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Abstract

Given two observers, we define the “relative velocity” of one observer with respect to
the other in four different ways. All four definitions are given intrinsically, i.e. indepen-
dently of any coordinate system. Two of them are given in the framework of spacelike
simultaneity and, analogously, the other two are given in the framework of observed
(lightlike) simultaneity. Properties and physical interpretations are discussed. Finally,
we study relations between them in special relativity, and we give some examples in
Schwarzschild and Robertson-Walker spacetimes.

1 Introduction

The need for a strict definition of “radial velocity” was treated at the General Assembly of
the International Astronomical Union (IAU), held in 2000 (see [1], [2]), due to the ambi-
guity of the classic concepts in general relativity. As result, they obtained three different
concepts of radial velocity : kinematic (which corresponds most closely to the line-of-sight
component of space velocity), astrometric (which can be derived from astrometric observa-
tions) and spectroscopic (also called barycentric, which can be derived from spectroscopic
measurements). The kinematic and astrometric radial velocities were defined using a par-
ticular reference system, called Barycentric Celestial Reference System (BCRS). The BCRS
is suitable for accurate modelling of motions and events within the solar system, but it has
not into account the effects produced by gravitational fields outside the solar system, since
it describes an asymptotically flat metric at large distances from the Sun. Moreover, from a
more theoretical point of view, these concepts can not be defined in an arbitrary spacetime
since they are not intrinsic, i.e. they only have sense in the framework of the BCRS. So, in
this work we are going to define them intrinsically. In fact, we obtain in a natural way four
intrinsic definitions of relative velocity (and consequently, radial velocity) of one observer β′

with respect to another observer β, following the original ideas of the IAU.
This paper has two big parts:

• The first one is formed by Sections 3 and 4, where all the concepts are defined, trying to
make the paper as self-contained as possible. In Section 3, we define the kinematic and
Fermi relative velocities in the framework of spacelike simultaneity (also called Fermi
simultaneity), obtaining some general properties and interpretations. The kinematic
relative velocity generalizes the usual concept of relative velocity when the two observers
β, β′ are at the same event. On the other hand, the Fermi relative velocity does not
generalize this concept, but it is physically interpreted as the variation of the relative
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position of β′ with respect to β along the world line of β. Analogously, in Section 4, we
define and study the spectroscopic and astrometric relative velocities in the framework
of observed (lightlike) simultaneity.

• In the second one (Sections 5 and 6) we give some relations between these concepts
in special and general relativity. In Section 5 we find general expressions, in special
relativity, for the relation between kinematic and Fermi relative velocities, and between
spectroscopic and astrometric relative velocities. Finally, in Section 6 we show some
fundamental examples in Schwarzschild and Robertson-Walker spacetimes.

2 Preliminaries

We work in a 4-dimensional lorentzian spacetime manifold (M, g), with c = 1 and ∇ the
Levi-Civita connection, using the Landau-Lifshitz Spacelike Convention (LLSC). We suppose
that M is a convex normal neighborhood [3]. Thus, given two events p and q in M, there
exists a unique geodesic joining p and q and there are not caustics. The parallel transport
from p to q along this geodesic will be denoted by τpq. If β : I → M is a curve with I ⊂ R a
real interval, we will identify β with the image βI (that is a subset in M), in order to simplify
the notation. If u is a vector, then u⊥ denotes the orthogonal space of u. The projection of
a vector v onto u⊥ is the projection parallel to u. Moreover, if x is a spacelike vector, then
‖x‖ denotes the modulus of x. Given a pair of vectors u, v, we use g (u, v) instead of uαvα. If
X is a vector field (typically, vector fields will be denoted by uppercase letters), Xp denotes
the unique vector of X in TpM.

In general, we will say that a timelike world line β is an observer (or a test particle).
Nevertheless, we will say that a future-pointing timelike unit vector u in TpM is an observer
at p, identifying it with its 4-velocity.

The relative velocity of an observer (or a test particle) with respect to another observer is
completely well defined only when these observers are at the same event: given two observers
u and u′ at the same event p, there exists a unique vector v ∈ u⊥ and a unique positive real
number γ such that

u′ = γ (u+ v) . (1)

As consequences, we have 0 ≤ ‖v‖ < 1 and γ := −g (u′, u) = 1√
1−‖v‖2

. We will say that v

is the relative velocity of u′ observed by u, and γ is the gamma factor corresponding to the
velocity ‖v‖. From (1), we have

v =
1

−g (u′, u)
u′ − u. (2)

We will extend this definition of relative velocity in two different ways (kinematic and spec-
troscopic) for observers at different events. Moreover, we will define another two concepts of
relative velocity (Fermi and astrometric) that do not extend (2) in general, but they have
clear physical sense as the variation of the relative position.

A light ray is given by a lightlike geodesic λ and a future-pointing lightlike vector field F
defined in λ, tangent to λ and parallelly transported along λ (i.e. ∇FF = 0), called frequency
(or wave) vector field of λ. Given p ∈ λ and u an observer at p, there exists a unique vector
w ∈ u⊥ and a unique positive real number ν such that

Fp = ν (u+ w) . (3)

As consequences, we have ‖w‖ = 1 and ν = −g (Fp, u). We will say that w is the relative
velocity of λ observed by u, and ν is the frequency of λ observed by u. In other words, ν is
the modulus of the projection of Fp onto u⊥. A light ray from q to p is a light ray λ such
that q, p ∈ λ and exp−1

q p is future-pointing.
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Figure 1: Scheme in TpM of the relative position s of q with respect to u.

3 Relative velocity in the framework of spacelike simul-

taneity

The spacelike simultaneity was introduced by E. Fermi (see [4]), and it was used to define
the Fermi coordinates. So, some concepts given in this section are very related to the work
of Fermi, as the Fermi surfaces, the Fermi derivative or the Fermi distance. The original
Fermi paper and most of the modern discussions of this notion (see [5], [6]) use a coordinate
language (Fermi coordinates). On the other hand, in the present work we use a coordinate-
free notation that allows us to get a better understanding of the basic concepts of the Fermi
work, studying them from an intrinsic point of view and, in the next section, extending them
to the framework of lightlike simultaneity.

Let u be an observer at p ∈ M and Φ : M → R defined by Φ (q) := g
(

exp−1
p q, u

)

. Then,
it is a submersion and the set Lp,u := Φ−1 (0) is a regular 3-dimensional submanifold, called
Landau submanifold of (p, u) (see [7], [8]), also known as Fermi surface. In other words,
Lp,u = expp u

⊥. An event q is in Lp,u if and only if q is simultaneous with p in the local
inertial proper system of u.

Definition 3.1. Given u an observer at p, and a simultaneous event q ∈ Lp,u, the relative
position of q with respect to u is s := exp−1

p q (see Figure 1).

We can generalize this definition for two observers β and β′.

Definition 3.2. Let β, β′ be two observers and let U be the 4-velocity of β. The relative
position of β′ with respect to β is the vector field S defined on β such that Sp is the relative
position of q with respect to Up, where p ∈ β and q is the unique event of β′ ∩ Lp,Up

.

3.1 Kinematic relative velocity

We are going to introduce the concept of “kinematic relative velocity” of one observer u′

with respect to another observer u generalizing the concept of relative velocity given by (2),
when the two observers are at different events.

Definition 3.3. Let u, u′ be two observers at p, q respectively such that q ∈ Lp,u. The
kinematic relative velocity of u′ with respect to u is the unique vector vkin ∈ u⊥ such that
τqpu

′ = γ (u+ vkin), where γ is the gamma factor corresponding to the velocity ‖vkin‖ (see
Figure 2). So, it is given by

vkin :=
1

−g (τqpu′, u)
τqpu

′ − u. (4)
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Figure 2: Scheme in M of the elements that involve the definition of the kinematic relative
velocity of u′ with respect to u.

