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Recent proteome-wide screening approaches have provided a wealth of information about interacting proteins in
various organisms. To test for a potential association between protein connectivity and the amount of predicted
structural disorder, the disorder propensities of proteins with various numbers of interacting partners from four
eukaryotic organisms (Caenorhabditis elegans, Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens)
were investigated. The results of PONDR VL-XT disorder analysis show that for all four studied organisms, hub
proteins, defined here as those that interact with �10 partners, are significantly more disordered than end proteins,
defined here as those that interact with just one partner. The proportion of predicted disordered residues, the average
disorder score, and the number of predicted disordered regions of various lengths were higher overall in hubs than in
ends. A binary classification of hubs and ends into ordered and disordered subclasses using the consensus prediction
method showed a significant enrichment of wholly disordered proteins and a significant depletion of wholly ordered
proteins in hubs relative to ends in worm, fly, and human. The functional annotation of yeast hubs and ends using GO
categories and the correlation of these annotations with disorder predictions demonstrate that proteins with
regulation, transcription, and development annotations are enriched in disorder, whereas proteins with catalytic
activity, transport, and membrane localization annotations are depleted in disorder. The results of this study
demonstrate that intrinsic structural disorder is a distinctive and common characteristic of eukaryotic hub proteins,
and that disorder may serve as a determinant of protein interactivity.
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Introduction

Systematic binary protein–protein interaction maps with
various percentages of proteome coverage are currently
available for S. cerevisiae [1,2], C. elegans [3], D. melanogaster
[4], H. pylori [5], and, most recently, for H. sapiens [6,7]. As a
result of these studies, it is now proposed that most networks
within the cell have similar overall broad-scale topology
where most proteins interact with just a few partners and a
small number of proteins interact with many partners.
Although all currently available networks represent only
samples of the complete interactomes [8], the investigation of
such partial networks is a first step toward a systems-biology
understanding of cells and organisms.

While much has been learned to date about the general
mechanisms of protein–protein interactions, the specific
structural features that account for differences in protein
interactivity are still unknown. It has recently been suggested
that intrinsically disordered (ID) proteins play an important
role in protein–protein interactions [9,10]. ID proteins and
protein regions lack a unique 3-D structure and exist in a
dynamic ensemble of conformations. More than 427 proteins
containing 802 disordered regions have been annotated
(http://www.disprot.org). Computational estimates suggest

that eukaryotic proteomes have a significantly higher
occurrence of ID proteins relative to prokaryotic proteomes
[11,12]. The prevalence of ID proteins in eukaryotes is likely
to be due to more complex signaling and regulatory pathways
that heavily rely on disordered proteins [13]. Many ID
proteins have been shown to mediate interactions through
a disorder-to-order transition upon binding to their bio-
logical targets [14,15]. The lack of prior structure provides
several advantages to ID-mediated protein interactions
relative to interactions between folded proteins, such as
decoupling of specificity and affinity, and the ability to

Editor: Cheryl Arrowsmith, University of Toronto, Canada

Received April 26, 2006; Accepted June 23, 2006; Published August 4, 2006

A previous version of this article appeared as an Early Online Release on June 23,
2006 (DOI: 10.1371/journal.pcbi.0020100.eor).

DOI: 10.1371/journal.pcbi.0020100

Copyright: � 2006 Haynes et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: CDF, cumulative distribution function; CH, charge-hydropathy;
WASP, Wiskott-Aldrich syndrome protein

* To whom correspondence should be addressed. E-mail: lilia@rockefeller.edu

PLoS Computational Biology | www.ploscompbiol.org August 2006 | Volume 2 | Issue 8 | e1000001



recognize multiple binding partners with distinct interaction
surfaces. In addition, the interaction interface areas of ID
proteins is in general much larger per residue [16], which
suggests that ID proteins would make more efficient hub
proteins relative to ordered proteins [17].

Recent reviews [18–20] discuss the importance of intrinsic
disorder for protein–protein interactions that involve bind-
ing to multiple partners. These reviews focus on individual
examples of hub proteins with known disordered regions.
However, no systematic study of organism-specific protein
interaction networks that investigate their disorder content is
currently available.

The hypothesis that intrinsic structural disorder may be an
important attribute that can distinguish between hub and
end proteins is tested in the present study. The prediction of
disorder in the interaction networks from four eukaryotic
organisms is carried out using PONDR VL-XT [21,22]. The
comparison of proteins from these networks shows that while
the disorder content varies between organisms, hub proteins
are consistently found to be more disordered than end
proteins in all organisms.

