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Abstract. The curse of dimensionality is a phenomenon frequently observed in machine

learning (ML) and knowledge discovery (KD). There is a large body of literature investi-

gating its origin and impact, using methods from mathematics as well as from computer

science. Among the mathematical insights into data dimensionality, there is an intimate

link between the dimension curse and the phenomenon of measure concentration, which

makes the former accessible to methods of geometric analysis. The present work provides

a comprehensive study of the intrinsic geometry of a data set, based on Gromov’s metric

measure geometry and Pestov’s axiomatic approach to intrinsic dimension. In detail, we

define a concept of geometric data set and introduce a metric as well as a partial order on

the set of isomorphism classes of such data sets. Based on these objects, we propose and

investigate an axiomatic approach to the intrinsic dimension of geometric data sets and

establish a concrete dimension function with the desired properties. Our model for data

sets and their intrinsic dimension is computationally feasible and, moreover, adaptable

to specific ML/KD-algorithms, as illustrated by various experiments.

Introduction

One of the essential challenges in data driven research is to cope with sparse and high

dimensional data sets. Various machine learning (ML) and knowledge discovery (KD)

procedures are susceptible to the so-called curse of dimensionality. Despite its frequent

occurrence, this effect lacks for a comprehensive computational approach to decide if and

to what extent a data set will be tapped with it. Pestov’s work [26] revealed that the

dimension curse is closely linked to the phenomenon of concentration of measure, which

was discovered itself by Milman [16, 17] and Gromov and Milman [10] and is also known

as the Lévy property. This link enables the study of the dimension curse through methods

of geometric analysis.

A valuable step towards an indicative for concentration is the axiomatic approach for

an intrinsic dimension of data by Pestov [26, 25, 23], which involves modeling data sets

as metric spaces with measures and utilizing geometric analysis for their quantitative as-

sessment. His work is based on Gromov’s observable distance between metric measure
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spaces [9, Chapter 31
2
.H] and uses observable invariants to define concrete instances of

dimension functions. However, despite its mathematical elegance, this approach is com-

putationally infeasible, as discussed in [25, Section IV] and [23, Sections 5, 8], because it

amounts to computing the set of all real-valued 1-Lipschitz functions on a metric space.

Pestov suggests a way out [25, Section 8] by considering a data set as a pair (X,F ) con-

sisting of a metric measure space X together with a set F ⊆ Lip1(X) of computationally

cheap feature functions, e.g., distance functions to points [25, Section IV].

In the present paper, we build up on this idea and demonstrate a geometric model

that is both theoretically comprehensive and computationally accessible. More precisely,

we introduce the notion of a geometric data set (Definition 3.1), which may be regarded

as metric measure space together with a generating set of 1-Lipschitz functions, called

features. The elements of the feature set are supposed to be both computationally fea-

sible and adaptable to the representation of data as well as to the respective ML or KD

procedure. Upon constructing a specific metric on the set of isomorphism classes of such

geometric data sets (see Definition 3.3 and Theorem 3.10), detecting the dimension curse

amounts to computing the distance of a geometric data set to the trivial (i.e., singleton)

data set – a problem related to the task in Blumberg, Bhaumik, and Walker [4] where the

authors determine tests to distinguish finite samples drawn from different measures on a

metric space through applying Gromov’s mm-reconstruction theorem. Furthermore, we

propose on the class of geometric data sets a revised version of Pestov’s axiomatic sys-

tem, i.e., a conception of a dimension function (Definition 5.1), and establish a concrete

instance of such a dimension function through adapting Gromov’s notion of observable

diameters to the geometric data sets (Proposition 5.3).

For a first illustration of our approach, and in order to nourish our understanding

of the novel dimension function, we apply it to examples from two essentially different

domains: data sets in Rn and data sets resembling incidence structures. For the former

we provide an algorithm for computing the intrinsic dimension function and show how

the resulting values behave for various artificial and real-world data sets. We investigate

this in particular in contrast to the intrinsic dimension due to Chávez et al. [6]. For the

latter case we show how to represent incidence structure as geometric data set of the

above kind and how to calculate their intrinsic dimension. We conclude our work by

computing and discussing the intrinsic dimension for several real-world data sets. Our

computational results suggest that the intrinsic dimension, as introduced in this work,

does carry information not captured by other invariants of data sets.

The present article is structured as follows. The preliminary Section 1 is concerned with

recollecting some basics of metric geometry. In Section 2, we recall some bits of Gromov’s

seminal work on observable geometry of metric measure spaces. The subsequent Section 3

is dedicated to introducing our concept of geometric data sets as well as defining and

investigating a natural metric and partial order on the collection of isomorphism classes
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of such. This is followed by the adaptation of Gromov’s observable diameters to our

setting in Section 4. In Section 5, we then turn to the study of dimension functions

on geometric data sets. Subsequently, we apply our results to two different use cases in

Sections 6.1 and 6.2 and conclude our work with Section 7.

1. Geometry of Lipschitz functions

The purpose of this section is to provide some background on the structure of the set

of 1-Lipschitz functions on a metric space. Most importantly, this will include a review

of recent work by Ben Yaacov [2], see Proposition 1.1 below.

To begin with, let us fix some basic notation. Let X = (X, d) be a pseudo-metric

space. The diameter of X is defined as diam(X ) := sup{d(x, y) | x, y ∈ X}. Given any

real number ` ≥ 0, we may consider the set

Lip`(X ) :=
{
f ∈ RX

∣∣∀x, y ∈ X : |f(x)− f(y)| ≤ `d(x, y)
}

of all `-Lipschitz real-valued functions on X , and let

Lips`(X ) := {f ∈ Lip`(X ) | ‖f‖∞ ≤ s}

for any real s ≥ 0. For x ∈ A ⊆ X and ε > 0, we let Bd(x, ε) := {y ∈ X | d(x, y) < ε}
and Bd(A, ε) := {y ∈ X | ∃a ∈ A : d(a, y) < ε}. The Hausdorff distance of two sets

A,B ⊆ X with respect to d is given by

dH(A,B) := inf{ε > 0 | B ⊆ Bd(A, ε), A ⊆ Bd(B, ε)}.

Now let X be a set and let F ⊆ RX . We define dF : X ×X → [0,∞] by

dF (x, y) := sup{|f(x)− f(y)| | f ∈ F} (x, y ∈ X).

We will call F tame if dF (x, y) < ∞ for all x, y ∈ X, in which case dF constitutes a

pseudo-metric on X. Evidently, in case F is tame, dF is a metric on X if and only if

F separates the points of X, in the sense that X → RF , x 7→ (f(x))f∈F is injective. In

the following, we aim to determine the set of 1-Lipschitz functions for dF , i.e., to give an

algebraic representation of the elements of Lip1(X, dF ) as generated from members of F .

We provide such a description in Proposition 1.1, adapting work of Ben Yaacov [2].

Preparing the statement of Proposition 1.1, let us introduce some additional notation.

Given a set M , denote by P(M) the power set of M and by Pfin(M) the set of all finite

subsets of M . Let X be a set. For any finite non-empty subset F ⊆ RX , we obtain

functions
∨
F,
∧
F ∈ RX defined by(∨

F
)

(x) := max{f(x) | f ∈ F},
(∧

F
)

(x) := min{f(x) | f ∈ F} (x ∈ X) .

For any n ∈ N≥1 and f1, . . . , fn ∈ RX , we let∨n

i=1
fi :=

∨
{fi | i ∈ {1, . . . , n}},

∧n

i=1
fi :=

∧
{fi | i ∈ {1, . . . , n}} .
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Consider the closure operators K ,L : P
(
RX
)
→P

(
RX
)

defined by

K (F ) := {αf + c | f ∈ F ∪ {0}, α ∈ [−1, 1], c ∈ R}
(
F ⊆ RX

)
and

L (F ) :=
{∨n

i=1

∧
Fi

∣∣∣n ∈ N≥1, F1, . . . , Fn ∈Pfin(F ) \ {∅}
} (

F ⊆ RX
)
.

Whereas the closure system associated to L is the set of sublattices of RX , the closure

system associated to K is precisely the collection of all balanced subsets of the R-vector

space RX being moreover closed under translations by constant functions. It is straight-

forward to prove that K (L (F )) ⊆ L (K (F )) for every F ⊆ RX , which readily implies

that L ◦K constitutes a closure operator on RX , too. The following result is a variation

on work of Ben Yaacov [2]

Proposition 1.1 (cf. [2, Theorem 4.3]). Let X be a set and let F ⊆ RX be tame. Then

Lip1(X, dF ) = L (K (F )),

where the (third) closure refers to the topology of pointwise convergence on RX .

Proof. (⊇) Clearly, F ⊆ Lip1(X, dF ). It is easy to check that the set Lip1(X, dF )

is closed with respect to the operators K and L as well as the topology of pointwise

convergence on RX , whence L (K (F )) is contained in Lip1(X, dF ).

(⊆) Let us first prove the following auxiliary statement.

Claim (∗). For all ε > 0, x, y ∈ X and s, t ∈ R with |s − t| ≤ dF (x, y), there is

f ∈ K (F ) such that max{|s− f(x)|, |t− f(y)|} ≤ ε.

Proof of (∗). Let ε > 0 and let x, y ∈ X, s, t ∈ R such that |s− t| ≤ dF (x, y). Clearly,

if |s − t| ≤ ε, then the desired conclusion follows from the fact that K (F ) contains

all constant functions. Thus, without loss of generality, we may and will assume that

|s − t| > ε. By definition of dF , there is f ∈ F ∪ (−F ) with |s − t| − ε < f(x) − f(y).