Let s be the relative position of q with respect to p, the kinematic radial velocity of u′ with

respect to u is the component of vkin parallel to s, i.e. vradkin := g
(

vkin,
s

‖s‖

)

s
‖s‖ . If s = 0 (i.e.

p = q) then vradkin := vkin. On the other hand, the kinematic tangential velocity of u′ with
respect to u is the component of vkin orthogonal to s, i.e. vtngkin := vkin − vradkin .

So, the kinematic relative velocity of u′ with respect to u is the relative velocity of τqpu
′

observed by u, in the sense of expression (2). Note that ‖vkin‖ < 1, since the parallel
transported observer τqpu

′ defines an observer at p.
We can generalize these definitions for two observers β and β′.

Definition 3.4. Let β, β′ be two observers, and let U , U ′ be the 4-velocities of β, β′

respectively. The kinematic relative velocity of β′ with respect to β is the vector field Vkin

defined on β such that Vkin p is the kinematic relative velocity of U ′
q observed by Up (in the

sense of Definition 3.3), where p ∈ β and q is the unique event of β′ ∩ Lp,Up
. In the same

way, we define the kinematic radial velocity of β′ with respect to β, denoted by V rad
kin , and

the kinematic tangential velocity of β′ with respect to β, denoted by V tng
kin .

We will say that β is kinematically comoving with β′ if Vkin = 0.

Let V ′
kin be the kinematic relative velocity of β with respect to β′. Then, Vkin = 0 if and

only if V ′
kin = 0, i.e. the relation “to be kinematically comoving with” is symmetric and so,

we can say that β and β′ are kinematically comoving (each one with respect to the other).
Note that it is not transitive in general.

3.2 Fermi relative velocity

We are going to define the “Fermi relative velocity” as the variation of the relative position.

Definition 3.5. Let β, β′ be two observers, let U be the 4-velocity of β, and let S be the
relative position of β′ with respect to β. The Fermi relative velocity of β′ with respect to β
is the projection of ∇US onto U⊥, i.e. it is the vector field

VFermi := ∇US + g (∇US,U)U (5)

defined on β. The right-hand side of (5) is known as the Fermi derivative. The Fermi radial
velocity of β′ with respect to β is the component of VFermi parallel to S, i.e. V rad

Fermi :=

g
(

VFermi,
S

‖S‖

)

S
‖S‖ if S does not vanish; if Sp = 0 (i.e. β and β′ intersect at p) then
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V rad
Fermi p := VFermi p. On the other hand, the Fermi tangential velocity of β′ with respect to

β is the component of VFermi orthogonal to S, i.e. V tng
Fermi := VFermi − V rad

Fermi.
We will say that β is Fermi-comoving with β′ if VFermi = 0.

Note that the relation “to be Fermi-comoving with” is not symmetric in general. More-
over, it is important to remark that the modulus of the vectors of VFermi is not necessarily
smaller than one.

Since g (VFermi, S) = g (∇US, S), if S does not vanish we have

V rad
Fermi = g

(

∇US,
S

‖S‖

)

S

‖S‖ . (6)

So, the Fermi radial velocity of β′ with respect to β has always full physical sense as the
radial component of the variation of S along the world line of the observer β, even if β is not
geodesic. This fact is also supported by Proposition 3.3, as we will see later.

An expression similar to (5) is given by the next proposition, that can be proved easily.

Proposition 3.1. Let β, β′ be two observers, let U be the 4-velocity of β, let S be the relative
position of β′ with respect to β, and let VFermi be the Fermi relative velocity of β′ with respect
to β. Then VFermi = ∇US − g (S,∇UU)U . Note that if β is geodesic, then ∇UU = 0, and
hence VFermi = ∇US .

If Sp = 0, i.e. β and β′ intersect at p, then VFermi p = (∇US)p. So, it does not coincide
in general with the concept of relative velocity given in expression (2).

We are going to introduce a concept of distance from the concept of relative position
given in Definition 3.2. This concept of distance was previously introduced by Fermi.

Definition 3.6. Let u be an observer at an event p. Given q, q′ ∈ Lp,u, and s, s′ the relative
positions of q, q′ with respect to u respectively, the Fermi distance from q to q′ with respect
to u is the modulus of s− s′, i.e. dFermi

u (q, q′) := ‖s− s′‖.

We have that dFermi
u is symmetric, positive-definite and satisfies the triangular inequality.

So, it has all the properties that must verify a topological distance defined on Lp,u. As a
particular case, if q′ = p we have

dFermi
u (q, p) = ‖s‖ =

(

g
(

exp−1
p q, exp−1

p q
))1/2

. (7)

The next proposition shows that the concept of Fermi distance is the arclength param-
eter of a spacelike geodesic, and it can be proved taking into account the properties of the
exponential map (see [3]).

Proposition 3.2. Let u be an observer at an event p. Given q ∈ Lp,u and α the unique
geodesic from p to q, if we parameterize α by its arclength such that α (0) = p, then
α
(

dFermi
u (q, p)

)

= q.

Definition 3.7. Let β, β′ be two observers and let S be the relative position of β′ with
respect to β. The Fermi distance from β′ to β with respect to β is the scalar field ‖S‖
defined in β.

We are going to characterize the Fermi radial velocity in terms of the Fermi distance.

Proposition 3.3. Let β, β′ be two observers, let S be the relative position of β′ with respect
to β, and let U be the 4-velocity of β. If S does not vanish, the Fermi radial velocity of β′

with respect to β reads V rad
Fermi = U (‖S‖) S

‖S‖ .

By Definition 3.7 and Proposition 3.3, the Fermi radial velocity of β′ with respect to β is
the rate of change of the Fermi distance from β′ to β with respect to β. So, if we parameterize
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Figure 3: Scheme in TpM of the relative position sobs of q observed by u.

β by its proper time τ , the Fermi radial velocity of β′ with respect to β at p = β (τ0) is given
by

V rad
Fermi p =

d (‖S‖ ◦ β)
dτ

(τ0)
Sp

‖Sp‖
,

where ‖S‖ ◦ β is the Fermi distance as a function of τ .

4 Relative velocity in the framework of lightlike simul-

taneity

The lightlike (or observed) simultaneity is based on “what an observer is really observing”
and it provides an appropriate framework for studying optical phenomena and observational
cosmology (see [9]).

Let p ∈ M and ϕ : M → R defined by ϕ (q) := g
(

exp−1
p q, exp−1

p q
)

. Then, it is a
submersion and the set

Ep := ϕ−1 (0)− {p} (8)

is a regular 3-dimensional submanifold, called horismos submanifold of p (see [8], [10]). An
event q is in Ep if and only if q 6= p and there exists a lightlike geodesic joining p and q. Ep

has two connected components, E−
p and E+

p [11]; E−
p (respectively E+

p ) is the past-pointing
(respectively future-pointing) horismos submanifold of p, and it is the connected component
of (8) in which, for each event q ∈ E−

p (respectively q ∈ E+
p ), the preimage exp−1

p q is a
past-pointing (respectively future-pointing) lightlike vector. In other words, E−

p = expp C
−
p ,

and E+
p = expp C

+
p , where C−

p and C+
p are the past-pointing and the future-pointing light

cones of TpM respectively.
This section is analogous to Section 3, but using E−

p instead of Lp,u.

Definition 4.1. Given u an observer at p, and an observed event q ∈ E−
p ∪ {p}, the relative

position of q observed by u (or the observed relative position of q with respect to u) is the
projection of exp−1

p q onto u⊥ (see Figure 3), i.e. sobs := exp−1
p q + g

(

exp−1
p q, u

)

u.

We can generalize this definition for two observers β and β′.
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Figure 4: Scheme inM of the elements that involve the definition of the spectroscopic relative
velocity of u′ observed by u.

Definition 4.2. Let β, β′ be two observers and let U be the 4-velocity of β. The relative
position of β′ observed by β is the vector field Sobs defined in β such that Sobs p is the relative
position of q observed by Up, where p ∈ β and q is the unique event of β′ ∩ E−

p .