Results

Datasets Characterization
Protein interaction datasets from four eukaryotes, C. elegans

(WORM), H. sapiens (HUMAN), D. melanogaster (FLY), and S.
cerevisiae (YEAST) were selected for this study (Table 1). High-
throughput datasets with experimentally demonstrated ver-
ification rates between 75% and 80% were selected for
WORM and HUMAN; the literature-curated low-throughput
dataset was selected for YEAST; and the literature-curated
dataset that also included the high-throughput interactions
was selected for FLY (Materials and Methods). Although
another FLY dataset consisting of only high-confidence high-
throughput interactions also was available [4], it was not
particularly useful because highly connected proteins (i.e.,
hubs) were removed with the intent of reducing the number

of nonspecific interactions. Subsequently, four additional
datasets (WORM BioGRID, HUMAN HPRD, FLY BioGRID,
and YEAST BioGRID) from two public databases [23,24], to
which no confidence-based filtering have been applied
(Materials and Methods, Table S1), were investigated for
comparison.
From these datasets, ends and hubs were defined as

proteins with one and ten or more interacting partners,
respectively. Although this cutoff was chosen somewhat
arbitrarily, the results of future analysis did not depend
significantly on the cutoff value (unpublished data). The gap
in the definition between hubs and ends was intended to
buffer the classes, and should be considered as a conservative
classification of hubs and ends. As shown in Table 1, the
number of ends is between ;2-fold to 10-fold greater than
the number of hubs, which is consistent with a scale-free
network topology.

Analysis of Disorder Predictions
Predictions of intrinsic structural disorder were carried

out on four datasets using PONDR VL-XT [21,22]. As shown
in Figure 1, significant differences between hubs and ends in
the percentages of proteins containing predicted disordered
regions of various lengths are observed. For example, 78% of
hub proteins in WORM carry predicted disordered regions of
�30 consecutive residues, whereas only 58% of end proteins
have this characteristic. The prediction error rate of PONDR
VL-XT (i.e., the prediction of disorder on the completely
ordered dataset O_PDB_S25, see Materials and Methods)
for this disorder length is ;13%, and it gradually decreases as
the length of the predicted disordered region increases. The
significant differences in the disorder content between
WORM hubs and ends are observed for most disorder
lengths, thereby indicating that WORM hub proteins are
overall more disordered than WORM end proteins. Similar
conclusions arise for two other organisms, HUMAN and FLY.
In YEAST, however, significant differences in the percentages
of proteins with predicted disordered regions are observed
for only two disorder lengths (�40 and �70). By comparison,
the analysis of a much larger YEAST BioGRID dataset shows
that the disorder content of hubs and ends is significant for
all disorder lengths for this organism (Figure S1). In addition,
the results of the disorder predictions for the remaining
BioGRID and HPRD datasets (Table S1) are also consistent
with a significantly greater amount of disorder in hubs
relative to ends (Figure S1).
When hubs from all four organisms are compared with

each other, HUMAN hubs have the overall highest disorder

Table 1. Properties of Protein Interaction Datasets from Four
Organisms

Organism Number of

Proteins

Number of

Interactions

Number of

Hubs

Number

of Ends

WORM 2,619 4,020 140 1,527

FLY 6,927 21,439 1,226 2,056

HUMAN 1,804 3,447 140 826

YEAST 1,711 3,305 134 553

DOI: 10.1371/journal.pcbi.0020100.t001
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Synopsis

From the formulation of Emil Fisher’s lock-and-key hypothesis in
1894 until the early 1990s, a dominating and widely accepted
concept in molecular biology was the protein structure–function
paradigm. According to this concept, a protein can perform its
biological function(s) only after folding into a specific rigid 3-D
structure. Only recently has the validity of this structure–function
paradigm been seriously challenged, primarily through the wealth
of counterexamples that have gradually accumulated over the past
15 years. These counterexamples demonstrated that many proteins
exist in a natively unfolded (or intrinsically disordered) state, and
function without a prerequisite stably folded structure. In many
cases, the lack of structure is required for biological function.
Previous results have implicated intrinsic disorder as having an
important role in protein interactions. The authors generalize this
notion by comparing interaction networks from four eukaryotic
organisms: yeast, worm, fly, and human. They have found that
within these networks the proteins that interact with multiple
protein partners (network hubs) are significantly more disordered
than proteins that interact with a single protein partner (network
ends). The results of this study demonstrate that intrinsic structural
disorder is a distinctive and common characteristic of hub proteins,
and that disorder may serve as a determinant of protein interactivity.

