM15, BST∗14].
Other manipulations of the reflectance layer include color histogram
matching [YGL∗14], or stylization, for instance with edge detec-
tors [YGL∗14]. Similarly, altering lighting conditions is sometimes
proposed, though without geometry estimates it is more difficult
to illustrate illumination edits that are consistent with the existing
geometry. For instance, Bousseau et al. [BPD09] invert the colors
of the illumination layer to simulate a night photograph from an
input daylight photograph, and Ye et al. [YGL∗14] manipulate the
histogram of the illumination layer to make diffuse objects look
more shiny. Garces et al. [GMLMG12] use a more complex image
relighting method [LMHRG10] which estimates rough geometry,
and apply it to the illumination layer (and also apply a sepia filter
on the reflectance). Li et al. [LZL15] use an intrinsic decomposition
for editing the makeup in photographs of faces, but they require
an additive layer representing highlights obtained using a previous
method of Li et al. [LZL14]. Bonneel et al. [BST∗14] use an in-
trinsic decomposition to composite two videos by combining both
illumination layers. Bi et al. [BHY15] integrate 3d objects into im-
ages with consistent illumination by estimating an environment map
locally using a method of Barron and Malik [BM12]. The joint esti-
mate of an intrinsic decomposition, geometric information and an
environment map, allows Barron and Malik [BM15] to locally alter
the geometry of objects with displacement maps and change lighting
conditions, by re-rendering the object under the new conditions. Liu
et al. [LWQ∗08] use a gradient domain decomposition on a color
image to colorize a grayscale image via color transfer.

Editing results are occasionally illustrated on textureless surfaces,
e.g., to alter the color of a uniform object. While it is un-challenging,
it is also primarily more easily performed via simple luminance-
chrominance adjustments! In fact, a luminance-chrominance decom-
position is a correct and valid intrinsic decomposition for textureless
uniform surfaces. We hence recommend comparisons against naive
baselines, as they often perform reasonably well for many image
editing applications.

4. Evaluation and Comparisons

Evaluating intrinsic decomposition methods is not a trivial task. The
seminal paper of Grosse et al. [GJAF09] introduced the ground-truth
dataset now known as the MIT dataset. This paper advocated for the
LMSE metric, a mean-square error computed and averaged locally,
within pixel neighborhoods. Bell et al. [BBS14] relied on perceptual
experiments to determine how two pixels differ in their reflectance,
and compare these judgments with the results of automatic algo-
rithms, leading to the WHDR, weighted human disagreement rate,
metric. Instead, in this paper we evaluate intrinsic decomposition
methods based on their applicative ability. That is, we do not need a
decomposition to be accurate, as long as it is sufficient to perform
a given image editing task. We thus only evaluate the result of the
image editing process. This section describes this approach, as well
as a more classical evaluation using LMSE on a new ground truth
realistic synthetic dataset.
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4.1. Datasets

Ground truth datasets are important for evaluating intrinsic decom-
position methods, but also to provide data for training approaches
based on machine learning. Datasets often precisely meet the as-
sumptions of methods being assessed. This report instead focuses on
realistic image editing applications, and we believe slightly violating
assumptions is reasonable in this context.

In particular, the MIT dataset [GJAF09] relies on isolated objects
with black background to minimize interreflections, and a single
directional light source. The reflectance component is obtained by
coating the object with a white diffuse paint, while specularities are
removed via a polarizing filter. This technique does not allow for
colored indirect illumination as the white coating may not reflect
the same colored light as the initial object. Sierra used this same
technique to extend this intrinsic decomposition database [Ser15].
The MIT dataset has been widely used for benchmarking intrinsic
decomposition methods, but has been deemed “not representative of
the variety of natural objects in the world” [BM15], and would be
hardly useful for assessing methods in ecological contexts. Beigpour
et al. have more recently extended this dataset [BKK15, BHK∗16]
under multiple lighting and viewing conditions using the procedure
of Grosse et al. [GJAF09]. The two datasets each contain 5 scenes
under 17 illumination conditions, and contain ground-truth depth
and specularity information. They consist of two objects resting on
a planar surface and remain of moderate complexity. The second
dataset features 6 view conditions. A similar approach taken by
Tappen et al. [TAF06] uses colors to capture reflectance and illumi-
nation independently. In practice, they color a piece of paper using
a green pen: this color is invisible in the red channel of the image,
and the red channel is taken as the ground-truth illumination layer.
They use this technique to build a ground truth database of isolated
sheets of crumpled paper.