4.1 Spectroscopic relative velocity

In a previous work (see [12]), we defined a concept of relative velocity of an observer observed
by another observer in the framework of lightlike simultaneity (it was also introduced in [13]).
We are going to rename this concept as “spectroscopic relative velocity”, and to review its
properties in the context of this work.

Definition 4.3. Let u, u′ be two observers at p, q respectively such that q ∈ E−
p and let λ be

a light ray from q to p. The spectroscopic relative velocity of u′ observed by u is the unique
vector vspec ∈ u⊥ such that τqpu

′ = γ (u+ vspec), where γ is the gamma factor corresponding
to the velocity ‖vspec‖ (see Figure 4). So, it is given by

vspec :=
1

−g (τqpu′, u)
τqpu

′ − u. (9)

We define the spectroscopic radial and tangential velocity of u′ observed by u analogously
to Definition 3.3, using sobs (see Definition 4.1) instead of s.

So, the spectroscopic relative velocity of u′ observed by u is the relative velocity of τqpu
′

observed by u, in the sense of expression (2), and ‖vspec‖ < 1.
Note that if w is the relative velocity of λ observed by u (see (3)), then w = − sobs

‖sobs‖ , and
so

vradspec = g (vspec, w)w. (10)

We can generalize these definitions for two observers β and β′.

Definition 4.4. Let β, β′ be two observers, we define Vspec (the spectroscopic relative velocity
of β′ observed by β) and its radial and tangential components analogously to Definition 3.4,
using E−

p instead of Lp,Up
.

We will say that β is spectroscopically comoving with β′ if Vspec = 0.
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Note that the relation “to be spectroscopically comoving with” is not symmetric in gen-
eral, unlike the kinematic case.

The following result can be found in [12].

Proposition 4.1. Let λ be a light ray from q to p and let u, u′ be two observers at p, q
respectively. Then

ν′ = γ (1− g (vspec, w)) ν, (11)

where ν, ν′ are the frequencies of λ observed by u, u′ respectively, vspec is the spectroscopic
relative velocity of u′ observed by u, w is the relative velocity of λ observed by u, and γ is the
gamma factor corresponding to the velocity ‖vspec‖.

Expression (11) is the general expression for Doppler effect (that includes gravitational
redshift, see [12]). Therefore, if β is spectroscopically comoving with β′, and λ is a light ray
from β′ to β, then, by (11), we have that β and β′ observe λ with the same frequency. So, if
β′ emits n light rays in a unit of its proper time, then β observes also n light rays in a unit
of its proper time. Hence, β observes that β′ uses the “same clock” as its.

Taking into account (10), expression (11) can be written in the form

ν′ =
1± ‖vradspec‖
√

1− ‖vspec‖2
ν, (12)

where we choose “+” if g (vspec, w) < 0 (i.e. if u′ is moving away from u), and we choose
“−” if g (vspec, w) > 0 (i.e. if u′ is getting closer to u).

Remark 4.1. We can not deduce vspec from the shift, ν′/ν, unless we make some assumptions
(like considering negligible the tangential component of vspec, as we will see in Remark 4.2).
For instance, if ν′/ν = 1 then vspec is not necessarily zero. Let us study this particular case:
by (11) we have

1 =
ν′

ν
=

1− g (vspec, w)
√

1− ‖vspec‖2
−→ g (vspec, w) = 1−

√

1− ‖vspec‖2.

Since
(

1−
√

1− ‖vspec‖2
)

≥ 0, it is necessary that g (vspec, w) ≥ 0, i.e. the observed

object has to be getting closer to the observer. In this case, by (12) we have ‖vradspec‖ =

1 −
√

1− ‖vspec‖2. So, it is possible that ν′/ν = 1 and vspec 6= 0 if the observed object is
getting closer to the observer. On the other hand, if the observed object is moving away
from the observer then ν′/ν = 1 if and only if vspec = 0. That is, for objects moving away,
the shift is always redshift; and for objects getting closer, the shift can be blueshift, 1, or
redshift.

Remark 4.2. If we suppose that vtngspec = 0, i.e. vspec = vradspec = kw with k ∈ ]−1, 1[, then we
can deduce vspec from the shift ν′/ν:

ν′

ν
=

1− g (vspec, w)
√

1− ‖vspec‖2
=

1− k√
1− k2

=

√
1− k√
1 + k

−→ k =
1−

(

ν′

ν

)2

1 +
(

ν′

ν

)2 ,

and hence

vspec =







1−
(

ν′

ν

)2

1 +
(

ν′

ν

)2






w = −







1−
(

ν′

ν

)2

1 +
(

ν′

ν

)2







sobs
‖sobs‖

. (13)
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4.2 Astrometric relative velocity

We are going to define the “astrometric relative velocity” as the variation of the observed
relative position.

Definition 4.5. Let β, β′ be two observers, we define Vast (the astrometric relative velocity
of β′ observed by β) and its radial and tangential components analogously to Definition 3.5,
using Sobs (see Definition 4.2) instead of S. So,

Vast := ∇USobs + g (∇USobs, U)U, (14)

where U is the 4-velocity of β.
We will say that β is astrometrically comoving with β′ if Vast = 0.

Note that the relation “to be astrometrically comoving with” is not symmetric in general.
Moreover, it is important to remark that the modulus of the vectors of Vast is not necessarily
smaller than one.

Analogously to (6), since g (Vast, Sobs) = g (∇USobs, Sobs), if Sobs does not vanish we have

V rad
ast = g

(

∇USobs,
Sobs

‖Sobs‖

)

Sobs

‖Sobs‖
. (15)

So, the astrometric radial velocity of β′ observed by β has always full physical sense as the
radial component of the variation of Sobs along the world line of the observer β, even if β is
not geodesic. This fact is also supported by Proposition 4.4, as we will see later.

An expression similar to (14) is given by the next proposition, which proof is analogous
to the proof of Proposition 3.1.

Proposition 4.2. Let β, β′ be two observers, let U be the 4-velocity of β, let Sobs be the
relative position of β′ observed by β, and let Vast be the astrometric relative velocity of β′

observed by β. Then Vast = ∇USobs − g (Sobs,∇UU)U . Note that if β is geodesic, then
∇UU = 0, and hence Vast = ∇USobs.

If Sobs p = 0, i.e. β and β′ intersect at p, then Vast p = (∇USobs)p. So, it does not
coincide in general with the concept of relative velocity given in (2).

We are going to introduce another concept of distance from the concept of observed
relative position given in Definition 4.1. This distance was previously introduced in [14] and
studied in [12], and it plays a basic role for the construction of optical coordinates whose
relevance for cosmology was stressed in many articles by G. Ellis and his school (see [9]).

Definition 4.6. Let u be an observer at an event p. Given q, q′ ∈ E−
p ∪ {p}, and sobs,

s′obs the relative positions of q, q′ observed by u respectively, the affine distance from q to q′

observed by u is the modulus of sobs − s′obs, i.e. d
aff
u (q, q′) := ‖sobs − s′obs‖.

We have that daffu is symmetric, positive-definite and satisfies the triangular inequality.
So, it has all the properties that must verify a topological distance defined on E−

p ∪ {p}. As
a particular case, if q′ = p we have

daffu (q, p) = ‖sobs‖ = g
(

exp−1
p q, u

)

. (16)

The next proposition shows that the concept of affine distance is according to the concept
of “length” (or “time”) parameter of a lightlike geodesic for an observer, and it is proved
in [12].

Proposition 4.3. Let λ be a light ray from q to p, let u be an observer at p, and let w be
the relative velocity of λ observed by u. If we parameterize λ affinely (i.e. the vector field

tangent to λ is parallelly transported along λ) such that λ (0) = p and
.

λ (0) = − (u+ w),
then λ

(

daffu (q, p)
)

= q.
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Definition 4.7. Let β, β′ be two observers and let Sobs be the relative position of β′ observed
by β. The affine distance from β′ to β observed by β is the scalar field ‖Sobs‖ defined in β.