Disordered Hubs in Eukaryotic Interactomes



content (i.e., higher percentage of proteins with predicted
disordered regions) for all disorder lengths, whereas YEAST
hubs have the lowest. Interestingly, when ends from all four
organisms are compared with each other, HUMAN ends again
have the highest disorder content. This suggests that the
HUMAN interaction network has the highest disorder
content among all studied organisms, in agreement with the
predicted disorder content of the entire human proteome
[12]. It should also be noted that disorder predictions for
proteins with an intermediate number of partners (from 2 to
9) generally fall in between the predictions for hubs and ends
(Figures S2 and S3).

Since PONDR VL-XT predicts disorder on a per-residue
basis, it is important to account for the differences in protein
lengths when comparing predictions for entire datasets,
because longer proteins are expected to have a greater
number, as well as longer regions, of predicted disorder in
comparison with shorter proteins. To compensate for the

length dependency of disorder predictions, the per-residue
disorder predictions were normalized by protein length. The
percentages of disordered residues within segments of all
possible lengths (starting from one and ending with the
longest disordered region in the dataset) were calculated for
all proteins, and then plotted against the predicted disor-
dered region length (Figure 2). The same procedure was
repeated using a completely ordered set of proteins
(O_PDB_S25) to estimate the error rate of the predictions.
The length-normalized predictions further confirm the
differences in the disorder content of hubs and ends. The
percentages of predicted disordered residues in hubs are
generally higher than in ends (Figure 2), although the
differences between hubs and ends are more apparent for
the HUMAN and FLY than for the WORM and YEAST
datasets. Furthermore, WORM hubs and ends have similar
percentages of predicted disordered residues within long
segments of disorder (80 residues and longer). When length-

Figure 1. The Percentages of Hub and End Proteins with �30 to �100 Consecutive Residues Predicted to Be Disordered

95% confidence intervals were calculated using normal test for two binomial proportions.
DOI: 10.1371/journal.pcbi.0020100.g001
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normalized predictions are considered, the proportion of
predicted disordered residues is highest in the HUMAN
dataset, and lowest in the YEAST dataset (Figure 2).

Analysis of Various Disorder Parameters
To determine which specific disorder attributes contribute

toward the differences observed between hubs and ends in
each dataset, seven additional disorder parameters were
calculated (see Materials and Methods for details). The results
of a t-test for three representative disorder attributes (RdisAA,
avgScore, and RnumDR) are shown in Table 2. The average
disorder scores for hubs and ends were significantly different
in all four organisms (p , 0.05). In addition, the relative
number of predicted disordered residues was significantly (p
, 0.005) different in WORM, HUMAN, and FLY. The
difference between hubs and ends in the relative number of
predicted disordered regions was significant (p , 0.01) for
WORM and FLY. There were also significant differences in
the relative number of short disordered regions for FLY (p ,

0.05), medium disordered regions for WORM and FLY (p ,

0.05), and long disordered regions for WORM, HUMAN, and
FLY (p , 0.05) (Table S2). These data suggest that hubs have a
higher disorder score in all four datasets, and a greater
number of disordered residues and disordered regions in
some datasets.

Consensus-Based Classification of Hubs and Ends
Cumulative distribution function (CDF) and charge-hydro-

pathy (CH) consensus predictions were applied to the hubs
and ends from four organisms and have been summarized in
Table 3. Consensus predictions, as well as CDF and CH
predictions, assume that all proteins can be classified as
wholly ordered or wholly disordered. While this assumption is
certainly an oversimplification for proteins containing both
ordered and disordered regions, these predictions can be
interpreted as representative of the predominant order/
disorder composition of a protein. Unclassified proteins do
not necessarily consist of an equal number of ordered and
disordered residues, but rather are proteins whose sequences
give conflicting indications of their order/disorder composi-

Figure 2. The Percentages of Residues Predicted to Be Disordered within Segments of Length � the Value on the x-Axis

DOI: 10.1371/journal.pcbi.0020100.g002
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tion by two different methods (Materials and Methods). The
view of disorder in these networks provided by consensus
predictions (Table 3) represents an alternative analysis to
residue-based predictions (Figures 1 and 2).