Considering

α := s−t−ε
f(x)−f(y)

∈ (−1, 1)

and c := t− αf(y), we observe that g := αf + c ∈ K (F ), and moreover g(y) = t and

g(x)− g(y) = α(f(x)− f(y)) = s− t− ε,

so that g(x) = s− ε. Hence, max{|s− g(x)|, |t− g(y)|} ≤ ε as desired. ∗
To prove that L (K (F )) is dense in Lip1(X, dF ), let f ∈ Lip1(X, dF ). Consider ε > 0

and a non-empty finite subset E ⊆ X. By Claim (∗), for each pair (x, y) ∈ E2 there exists

fx,y ∈ K (F ) such that

max{|f(x)− fx,y(x)|, |f(y)− fx,y(y)|} ≤ ε,
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whence fx,y(x) ≤ f(x) + ε and fx,y(y) ≥ f(y)− ε in particular. For each x ∈ E, it follows

that

fx :=
∨

y∈E
fx,y ∈ L (K (F )),

while fx(x) ≤ f(x) + ε and fx(y) ≥ fx,y(y) ≥ f(y)− ε for all y ∈ E. Similarly, we observe

that

g :=
∧

x∈E
fx ∈ L (K (F )),

and g(x) ≤ fx(x) ≤ f(x) + ε as well as g(x) ≥ f(x) − ε for every x ∈ E. That is,

supx∈E |f(x)− g(x)| ≤ ε. This shows that L (K (F )) is dense in Lip1(X, dF ). �

2. Metric Measure Spaces, Concentration, and Lipschitz Order

In this section, we recollect some pieces of metric measure geometry, i.e., the theory

of metric measure spaces. Most importantly, this will include the concepts of observable

distance (Definition 2.4) and Lipschitz order (Definition 2.5), introduced by Gromov [9].

For a start, let us clarify some general measure-theoretic notation. Let µ be a probability

measure on a measurable space S. Given another measurable space T , the push-forward

measure f∗(µ) of µ with respect to a measurable map f : S → T is the measure f∗(µ) on

T defined by f∗(µ)(B) := µ(f−1(B)) for every measurable B ⊆ T . For any measurable

T ⊆ S with µ(T ) > 0, the probability measure µ�T on the induced measure space T is

given by (µ�T )(B) := µ(T )−1µ(B) for every measurable B ⊆ T . Moreover, we obtain a

pseudo-metric meµ on the set of all measurable real-valued functions on S defined by

meµ(f, g) := inf{ε ≥ 0 | µ({s ∈ S | |f(s)− g(s)| > ε}) ≤ ε}

for any two measurable f, g : S → R. When considering measures on topological spaces,

we will moreover use the following concept: if γ is a Borel probability measure on a

Hausdorff space X, then the support of γ is defined as

spt γ := {x ∈ X | ∀U ⊆ X open: x ∈ U =⇒ γ(U) > 0},

which constitutes a closed subset of X. Finally, we will denote by νF the normalized

counting measure on a finite non-empty set F , i.e., νF (B) := |F |−1|B| for B ⊆ F .

Definition 2.1 (metric measure space). A metric measure space, or simply mm-space,

is a triple X = (X, d, µ) consisting of a separable complete metric space (X, d) and a

probability measure µ on the Borel σ-algebra of (X, d) with sptµ = X. Two mm-spaces

Xi = (Xi, di, µi) (i ∈ {0, 1}) are called isomorphic, and we write X0
∼= X1, if there

exists an isometric bijection ϕ : (X0, d0) → (X1, d1) such that ϕ∗(µ0) = µ1. The set all

isomorphism classes of mm-spaces will be denoted byM .

Let us note the following fact about spaces of Lipschitz functions on mm-spaces.
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Lemma 2.2. Let (X, d, µ) be an mm-space and k ∈ N. The topology on Lipk1(X, d)

generated by meµ coincides with the topology of point-wise convergence. In particular,(
Lipk1(X, d),meµ

)
is a compact metric space.

Remark 2.3. For any metric space (X, d), the topology of point-wise convergence and

the topology of uniform convergence on compact subsets coincide on Lip1(X, d).

Proof of Lemma 2.2. Since sptµ = X, the map meµ constitutes a metric on Lip1(X, d),

hence on Lipk1(X, d). We invoke the well-known Arzelà-Ascoli theorem, as stated in Kelley

[13, 7.15, pp. 232]: being an equicontinuous, compact subset of the product space RX ,

the set Lipk1(X, d) is compact with respect to the topology τC of uniform convergence on

compact subsets of X. We show that the topology τM generated by the metric meµ on

Lipk1(X, d) is contained in τC . To this end, let U ∈ τM and consider any f ∈ U . Since

U ∈ τM , we find some ε > 0 with
{
g ∈ Lipk1(X, d)

∣∣meµ(f, g) < ε
}
⊆ U . As µ is a Borel

probability measure on the Polish space X, there exists a compact subset K ⊆ X with

µ(K) > 1− ε (see, e.g., Parthasarathy [21, Chapter II, Theorem 3.2]). Consequently,{
g ∈ Lipk1(X, d)

∣∣ supx∈K |f(x)− g(x)| < ε
}
⊆ U,

which entails that U is a neighborhood of f in τC . This shows that U ∈ τC . Thus,

τM ⊆ τC as desired. Since τM is Hausdorff and τC is compact, it follows that τM = τC . In

the light of Remark 2.3, this completes the proof. �

Our next objective is to recollect Misha Gromov’s notion for an observable distance [9,

Chapter 31
2
.H] on M . Let us recall the well-known fact that every Borel probability

measure µ on a Polish space X admits a parametrization, that is, a Borel map ϕ : I → X

such that µ = ϕ∗(λ) for the Lebesgue measure λ on I := [0, 1) see, e.g., Shioya [27,

Lemma 4.2]. This justifies the following definition.

Definition 2.4. The observable distance between two mm-spaces X and Y is defined

to be

dconc(X ,Y ) := inf{(meλ)H(Lip1(X ) ◦ ϕ,Lip1(Y ) ◦ ψ) | ϕ param. of X ,

ψ param. of Y }.
A sequence of mm-spaces (Xn)n∈N is said to concentrate to an mm-space X if

dconc(Xn,X ) −→ 0 as n→∞.

It is straightforward to check that the observable distance is invariant under isomor-

phisms of mm-spaces, i.e., dconc(X0,X1) = dconc(Y0,Y1) for any two pairs of isomorphic

mm-spaces Xi
∼= Yi (i ∈ {0, 1}). Furthermore, as proved by Gromov [9], see also Shioya

[27, Theorem 5.13], the map dconc constitutes a metric on the set M . We refer to the

induced topology onM as the concentration topology.

In addition to the observable distance, let us recall another tool of Gromov’s metric

measure geometry, see Gromov [9] and also Shioya [27, Section 2.2].
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Definition 2.5 (Lipschitz order). Let Xi = (Xi, di, µi) (i ∈ {0, 1}) be a pair of mm-

spaces. We say that X1 Lipschitz dominates X0 and write X0 � X1 if there exists a

1-Lipschitz map ϕ : (X1, d1)→ (X0, d0) such that ϕ∗(µ1) = µ0.

Since, for any two pairs of isomorphic mm-spaces Xi
∼= Yi (i ∈ {0, 1}),

X0 � Y0 ⇐⇒ X1 � Y1,

one may consider � as a relation onM , which is then called Lipschitz order onM . The

Lipschitz order constitutes a partial order on the setM see Shioya [27, Proposition 2.11].

The proof of this fact given by Shioya [27, Section 2.2] reveals the following.

Lemma 2.6. If Xi = (Xi, di, µi) (i ∈ {0, 1}) are mm-spaces with X1 �X0, then every

1-Lipschitz map ϕ : (X1, d1)→ (X0, d0) with ϕ∗(µ1) = µ0 is an isometric bijection.

Proof. This is shown by Shioya [27, Proof of Lemma 2.12]. �

3. Geometric Data Sets, Concentration, and Feature Order

In this section we propose a mathematical model for data sets (Definition 3.1), which

is accessible to methods of geometric analysis. Subsequently, we introduce and study a

specific metric on the set of isomorphism classes of such data sets (Definition 3.3), as well

as a natural partial order (Definition 3.4), both analogous to their respective predecessors

for metric measure spaces established by Gromov [9].

Definition 3.1 (geometric data set). A geometric data set is a triple D = (X,F, µ)

consisting of a set X equipped with a tame set F ⊆ RX such that (X, dF ) is a separable

complete metric space and a probability measure µ on the Borel σ-algebra of (X, dF ) with

sptµ = X. Given a geometric data set D = (X,F, µ), we will refer to the elements of F

as the features of D . Two geometric data sets Di = (Xi, Fi, µi) (i ∈ {0, 1}) will be called

isomorphic and we will write D0
∼= D1 if there exists a bijection ϕ : X0 → X1 such that

F1 ◦ ϕ = F0 (where the closure operators refer to the respective topologies of point-wise

convergence) and ϕ∗(µ0) = µ1. The collection of all isomorphism classes of geometric

data sets shall be denoted by D.

We observe that D indeed constitutes a set, since any separable metric space has car-

dinality less than or equal to 2ℵ0 . Henceforth, we shall not distinguish between geometric

data sets and isomorphism classes of such, that is, elements of D. Alternatively to Defini-

tion 3.1, one may think of a geometric data set as a marked mm-space, i.e., a quadruple

(X, d, µ, F ) consisting of an mm-space (X, d, µ) along with a subset F ⊆ Lip1(X, d) such

that Lip1(X, d) = L (K (F )). This perspective is due to Proposition 1.1. Of course, there

are (at least) two kinds of geometric data sets naturally associated with every mm-space.

Definition 3.2 (induced data sets). For any mm-space X = (X, d, µ), we define

X• := (X,Lip1(X, d), µ), X◦ := (X, {x 7→ d(x, y) | y ∈ X}, µ).
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For a given mm-space, the two associated geometric data sets defined above may differ

drastically from each other, e.g., with respect to measure concentration. As remarked

by Gromov [9, pp. 188–189]: “For many examples, such as round spheres Sn and other

symmetric spaces, the concentration of the distance function is child’s play compared to

that for all Lipschitz functions f . But if we look at more general spaces, say homoge-

neous, non-symmetric ones, or manifold Xn with RicciXn ≥ n, then establishing the

concentration for the distance functions becomes a respectable enterprise.”

Seizing an idea by Pestov, we will study the following adaptation of Gromov’s observable

distance [see 9, Chapter 31
2
.H] to our setup of data sets.

Definition 3.3 (observable distance). The observable distance between two geometric

data sets D0 = (X0, F0, µ0) and D1 = (X1, F1, µ1) is defined as

dconc(D0,D1) := inf{(meλ)H(F0 ◦ ϕ0, F1 ◦ ϕ1) | ϕ0 param. of µ0, ϕ1 param. of µ1}.
It is not difficult to see that dconc is invariant under isomorphisms of geometric data sets,

in the sense that dconc(D0,D1) = dconc(D ′0,D
′
1) for any two pairs of isomorphic geometric

data sets Di
∼= D ′i (i ∈ {0, 1}). Henceforth, we will identify dconc with the induced function

on D2. This map constitutes a metric, as recorded in Theorem 3.10. Before going into

the specifics of Theorem 3.10 and its proof, let us furthermore introduce an analogue of

the Lipschitz order (Definition 2.5) for geometric data sets.