We are going to characterize the astrometric radial velocity in terms of the affine distance.
The proof of the next proposition is analogous to the proof of Proposition 3.3, taking into
account expression (15).

Proposition 4.4. Let β, β′ be two observers, let Sobs be the relative position of β′ observed
by β, and let U be the 4-velocity of β. If Sobs does not vanish, the astrometric radial velocity
of β′ observed by β reads V rad

ast = U (‖Sobs‖) Sobs

‖Sobs‖ .

By Definition 4.7 and Proposition 4.4, the astrometric radial velocity of β′ observed by β
is the rate of change of the affine distance from β′ to β observed by β. So, if we parameterize
β by its proper time τ , the astrometric radial velocity of β′ observed by β at p = β (τ0) is

given by V rad
ast p = d(‖Sobs‖◦β)

dτ (τ0)
Sobs p

‖Sobs p‖ , where ‖Sobs‖◦β is the affine distance as a function

of τ .

5 Special relativity

In this section, we are going to work in the Minkowski spacetime, considering β, β′ two
observers with 4-velocities U , U ′ respectively. The goal is to find expressions for VFermi and
Vast in terms of U , ∇UU , U ′, S and Sobs, i.e. without ∇US, ∇USobs, or any term involving
the evolution of S, Sobs.

Proposition 5.1. Let S be the relative position of β′ with respect to β, and let VFermi be the
Fermi relative velocity of β′ with respect to β. Then

VFermi = (1 + g (S,∇UU))

(

1

−g (U ′, U)
U ′ − U

)

, (17)

where VFermi, U , S, ∇UU are evaluated at an event p of β, and U ′ is evaluated at the event
q = β′ ∩ Lp,Up

.

Proof. We are going to consider the observers parameterized by their proper times. Let
p = β (τ) be an event of β, let u (τ) be the 4-velocity of β at p, and let q = β′ (τ ′ (τ)) be the
event of β′ such that g (u (τ) , q − p) = 0 (note that the Minkowski spacetime has an affine
structure, and q − p denotes the vector which joins p and q). So, τ ′ (τ) is the proper time
of q = β′ ∩ Lp,u, and the relative position of q with respect to u, denoted by s, is q − p. If
u′ (τ ′) is the 4-velocity of β′ at q, then

s (τ) = β′ (τ ′ (τ))− β (τ) =⇒ ṡ = u′ (τ ′) τ̇ ′ − u, (18)

where the dot denotes d
dτ . On the other hand

g (s, u) = 0 =⇒ g (ṡ, u) + g (s, u̇) = 0. (19)

Applying (18) in (19) we have

g (u′ (τ ′) τ̇ ′ − u, u) + g (s, u̇) = 0 =⇒ τ̇ ′ =
1 + g (s, u̇)

−g (u′ (τ ′) , u)
. (20)

Combining (18) and (20), we obtain

ṡ =
1 + g (s, u̇)

−g (u′ (τ ′) , u)
u′ (τ ′)− u. (21)
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Let U , U ′ be the 4-velocities of β and β′ respectively, and let S be the relative position
of β′ with respect to β. Then, from (21) we have

∇US =
1 + g (S,∇UU)

−g (U ′, U)
U ′ − U, (22)

where U , S, ∇UU , ∇US are evaluated at p, and U ′ is evaluated at q. So, by Proposition 3.1
and expression (22), the Fermi relative velocity VFermi of β

′ with respect to β is given by

VFermi = ∇US − g (S,∇UU)U

= (1 + g (S,∇UU))

(

1

−g (U ′, U)
U ′ − U

)

,

where VFermi, U , S, ∇UU are evaluated at p, and U ′ is evaluated at q.

Taking into account the expression of the kinematic relative velocity given in (4), we
obtain the next corollary:

Corollary 5.1. The Fermi relative velocity of β′ with respect to β reads

VFermi = (1 + g (S,∇UU))Vkin. (23)

So, VFermi and Vkin are proportional. Moreover, if β is geodesic, then VFermi = Vkin.

Proposition 5.2. Let Sobs be the relative position of β′ observed by β, and let Vast be the
astrometric relative velocity of β′ with respect to β. If Sobs does not vanish, we have

Vast =
1

g
(

U ′, Sobs

‖Sobs‖ − U
) (U ′ + g (U ′, U)U) + ‖Sobs‖∇UU, (24)

where Vast, U , Sobs, ∇UU are evaluated at an event p of β, and U ′ is evaluated at the event
q = β′ ∩ E−

p .

Proof. We are going to consider the observers parameterized by their proper times. Let
p = β (τ) be an event of β, let u (τ) be the 4-velocity of β at p, and let q = β′ (τ ′ (τ)) be the
event of β′ such that g (q − p, q − p) = 0 (note that the Minkowski spacetime has an affine
structure, and q − p denotes the vector which joins p and q). So, τ ′ (τ) is the proper time of
q = β′ ∩ E−

p , and the relative position of q observed by u, denoted by sobs, is the projection

of q − p onto u⊥. Let us denote sobs by s for the shake of readability. Hence

s (τ) = β′ (τ ′ (τ))− β (τ) + ‖s (τ) ‖u, (25)

where ‖s‖ =
√

g (s, s) is the affine distance from p to q. If u′ (τ ′) is the 4-velocity of β′ at q,
deriving (25) with respect to τ we obtain

ṡ = u′ (τ ′) τ̇ ′ − u+ g

(

ṡ,
s

‖s‖

)

u+ ‖s‖u̇, (26)

where the dot denotes d
dτ . Taking into account that g (s, u) = 0 and (26), we have

g

(

ṡ,
s

‖s‖

)

= g

(

u′ (τ ′) τ̇ ′ + ‖s‖u̇, s

‖s‖

)

= τ̇ ′g

(

u′ (τ ′) ,
s

‖s‖

)

+ g (u̇, s) , (27)

and hence, by (26) and (27) we obtain

ṡ = u′ (τ ′) τ̇ ′ +

(

τ̇ ′g

(

u′ (τ ′) ,
s

‖s‖

)

+ g (u̇, s)− 1

)

u+ ‖s‖u̇. (28)
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On the other hand
g (s, u) = 0 =⇒ g (ṡ, u) + g (s, u̇) = 0. (29)

Applying (28) in (29) and taking into account that g (u̇, u) = 0, we find

τ̇ ′ =
1

g
(

u′ (τ ′) , s
‖s‖ − u

) . (30)

Combining (28) and (30), we obtain

ṡ =
1

g
(

u′ (τ ′) , s
‖s‖ − u

) (u′ (τ ′) + g (u′ (τ ′) , u)u) + g (s, u̇)u+ ‖s‖u̇. (31)

Let U , U ′ be the 4-velocities of β and β′ respectively, and let S = Sobs (for the shake of
readability) be the relative position of β′ observed by β. Then, from (31) we have

∇US =
1

g
(

U ′, S
‖S‖ − U

) (U ′ + g (U ′, U)U) + g (S,∇UU)U + ‖S‖∇UU, (32)

where U , S, ∇UU , ∇US are evaluated at p, and U ′ is evaluated at q. So, by Proposition 4.2
and expression (32), the astrometric relative velocity Vast of β

′ with respect to β is given by

Vast = ∇US − g (S,∇UU)U

=
1

g
(

U ′, S
‖S‖ − U

) (U ′ + g (U ′, U)U) + ‖S‖∇UU,

where Vast, U , S, ∇UU are evaluated at p, and U ′ is evaluated at q.

Taking into account the expression of the spectroscopic relative velocity given in (9), we
obtain the next corollary:

Corollary 5.2. The astrometric relative velocity of β′ with respect to β reads

Vast = ‖Sobs‖∇UU +
1

1 + g
(

Vspec,
Sobs

‖Sobs‖

)Vspec. (33)

So, Vspec and Vast are not proportional unless β is geodesic.
If β′ is geodesic then it is clear that Vspec = Vkin. Moreover, if β is also geodesic then

Vspec = Vkin = VFermi.