The results indicate an enrichment of wholly disordered
proteins and a depletion of wholly ordered proteins in hubs,
relative to ends, which is consistent with the analysis of
residue-based predictions. HUMAN and FLY hubs are
significantly enriched in wholly disordered proteins com-
pared with ends (p , 0.005). WORM and YEAST hubs are
similarly enriched, but the differences between hubs and ends
are found to be only borderline significant for WORM, and
insignificant for YEAST. It should be noted that when the
larger YEAST BioGRID dataset is used, the data for YEAST
also becomes significant (Table S3). Conversely, hubs are
depleted in wholly ordered proteins, relative to ends. This
difference is statistically significant for the WORM, HUMAN,
and FLY datasets, as well as for the YEAST BioGRID dataset
(Table S3). Also, all datasets show a higher proportion of
unclassified proteins in hubs, relative to ends, where these
differences are significant (p , 0.05) for the WORM and FLY
datasets. It has previously been suggested that disagreement
between CDF and CH may have important structural and
functional implications [25], although this remains to be
tested experimentally.

YEAST hub proteins demonstrate a bias toward enrich-
ment in wholly disordered proteins and depletion in wholly
ordered proteins, but these differences are statistically
insignificant for the smaller, literature-curated YEAST data-
set (Table 3), and they are significant for the larger YEAST
BioGRID dataset (Table S3). This suggests that an association

of hubs with disorder may be weaker in YEAST than in other
studied organisms, because it could only be detected when a
larger dataset is used. A potential explanation is that yeast is a
unicellular organism while the others are multicellular
organisms, and the requirements for intracellular regulation
are likely very different in unicellular organisms than in
multicellular organisms, with this difference reflected in the
lower bias of YEAST hubs toward disorder.

Analysis of the Amino Acid Composition of Ordered and
Disordered Hubs and Ends
Ordered and disordered proteins and protein regions have

significantly different amino acid compositions [26]. Disor-
dered proteins are characterized by enrichment in hydro-
philic, charged, and structure-breaking amino acids and by
depletion in hydrophobic and aromatic amino acids as
compared with the ordered proteins.
Here, amino acid compositions of ordered and disordered

hubs and ends were compared with the amino acid
composition of disordered protein regions extracted from
the DisProt database [27] (Figure 3). The composition of each
dataset is plotted relative to the composition of a subset of
well-ordered globular proteins extracted from the PDB Select
25 database [28]. The negative value of the bar therefore
signifies that the dataset is depleted in a particular amino
acid residue in comparison with the ordered proteins while
the positive value signifies enrichment.
A striking and common feature of three datasets (WORM,

HUMAN, and FLY) is an extreme enrichment of ordered hubs
(and, to a lesser degree, ordered ends) in cysteine. Since
cysteines are frequently involved in disulphide bonds that
usually serve to stabilize the protein structure, it is not
surprising to find the enrichment of the ordered proteins in
cysteine. Besides their role in disulphide bond formation,
cysteines are also common in Zn finger domains that are
often found in the nucleic acid–binding proteins. This may
suggest that ordered hubs and ends are enriched in proteins
that also bind to DNA and RNA (in addition to binding to
other proteins). Interestingly, ordered YEAST hubs and ends
as well as disordered YEAST hubs and ends all are depleted in

Table 2. Representative Disorder Attributes Calculated for Four
Datasets

Organism Property Protein

Type

Mean Standard

Deviation

p-Value

WORM RdisAA HUBS 0.3720 0.1737 0.0019

ENDS 0.3181 0.1987

avgScore HUBS 0.3924 0.1403 0.0013

ENDS 0.3461 0.1641

RnumDR HUBS 0.0109 0.0042 0.0084

ENDS 0.0099 0.0054

FLY RdisAA HUBS 0.4242 0.1954 ,.0001

ENDS 0.3279 0.1999

avgScore HUBS 0.4370 0.1579 ,.0001

ENDS 0.3556 0.1642

RnumDR HUBS 0.0116 0.0050 ,.0001

ENDS 0.0098 0.0053

HUMAN RdisAA HUBS 0.4281 0.1988 0.0036

ENDS 0.3754 0.1975

avgScore HUBS 0.4373 0.1565 0.0044

ENDS 0.3961 0.1580

RnumDR HUBS 0.0114 0.0050 0.8754

ENDS 0.0113 0.0052

YEAST RdisAA HUBS 0.3284 0.1605 0.0763

ENDS 0.3017 0.1550

avgScore HUBS 0.3582 0.1315 0.0368

ENDS 0.3326 0.1260

RnumDR HUBS 0.0105 0.0046 0.6495

ENDS 0.0102 0.0047

Bold and italic p-values are statistically significant with p , 0.05.
DOI: 10.1371/journal.pcbi.0020100.t002