Definition 3.4 (feature order). Let Di = (Xi, Fi, µi) (i ∈ {0, 1}) be two geometric

data sets. We say that D1 feature dominates D0 and write D0 � D1 if there exists a map

ϕ : X1 → X0 such that F0 ◦ ϕ ⊆ F1 and ϕ∗(µ1) = µ0.

Analogously with the situation for mm-spaces, if Di
∼= D ′i (i ∈ {0, 1}) are any two pairs

of isomorphic geometric data sets, then

D0 � D1 ⇐⇒ D ′0 � D ′1 .

Henceforth, we will identify � with the corresponding relation thus induced on D and

call it the feature order on D.

Proposition 3.5. � constitutes a partial order on D.

Proof. Evidently, � is reflexive and transitive. To prove that � is anti-symmetric, let

Di = (Di, Fi, µi) (i ∈ {0, 1}) be two geometric data sets, and suppose that both D0 � D1

and D1 � D0. Then there exist maps ϕ : X0 → X1 and ψ : X1 → X0 such that F1◦ϕ ⊆ F0,

F0 ◦ ψ ⊆ F1, ϕ∗(µ0) = µ1, and ψ∗(µ1) = µ0. Let d0 := dF0 and d1 := dF1 , and observe

that ϕ : (X0, d0) → (X1, d1) and ψ : (X1, d1) → (X0, d0) are 1-Lipschitz. It follows by

Lemma 2.6 that ϕ : (X0, d0) → (X1, d1) and ψ : (X1, d1) → (X0, d0) must be isometric

bijections. It remains to show that F0 ⊆ F1 ◦ϕ and F1 ⊆ F0 ◦ψ. Thanks to symmetry, it

suffices to verify that F0 ⊆ F1 ◦ ϕ. To this end, we first show that

(∗) ∀k ∈ N : {(f ∧ k) ∨ (−k) | f ∈ F0} ⊆ {(f ∧ k) ∨ (−k) | f ∈ F1 ◦ ϕ}.
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Let k ∈ N. Consider

Hi,k := {(f ∧ k) ∨ (−k) | f ∈ Fi} =
{

(f ∧ k) ∨ (−k)
∣∣ f ∈ Fi} (i ∈ {0, 1}),

where the closure operators refer to the respective topologies of pointwise convergence.

Thanks to Lemma 2.2, (H0,k,meµ0) and (H1,k,meµ1) are compact metric spaces. Moreover,

we obtain well-defined isometric maps

Φ: (H1,k,meµ1) −→ (H0,k,meµ0), f 7−→ f ◦ ϕ,
Ψ: (H0,k,meµ0) −→ (H1,k,meµ1), f 7−→ f ◦ ψ.

Being an isometric self-map of a compact metric space, Φ ◦ Ψ: H0,k → H0,k must be

surjective. Hence,

{(f ∧ k) ∨ (−k) | f ∈ F0} ⊆ H0,k = Φ(Ψ(H0,k))

⊆ Φ(H1,k) = {(f ∧ k) ∨ (−k) | f ∈ F1 ◦ ϕ}.

This proves (∗). In order to deduce that F0 ⊆ F1 ◦ ϕ, let f ∈ F0. Consider any finite

subset E ⊆ X0 and ε > 0. Let k := supx∈E |f(x)|+ 1 + ε. By (∗), there exists g ∈ F1 ◦ ϕ
such that supx∈E |((f(x) ∧ k) ∨ (−k))− ((g(x) ∧ k) ∨ (−k))| ≤ ε. Since

f(x) ∈ [−k + 1 + ε, k − 1− ε]

for each x ∈ E, we have ((f ∧ k) ∨ (−k))|E = f |E. It follows that

(g(x) ∧ k) ∨ (−k) ∈ [−k + 1, k + 1]

for each x ∈ E, whence ((g ∧ k) ∨ (−k))|E = g|E. Thus, supx∈E |f(x) − g(x)| ≤ ε. This

shows that f ∈ F1 ◦ ϕ = F1 ◦ ϕ, as desired. �

We now proceed to some prerequisites necessary for the proof of Theorem 3.10. Our

first lemma will settle the triangle inequality.

Lemma 3.6. Let D = (X,F, µ) be a geometric data set and let ϕ, ψ : I → X be any two

parametrizations of µ. Then, for every ε > 0, there exist Borel isomorphisms g, h : I → I

with g∗(λ) = h∗(λ) = λ and supf∈F ‖(f ◦ ϕ ◦ g)− (f ◦ ψ ◦ h)‖∞ ≤ ε.

Proof. Let ε > 0. Since (X, dF ) is separable, we find a sequence of pairwise disjoint

Borel subsets Bn ⊆ X (n ≥ 1) such that

− supn≥1 supf∈F diam f(Bn) ≤ ε,

− ∑∞n=1 µ(Bn) = 1,

− µ(Bn) > 0 for all n ≥ 1.

Let b0 := 0. For each n ≥ 1, let an := µ(Bn) = λ(ϕ−1(Bn)) = λ(ψ−1(Bn)) and

let bn :=
∑n

j=1 aj. Due to Kechris [12, (17.41)], for each n ≥ 1 there exists a Borel

isomorphism gn : [bn−1, bn) → ϕ−1(Bn) such that (gn)∗(λ�[bn−1,bn)) = λ�ϕ−1(Bn). The map

g : I → I defined by g|[bn−1,bn) = gn for all n ≥ 1 is a Borel isomorphism with g∗(λ) = λ
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and g([bn−1, bn)) = ϕ−1(Bn) for each n ≥ 1. Similarly, we find a Borel isomorphism

h : I → I with h∗(λ) = λ and h([bn−1, bn)) = ψ−1(Bn) for all n ≥ 1. It remains to

show that supf∈F ‖(f ◦ ϕ ◦ g) − (f ◦ ψ ◦ h)‖∞ ≤ ε. Indeed, for every t ∈ I, there

exists some n ≥ 1 with t ∈ [bn−1, bn), whence {ϕ(g(t)), ψ(h(t))} ⊆ Bn and therefore

supf∈F |f(ϕ(g(t)))− f(ψ(h(t)))| ≤ ε. This completes the argument. �

Lemma 3.7. For any three geometric data sets Di = (Xi, Fi, µi) (i ∈ {0, 1, 2}),

dconc(D0,D2) ≤ dconc(D0,D1) + dconc(D1,D2).

Proof. We will prove that dconc(D0,D2) ≤ dconc(D0,D1)+dconc(D1,D2)+ε for all ε > 0.

To this end, let ε > 0 and pick parametrizations ϕ0 for µ0, ϕ1 and ϕ′1 for µ1, and ϕ2 for

µ2 such that (meλ)H(F0 ◦ ϕ0, F1 ◦ ϕ1) < dconc(D0,D1) + ε
3

and (meλ)H(F1 ◦ ϕ′1, F2 ◦ ϕ2) <

dconc(D1,D2) + ε
3
. By Lemma 3.6, there exist Borel isomorphisms g, h : I → I such that

g∗(λ) = h∗(λ) = λ and

supf∈F1
‖(f ◦ ϕ1 ◦ g)− (f ◦ ϕ′1 ◦ h)‖∞ ≤ ε

3
.

Evidently, ϕ0 ◦ g is a parametrization for µ0, while ϕ2 ◦ h is a parametrization for µ2. In

turn,

dconc(D0,D2) ≤ (meλ)H(F0 ◦ ϕ0 ◦ g, F2 ◦ ϕ2 ◦ h)

≤ (meλ)H(F0 ◦ ϕ0 ◦ g, F1 ◦ ϕ1 ◦ g) + (meλ)H(F1 ◦ ϕ1 ◦ g, F1 ◦ ϕ′1 ◦ h)

+ (meλ)H(F1 ◦ ϕ′1 ◦ h, F2 ◦ ϕ2 ◦ h)

≤
(
dconc(D0,D1) + ε

3

)
+ ε

3
+
(
dconc(D1,D2) + ε

3

)
≤ dconc(D0,D1) + dconc(D1,D2) + ε. �

Let us also note the following basic fact about complete metric spaces.

Lemma 3.8. Let (X, d) be a complete metric space. If (xn)n∈N ∈ XN and ξ is an

ultrafilter on N, then either (xn)n∈N converges in (X, d) along ξ, or there exists ε > 0 such

that

∀K ⊆ X compact : {n ∈ N | K ∩Bd(xn, ε) = ∅} ∈ ξ.

Proof. Let (xn)n∈N ∈ XN and let ξ be an ultrafilter on N. Clearly, the two alternatives

are mutually exclusive: if (xn)n∈N converges in (X, d) along ξ to some x ∈ X, then, for

every ε > 0, it follows that

ξ 3 {n ∈ N | d(xn, x) < ε} = {n ∈ N | {x} ∩Bd(xn, ε) 6= ∅},

that is, {n ∈ N | {x}∩Bd(xn, ε) = ∅} /∈ ξ. To prove the desired conclusion, suppose that,

for every ε > 0, there exists a compact subset K ⊆ X such that

{n ∈ N | K ∩Bd(xn, ε) 6= ∅} ∈ ξ.
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Hence, for every m ∈ N≥1, there exist a compact subset Km ⊆ X as well as a sequence

(xmn )n∈N ∈ (Km)N such that
{
n ∈ N

∣∣ d(xmn , xn) < 1
m

}
∈ ξ . Let xm := limn→ξ x

m
n ∈ Km for

all m ∈ N≥1. Since
{
n ∈ N

∣∣ d(xm, xmn ) < 1
m

}
∈ ξ and

{
n ∈ N

∣∣ d(xmn , xn) < 1
m

}
∈ ξ for all

m ∈ N≥1, it follows that

(∗) ∀m ∈ N≥1 :
{
n ∈ N

∣∣ d(xm, xn) < 2
m

}
∈ ξ.