Remark 5.1. Let us suppose that β and β′ intersect at p, let u, u′ be the 4-velocities of
β, β′ at p respectively, and let v be the relative velocity of u′ observed by u, in the sense of
expression (2). Let us study the relations between v, Vkin p, VFermi p, Vspec p and Vast p.

It is clear that Vkin p = Vspec p = v, even in general relativity. Moreover, since Sp = 0,
by (17) we have VFermi p = v. On the other hand, since Sobs p = 0, it is easy to prove that
Vast p = 1

1±‖v‖v, where we choose “+” if we consider that β′ is leaving from β, and we choose

“−” if we consider that β′ is arriving at β. Therefore, if β and β′ intersect at p, then it is
not possible to write Vast p in a unique way in terms of v.

Example 5.1. Using rectangular coordinates (t, x, y, z), let us consider the following ob-

servers: β (τ) := (τ, 0, 0, 0), and β′ (τ ′) :=















(γτ ′, vγτ ′, 0, 0) if τ ′ ∈
[

0, 1
γv

]

(γτ ′, 2− vγτ ′, 0, 0) if τ ′ ∈
]

1
γv ,

2
γv

]

where

12



Figure 5: Scheme of the observers of Example 5.1.

v ∈ ]0, 1[ and γ := 1√
1−v2

, parameterized by their proper times. That is, β is a stationary

observer with x = 0, y = 0, z = 0 and β′ is an observer moving from x = 0, y = 0, z = 0 to
x = 1, y = 0, z = 0 with velocity of modulus v and returning (see Figure 5). It is satisfied
that

Vkin β(τ) =

{

v ∂
∂x

∣

∣

β(τ)
if τ ∈

[

0, 1
v

]

−v ∂
∂x

∣

∣

β(τ)
if τ ∈

]

1
v ,

2
v

] ,

Vspec β(τ) =

{

v ∂
∂x

∣

∣

β(τ)
if τ ∈

[

0, 1+v
v

]

−v ∂
∂x

∣

∣

β(τ)
if τ ∈

]

1+v
v , 2

v

] .

Applying (17), we obtain VFermi β(τ) = Vkin β(τ). Moreover

Sobs β(τ) =

{

vτ
1+v

∂
∂x

∣

∣

β(τ)
if τ ∈

[

0, 1+v
v

]

2−vτ
1−v

∂
∂x

∣

∣

β(τ)
if τ ∈

]

1+v
v , 2

v

] .

Hence, by (24) we have

Vast β(τ) =

{

v
1+v

∂
∂x

∣

∣

β(τ)
if τ ∈

[

0, 1+v
v

]

− v
1−v

∂
∂x

∣

∣

β(τ)
if τ ∈

]

1+v
v , 2

v

] .

Consequently,
∥

∥Vast β(τ)

∥

∥ ∈ ]0, 1/2[ if τ ∈
[

0, 1+v
v

]

, i.e. if β′ is moving away radially. On

the other hand,
∥

∥Vast β(τ)

∥

∥ ∈ ]0,+∞[ if τ ∈
]

1+v
v , 2

v

]

, i.e. if β′ is getting closer radially (see
Figure 6). This corresponds to what β observes.

Example 5.2. Let us suppose that the spacetime is flat and we see an alien spaceship
coming to Earth from a planet at 9 lightyears (this distance can be measured by parallax,
since this method estimates the affine distance from the planet to Earth observed by someone
on Earth). Let us suppose that the spaceship is coming radially, and so, we can measure the

13



Figure 6: Modulus of the relative velocities of Example 5.1 depending on the parameter v.
The solid line represents the modulus of Vkin, VFermi and Vspec, and they are always equal to
v. The dashed line represents the modulus of Vast when β′ moves away from β (lower) and
β′ approaches β (upper).

modulus of its spectroscopic relative velocity (see Remark 4.2). Supposing that this modulus
is v = 0.9, the spaceship will take 10 years to arrive at Earth from its planet. However, since
light takes 9 years to arrive at us, there is only 1 year left for the arrival of the spaceship.
This result can also be obtained by using expression (24): in our case, the modulus of the
astrometric relative velocity is 0.9

1−0.9 = 9, and we will therefore observe that it takes 1 year
to arrive.

Remark 5.2. There is an open problem in general relativity, that consists on finding expres-
sions for VFermi and Vast in terms of U , ∇UU , U ′, S and Sobs, analogously to Propositions
5.1 and 5.2, avoiding ∇US, ∇USobs, or any term involving the evolution of S, Sobs. It would
be very useful in the calculations of the relative velocities.

6 Examples in general relativity

In this section, we are going to study some fundamental examples in Schwarzschild and
Robertson-Walker spacetimes. See [15] for an interesting and complete study of the relative
velocities of a radially receding test particle with respect to / observed by a central observer
in a Schwarzschild-de Sitter spacetime.

6.1 Stationary observers in Schwarzschild spacetime

In the Schwarzschild metric with spherical coordinates

ds2 = −a2 (r) dt2 +
1

a2 (r)
dr2 + r2

(

dθ2 + sin2 θdϕ2
)

,

where a (r) =
√

1− 2m
r and r > 2m, let us consider two equatorial stationary observers,

β1 (τ) =
(

1
a1

τ, r1, π/2, 0
)

and β2 (τ) =
(

1
a2

τ, r2, π/2, 0
)

with τ ∈ R, r2 > r1 > 2m, a1 :=

a (r1) and a2 := a (r2), and let U be the 4-velocity of β2, i.e. U := 1
a2

∂
∂t . We are going to

study the relative velocities of β1 with respect to / observed by β2.

6.1.1 Kinematic and Fermi relative velocities. Fermi distance

Let us consider the vector field X := a (r) ∂
∂r ; it is spacelike, unit, geodesic, and orthogonal

to U . Since ∇X

(

1
a(r)

∂
∂t

)

= 0, we have that the kinematic relative velocity Vkin of β1 with

respect to β2 is given by Vkin = 0.
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Figure 7: Modulus of Vspec of a stationary observer with a1 =
√

1− 2m
r1

observed by another

stationary observer with a2 =
√

1− 2m
r2

= 0.5 (left) and at the exterior limit a2 = 1 (r2 =

+∞) (right) in Schwarzschild spacetime. It produces the gravitational redshift.

It is clear (a priori) that the relative position S of β1 with respect to β2 is proportional to
∂
∂r and the proportionality factor is constant. So, it is easy to prove that ∇US is proportional
to U and therefore, the Fermi relative velocity VFermi of β1 with respect to β2 reads VFermi = 0.

Nevertheless, we are going to calculate the Fermi distance and S:
Let α (σ) = (t0, α

r (σ) , π/2, 0) be an integral curve of X such that q := α (σ1) ∈ β1 and
p := α (σ2) ∈ β2, with σ2 > σ1 (i.e. α (σ) is a spacelike geodesic from q to p, parameterized
by its arclength, and its tangent vector at p is Xp). Then, by Proposition 3.2, the Fermi
distance dFermi

Up
(q, p) from q to p with respect to Up is σ2 − σ1. Since α is an integral curve

of X, we have
.
α
r
(σ) =

√

1− 2m
αr(σ) . So,

∫ r2
r1

(

1− 2m
αr(σ)

)−1/2 .
α
r
(σ) dσ = σ2 − σ1, and then

dFermi
Up

(q, p) = 2m ln

(

(1− a1)
√
r1

(1− a2)
√
r2

)

+ r2a2 − r1a1. (34)

Since (34) does not depends on t0, the Fermi distance from β1 to β2 with respect to β2 is
also given by expression (34). Hence, by (7), the relative position S of β1 with respect to β2

is given by

S =

(

2m ln

(

(1− a2)
√
r2

(1− a1)
√
r1

)

+ r1a1 − r2a2

)

a2
∂

∂r
.