Bell et al. introduced an extensive crowdsourced dataset of pair-
wise reflectance comparisons for photos ‘in the wild’ (i.e., for Flickr
images taken from real world settings) [BBS14]. MTurk workers
were asked to determine whether random pairs of points share the
same reflectance, or if one point has a darker surface color. The
IIW dataset comprising 5,230 photos, includes 875,833 reflectance
comparisons, and currently is the largest database for benchmark-
ing intrinsic image decomposition algorithms. However, despite its
size, since the dataset provides ground-truth data for sparse pairs
of points, it is not amenable to evaluating high-frequency errors
that often occur in the illumination component, which can lead to
artifacts in re-texturing applications.

Beigpour et al. [BSV∗13] introduced a synthetic dataset by render-
ing 3d scenes under various lighting conditions – including Planck-
ian lighting. They provide renderings for 8 isolated objects and 9
complex scenes. While these complex renderings are indeed more
complex than the MIT dataset, they consist uniquely of texture-
less objects. Other scattered datasets exist in specific contexts. The
MPI-Sintel dataset offers 23 rendered video sequences used for
assessing optical flow methods [BWSB12]. In addition to optical
flow ground truth information, this dataset also offers ground truth
reflectance and depth (among other data), and has thus been used to
assess intrinsic decomposition methods [TNY15]. Fig. 10 illustrates
examples from all these datasets.

This report instead provides a dataset of 18 reflectance images
from photorealistic scenes from the PBRT [PH10], Mitsuba [Jak10]
and LuxRender [Ver07] renderers (see Fig. 5, 11 and supplemental
material). The illumination component is then recovered by taking
the ratio between the original image and the reflectance layer. How-
ever, on realistic images, several of our assumptions break, due to
specular components, transmissive surfaces, subsurface scattering
and defocus blur. As such, the illumination component may con-
tain artifacts, such as residual reflectance. In addition, artists often
simplify complex but small-scale geometries using flat textures on
coarser objects. This occasionally yields overly smooth illumination
layers, as light transport is not properly simulated on this geometry.
They may also add high contrast materials that do not reflect the real
world measured materials.

In the context of image editing applications, we further assess
recent intrinsic decomposition techniques on a set of 21 real pho-
tographs (see Sec. 4.3).

4.2. Ground-truth comparisons

With 9 images from our new realistic ground truth dataset, we
first evaluate the results of various algorithms using a classical
LMSE metric. For automatic methods, we experimented with sev-
eral parameter sets (up to 24, for the color Retinex of Grosse et
al. [GJAF09]) and for each image, we kept the result minimizing the
LMSE. For interactive methods, we manually adjusted parameters
interactively and added strokes to visually obtain the best result
possible. Fig. 12 plots the LMSE of tested intrinsic decomposition
techniques using box-and-whisker plots, and sorts these methods
by decreasing average LMSE. In terms of LMSE, the method of
Shen et al. [SYJL11] performs best on this benchmark. However, as
we shall see in Sec. 4.4, this does not portray an accurate picture
of the state-of-the-art in intrinsic image decomposition when one
focuses on image editing applications. In fact, piece-wise accurate
results – such as faithful reproduction of large areas of constant
reflectance – typically yield low LMSE values, while computer
graphics applications are less tolerant to localized mistakes. While
specularities occasionally yield residual textures in the ground truth
shading, we found that this had little impact in the computed LMSE.
For instance, on the “Breakfast” scene (Fig. 5), manually correcting
the shading layer changes the LMSE by approximately 0.1%.

4.3. Evaluation on image-editing applications

We assess several state-of-the-art methods on image editing appli-
cations. We use a database of 21 Creative Commons photographs
downloaded from Flickr, spanning different but realistic contexts,
and exhibiting interesting illumination and reflectance variations.
These include portraits, interior and exterior scenes. For all of these
images, we have determined a specific image editing task that an
artist could perform via intrinsic decomposition. These include
removing a logo on a t-shirt, a tattoo or makeup, smoothing out
wrinkles or freckles, or altering a shadow.