Since ξ is a proper filter, (∗) readily implies that d(xm, x`) < 4
min(m,`)

for any two positive

integers m, ` ∈ N≥1. Therefore, the sequence (xm)m≥1 is Cauchy with respect to d. As

(X, d) is complete, (xm)m≥1 thus converges to some point x ∈ X. Appealing to (∗) again,

we conclude that xn −→ x as n→ ξ, which completes the argument. �

Corollary 3.9. Let (X, d, µ) be an mm-space. If (xn)n∈N ∈ XN and ξ is an ultrafilter

on N, then either (xn)n∈N converges in (X, d) along ξ, or there exists ε > 0 such that

limn→ξ µ(Bd(xn, ε)) = 0.

Proof. Let us note that the two alternatives are mutually exclusive: if (xn)n∈N con-

verges in (X, d) along ξ to some x ∈ X, then, for every ε > 0, it follows that

ξ 3
{
n ∈ N

∣∣ d(xn, x) < ε
2

}
⊆
{
n ∈ N

∣∣Bd

(
x, ε

2

)
⊆ Bd(xn, ε)

}
,

whence limn→ξ µ(Bd(xn, ε)) ≥ µ
(
Bd

(
x, ε

2

))
> 0 as sptµ = X. Let us suppose now that

the sequence (xn)n∈N does not converge in (X, d) along ξ. By Lemma 3.8, there exists

ε > 0 such that {n ∈ N | K ∩ Bd(xn, ε) = ∅} ∈ ξ for every compact subset K ⊆ X.

We show that limn→ξ µ(Bd(xn, ε)) = 0. To this end, let δ > 0. Being a Borel probability

measure on a Polish space, µi must be regular [e.g., 21, Chapter II, Theorem 3.2]. Hence,

there is a compact subset K ⊆ X with µ(K) ≥ 1− δ. By choice of ε, it follows that

ξ 3 {n ∈ N | K ∩Bd(xn, ε) = ∅} ⊆ {n ∈ N | µ(Bd(xn, ε)) ≤ δ},

thus limn→ξ µ(Bd(xn, ε)) ≤ δ as desired. �

Everything is in place to prove the desired theorem. Our argument resembles an idea

by Pestov [24, Proof of Theorem 7.4.8].

Theorem 3.10. dconc constitutes a metric on D.

Proof. As observed above, dconc : D → R is well defined. (In fact, dconc ranges in [0, 1],

since meλ only takes valued in [0, 1].) We note that dconc is symmetric and assigns the value

0 to identical pairs. Furthermore, dconc satisfies the triangle inequality by Lemma 3.7.

In order to prove that dconc separates isomorphism classes of geometric data sets, let

Di = (Xi, Fi, µi) (i ∈ {0, 1}) be a pair of geometric data sets such that dconc(D0,D1) = 0.

We wish to verify that D0
∼= D1. Thanks to Proposition 3.5, it suffices to show that

D1 � D0, as we will do.
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Being Borel probability measures on Polish spaces, both µ0 and µ1 are necessarily reg-

ular (see, e.g., [21, Chapter II, Theorem 3.2]). Hence, for each n ∈ N and i ∈ {0, 1}, there

is a compact subset Ki,n ⊆ Xi with µi(Ki,n) ≥ 1 − 2−n. A straightforward compactness

argument now reveals that, for every n ∈ N and i ∈ {0, 1}, there is a finite subset Fi,n ⊆ Fi

such that

∀x, y ∈ Ki,n :
∣∣dFi

(x, y)− dFi,n
(x, y)

∣∣ ≤ 2−n.

For the rest of the proof, let ϕ : I → X0 be a (fixed) parametrization for µ0.

Consider any n ∈ N. Since dconc(D0,D1) = 0, we find a parametrization ϕn : I → X0

for µ0 and a parametrization ψ′n : I → X1 for µ1 such that

(meλ)H(F0 ◦ ϕn, F1 ◦ ψ′n) < 2−(n+1)

|F0,n|+|F1,n|+1
.

By Lemma 3.6, there exists Borel isomorphisms g, h : I → I with g∗(λ) = h∗(λ) = λ and

supf∈F0
‖(f◦ϕ◦g)−(f◦ϕn◦h)‖∞ < 2−(n+1)

|F0,n|+|F1,n|+1
. It follows that ψn := ψ′n◦h◦g−1 : I → X1

is a parametrization for µ1 and, moreover,

(meλ)H(F0 ◦ ϕ, F1 ◦ ψn) = (meλ)H(F0 ◦ ϕ, F1 ◦ ψ′n ◦ h ◦ g−1)

≤ (meλ)H(F0 ◦ ϕ, F0 ◦ ϕn ◦ h ◦ g−1) + (meλ)H(F0 ◦ ϕn ◦ h ◦ g−1, F1 ◦ ψ′n ◦ h ◦ g−1)

≤ supf∈F0
‖(f ◦ ϕ)− (f ◦ ϕn ◦ h ◦ g−1)‖∞ + (meλ)H(F0 ◦ ϕn ◦ h ◦ g−1, F1 ◦ ψ′n ◦ h ◦ g−1)

= supf∈F0
‖(f ◦ ϕ ◦ g)− (f ◦ ϕn ◦ h)‖∞ + (meλ)H(F0 ◦ ϕn, F1 ◦ ψ′n)

< 2−n

|F0,n|+|F1,n|+1
.

In particular, for each f ∈ F0,n there exist h0,n,f ∈ F1 and a Borel subset B0,n,f ⊆ I such

that

λ(B0,n,f ) ≥ 1− 2−n

|F0,n|+|F1,n|+1
, supt∈B0,n,f

|f(ϕ(t))− h0,n,f (ψn(t))| ≤ 2−n,

and for each f ′ ∈ F1,n there exist h1,n,f ′ ∈ F0 and a Borel subset B1,n,f ′ ⊆ I such that

λ(B1,n,f ′) ≥ 1− 2−n

|F0,n|+|F1,n|+1
, supt∈B1,n,f ′

|h1,n,f ′(ϕ(t))− f ′(ψn(t))| ≤ 2−n.

Let us consider the Borel subsets

Bn :=
⋂

f∈F0,n

B0,n,f ∩
⋂

f ′∈F1,n

B1,n,f ′ , Tn := Bn ∩ ϕ−1(K0,n) ∩ ψ−1
n (K1,n)

of I. Note that λ(Bn) ≥ 1− 2−n and thus λ(Tn) ≥ 1− 3 · 2−n ≥ 1− 22−n. Moreover,

supt∈Bn
|f(ϕ(t))− h0,n,f (ψn(t))| ≤ 2−n

for f ∈ F0,n and supt∈Bn
|h1,n,f ′(ϕ(t))− f ′(ψn(t))| ≤ 2−n for f ′ ∈ F1,n. We claim that

(∗) ∀s, t ∈ Tn : |dF0(ϕ(s), ϕ(t))− dF1(ψn(s), ψn(t))| < 22−n.
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To prove this, let s, t ∈ Tn. Since {s, t} ⊆ Bn, it follows that

dF0,n(ϕ(s), ϕ(t)) = supf∈F0,n
|f(ϕ(s))− f(ϕ(t))|

≤ supf∈F0,n
|h0,n,f (ψn(s))− h0,n,f (ψn(t))|+ 21−n

≤ dF1(ψn(s), ψn(t)) + 21−n.

Also, |dF0(ϕ(s), ϕ(t))− dF0,n(ϕ(s), ϕ(t))| ≤ 2−n as {ϕ(s), ϕ(t)} ⊆ K0,n. Thus,

dF0(ϕ(s), ϕ(t))− dF1(ψn(s), ψn(t))

= dF0(ϕ(s), ϕ(t))− dF0,n(ϕ(s), ϕ(t)) + dF0,n(ϕ(s), ϕ(t))− dF1(ψn(s), ψn(t))

≤ 2−n + 21−n = 3 · 2−n < 22−n.

Similarly, we observe that

dF1,n(ψn(s), ψn(t)) = supf ′∈F1,n
|f ′(ψn(s))− f ′(ψn(t))|

≤ supf ′∈F1,n
|h1,n,f ′(ϕ(s))− h1,n,f ′(ϕ(t))|+ 21−n

≤ dF0(ϕ(s), ϕ(t)) + 21−n,

as {s, t} ⊆ Bn. Furthermore, note that
∣∣dF1(ψn(s), ψn(t))− dF1,n(ψn(s), ψn(t))

∣∣ ≤ 2−n,

since {ψn(s), ψn(t)} ⊆ K1,n. Accordingly,

dF1(ψn(s), ψn(t))− dF0(ϕ(s), ϕ(t))

= dF1(ψn(s), ψn(t))− dF1,n(ψn(s), ψn(t)) + dF1,n(ψn(s), ψn(t))− dF0(ϕ(s), ϕ(t))

≤ 2−n + 21−n = 3 · 2−n < 22−n.

This proves (∗).
Consider the Borel subset T :=

⋃
m∈N

⋂
n≥m Tn ⊆ I. Since

∑
n∈N λ(I \ Tn) < ∞, the

Borel-Cantelli lemma asserts that λ(T ) = 1. We claim that

(∗∗) ∀t ∈ T ∀ε > 0: lim infn→∞ µ1

(
BdF1

(ψn(t), ε)
)
≥ µ0

(
BdF0

(ϕ(t), ε)
)
.

To see this, let t ∈ T and ε > 0. Consider any δ > 0. Let m0 ∈ N such that t ∈ ⋂n≥m0
Tn

and 22−m0 < δ
2
. Since µ0 is σ-additive, there exists m ∈ N≥m0 such that

µ0

(
BdF0

(
ϕ(t), ε− 22−m)) ≥ µ0

(
BdF0

(ϕ(t), ε)
)
− δ

2
.
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Also, (∗) implies that Tn ∩ϕ−1
(
BdF0

(ϕ(t), ε− 22−n)
)
⊆ ψ−1

n

(
BdF1

(ψn(t), ε)
)

for all n ∈ N.

Hence, if n ∈ N≥m, then

µ1

(
BdF1

(ψn(t), ε)
)

= λ
(
ψ−1
n (BdF1

(ψn(t), ε))
)

≥ λ
(
Tn ∩ ϕ−1

(
BdF0

(
ϕ(t), ε− 22−n)))

≥ 1− λ(I \ Tn)− λ
(
I \ ϕ−1

(
BdF0

(
ϕ(t), ε− 22−n)))

= λ(Tn)− 1 + µ0

(
BdF0

(
ϕ(t), ε− 22−n))

≥ −22−n + µ0

(
BdF0

(ϕ(t), ε)
)
− δ

2

≥ µ0

(
BdF0

(ϕ(t), ε)
)
− δ.