6.1.2 Spectroscopic and astrometric relative velocities. Affine distance

It is easy to prove that the spectroscopic relative velocity Vspec of β1 observed by β2 is radial.
Since the gravitational redshift is given by a2

a1

(see [12]), by (13) we obtain

Vspec = −a2
a22 − a21
a22 + a21

∂

∂r
. (35)

Expression (35) is also obtained in [12]. Since ‖Vspec‖ =
a2

2
−a2

1

a2

2
+a2

1

, we have limr1→2m ‖Vspec‖ = 1

(see Figure 7).
On the other hand, it is clear (a priori) that the relative position Sobs of β1 observed by

β2 is proportional to ∂
∂r and the proportionality factor is constant. So, it is easy to prove

that ∇USobs is proportional to U and therefore, the astrometric relative velocity Vast of β1

observed by β2 reads Vast = 0.
Nevertheless, we are going to calculate the affine distance and Sobs:
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In [12] it is proved (by using Proposition 4.3) that the affine distance from β1 to β2

observed by β2 is r2−r1
a2

. Hence, by (16), the relative position Sobs of β1 observed by β2 is
given by

Sobs = (r1 − r2)
∂

∂r
. (36)

6.2 Free-falling observers in Schwarzschild spacetime

Let us consider a radial free-falling observer β1 parameterized by the coordinate time t,
β1 (t) = (t, βr

1 (t) , π/2, 0). Given an event q = (t1, r1, π/2, 0) ∈ β1, the 4-velocity of β1 at q is
given by

u1 =
E

a21

∂

∂t

∣

∣

∣

∣

q

−
√

E2 − a21
∂

∂r

∣

∣

∣

∣

q

, (37)

where E is a constant of motion given by E :=
(

1−2m/r0
1−v2

0

)1/2

, r0 is the radial coordinate

at which the fall begins, v0 is the initial velocity (see [16]), and a1 := a (r1). Moreover,

let us consider an equatorial stationary observer β2 (τ) =
(

1
a2

τ, r2, π/2, 0
)

with τ ∈ R,

r2 ≥ r1 > 2m, a2 := a (r2), and U := 1
a2

∂
∂t its 4-velocity. We are going to study the relative

velocities of β1 with respect to / observed by β2 at p, where p will be a determined event of
β2.

6.2.1 Kinematic and Fermi relative velocities

Let p = (t1, r2, π/2, 0). This is the unique event of β2 such that q ∈ Lp,Up
, i.e. there exists

a spacelike geodesic α (σ) from q = α (σ1) to p = α (σ2) such that the tangent vector
.
α (σ2)

is orthogonal to Up. We can consider α (σ) parameterized by its arclength and σ2 > σ1. So,
α (σ) is an integral curve of the vector field X = a (r) ∂

∂r . If we parallelly transport u1 from q

to p along α we obtain τqpu1 = E
a1a2

∂
∂t

∣

∣

p
− a2

a1

√

E2 − a21
∂
∂r

∣

∣

p
. By (4), the kinematic relative

velocity Vkin p of β1 with respect to β2 at p reads

Vkin p = −a2

√

1− a21
E2

∂

∂r

∣

∣

∣

∣

p

.

Since ‖Vkin p‖ =

√

1− a2

1

E2 , it is satisfied that limr1→2m ‖Vkin p‖ = 1. See Appendix A.1 for
a deeper analysis of this function.

On the other hand, by (34), the relative position S of β1 with respect to β2 is given by

S =

(

2m ln

(

(1− a2)
√
r2

(1− a (βr
1 (t)))

√

βr
1 (t)

)

+ βr
1 (t) a (β

r
1 (t))− r2a2

)

a2
∂

∂r
.

By (5), the Fermi relative velocity VFermi of β1 with respect to β2 reads

VFermi = (∇US)
r ∂

∂r
=

1

a2

∂Sr

∂t

∂

∂r
=

1

a2

.

β
r

1 (t)

a (βr
1 (t))

∂

∂r

Taking into account (37), we have
.

β
r

1 (t1) = −a21

√

1− a2

1

E2 . Hence

VFermi p = −a1
a2

√

1− a21
E2

∂

∂r

∣

∣

∣

∣

p

.

Since ‖VFermi p‖ = a1

a2

2

√

1− a2

1

E2 , it is satisfied that limr1→2m ‖VFermi p‖ = 0. See Appendix

A.2 for a deeper analysis of this function.
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6.2.2 Spectroscopic and astrometric relative velocities

Let p be the unique event of β2 such that there exists a light ray λ from q to p, and let us
suppose that p = (t2, r2, π/2, 0). In [12] it is shown that the spectroscopic relative velocity
Vspec p of β1 observed by β2 at p is given by

Vspec p = −a2

(

a22 + a21
)

√

1− a2

1

E2 +
(

a22 − a21
)

(a22 − a21)

√

1− a2

1

E2 + (a22 + a21)

∂

∂r

∣

∣

∣

∣

p

. (38)

Since ‖Vspec p‖ =
(a2

2
+a2

1)
√

1− a2
1

E2
+(a2

2
−a2

1)

(a2

2
−a2

1)
√

1− a2
1

E2
+(a2

2
+a2

1)
, it follows that limr1→2m ‖Vspec p‖ = 1. See Ap-

pendix A.3 for a deeper analysis of this function.
On the other hand, it can be checked that

λ (r) :=

(

t1 + r − r1 + 2m ln

(

r − 2m

r1 − 2m

)

, r, π/2, 0

)

, r ∈ [r1, r2]

is a light ray from q = λ (r1) to p = λ (r2). So,

t2 = λt (r2) = t1 + r2 − r1 + 2m ln

(

r2 − 2m

r1 − 2m

)

. (39)

Let us define implicitly the function f (t) by the expression

f (t) := t−
(

r2 − βr
1 (f (t)) + 2m ln

(

r2 − 2m

βr
1 (f (t))− 2m

))

. (40)

Taking into account (39), f (t) is the coordinate time at which β1 emits a light ray that
arrives at β2 at coordinate time t. Applying (36), the relative position Sobs of β1 observed
by β2 reads

Sobs = (βr
1 (f (t))− r2)

∂

∂r
.

By (14), the astrometric relative velocity Vast of β1 observed by β2 is given by

Vast = (∇USobs)
r ∂

∂r
=

1

a2

∂Sr
obs

∂t

∂

∂r
=

1

a2

.

β
r

1 (f (t))
.

f (t)
∂

∂r
.

From (40), we have
.

f (t2) =
a2

1

a2

1
−(a2

1
−1)

.

β
r

1
(t1)

. Moreover, taking into account (37), we have

.

β
r

1 (t1) = −a21

√

1− a2

1

E2 . Hence

Vast p = −a21
a2

√

1− a2

1

E2

1 + (a21 − 1)

√

1− a2

1

E2

∂

∂r

∣

∣

∣

∣

p

, (41)

and, in consequence, ‖Vast p‖ =
a2

1

a2

2

√

1− a2
1

E2

1+(a2

1
−1)

√

1− a2
1

E2

, concluding that limr1→2m ‖Vast p‖ =

1
a2

2

2E2

1+2E2 ∈ ]0,+∞[. See Appendix A.4 for a deeper analysis of this function.
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6.3 Comoving observers in Robertson-Walker spacetime

See [17] for an interesting and complete study of the Fermi relative velocity of a comoving
test particle with respect to / observed by a comoving observer in an expanding Robertson-
Walker spacetime. Moreover, in [18] we also study the other relative velocities in this case,
with examples in the Milne, de Sitter, radiation-dominated an matter-dominated universes.