To assess multiple intrinsic decomposition methods efficiently,
and to fairly evaluate methods with the same image editing operation,
we automate these edits. Particular care has been taken to account
for the varied dynamic ranges and the intrinsic decomposition scale
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Input image Reflectance Illumination

Figure 10: Sample images from existing intrinsic decomposition

ground-truth datasets. First row. The database of Bell et al. [BBS14]

provides reflectance comparison judgments between pairs of points

in photographs of real-world settings (mostly indoor photographs,

as illustrated by the overlayed graph. Second row. The MIT

database [GJAF09] contains simple isolated objects. Their illumina-

tion is obtained by painting the object in white, and the reflectance is

obtained by taking the image / illumination ratio. Third row. The MIT

database has been extended to more complex scenes by Beigpour

et al. [BKK15], exhibiting two objects under various illumination

conditions. Fourth row. The Sintel dataset [BWSB12], originally for

optical flow evaluation, provides reflectance ground truth videos

from synthetic renderings. However, taking the ratio image hardly

recovers a valid illumination layer. Fifth row. The database of Beig-

pour et al. [BSV∗13] contains 9 complex but textureless synthetic

scenes.

invariance. For instance, replacing a texture should not be performed
by directly editing absolute reflectance values, since they may differ
from one decomposition to another. Instead, we favored gradient-
domain approaches, or filtering operations on the different layers.

Logo removal. We manually determine a rough mask for a logo
to be removed, and solve for the Poisson problem ∆u = 0 within
the masked domain and u = ρ outside, with Dirichlet boundary
conditions. We use the solution of this problem as the modified
reflectance ρ′, and reconstruct the final image as I′ = ρ′

×L. This
effectively removes the logo on successful intrinsic decomposition
results (see Fig. 1).

Shadow removal. We apply the same process as for logo removal,
but apply it to the illumination layer (see Fig. 16, fourth row of
results, right column).

Input image Reflectance Illumination

Figure 11: Three of our realistic ground-truth intrinsic decomposi-

tion results obtained with LuxRender [Ver07].

Texture replacement. We inpaint a new texture in the reflectance
layer by using Poisson Image Editing [PGB03]. Since complex
high-frequency textures may hide artifacts in the processed result
– a phenomenon called spatial frequency masking [Dal93] – we
choose textures of relatively low frequency content. Further, tex-
tures may contain low-frequency illumination variations that do
not correlate with the scene geometry. We hence high-pass textures
containing residual low-frequency illumination. We avoid complex
light-geometry interactions by integrating mostly planar objects on
planar surfaces, such as carpets or paintings.

Wrinkles attenuation. Wrinkles are mostly due to shadowing ef-
fects on the skin. We manually determine a rough mask for the skin
area to be corrected. We blur both the mask and the illumination
layer via Gaussian filtering. We linearly interpolate the input illumi-
nation with the altered illumination based on the blurred mask, and
obtain the final illumination layer L′. We reconstruct the final image
as I′ = ρ×L′.

We provide the code and data in supplemental material for bench-
marking purposes.

4.4. Evaluation

With our set of automatically generated image-processed results
for various intrinsic decomposition methods, this section evaluates
their success. We deem a method successful if both of the following
criteria are met:

• The effect has been achieved. That is, if the goal is to remove
a logo, the final image should not contain the logo anymore.
Indeed, it is easy for a method to be free of any visible artifact,
but to miss its primary purpose (e.g., a luminance-chrominance
decomposition).

• The result is realistic. That is, images do not contain artifacts,
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and given a processed and unprocessed images, one cannot de-
termine which one is processed. The method should thus not
deteriorate the quality of the final result. Note that this criterion
also depends on the realism of the image editing process. We
have hence put significant research effort in minimizing artifacts
that are inherently due to the automatic image editing process.