This proves (∗∗).
Henceforth, let ξ be a (fixed) non-principal ultrafilter on N. Due to (∗∗) and Corol-

lary 3.9, we may define the map ψ : T → X1, t 7→ limn→ξ ψn(t). By ξ being non-principal,

(∗) implies that

∀s, t ∈ T : dF0(ϕ(s), ϕ(t)) = dF1(ψ(s), ψ(t)).

So, there is a unique map σ : ϕ(T )→ X1 such that σ(ϕ(t)) = ψ(t) for all t ∈ T . Evidently,

ϕ(T ) is dense in X0: if U is a non-empty open subset of X0, then, as λ(T ) = 1 and

sptµ0 = X0, it follows that λ(T ∩ϕ−1(U)) = λ(ϕ−1(U)) = µ0(U) > 0, thus ϕ(T )∩U 6= ∅.
Since σ : (ϕ(T ), dF0) → (X1, dF1) is isometric and (X1, dF1) is a complete metric space,

this implies the existence of a unique isometric mapping σ̄ : (X0, dF0) → (X1, dF1) such

that σ̄|ϕ(T ) = σ, i.e., (σ̄ ◦ ϕ)|T = ψ. In particular, σ̄ is Borel measurable. We will show

that

(∗ ∗ ∗) ∀f ∈ Lip1
1(X1, dF1) :

∫
f dµ1 =

∫
f ◦ σ̄ dµ0.

Let f ∈ Lip1
1(X1, dF1) and ε > 0. Put τ := ε

6
. Since 1 = λ(T ) = supm∈N λ(

⋂
n≥m Tn),

there exists m ∈ N such that λ(
⋂
n≥m Tn) ≥ 1− τ and 22−m ≤ τ . Consider the Borel set

T ∗m :=
⋂
n≥m Tn ⊆ I. Since ϕ(T ∗m) is contained in K0,m and thus dF0-precompact, there

exists a finite subset E ⊆ T ∗m such that ϕ(T ∗m) ⊆ ⋃s∈E BdF0
(ϕ(s), τ). By definition of ψ

and non-principality of ξ,

M := {n ∈ N≥m | ∀s ∈ E : dF1(ψn(s), ψ(s)) < τ} ∈ ξ.

In particular, M 6= ∅. Pick any n ∈M . Then supt∈T ∗m |f(ψn(t))− f(ψ(t))| ≤ 4τ . Indeed,

if t ∈ T ∗m, then there exists s ∈ E such that dF0(ϕ(s), ϕ(t)) < τ , whence

|f(ψn(t))− f(ψ(t))| ≤ dF1(ψn(t), ψ(t))

≤ dF1(ψn(t), ψn(s)) + dF1(ψn(s), ψ(s)) + dF1(ψ(s), ψ(t))

≤ dF0(ϕ(t), ϕ(s)) + 22−n + τ + dF0(ϕ(s), ϕ(t)) ≤ 4τ
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by (∗). We conclude that∣∣∣∣∫ f ◦ σ̄ dµ0 −
∫
f dµ1

∣∣∣∣ =

∣∣∣∣∫ f ◦ σ̄ ◦ ϕ dλ−
∫
f ◦ ψn dλ

∣∣∣∣
≤
∫
T ∗m

|f(ψ(t))− f(ψn(t))| dλ(t) + 2λ(I \ T ∗m)

≤ 4τ + 2τ = ε,

proving (∗ ∗ ∗). As Lip1
1(X1, dF1) spans a ‖ · ‖∞-dense linear subspace of the Banach

space of uniformly continuous bounded real-valued functions on X1 [20, Lemma 5.20(2)],

assertion (∗ ∗ ∗) implies that
∫
f dµ1 =

∫
f◦σ̄ dµ0 for every uniformly continuous bounded

function f : X1 → R. Since both σ̄∗(µ0) and µ1 are regular Borel probability measures on

X1, it follows that σ̄∗(µ0) = µ1 [20, Theorem 5.3].

It only remains to verify that F1 ◦ σ̄ ⊆ F0. For this, let f ∈ F1. For each n ∈ N,

since (meλ)H(F0 ◦ ϕ, F1 ◦ ψn) < 2−n, we find some fn ∈ F0 as well as a Borel subset

Qn ⊆ I such that supt∈Qn
|fn(ϕ(t)) − f(ψn(t))| ≤ 2−n and λ(Qn) ≥ 1 − 2−n. Since∑

n∈N λ(I \ Qn) < ∞, the Borel-Cantelli lemma ensures that λ(Q) = 1 for the Borel set

Q :=
⋃
m∈N

⋂
n≥mQn ⊆ I. Consequently, λ(T ∩Q) = 1. It follows that ϕ(T ∩Q) is dense

in X0: again, if U is a non-empty open subset of X0, then

λ(T ∩Q ∩ ϕ−1(U)) = λ(ϕ−1(U)) = µ0(U) > 0

as sptµ0 = X0, and therefore ϕ(T ∩ Q) ∩ U 6= ∅. Furthermore, by definition of ψ and

non-principality of ξ, our choice of (fn)n∈N and (Qn)n∈N entails that

∀t ∈ T ∩Q : fn(ϕ(t)) −→ f(ψ(t)) (n→ ξ).

It readily follows that

∀x ∈ X0 : fn(x) −→ f(σ̄(x)) (n→ ξ).

Indeed, if x ∈ X0 and ε > 0, then density of ϕ(T ∩ Q) in X0 implies the existence of

t ∈ T ∩Q with dF0(x, ϕ(t)) < ε
3
, and so

|f(ψ(t))− f(σ̄(x))| ≤ dF1(ψ(t), σ̄(x)) = dF1(σ̄(ϕ(t)), σ̄(x)) = dF0(ϕ(t), x) ≤ ε
3
,

thus

|fn(x)− f(σ̄(x))| ≤ |fn(x)− fn(ϕ(t))|+ |fn(ϕ(t))− f(ψ(t))|+ |f(ψ(t))− f(σ̄(x))|
≤ ε

for all n ∈
{
m ∈ N

∣∣ |fm(ϕ(t))− f(ψ(t))| < ε
3

}
∈ ξ . Hence, f ◦ σ̄ ∈ F0 as desired. This

shows that D1 � D0, which completes the proof. �

The metric dconc induces a topology on D, the concentration topology. The authors do

not know whether the metric space (D, dconc) is separable.
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Definition 3.11 (concentration of data). A sequence of geometric data sets (Dn)n∈N
is said to concentrate to a geometric data set D if dconc(Dn,D) −→ 0 as n→∞.

The concentration topology is a conceptual extension of the phenomenon of measure

concentration. We refer to the latter as the Lévy property.

Definition 3.12. A sequence of geometric data sets Dn = (Xn, Fn, µn) (n ∈ N) is said

to have the Lévy property or to be a Lévy family, resp., if

supf∈Fn
infc∈R meµn(f, c) −→ 0 (n→∞).

The subsequent proposition, which is completely analogous to the corresponding result

for mm-spaces [27, Lemma 5.6], describes the connection between the Lévy property and

observable distance.

Proposition 3.13. For every geometric data set D = (X,F, µ),

dconc(D#,⊥) = supf∈F infc∈R meµ(f, c)

where D# := (X,F ∪R, µ) and ⊥ := ({∅},R, ν{∅}). In particular, a sequence of geometric

data sets (Dn)n∈N has the Lévy property if and only if ((Dn)#)n∈N concentrates to the

(trivial) geometric data set ⊥.

4. Observable Diameters of Data

We are going to adapt Gromov’s concept of observable diameter [9, Chapter 31
2
] to our

setup of data sets and study its behavior with respect to the concentration topology. This

is a necessary preparatory step towards Section 5.

Definition 4.1 (observable diameter). Let α ≥ 0. The α-partial diameter of a Borel

probability measure ν on R is defined as

PartDiam(ν, 1− α) := inf{diam(B) | B ⊆ R Borel, ν(B) ≥ 1− α} ∈ [0,∞].

We define the α-observable diameter of a geometric data set D = (X,F, µ) to be

ObsDiam(D ;−α) := sup{PartDiam(f∗(µ), 1− α) | f ∈ F} ∈ [0,∞].

Remark 4.2. Let ν be a Borel probability measure on R and let α > 0. For any x ∈ X
there exists n ∈ N≥1 with ν(BdR(x, n)) ≥ 1− α, which readily implies that

PartDiam(ν, 1− α) ≤ 2n.

In particular, PartDiam(ν, 1− α) <∞.

As is easily seen, observable diameters are invariant under isomorphisms of geometric

data sets, which means that ObsDiam(D0;−α) = ObsDiam(D1;−α) for any pair of iso-

morphic geometric data sets D0
∼= D1 and α ≥ 0. Furthermore, we have the following

continuity with respect to dconc.
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Lemma 4.3. Let δ := dconc(D0,D1) for geometric data sets Di = (Xi, Fi, µi) (i ∈ {0, 1}).

For all τ > δ and α > 0,

ObsDiam(D1;−(α + τ)) ≤ ObsDiam(D0;−α) + 2τ.

Proof. Let α > 0. It suffices check that

∀κ > 1: ObsDiam(D1;−(α + τ)) ≤ (ObsDiam(D0;−α) + 2τ) · κ.
Let κ > 1. Choose parametrizations, ϕ0 for µ0 and ϕ1 for µ1, such that

(meλ)H(F0 ◦ ϕ0, F1 ◦ ϕ1) < τ.

Let f1 ∈ F1. Then there is some f0 ∈ F0 such that meλ(f0 ◦ ϕ0, f1 ◦ ϕ1) < τ . Fix any

Borel subset B ⊆ R with diam(B) ≤ ObsDiam(D0;−α) · κ and (f0)∗(µ0)(B) ≥ 1 − α.