In a Robertson-Walker metric with cartesian coordinates

ds2 = −dt2 +
a2 (t)

(

1 + 1
4kr

2
)2

(

dx2 + dy2 + dz2
)

,

where a (t) is the scale factor, k = −1, 0, 1 and r :=
√

x2 + y2 + z2, we consider two comoving
(in the classical sense, see [11]) observers β0 (τ) = (τ, 0, 0, 0) and β1 (τ) = (τ, x1, 0, 0) with

τ ∈ R and x1 > 0. Let t0 ∈ R, p := β0 (t0) and u :=
.

β0 (t0) =
∂
∂t

∣

∣

p
(i.e. the 4-velocity of β0

at p). We are going to study the relative velocities of β1 with respect to / observed by β0 at
p.

6.3.1 Kinematic and Fermi relative velocities

The vector field

X := −
√

a20
a2 (t)

− 1
∂

∂t
+

a0
a2 (t)

(

1 +
1

4
kx2

)

∂

∂x

is geodesic, spacelike, unit, and Xp is orthogonal to u, i.e. it is tangent to the Landau
submanifold Lp,u. Let β1 (t1) =: q be the unique event of β1 ∩ Lp,u. We can find t1 for a
given scale factor a (t) taking into account the expression of X, but we can not find an explicit

expression in the general case. If u′ :=
.

β1 (t1) =
∂
∂t

∣

∣

q
, then τqpu

′ = a0

a1

∂
∂t

∣

∣

p
+
√

1
a2

1

− 1
a2

0

∂
∂x

∣

∣

p
,

where a1 := a (t1) (it is well defined because a0 ≥ a1 > 0). So, by (4), the kinematic relative
velocity Vkin p of β1 with respect to β0 at p is given by

Vkin p =
1

a20

√

a20 − a21
∂

∂x

∣

∣

∣

∣

p

.

Given a scale factor a (t), the Fermi distance dFermi from β1 to β0 with respect to β0 can
be also found, taking into account the expression of X. So, the relative position S of β1 with
respect to β0 reads

S = dFermi

(

1 + 1
4kr

2
)

a (t)

∂

∂x
,

because dFermi = ‖S‖. Hence, the Fermi relative velocity VFermi p of β1 with respect to β0 at
p is given by

VFermi p =

(

d

dt

(

dFermi

a (t)

)∣

∣

∣

∣

t=t0

+ dFermi
p

.
a (t0)

a20

)

∂

∂x

∣

∣

∣

∣

p

.

6.3.2 Spectroscopic and astrometric relative velocities

Let λ be a light ray received by β0 at p and emitted from β1 at β1 (t1). Note that t1 can

be found from x1 and t0 taking into account that
∫ x1

0
dx

1+ 1

4
kx2

=
∫ t0
t1

dt
a(t) . It can be easily

proved that the spectroscopic relative velocity Vspec p of β1 observed by β0 at p is radial (by
isotropy). So, by (13) taking into account that the cosmological shift is given by a0

a1

(see [12]),
where a0 := a (t0) and a1 := a (t1), we have

Vspec p =
1

a0

a20 − a21
a20 + a21

∂

∂x

∣

∣

∣

∣

p

. (42)
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Given a scale factor a (t), the affine distance daff from β1 to β0 observed by β0 can be
found. So, the relative position Sobs of β1 observed by β0 is given by

Sobs = daff
(

1 + 1
4kr

2
)

a (t)

∂

∂x
,

because daff = ‖Sobs‖. Hence, the astrometric relative velocity Vast p of β1 observed by β0 at
p reads

Vast p =

(

d

dt

(

daff

a (t)

)∣

∣

∣

∣

t=t0

+ daffp

.
a (t0)

a20

)

∂

∂x

∣

∣

∣

∣

p

. (43)

Let us study these relative velocities in more detail. In cosmology it is usual to consider
the scale factor in the form

a (t) = a0

(

1 +H0 (t− t0)−
1

2
q0H

2
0 (t− t0)

2

)

+O
(

H3
0 (t− t0)

3
)

,

where t0 ∈ R, a0 = a (t0) > 0, H (t) =
.
a (t) /a (t) is the Hubble “constant”, H0 = H (t0) > 0,

q (t) = −a (t)
..
a (t) /

.
a (t)

2
is the deceleration coefficient, and q0 = q (t0), with |H0 (t− t0)| ≪ 1

(see [19]). This corresponds to a universe in decelerated expansion and the time scales that

we are going to use are relatively small. Let us define p := β0 (t0) and u :=
.

β0 (t0) =
∂
∂t

∣

∣

p
.

We are going to express the spectroscopic and the astrometric relative velocity of β1

observed by β0 at p in terms of the redshift parameter at t = t0, defined as z0 := a0

a1

− 1,
where a1 := a (t1). This parameter is very usual in cosmology since it can be measured by
spectroscopic observations. By (42), the spectroscopic relative velocity Vspec p of β1 observed
by β0 at p is given by

Vspec p =
1

a0

a40 − (z0 + 1)
2

a40 + (z0 + 1)
2

∂

∂x

∣

∣

∣

∣

p

. (44)

In [12] it is shown that the affine distance daff from β1 to β0 observed by β0 reads

daff (t) =
z (t)

H (t)

(

1− 1

2
(3 + q (t)) z (t)

)

+O
(

z3 (t)
)

,

where z (t) is the redshift function. So, by (43), the astrometric relative velocity Vast p of β1

observed by β0 at p is given by

Vast p =

( .
z (t0)

a0H0
+

z0
a0

(

q0 + 1−
.
z (t0)

H0
(3 + q0)

)

+O
(

z20
)

)

∂

∂x

∣

∣

∣

∣

p

.

Hence, if we suppose that
.
z (t0) ≈ 0 (i.e., the redshift is constant in our time scale), then

Vast p ≈
(

z0
a0

(q0 + 1) +O
(

z20
)

)

∂

∂x

∣

∣

∣

∣

p

. (45)

7 Discussion and comments

It is usual to consider the spectroscopic relative velocity as a non-acceptable “physical ve-
locity”. However, in this paper we have defined it in a geometric way, showing that it is, in
fact, a very plausible physical velocity.

• Firstly, in other works (see [8], [12]), we have discussed pros and cons of spacelike and
lightlike simultaneities, coming to the conclusion that lightlike simultaneity is physically
and mathematically more suitable. Since the spectroscopic relative velocity is the
natural generalization (in the framework of lightlike simultaneity) of the usual concept
of relative velocity (given by (2)), it might have a lot of importance.
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• Secondly, there are some good properties suggesting that the spectroscopic relative
velocity has a lot of physical sense. For instance, if we work with the spectroscopic
relative velocity, it is shown in [12] that gravitational redshift is just a particular case
of a generalized Doppler effect.

Nevertheless, all four concepts of relative velocity have full physical sense and they must
be studied equally.

Finally, one can wonder whether the discussed concepts of relative velocity can be actually
determined experimentally. A priori, only the spectroscopic and astrometric relative velocities
can be measured by direct observation. The shift allows us to find relations between the
modulus of the spectroscopic relative velocity and its tangential component, as we show in
(12). But, in general, it is not enough information to determine it completely (as we discuss
in Remark 4.1), unless we make some assumptions (see Remark 4.2) or we use a model for
the spacetime and apply some expressions like (35), (38), or (44). Finding the astrometric
relative velocity is basically the same problem as finding the optical coordinates. It is non-
trivial and it has been widely treated, for instance, in [9]. Nevertheless, expressions like (41)
or (45) could be very useful in particular situations. Since the measure of these velocities is
rather difficult, any expression relating them can be very helpful in order to determine them,
as, for example, expression (24) in special relativity.

A Free-falling observers in Schwarzschild spacetime

We are going to study the modulus of the relative velocities of a radially inward free-falling
observer (or test particle) at r1 > 2m with respect to / observed by a stationary observer
at r2 ≥ r1, according to the results of Section 6.2. The radial coordinate that we are going

to use is a =
√

1− 2m
r , taking values from 0 (when r → 2m) to 1 (when r → +∞); so, the

radial parameters are a1 = a (r1) and a2 = a (r2). Another parameter is given by the energy
E > 0 of the free falling test particle. In our study, we are going to consider the modulus
of the relative velocities as functions of a1, taking a2 and E as parameters. So, taking into
account the definition of E, it is clear that 0 < a1 ≤ a1max := min {E, a2}.