Materials. We decompose our dataset of 21 images with the meth-
ods of [GJAF09, BPD09, GRK∗11, SYJL11, GMLMG12, ZTD∗12,
BST∗14, BBS14, ZKE15, BM15, TNY15], using the author imple-
mentations. For the method of Grosse et al. [GJAF09], we evaluate
both the grayscale and color Retinex approaches, and keep the
best performing result between an L1 and L2 gradient reconstruc-
tion. For the method of Bonneel et al. [BST∗14], we evaluate both
the automatic and user-assisted approaches. For each algorithm,
we downsample the input images to obtain reasonable computa-
tion time, memory usage and robustness, to the largest size the
algorithm could handle. We experimented with multiple parameter
sets, and kept the best result for each image. We additionally com-
pute baseline decompositions as: 1) “Baseline reflectance” where
the decomposed reflectance image is the chromaticity image, i.e.
for an input pixel with RGB values (r,g,b), the output reflectance

is
(

r
r+g+b ,

g
r+g+b ,

b
r+g+b

)

. 2) “Baseline illumination” where the

decomposed illumination image is constant 1. 3) “Baseline sqrt”
where the decomposed illumination image is the square root of the
grayscale image, i.e. for an input pixel with RGB values (r,g,b),

the output grayscale illumination is
√

r+g+b
3 . Our supplemental

materials contain the downsampled input for each algorithm, as well
as their intrinsic decomposition using the best parameter set.

Results. We note that regarding reflectance editing, most methods
fail at completely removing textures from the illumination layer.
This results in visible artifacts when removing a logo from a t-
shirt or inpainting an object in a photograph (see Fig. 14 and 15).
The method of Barron and Malik [BM15] succeeds on few, but
difficult, examples (see Fig. 1), and the color Retinex of Grosse
et al. [GJAF09] works better on average but very rarely removes
textures completely. The user-assisted approach of Bonneel et
al. [BST∗14] sometimes succeeds but, conversely, tends to leave
too much illumination in the reflectance layer. No method succeeds
in removing a tattoo better than the best baseline decomposition,
but we note that most methods have difficulties dealing with dark
gray or black pigments. In fact, when removing textures, a simple
gradient-domain inpainting of the input image often produces better
results than intrinsic decomposition methods, as no residual tex-
ture pollutes the edited image and some illumination information is
propagated from the mask boundaries.

The user-assisted method of Bousseau et al. [BPD09] is the only
one to succeed in completely removing a strong cast shadow, even
on simple geometries. This method handles colored illumination
layers, which partly explains this success in addition to user cues.
Regarding wrinkles removal, most approaches work reasonably well,
but the baseline also succeeds in this case. The method of Narihira et
al. [TNY15] does not produce a decomposition such that the product
of the reflectance and illumination layers yields the input image,
which causes significant artifacts and results in image edits that are
worse than the baseline in all cases.

Our supplemental materials provides a combined view of all
results. Fig. 16 shows all image edits obtained by the best performing
user-assisted and automatic methods.

4.5. Other considerations

As priors are introduced, as well as heavier optimization routines,
the speed of intrinsic decomposition techniques rarely meet realtime
constraints. In fact, most methods require minutes and even some-
times hours to compute, even on low resolution (<1 mega-pixel)
images. In most cases, we downsampled our test images to about
2 mega-pixels for this reason. However, most DSLR cameras now
output photographs of tens of megapixels (e.g., Canon EOS series
range from 18 to 50 mega-pixels), and even compact and phone
cameras often come close to DSLRs in term of pixel resolution (e.g.,
Samsung Galaxy S7 Edge is 17 mega-pixels or Sony xperia z5 is
23 mega-pixels). With this amount of data, intrinsic decomposition
techniques should be able to treat more than half-mega pixel images
to be useful for image processing (though they could remain useful
for vision applications or image understanding). Notable exception
include the GPU framework of Meka et al. [MZRT16] that runs in a
fraction of a second.

Fig. 13 illustrates the running time with respect to image resolu-
tion for the tested algorithms. We did not time interactive methods
for which most time is spent in user interactions. In practice, aside
from user interactions, the method of Bousseau et al. [BPD09] takes
between 5 and 30 seconds to solve for 0.5 to 1.8 mega-pixel images,
and the method of Bonneel et al. [BTS∗15], initially designed for
videos, approximately takes between 0.2 and 1 second for 1 to 2
mega-pixel images. We do not claim fair nor accurate times, as all
the methods we have tested have been run on different machines,
various implementations may differ and may not have been opti-
mized for speed, and some methods make use of multi-threading or
GPU, but our comparison gives a rough sense of computation times.