Considering the open subset C := BdR(B, τκ) ⊆ R, we note that

(f1)∗(µ1)(C) = (f1 ◦ ϕ1)∗(λ)(C) = λ((f1 ◦ ϕ1)−1(C))

≥ λ((f0 ◦ ϕ0)−1(B))− τ = (f0 ◦ ϕ0)∗(λ)(B)− τ = (f0)∗(µ0)(B)− τ
≥ 1− α− τ = 1− (α + τ)

and diam(C) ≤ diam(B) + 2τκ ≤ (ObsDiam(D0;−α) + 2τ)κ, which proves that

PartDiam((f1)∗(µ1), 1− (α + τ)) ≤ (ObsDiam(D0;−α) + 2τ)κ. �

In Proposition 4.5 below, we introduce a quantity for geometric data sets, which is well

defined by the following fact.

Remark 4.4. If D is any geometric data set, then [0,∞)→ [0,∞], α 7→ ObsDiam(D ;−α)

is antitone, thus Borel measurable.

Proposition 4.5. The map ∆: D → [0, 1] defined by

∆(D) :=

∫ 1

0

ObsDiam(D ;−α) ∧ 1 dα (D ∈ D)

is Lipschitz with respect to dconc.

Proof. Let δ := dconc(D0,D1) for geometric data sets Di = (Xi, Fi, µi) (i ∈ {0, 1}).
Without loss of generality, we assume that δ < 1. For every τ ∈ (δ, 1),

∆(D1) ≤ τ +

∫ 1

τ

ObsDiam(D1;−α) ∧ 1 dα

= τ +

∫ 1−τ

0

ObsDiam(D1;−(α + τ)) ∧ 1 dα

≤ 3τ +

∫ 1−τ

0

ObsDiam(D0;−α) ∧ 1 dα ≤ 3τ + ∆(D0)

due to Lemma 4.3. Hence, ∆(D1) ≤ ∆(D0) + 3δ. Thanks to symmetry, it readily follows

that |∆(D0)−∆(D1)| ≤ 3δ, i.e., ∆ is 3-Lipschitz with respect to dconc. �



18 T. HANIKA, F.M. SCHNEIDER, AND G. STUMME

Observable diameters reflect the Lévy property in a natural manner.

Proposition 4.6. Let Dn = (Xn, Fn, µn) (n ∈ N) be a sequence of geometric data sets.

Then the following are equivalent.

(1) : (Dn)n∈N has the Lévy property.

(2) : limn→∞ObsDiam(Dn;−α) = 0 for every α > 0.

(3) : limn→∞∆(Dn) = 0.

Proof. (1)=⇒(2). Let α > 0. To prove that ObsDiam(Dn;−α) −→ 0 as n→∞, let

ε > 0. By assumption, there exists m ∈ N such that

∀n ∈ N≥m : supf∈Fn
infc∈R meµn(f, c) < min

{
ε
4
, α
}
.

We show that ObsDiam(Dn;−α) ≤ ε for all n ∈ Nn≥m. Let n ∈ N≥m. For every f ∈ Fn,

there exists c ∈ R with meµn(f, c) < min
{
ε
4
, α
}

, whence

f∗(µn)(B) = µn
(
f−1(B)

)
≥ 1− α

for the Borel set B := BdR

(
c, ε

2

)
⊆ R. Also, diam(B) ≤ ε. Therefore,

PartDiam(f∗(µn), 1− α) ≤ ε

for all f ∈ Fn, that is, ObsDiam(Dn;−α) ≤ ε.

(2)=⇒(1). Let ε ∈ (0, 1). By our hypothesis, there exists some m ∈ N such that

ObsDiam(Dn;−ε) ≤ ε for all n ∈ N≥m. We will show that

∀n ∈ N≥m : supf∈Fn
infc∈R meµn(f, c) ≤ ε.

Let n ∈ N≥m. For any f ∈ Fn and δ > 0, we find some (necessarily non-empty)

Borel subset B ⊆ R with f∗(µn)(B) ≥ 1 − ε and diam(B) ≤ ε + δ, and observe that

meµn(f, c) ≤ ε+ δ for any c ∈ B. Thus, supf∈Fn
infc∈R meµn(f, c) ≤ ε.

(2)=⇒(3). This follows from Lebesgue’s dominated convergence theorem.

(3)=⇒(2). Due to Remark 4.4, we have ∆(D) ≥ (α ∧ 1) · (ObsDiam(D ;−α) ∧ 1) for

any geometric data set D and any α ≥ 0. Consequently, if limn→∞∆(Dn) = 0, then

limn→∞ObsDiam(Dn;−α) = 0 for every α > 0, as desired. �

We conclude this section with a useful remark about monotonicity.

Proposition 4.7. ∆: (D,�)→ ([0, 1],≤) is monotone.
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Proof. If D0 = (D0, F0, µ0) and D1 = (D1, F1, µ1) are geometric data sets such that

D0 � D1, then there is ϕ : D1 → D0 with F0 ◦ ϕ ⊆ F1 and ϕ∗(µ1) = µ0, whence

ObsDiam(D0;−α) = sup{PartDiam(f∗(µ0), 1− α) | f ∈ F0}
= sup{PartDiam(f∗(ϕ∗(µ1)), 1− α) | f ∈ F0}
= sup{PartDiam((f ◦ ϕ)∗(µ1), 1− α) | f ∈ F0}
≤ sup

{
PartDiam(f∗(µ1), 1− α)

∣∣ f ∈ F1

}
= sup{PartDiam(f∗(µ1), 1− α) | f ∈ F1}
= ObsDiam(D1;−α)

for every α ≥ 0, which readily implies that ∆(D0) ≤ ∆(D1). �

5. Intrinsic Dimension

Below we propose an axiomatic approach to intrinsic dimension of geometric data sets

(Definition 5.1), a modification of ideas from Pestov [25] suited for our setup.

Definition 5.1. A map ∂ : D → [0,∞] is called a dimension function if the following

hold:

(1) Axiom of concentration:

A sequence (Dn)n∈N ∈ DN has the Lévy property if and only if

limn→∞ ∂(Dn) = ∞.

(2) Axiom of continuity:

If a sequence (Dn)n∈N ∈ DN concentrates to D ∈ D, then

∂(Dn) −→ ∂(D) (n→∞).

(3) Axiom of feature antitonicity:

If D0,D1 ∈ D and D0 � D1, then ∂(D0) ≥ ∂(D1).

(4) Axiom of geometric order of divergence:

If (Dn)n∈N ∈ DN is a Lévy sequence, then ∂(Dn) ∈ Θ(∆(Dn)−2).1

Remark 5.2. Let ∂ : D → [0,∞] be a dimension function and let D = (D,F, µ) ∈ D.

Then ∂(D) =∞ if and only if |D| = 1. This is by force of the axiom of concentration.

Proposition 5.3. The map ∂∆ : D → [1,∞], D 7→ 1
∆(D)2

is a dimension function.

Proof. Clearly, ∂∆ is well defined on D, since ∆ is invariant under isomorphisms of

geometric data sets, that is, ∆(D0) = ∆(D1) for any pair of isomorphic geometric data

sets D0
∼= D1. Also, ∂∆ satisfies the axiom of concentration by Proposition 4.6 and the

1Given two functions f, g : N → [0,∞), we write f(n) ∈ Θ(g(n)) if there exist N ∈ N and C > c > 0

with cf(n) ≤ g(n) ≤ Cf(n) for all n ≥ N .
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axiom of continuity by Proposition 4.5. Due to Proposition 4.7, ∆: (D,�) → ([0, 1],≤)

is monotone, whence ∂∆ satisfies the axiom of feature antitonicity. By definition, ∂∆

obviously satisfies the axiom of geometric order of divergence. �

As argued by Pestov [25, 23], it is desirable for a reasonable notion of intrinsic dimension

to agree with our geometric intuition in the way that the value assigned to the Euclidean

n-sphere Sn, viewed as a geometric data set, would be in the order of n. To be more

precise, for any integer n ≥ 1, let us consider the mm-space Sn := (Sn, dSn , ξn) where

dSn denotes the geodesic distance on Sn and ξn is the unique rotation invariant Borel

probability measure on Sn.

Lemma 5.4. ∆((S n)•) = ∆((S n)◦) ∈ Θ
(

1√
n

)
.

Proof. Let γ denote the standard Gaussian measure on R, i.e., γ is the Borel proba-

bility measure on R given by γ(B) := 1√
2π

∫
R χB(t) exp

(
− t2

2

)
dt for every Borel B ⊆ R.

According to Shioya [28, Corollary 8.5.7] and Shioya [27, Proposition 2.19],

(∗) √
n ·ObsDiam((Sn)•;−α) −→ PartDiam(γ, 1− α) (n −→ ∞)

for every α ∈ (0, 1). Moreover, by Shioya [27, Theorem 2.29],

√
n ·ObsDiam((Sn)•;−α) ≤

√
n
n−1
· 2
√

2

√
− log

(√
2
π
α

)
≤ 4

√
− log

(√
2
π
α

)

for all n ∈ N≥2 and α ∈ (0, 1]. Since
∫ 1

0
4

√
− log

(√
2
π
α
)

dα < ∞, we may apply

Lebesgue’s dominated convergence theorem to conclude that

lim sup
n→∞

√
n ·∆((Sn)•) ≤ lim sup

n→∞

∫ 1

0

√
n ·ObsDiam((Sn)•;−α) dα

=

∫ 1

0

PartDiam(γ, 1− α) dα < ∞,

which entails that ∆((Sn)•) ∈ O
(

1√
n

)
.2 On the other hand, picking any α0 ∈ (0, 1) with∫ 1

α0
PartDiam(γ, 1− α) dα > 0, we infer from (∗) and Remark 4.4 that

∃n0 ∈ N ∀n ∈ N≥n0 ∀α ∈ [α0, 1) : ObsDiam((Sn)•;−α) < 1.

2Given two functions f, g : N→ [0,∞), we write f(n) ∈ O(g(n)) if there exist N ∈ N and C > 0 such

that f(n) ≤ Cg(n) for all n ≥ N .
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Combining this with (∗) and Lebesgue’s dominated convergence theorem, we see that

lim inf
n→∞

√
n ·∆((Sn)•) ≥ lim inf

n→∞

√
n

∫ 1

α0

ObsDiam((Sn)•;−α) ∧ 1 dα

= lim inf
n→∞

∫ 1

α0

√
n ·ObsDiam((Sn)•;−α) dα

=

∫ 1

α0

PartDiam(γ, 1− α) dα > 0,

which shows that 1√
n
∈ O(∆((Sn)•)). Thus, ∆((Sn)•) ∈ Θ

(
1√
n

)
as desired. Also,

due to Shioya [27, Proof of Lemma 2.33], ObsDiam((Sn)•) = ObsDiam((Sn)◦) for all

α ∈ (0, 1) and n ∈ N≥1. Hence, ∆((Sn)◦) = ∆((Sn)•) ∈ Θ
(

1√
n

)
. �

By force of the axiom of geometric order of divergence, we have the following.