A.1 Kinematic relative velocity

The modulus of the kinematic relative velocity is given by

‖vkin‖ =

√

1− a21
E2

.

Note that ‖vkin‖ does not depend on a2. It satisfies 0 ≤ ‖vkin‖ < 1, it is decreasing with a1
(i.e. increasing with time), and lima1→0 ‖vkin‖ = 1. Moreover:

• If E ≤ a2, then ‖vkin‖ takes its minimum at a1 = a1max = E and it is 0.

• If E > a2, then ‖vkin‖ takes its minimum at a1 = a1max = a2 and it is given by

‖vkin‖min :=

√

1− a22
E2

. (46)

We have that limE→+∞ ‖vkin‖min = 1.

A.2 Fermi relative velocity

The modulus of the Fermi relative velocity is given by

‖vFermi‖ =
a1
a22

√

1− a21
E2

.
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It satisfies lima1→0 ‖vFermi‖ = 0. Moreover:

• If E <
√
2a2, then ‖vFermi‖ takes its maximum at a1 = E√

2
and it is given by

‖vFermi‖max :=
E

2a22
<

1√
2a2

.

It is increasing with E, becoming superluminal (i.e. > 1) if, in addition, E > 2a22. Note
that it is only possible if a2 < 1√

2
(i.e. r2 < 4m). In this case, ‖vFermi‖ is superluminal

if
E2

2

(

1−
√

1− 4
a42
E2

)

< a21 <
E2

2

(

1 +

√

1− 4
a42
E2

)

.

• If E ≥
√
2a2, then ‖vFermi‖ is increasing with a1 (i.e. decreasing with time) and takes

its maximum at a1 = a1max = a2, given by

‖vFermi‖max :=
1

a2

√

1− a22
E2

. (47)

It is increasing with E, becoming superluminal if E > a2√
1−a2

2

; nevertheless, it is

bounded by limE→+∞ ‖vFermi‖max = 1
a2

> 1. In this case, ‖vFermi‖ is superluminal
if

a21 >
E2

2

(

1−
√

1− 4
a42
E2

)

.

On the other hand,

• If E ≤ a2, then ‖vFermi‖ takes its minimum at a1 = a1max = E and it is 0.

• If a2 < E <
√
2a2, then ‖vFermi‖ has a relative minimum at a1 = a1max = a2 and it is

given by (47). Note that it is superluminal if, in addition, E > a2√
1−a2

2

.

A.3 Spectroscopic relative velocity

The modulus of the spectroscopic relative velocity is given by

‖vspec‖ =

(

a22 + a21
)

√

1− a2

1

E2 +
(

a22 − a21
)

(a22 − a21)

√

1− a2

1

E2 + (a22 + a21)
.

It satisfies 0 ≤ ‖vspec‖ < 1, it is decreasing with a1 (i.e. increasing with time), and
lima1→0 ‖vspec‖ = 1. Moreover:

• If E ≤ a2, then ‖vspec‖ takes its minimum at a1 = a1max = E and it is given by

‖vspec‖min :=
a22 − E2

a22 + E2
.

We have that ‖vspec‖min is decreasing with E, and it only vanishes at E = a2.

• If E > a2, then ‖vspec‖ takes its minimum at a1 = a1max = a2 and it is given by

‖vspec‖min :=

√

1− a22
E2

.

Note that this is the same minimum as in the kinematic case (see (46)).
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A.4 Astrometric relative velocity

The modulus of the astrometric relative velocity is given by

‖vast‖ =
a21
a22

√

1− a2

1

E2

1 + (a21 − 1)

√

1− a2

1

E2

.

It is important to note that limE→+∞ ‖vast‖ = 1
a2

2

> 1 for all a1. So, given a2, there exists

always a big enough energy (see (48) below) such that ‖vast‖ is superluminal for all a1.
It is decreasing with a1 (i.e. increasing with time), and it has a supremum

‖vast‖sup := lim
a1→0

‖vast‖ =
1

a22

2E2

1 + 2E2
.

We have that ‖vast‖sup is increasing with E, becoming superluminal if E > 1√
2

a2√
1−a2

2

(but

it is bounded by 1
a2

2

). In this case, ‖vast‖ is superluminal if

a21 <
E2

2

(

1 +

√

1 +
4

E2

a22
1− a22

)

− a22
1− a22

.

Moreover:

• If E ≤ a2, then ‖vast‖ takes its minimum at a1 = a1max = E and it is 0.

• If E > a2, then ‖vast‖ takes its minimum at a1 = a1max = a2 and it is given by

‖vast‖min :=

√

1− a2

2

E2

1 + (a22 − 1)

√

1− a2

2

E2

.

It is increasing with E, becoming superluminal if

E >
a2
(

2− a22
)

√

(2− a22)
2 − 1

. (48)

See Figures 8 (a2 = 0.2), 9 (a2 = 0.5), 10, (a2 = 0.70711, i.e. r2 = 4m), 11 (a2 = 0.9),
and 12 (exterior limit a2 = 1). In all figures at low energies (top left) there is not any
superluminal velocity and all the velocities vanishes at a1 = a1max = E except for ‖vspec‖.
At E = a2, all the velocities vanish at a1 = a1max = E = a2, and these minima begin to
increase for higher energies; moreover, ‖vkin‖ and ‖vspec‖ have the same minimum. At high
energies (bottom right), ‖vkin‖ and ‖vspec‖ tends to 1, ‖vFermi‖ tends to a1

a2

2

, and ‖vast‖ tends

to 1
a2

2

.
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Figure 8: Moduli of kinematic (dashed), Fermi (solid), spectroscopic (dot-dashed) and as-
trometric (dotted) relative velocities with a2 = 0.2. At E = 0.08 (top center), ‖vFermi‖max

begins to be superluminal. At E = 0.14434 (top right), ‖vast‖sup begins to be superluminal.
At E = a2 = 0.2 (middle left), all the velocities vanish at a1 = a1max = 0.2, and these
minima begin to increase for higher energies. At E = 0.20412 (middle center), the relative
minimum of ‖vFermi‖ at a1 = 0.2 begins to be superluminal. At E = 0.23254 (middle right),
‖vast‖min begins to be superluminal. At E = 0.28284 (bottom left), ‖vFermi‖ begins to be
monotonic.
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Figure 9: Moduli of kinematic (dashed), Fermi (solid), spectroscopic (dot-dashed) and astro-
metric (dotted) relative velocities with a2 = 0.5. At E = 0.40825 (top center), ‖vast‖sup
begins to be superluminal. At E = a2 = 0.5 (top right), all the velocities vanish at
a1 = a1max = 0.5, and these minima begin to increase for higher energies; moreover
‖vFermi‖max begins to be superluminal. At E = 0.57735 (middle center), the relative min-
imum of ‖vFermi‖ at a1 = 0.5 begins to be superluminal. At E = 0.60927 (middle right),
‖vast‖min begins to be superluminal. At E = 0.70711 (bottom left), ‖vFermi‖ begins to be
monotonic.
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Figure 10: Moduli of kinematic (dashed), Fermi (solid), spectroscopic (dot-dashed) and
astrometric (dotted) relative velocities with a2 = 0.70711 (r2 = 4m). At E = a2 = 0.70711
(top center), all the velocities vanish at a1 = a1max = 0.70711, and these minima begin to
increase for higher energies; moreover ‖vast‖sup begins to be superluminal. At E = 0.94868
(bottom left), ‖vast‖min begins to be superluminal. At E = 1 (bottom center), ‖vFermi‖ begins
to be monotonic and its maximum at a1 = 0.70711 begins to be superluminal.
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