We believe speed is an important factor, as slow methods preclude
interactive editing applications, fine parameter tuning, their adoption
by artists, processing on large data such as frames of a video, and
realtime vision applications. This could sometimes just be a matter
of engineering and fine implementation tuning.

While certain intrinsic decomposition methods are more robust
when working on high-dynamic range (HDR) images, and images
with linear camera response, most images available on the web are
not HDR images. For instance, even the widely used Flickr image
search engine for photograph enthusiasts do not support images of
more than 8 bit per pixel and color channel. We have thus evaluated
existing methods on non-HDR images. However, HDR images are
now more accessible, and intrinsic decomposition methods will
likely benefit from this trend.

Finally, we have evaluated algorithms based on available imple-
mentations. We advocate for reproducible research and encourage
authors to disseminate their code in addition to their research paper.

5. Challenges and future work

In the context of image editing, the quality of most intrinsic decom-
position methods is not satisfactory as much reflectance is left in
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the illumination layer or vice versa, and in many cases their speed
only make them useful for less than mega-pixel images. Intrinsic
decompositions have met with limited success even when comparing
to synthetic benchmarks. Such ground truth data is incredibly useful
for validation and machine learning purposes. In the past, the lack of
widely available realistic 3d scenes have constrained researchers to
use very simple and unrealistic 3d scenes or isolated-object bench-
marks. This may have biased machine learning approaches, and led
us to think intrinsic decomposition is a near-solved problem. Recent
datasets like IIW [BBS14] have expanded the evaluation to more
real world setting using photographs, showing that more progress
is required. In fact, in our experiments with 8-bit images, for both
synthetic ground-truth comparison and image editing tasks, few
methods perform better than a well-chosen baseline. The first chal-
lenge is to make intrinsic decompositions suitable for image editing
applications, for images of reasonable size. We believe some widely
used priors may be harmful for image editing, such as monochro-
matic illumination that is actually rarely observed in real-world
scenes because of effects such as interreflection. Another difficulty
with intrinsic decomposition is that it is an intermediate step as far
as practical applications are concerned. This makes it difficult to
rely on user-driven approaches in practice because they ask users
to work on a task that is not the one in which they are interested.
Ideally user intervention should not be needed or be as limited as
possible, which raises its own challenges. On the other hand, fully
automatic techniques are not yet accurate and/or fast enough to be
used reliably on real-world high-resolution images.

Current quality metrics do not consider the application for these
intrinsic decompositions. Direct comparison with a reference is
interesting for many applications, such as intrinsically-guided seg-
mentation or optical flow computation, but it may not be appropriate
for image editing purpose. In fact, in this context small local errors
degrade the perceived quality of the image edits much more than
large low-frequency errors. As such, perceptual metrics are clearly
necessary. While metrics like WHDR take a first step towards this
goal by evaluating intrinsic decomposition results, more efforts are
needed to focus on image editing applications.

Finally, the rise of augmented sensors – whether with additional
depth information, lenslets to capture lightfields, or multi-spectral
sensors – could alleviate the quality problem. While several ap-
proaches use depth information, very few approaches deal with
lighfields (to our knowledge, only Garces et al. and Alperovich
et al. [GEZ∗16, AG16] address static lightfield images) and multi-
spectral sensors (to our knowledge, only Shao and Wang [SW09]).
We further argue that intrinsic videos can now reasonably be han-
dled via per-frame image intrinsic decompositions followed by tem-
poral regularization [BTS∗15]. We believe that benefiting from
multiple input modalities could be a promising direction to ad-
dress our third challenge: the handling of more complex materi-
als, such as transparent and glossy materials. To allow for better
evaluation, comparisons and machine learning on complex, photo-
realistic renderings with complex materials, we are further extend-
ing our ground-truth dataset with other 3d renderings. In this ex-
tended dataset, we include multiple lighting conditions, normals,
depth, position, irradiance and segmentations. This dataset is cur-
rently available at http://liris.cnrs.fr/~nbonneel/
intrinsicstar/ground_truth/.