Corollary 5.5. If ∂ : D → [0,∞] is a dimension function, then

∂((Sn)•), ∂((Sn)◦) ∈ Θ(n).

We continue by showing that the dimension function from Proposition 5.3 is compatible

with the order of direct powers of metric measure spaces. For any n ∈ N≥1 and an mm-

space X = (X, d, µ), let X n := (Xn, dn, µ
⊗n) where dn(x, y) := 1

n

∑n
i=1 d(xi, yi) for all

x, y ∈ Xn.

Lemma 5.6. For any X ∈M with 0 < diam(X ) ≤ 1,

∆((X n)•), ∆((X n)◦) ∈ Θ
(

1√
n

)
.

Proof. Due to Ozawa and Shioya [19, Theorem 1.1] and Shioya [27, Proposition 2.19],

ObsDiam((X n)•;−α) ≤ 4
√

2 log 2
α
· 1√

n

for all n ∈ N and α ∈ (0, 1). Since

K := 4
√

2

∫ 1

0

√
log 2

α
dα = 4

√
2

(
2

∫ ∞
√

log 2

exp(−t2) dt+
√

log 2

)
∈ (0,∞),

thus ∆((X n)◦) ≤ ∆((X n)•) ≤ K√
n

for all n ∈ N. So,

∆((X n)•), ∆((X n)◦) ∈ O
(

1√
n

)
.

Conversely, the argument in [19, Proof of Theorem 1.3], together with [27, Proposi-

tion 2.19], asserts the existence of a positive real number V (X ) such that

∀α ∈ (0, 1) : lim inf
n→∞

√
n ·ObsDiam((X n)◦;−α) ≥

√
V (X ) · PartDiam(ν, 1− α),

where ν is the Borel probability measure on R given by

ν(B) :=
√

2
π

∫ ∞
0

χB(t) exp
(
− t2

2

)
dt
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for every Borel B ⊆ R. Thus, thanks to Fatou’s lemma and the fact that diam(X ) ≤ 1,

lim inf
n→∞

√
n ·∆((X n)◦) ≥ lim inf

n→∞

∫ 1/2

0

√
n ·ObsDiam((X n)◦;−α) dα

≥
∫ 1/2

0

lim inf
n→∞

√
n ·ObsDiam((X n)◦;−α) dα

≥
√
V (X )

∫ 1/2

0

PartDiam(ν, 1− α) dα

≥ 1
2

√
V (X ) · PartDiam

(
ν, 1

2

)
∈ (0,∞),

which implies that 1√
n
∈ O(∆((X n)◦)), and so 1√

n
∈ O(∆((X n)•)). It follows that

∆((X n)•),∆((X n)◦) ∈ Θ
(

1√
n

)
. �

Again, we arrive at a geometric consequence for dimension functions.

Corollary 5.7. Let ∂ : D → [0,∞] be a dimension function. For every X ∈M with

0 < diam(X ) ≤ 1,

∂∆((X n)•), ∂∆((X n)◦) ∈ Θ(n).

6. Applications

Equipped with this new notion of dimension function, we propose two applications in

the field of machine learning. The first is situated in a classical learning realm where data

sets are represented as subsets of Rn. The second applies to purely categorical data and

the challenges that arise with that.

6.1. Distance-Based Machine Learning Methods. Distance functions are funda-

mental to the majority of ML procedures. Classification tasks depend on this kind of

features up to the same proportion as clustering tasks do. Modeling distances as features

of geometric data sets allows us to assign an intrinsic dimension to such problems and

investigate its explanatory power for concrete real-world data. So far there are only a

few theoretical investigations of the dimension curse in the realm of machine learning.

One exception to this is the work of Beyer et al. [3] investigating the impact of high

dimension in data to the kNN-Classification method. However, their main theoretical

result [3, Theorem 1] relies on a collection of assumptions rarely met by real-world data

sets [14]. More recent works, e.g., Houle et al. [11] and Korn, Pagel, and Faloutsos [14],

showed that often the curse of dimensionality can be overcome through an appropriate

choice of feature functions. This illustrates the necessity to analyze data sets and ma-

chine learning procedures based on their features. In the present section, we compute the

dimension function established in Corollary 5.7 in order to detect and quantify the extent

of dimension curse in concrete data.
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6.1.1. Distances as Features. Let n ∈ N≥1 and let deucl denote the Euclidean metric on Rn.

Given a non-empty finite subset X ⊆ Rn of points to be analyzed via some distance-based

machine learning procedure, we propose to study the geometric data set

Dn(X) := (X, deucl|X2 , νX)◦ = (X, {x 7→ deucl(x, y) | y ∈ X}, νX) ,

cf. Definition 3.2. Furthermore, in order to be able to compare observable diameters

of different data sets having different absolute diameters, we perform a normalization

based on the following observation: for any geometric data set D = (Y, F, µ) and α, τ ≥
0, it is not difficult to see that τ · ObsDiam(D ;−α) = ObsDiam(τ · D ;−α), where

τ · D := (Y, {τf | f ∈ F}, µ). (The proof of the corresponding fact about mm-

spaces is to be found in Shioya [27, Proposition 2.19]) In particular, we may consider

τ = diam(Y, dF )−1 if |Y | > 1.

In Algorithms 1 and 2 we present a simple procedure for computing the observable

diameter of a geometric data set with distance features. We may infer from it an upper

bound for the computational time complexity for computing ObsDiam. Computing all

features, i.e., all distances, requires O(cn2) time, where c indicates the complexity for

computing the distance of two points in X. Computing the counting measure can be

done alongside by additionally counting the occurrence of a particular distance. For every

distance we further have to compute the set of the minimal diameters. The challenge here

is traversing f(X) for all possible subsets. Since the diameter of some subset B ⊆ f(X)

is reflected by a choice of two points in B, only subsets of cardinality two have to be

checked, as shown in Algorithm 2, which requires O(n ·∑n
i=1 n − i) = O(n3) steps. The

necessary time for computing the maximum afterwards is subsumed by this. Hence, we

conclude that computing the observable diameter for a given geometric data set using

distances as features is at most in O(cn2 + n3) for run-time complexity.

6.2. Intrinsic Dimension of Incidence Geometries. As a second exemplary appli-

cation of the intrinsic dimension function we choose incidence structures as investigated

in Formal Concept Analysis (FCA). These data tables are natural in a way that they are

widely used in data science far beyond FCA. We recall the basic notions of FCA relevant

to this work. For a detailed introduction to FCA, we refer to Ganter and Wille [8]. Let

K = (G,M, I) be a formal context, i.e., a triple consisting of two non-empty sets G and M

and a relation I ⊆ G×M . The elements of G are called the objects of K and the elements

of M are called the attributes of K, while I is referred to as the incidence relation of K.

We call K empty if I = ∅, and finite if both G and M are finite. For A ⊆ G and B ⊆M ,

put

A′ := {m ∈M | ∀g ∈ A : (g,m) ∈ I}, B′ := {g ∈ G | ∀m ∈ B : (g,m) ∈ I}.
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As common in formal concept analysis, we will refer to the elements of

B(K) := {(A,B) | A ⊆ G, B ⊆M, A′ = B, B′ = A}
as formal concepts of K. We endow B(K) with the partial order given by

(A,B) ≤ (C,D) :⇐⇒ A ⊆ C

for (A,B), (C,D) ∈ B(K).

6.2.1. Concept Lattices as Geometric Data Sets. In order to assign an intrinsic dimension

to a concept lattice, we need to transform a formal context into a geometric data set

accordant to Definition 3.1. The crucial step here is a meaningful choice for the set

of features, which should reflect essential properties for the applied machine learning

procedure, or employed knowledge discovery process. Holding on to this idea, we propose

the following construction.

Definition 6.1. Let K = (G,M, I) be a finite formal context. The geometric data set

associated to K is defined to be D(K) := (M,F (K), νM) with

F (K) := {νG(A) · 1B | (A,B) ∈ B(K)}.

Let us unravel Definition 4.1 for data sets arising from formal contexts.

Proposition 6.2. Let K = (G,M, I) be a finite formal context and let α ≥ 0. For

every concept (A,B) ∈ B(K),

PartDiam((νG(A) · 1B)∗(νM), 1− α) =

νG(A) if α < νM(B) < 1− α,
0 otherwise.

Hence, ObsDiam(D(K);−α) = sup{νG(A) | (A,B) ∈ B(K), α < νM(B) < 1− α}.

Note that in the special case of an empty context the observable diameter of the asso-

ciated data set is zero, in accordance with Definition 4.1.

6.2.2. Intrinsic Dimension of Scales. There are particular formal contexts used for scaling

non-binary attributes into binary ones. Investigating them increases the first grasp for

the intrinsic dimension of concept lattices. The most common scales are the nominal

scale, Knom
n := ([n], [n],=), and the contranominal scale, Kcon

n := ([n], [n], 6=), where [n] :=

{1, . . . , n} for a natural number n ≥ 1. A straightforward application of the trapezoidal

rule reveals that

∆(D(Kcon
n )) =

∫ 1/2

0

ObsDiam(D(Kcon
n );−α) dα = 1

n

(
1
2
n−1
n

+
∑n/2−1

k=1

n−k
n

)
.

So, limn→∞ ∂∆(D(Kcon
n )) = 64

9
. For the nominal scale, we see that ∂∆(D(Knom

n )) = n4,

which diverges to∞ as n→∞. In the latter case, we observe that our intrinsic dimension

reflects the dimension curse appropriately as the number of attribute increases.
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7. Conclusion

This work provides a comprehensive approach to intrinsic dimensionality of a data set,

as often encountered explicitly or implicitly in machine learning and knowledge discov-

ery. Inspired by and extending Pestov’s work, we introduced a space of geometric data

sets, developed a natural axiomatization of intrinsic dimension, and established a spe-

cific dimension function satisfying the axioms proposed. Our axiomatic approach (hence

every concrete instance) reflects the dimension curse correctly and agrees with common

geometric intuition in various respects. Furthermore, it facilitates a quantification of the

dimension curse. We illustrated our feature-based approach through exemplary computa-

tions for various artificial and real-world data sets. For those we observed a difference in

evaluation by the intrinsic dimension function compared to Chavez intrinsic dimension.