Table 3. Results of a Binary Classification Using Consensus
Method

Organism CDF/CH Class HUBS ENDS 95% CI p-Value

WORM Ordered 51.43 64.18 8.62 0.0028

Disordered 36.43 29.08 8.29 0.0684

Unclassified 12.14 6.74 5.55 0.0180

FLY Ordered 40.05 63.04 3.45 0

Disordered 47.72 27.87 3.40 0

Unclassified 12.23 9.10 2.22 0.0042

HUMAN Ordered 36.43 53.63 8.67 0.0002

Disordered 50.00 35.71 8.90 0.0013

Unclassified 13.57 10.65 6.00 0.3091

YEAST Ordered 62.69 68.35 9.06 0.2097

Disordered 27.61 26.22 8.41 0.7433

Unclassified 9.70 5.42 5.35 0.0667

The percentages of ordered, disordered, and unclassified proteins in each dataset are
shown.
Bold and italic p-values are statistically significant with p , 0.05.
DOI: 10.1371/journal.pcbi.0020100.t003
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cysteine, similar to DisProt proteins (Figure 3). Another
interesting feature observed in WORM and FLY (and to a
smaller extent in HUMAN and YEAST) is an extreme
enrichment of disordered hubs and ends in glutamine. Since
glutamine is usually found on protein surfaces and its polar
side-chain is often involved in protein active or binding sites,
it is not unexpected to observe the enrichment of hubs in this
residue.

By similarity with other disordered proteins, disordered
hubs and ends are generally depleted in aromatic and
aliphatic amino acids in all organisms (see the left part of
Figure 3), and are enriched in proline and serine. At the same
time, disordered YEAST hubs are enriched in asparagine,
unlike DisProt proteins.

Thus, the amino acid composition analysis shows that the

large compositional biases are observed between the ordered
and the disordered subclasses of hubs and ends in all studied
organisms. Another observation is that YEAST has more
distinctive compositional biases than the other three
organisms.

The Analysis of GO Annotations
GO annotations for yeast have the longest history of any of

the GO annotated organisms [29], and are generally consid-
ered to have the highest quality and completeness. For this
reason, we selected yeast to examine the relationship between
GO annotations and order and disorder in hubs and ends.
The null model distribution was generated by a permutation
test (Materials and Methods). The Z-score for the observed
number of disordered residues associated with each selected
high-level annotation is plotted in Figure 4.

Figure 3. Amino Acid Compositions of Hub, End, and Disordered Proteins Are Shown Relative to the Composition of Completely Ordered Globular

Proteins

Amino acids are arranged from left to right in order of increasing flexibility as defined by Vihinen et al. [52]. The error bars were calculated as explained
in Materials and Methods.
DOI: 10.1371/journal.pcbi.0020100.g003
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Difficulties with multiple testing correction and correlated
annotations have been identified as a weakness of many
approaches to the proteome-wide functional analysis [30].
However, these factors do not play a significant role in this
functional study. Multiple testing was not corrected for since
GO annotations of interest were selected a priori, resulting in
far fewer tests than in previous analyses of this kind [12,31].
Correlation between parameters is handled implicitly
through the randomization procedure and does not have a
significant effect on the results. Caution should be used in
interpreting these results with regard to the classic correla-
tion versus causation problem. For example, positive associ-
ations do not necessarily imply that the annotation is
responsible for a given function, only that proteins with that
function are enriched in disordered residues.