Conclusions. Intrinsic image decomposition is a long standing
problem of great importance to computer graphics and vision al-
gorithms. Despite the inherent difficulty of solving this ill-posed
problem, significant progress has been made through sophisticated
algorithms and detailed datasets. More recently, learning from larger
scale datasets is being used to solve the problem. However, when
evaluated with the view of specific applications, like image-editing,
additional research effort is needed to make intrinsic decomposi-
tion sufficiently accurate. We find that user input is often needed to
achieve the best decompositions for image-editing applications. We
also find that surprisingly simple baselines sometimes can be effec-
tive. We introduce new ground truth synthetic datasets, and advocate
for the development of perceptual metrics, and more public datasets
and algorithms to solve this important and challenging problem.
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Figure 5: We evaluate the prior of sparse reflectance values and piecewise reflectance flatness on several realistic synthetic renderings used in

PBRT [PH10] and Mitsuba [Jak10]. A 3d RGB scatterplot of reflectance values hardly exhibits clusters, while quantizing reflectance values

into up to 15 color clusters still shows some artifacts on complex scenes (no dithering was applied – see insets). The reflectance remains

mostly flat for man-made scenes, but fails on the head model. The illumination was computed as the ratio between the input and reflectance

images, and may reflect inaccuracies on glossy or refractive objects, or due to subsurface scattering.
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[FDL04] [TFA05] [TAF06] [STL08] [BPD09] [GJAF09] [JSW10] [SY11] [SYJL11] [ZTD∗12] [GMLMG12] [BBS14] [CCFI14] [ZKE15] [BM15] [BHY15] [TNY15] [ZIKF15]

MI ? ? × × × × × × × × ∼ × × ×

R ∼ × ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ×

EoI × ∼

CR ∼ ∼ ∼ ∼ ∼ ∼

LRR ∼

SRV ∼ ∼ ∼ ∼ ∼ ∼ ∼

RML ∼ ∼ ∼

MV ×

PL ×

NLC ∼ ∼

UC ∼ ∼

DD × × ∼ ∼ ∼ ∼ × ×

Figure 8: This table illustrates the use of different priors and constraints (whose acronyms are described in Sec. 2.2) as they were introduced

chronologically. × represents strict constraints which cannot be violated, while ∼ is a prior or soft constraint. The methods of Tappen et

al. [TFA05, TAF06] use a monochromatic illumination constraint, but comparisons shown in two papers exhibit colored illumination [BPD09,

GMLMG12]. We expect the use of many priors to improve decompositions but on more limited datasets.
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Figure 12: We compute the LMSE accuracy of various algorithms on our realistic synthetic dataset. These methods are sorted by decreasing

average LMSE. The “Villa” And “San Miguel” scenes have consistently lower accuracy (i.e., higher LMSE), while the “Head” and

“Babylonian City” scenes have higher accuracy. However, LMSE does not reflect usefulness for computer graphics applications.
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Figure 13: Computation time for tested automatic intrinsic decomposition methods with respect to image resolution. No trend line is shown

for Gehler et al. [GRK∗11] since images were resized to roughly the same resolution. For clarity, we merged results of gray and color

Retinex [GJAF09] ; however they show a bimodal timing distribution: this is rather due to L1 and L2 reconstructions.
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Input baseline [BBS14] [BST∗14]
(automatic)

[BST∗14]
(scribbles)
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Figure 14: Decomposition and application results for various methods. Top to bottom: reflectance, illumination, image-edited result. We

add a carpet to the first image, and remove the t-shirt’s logo on the second and third images. Additional results can be seen in supplemental

materials. The baseline consists of the best of three naive approaches.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



N. Bonneel, B. Kovacs, S. Paris, K. Bala / Intrinsic Decompositions for Image Editing

Input [GJAF09]
(color)

[GJAF09]
(gray)

[SYJL11] [BM15] [GRK∗11] [ZTD∗12] [ZKE15]

Figure 15: Decomposition and application results for various methods. Top to bottom: reflectance, illumination, image-edited result. We

add a carpet to the first image, and remove the t-shirt’s logo on the second and third images. Additional results can be seen in supplemental

materials.
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Figure 16: We illustrate all image editing results achieved using the best user-assisted and automatic intrinsic decomposition methods

compared to the best baseline. User-assisted methods include [BPD09, BST∗14], and automatic methods include [GJAF09, SYJL11, GRK∗11,

GMLMG12, ZTD∗12, BBS14, BST∗14, TNY15, BM15, ZKE15]. In some cases, many methods perform similarly well.
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