We identify various future works. Due to the challenging task to compute the intrinsic

dimension, in particular in the case of incidence structures, heuristics for approximation

are of great interest. For example, one could apply feature sampling. Furthermore,

an important problem to be investigated is the influence of feature selection or feature

reduction, like principle component analysis, to the value of intrinsic dimension, which

should lead to a monotone increase in the values of the intrinsic dimension.
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Appendix A. Experiments

To motivate the use of our results we added two experimental investigations to this

work. The first is concerned with the distance based learning approach as discussed in

Section 6.1. The second explores the proposed intrinsic dimension function with respect

to incidence geometries as treated in Section 6.2.

A.1. Experiment: Distances as Features. For this experiment we applied the al-

gorithms as depicted in Section B to ten artificial and four real-world data sets. The

artificial ones in detail are: Dimset∗: six data sets with 1024 data points in Rd for

d ∈ {32, 64, 128, 256, 512, 1024}, constructed and investigated in [7]; Golf ball: set of

4200 points resembling a three dimensional ball in R3 from Ultsch [30]; Wingnut: 1,070

points resembling two antipodal dense rectangles in R2 from Ultsch [30]; Atom: 800

points representing a golf ball containing a smaller golf ball, both having the same center

coordinate in R3 from Ultsch [30]; Engy: 4,096 points shaped in a circular and in an ellip-

tical disc in R2 from Ultsch [30]. The four real-world data sets are in detail the following:

Alon: biological tumor data set that contains 2,000 measured gene expression levels of
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Table 1. Intrinsic dimension for various data clustering sets.

Name # Points # Dimensions Chavez ID Intrinsic dimemsion

dimset32 1,024 32 6.67 24.0

dimset64 1,024 64 7.31 41.2

dimset128 1,024 128 7.56 56.5

dimset256 1,024 256 7.59 76.6

dimset512 1,024 512 7.60 102.6

dimset1024 1,024 1,024 7.59 116.2

Golfball 4,200 3 4.00 8.89

Wingnut 1,070 2 1.91 8.02

Atom 800 3 1.45 11.0

Engy 4,096 2 1.79 18.0

Alon 62 2,000 3.50 13.9

Shippi 58 6,817 4.12 36.9

Nakayama 105 22,283 2.08 43.3

NIPS 11,463 5,812 0.36 1463.6

40 tumor and 22 normal colon tissues from Alon et al. [1]; Shippi: 6,817 measured gene

expression levels from 58 lymphoma patients from Shipp et al. [29]; Nakayama: 105

samples from 10 types of soft tissue tumors measured with 22,283 gene expression levels

from Nakayama et al. [18]; NIPS: the binary relation of 11463 words used in 5811 NIPS

conference papers from Perrone et al. [22].

For comparison, alongside with the values of our dimension function from Corollary 5.7,

we also computed the following quantity introduced by [6]: given a non-void finite metric

space (X, d), let us refer to

dimdist(X) := µ2

2·σ2

as the Chavez intrinsic dimension, or simply Chavez ID, of (X, d), where µ := EνX2
(d) is

the expectation of d with respect to νX2 and σ :=
(
EνX2 (d− µ)2

)1/2
is the corresponding

standard deviation.

A.1.1. Observations. We illustrated the computational results of our algorithm for the

featured data sets in Figure 1, and show the values for intrinsic dimension (ID) in Table 1.

For comparison we included the values for the Chavez’ intrinsic dimension (CID). Our

first observation is the repeating descend-pattern for the ObsDiam-values of the dimset

data sets as shown in Figure 1. We attribute this to the (unknown) generation process

for these data sets. The CID does not vary for the dimset data sets with more than 64

dimensions, as depicted in Table 1. The interpretation for this drawn from Chávez et al.

[6] would be that the similarity between the points does not change when increasing the

number of dimensions. One would expect here that the intrinsic dimension would stay
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ObsDiam

3-Dim. Golfball data set

2-Dim. Wingnut data set

3-Dim. Atom data set

2-Dim. Engy

Nips data set

Alon data set

Shipp data set

Nakayama data set

Figure 1. Observable diameter for α ∈ [0, 1] artificial data sets dimset

(top) and data sets from Ultsch [30] (bottom).

constant as well. However, the intrinsic dimension increases monotonously as the number

of dimensions goes to 1024. Since all dimset data sets were generated using the same

procedure with the same number of point samples (1024) one would expect this increase.

This is not a mere correlation to the increase in the number of dimensions, but evidence

for the inability of the particular generation process to bound the intrinsic dimension. As

for the low dimensional artificial data sets we observe a different interaction between the

CID an the ID. For example, the CID does decrease when comparing the Golfball data
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Table 2. Intrinsic dimension for various data sets and their randomized counterparts.

Name # Objects # Attributes Density # Concepts ∂∆(D(K))

zoo 101 28 0.30 379 52.44

zoor 101 28 0.30 3339 1564.40

cancer 699 92 0.10 9862 614.35

cancerr 699 92 0.10 23151 417718.62

southern 18 14 0.35 65 54.93

southernr 18 14 0.37 120 167.01

aplnm 79 188 0.06 1096 11667.14

aplnmr 79 188 0.06 762 185324.01

club 25 15 0.25 62 118.15

clubr 25 15 0.25 85 334.62

facebooklike 377 522 0.01 2973 2689436.00

facebookliker 377 522 0.01 1265 5.73E7

mushroom 8124 119 0.19 238710 263.49

set with the Atom data set, whereas the intrinsic dimension increases. This indicates that

the different dimension functions cover different data set properties.

Finally, we compare the results for the real-world data sets. Even though the number

of dimensions is quite large, for those we may point out that the number of point samples

is quite small, in comparison. Nonetheless, all data sets have essentially enough points

to possibly span subspaces of 62 (Alon), 58 (Shippi), and 105 (Nakayama) dimensions.

We observe again that an increase in CID does not precede an decrease in ID, as seen for

Alon and Shippi. The converse, however, can be observed as well when comparing Alon

with Nakayama. The NIPS data set exhibits by far the lowest CID as well as the highest

ID. All these observations lead us to conclude that the notion for intrinsic dimension, as

introduced in this work, captures an aspect of geometric data sets which is qualitatively

different to the Chavez intrinsic dimension.

A.2. Experiments: Incidence Geometries. We computed the intrinsic dimension

function for different real-world data sets to provide a first impression of ∂∆(D(K)).

For brevity we reuse data sets investigated by Borchmann and Hanika [5] and refer the

reader there for an elaborate discussion of those. All but one of the data sets are scaled

versions of downloads from the UCI Machine Learning Repository [15]. In short we will

consider the Zoo data set (zoo) describing 101 animals by fifteen attributes. The Breast

Cancer data set (cancer) representing 699 clinical cases of cell classification. The South-

ern Woman data set (southern), a (offline) social network consisting of fourteen woman

attending eighteen different events. The Brunson Club Membership Network data set
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Figure 2. ObsDiam for all considered real-world data sets.

(club), another (offline) social network describing the affiliations of a set of 25 corporate

executive officers to a set of 40 social organizations. The Facebook-like Forum Network

data set (facebooklike), a (online) social network from an online community linking 377

users to 522 topics. A data set from an annual cultural event organized in the city of

Munich in 2013, the so-called Lange Nacht der Musik (aplnm), a (online/offline) social

network linking 79 users to 188 events. And, finally the well-known Mushroom data set,

a collection of 8124 described by 119 attributes. Additionally we consider for all those

data sets, with exception for mushroom, a randomized version. Those are indicated by

the suffix r. We conducted our experiments straightforward applying Proposition 6.2.

This was done using conexp-clj.3 The intermediate results for ObsDiam can be seen in

Figures 2 and 3 and the final result for ∂∆(D(K)) is denoted in Table 2.

A.2.1. Observations. All curves in Figure 2 show a different behavior resulting in different

values for ∂∆(D). The overall descending monotonicity is expected, however, the average

as well as the local slopes are quite distinguished. The general trend that comparably

sparse contexts receive a higher intrinsic dimension is also expected taking the results

for the empty context into account as well as the overall motivation of the curse of

dimension. Considering the random data sets in Table 2 we observe that neither the

density nor the number of formal concepts (features) is an indicator for the intrinsic

dimension. This suggests that introduced intrinsic dimension is independent of the usual

descriptive properties. Comparing these results to the Chavez ID is not applicable due to

the non-metric nature of the investigated data sets.

3https://github.com/exot/conexp-clj

https://github.com/exot/conexp-clj
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Figure 3. ObsDiam for randomized data sets based on Figure 2.

Appendix B. Algorithms

Algorithm 1 ObsDiam with distance features

0 define ObsDiam(X,µ, F ) ; returns List

1 for f in F :

2 Vf = {}
3 Measure ={:} ; dictionary for measures

4 for x in X:

5 Vf = Vf ∪ {f(x)}
6 Measure[f(x)] =+ 1 ; preimage measure increase

7 matrix[f,:] = MinDiamMatrix(Vf ,Measure,X)

8 for α in (0, 1/|X|, . . . , (|X| − 1)/|X|, 1)

9 result[α]=max(matrix[:,α])

10 return result
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Algorithm 2 MinDiamMatrix with distance features

0 define MinDiamMatrix(Vf ,Measure, X) ; returns Matrix

1 result = (diam(X), . . . ,diam(X)) ; Initialize vector with length |X|
2 for s in (Vf ,≤): ; iterate through Vf

3 my of x = Measure[s] ·|X| ; denormalization to get index

4 diam of x = 0

5 if result[my of x] > diam of x then result[my of x] = diam of x

6 for e in {d ∈ Vf | d ≥ s} ≤ Vf
7 my of x =+ Measure[e] ·|X|
8 diam of x = e − s

9 if result[my of x] > diam of x then

10 result[my of x] = diam of x

11 for i in (|X|, |X| − 1, . . . , 1): ; repair monotonicity if necessary

12 if result[i] < result[i − 1] then result[i − 1] = result[i]

13 return result
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