Disorder is found to be enriched in both hubs and ends
with several annotations from the biological process ontology
(Figure 4A), including development, cytoskeleton organiza-
tion and biogenesis, and transcription. Hubs and ends
involved in cell division processes also are enriched in
disorder. The enrichment of disorder for these functions is
consistent with the hypothesis that disorder is highly involved
in functions specific to eukaryotes, relative to the other
kingdoms [11,12]. Hubs are only significantly depleted for one

process annotation, the cell cycle, whereas the ends involved
in the cell cycle are enriched in disorder. Interestingly, hubs
involved in biosynthesis are enriched in disorder, but ends
with the same annotation are highly depleted in disorder.
Finally, ends with an annotation ‘‘regulation of biological
processes’’ show a large enrichment in disorder while hubs
show no significant bias. Note that this GO term is very broad,
covering all types of biological processes.
Only one of the molecular function GO annotations

examined here, the ‘‘transcription regulator activity’’ (Figure
4B), is associated with disorder in both hubs and ends. The
previously noted strong disorder bias of proteins involved in
transcription regulation [32] agrees well with these results.
Hubs involved in protein binding also are strongly associated
with predicted disorder, which agrees with the hypothesis
that disorder is a common mediator of protein–protein
interactions [18]. Hubs with molecular transport, enzyme
regulation, and catalytic activity annotations are found to be
depleted in predicted disorder, in support of previous
observations of low disorder content in proteins involved in
catalytic cellular functions [13].
Significant biases for ends are similar to the biases of hubs,

except for ‘‘nucleic acid–binding activity,’’ for which ends
show a large enrichment in disorder. DNA-binding domains
are frequently well-ordered [32], whereas RNA-binding
proteins can be completely disordered (such as ribosomal
proteins when separated from the ribosome) [15], or they can
carry long disordered domains (such as SR splicing factors)
[33]. The nucleic acid–binding annotation was also found to
be associated with disorder in another study [12].
Lastly, analysis of the cellular component ontology (Figure

4C) gives several interesting results. Cytoplasmic hubs are
biased toward disorder whereas nuclear hubs are biased
toward order. Ends, on the other hand, show the opposite
biases. Previous studies have found that nuclear proteins are
typically enriched in disorder while cytoplasmic proteins are
typically depleted in disorder [12], which agrees with the
results for ends. The enrichment of ends localized to the
chromosome in disorder agrees with the enrichment of
disorder in ends that bind nucleic acids. Finally, hubs
localized to the cytoskeleton are highly enriched in disorder.
Interestingly, the high disorder content of the cytoskeletal
proteins that is comparable to the disorder content of
regulatory and cell signaling proteins has previously been
observed [13]. In addition, disorder has been shown to be
crucial in the function of at least one structural molecule, the
bacterial flagellar protein FlgM [34]. The disorder in
cytoskeletal proteins is examined in more detail below.

Examination of Specific Hub Examples
To correlate the disorder predictions with available

structural information, all yeast hubs with cytoskeleton
localization GO annotation were examined (Table 4).
Cytoskeletal proteins are predicted to contain a large amount
of disorder [13], therefore it seems beneficial to examine
them in detail. As shown in Table 4, limited structural
information is available for these proteins. Only for one
protein, Act1p, out of fifteen has the structure of the full-
length protein been determined, whereas for the remaining
four proteins the structures are known only for portions of
the total sequences. The total percentage of residues in these

Figure 4. Association of PONDR VL-XT Predicted Disorder with GO

Annotations in Yeast

A positive (negative) Z-score indicates that more (less) disorder is
associated with the indicated annotation than would be expected by
chance.
The null distributions for hubs (black bars) and ends (white bars) were
generated separately. All associations are significant at a type I, test-wise
error rate of 0.05, unless indicated by asterisks. The three branches of GO
annotations are plotted separately: (A) biological process, (B) molecular
function, and (C) cellular component.
o, organization; b, biogenesis.
DOI: 10.1371/journal.pcbi.0020100.g004
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five proteins, for which the structural information is
available, constitutes only 11.3%.

Comparison of the structured regions to disorder predic-
tions shows good agreement for most structures, i.e., regions
with known structures are predicted to be highly ordered,
with two exceptions, Cmd1p and Sla1p. In the case of Sla1p,
an 11-residue segment of this protein is bound to a Src
homology (SH3) domain (PDB code 1SSH). Classical partners
of SH3 domains are rich in proline residues, and this region
of Sla1p contains five proline residues. Proline is a strong
promoter of intrinsic disorder [26], and it is likely that this
region is intrinsically disordered (as correctly predicted by
PONDR VL-XT), but it undergoes a disorder-to-order
transition upon binding to SH3 domain. In the case of
Cmd1p (calmodulin), the solution structure shows a high
degree of flexibility (PDB code 1LKJ). The N-terminal and C-
terminal EF-hand domains cannot be aligned simultaneously
in most of the model structures due to a highly dynamic
central linker. A large degree of flexibility is also apparent at
both termini of Cmd1p. These three regions (both termini
and a linker between EF-hand domains) are predicted to be
disordered (in agreement with the high degree of flexibility in
the NMR structure), with much of the EF-hand domains
predicted to be ordered (unpublished data). Therefore, the
disorder predictions generally agree with the available
structural information.

The functional role that disorder may play in cytoskeletal
hubs was further investigated by comparing PONDR VL-XT
predictions of two disordered hubs, Abp1p and Las17p, to
known features of these proteins (Figure 5). These two
proteins are selected as examples because they are both well-
studied and predicted to be highly disordered.

Actin-binding protein 1 (Abp1p) was the first actin-binding

protein identified in yeast [35]. This protein is predicted to be
highly disordered (Table 4), but has two regions of known
structure that correspond to regions predicted to be ordered
(Figure 5A). The N-terminal actin depolymerization factor-
homology (ADF-H) domain is the primary factor responsible
for actin binding. The C-terminal SH3 domain binds to
nonclassical proline motifs. Abp1p also serves as a target for
at least one SH3 domain; the SH3 domain of Rvs167p binds to
the C-terminal proline-rich region (Figure 5A, green bar),
which is predicted to be disordered.
Abp1p contains other protein-binding features associated

with predicted disorder. For example, its two central acidic
domains mediate interaction with the Arp2/3 complex [36].
Two sets of contiguous triplet mutations in these domains
(Figure 5A, purple bars), both separately and combined,
completely disrupt the interaction of Abp1p with the Arp2/3
complex and the associated activation of the complex [36].
Finally, Abp1p contains a predicted a-molecular recognition
feature [31] (a-MoRF, Figure 5A, blue bar). These features are
responsible for mediating protein interaction through a
disorder-to-order transition upon binding to partners.
Interestingly, this prediction coincides with four observed
serine/threonine phosphorylation sites [37]. The identities of
the kinases that phosphorylate these sites have not yet been
established.
Las17p is a yeast homolog of the Wiskott-Aldrich Syn-

drome protein (WASP). Like Abp1p, Las17p is highly
disordered (Table 4) and contains several regions that
mediate protein interactions (Figure 5B). The WASp-homol-
ogy domain 1 (WH1), located at the N-terminus of Las17p
(Figure 5B, N-terminal orange box), is similar to SH3 and WW
domains in that they mediate interactions with short
sequence motifs. The 3-D structures of WH1 domains from

Table 4. Structural and Functional Features of Yeast Cytoskeletal Hubs

Name Swiss-Prot

Accession

Number

Length, aa Number of

Partners

CDF/CH

Class

Fraction

Disordered

by VL-XT

Number of

Unique

Structures

(Residues)

in PDB

PDB

Residues

Predicted

to Be

Ordered

Cytoskeletal

Structure

Cytoskeletal Role

ABP1 P15891 592 14 D 0.51 2 (198) 0.88 Microfilaments Stabilization of actin branch sites

ACT1 P60010 375 32 O 0.26 1 (375) 0.74 Microfilaments Actin cable and neck ring

ARP2 P32381 391 13 O 0.37 0 – Microfilaments Nucleation of actin filaments

BNI1 P41832 1953 17 D 0.52 1 (433) 0.76 Microfilaments Nucleation/elongation of actin filaments

BNR1 P40450 1375 11 D 0.36 0 – Microfilaments Nucleation/elongation of actin filaments

CDC3 P32457 520 10 O 0.29 0 – Microfilaments Septal ring organization and assembly

CMD1 P06787 147 42 U 0.52 1 (129) 0.45 Microfilaments Regulation of myosin and actin

localization

LAS17 Q12446 633 21 D 0.76 0 – Microfilaments Activation of actin nucleation

RVS161 P25343 265 12 O 0.29 0 – Microfilaments Regulation of actin polarization

RVS167 P39743 482 36 D 0.51 0 – Microfilaments Regulation of actin polarization

SLA1 P32790 1244 21 D 0.49 1 (12) 0.00 Microfilaments Regulation of cortical patch formation

PKC1 P24583 1151 10 D 0.37 0 – Microfilaments/

Microtubules

Regulation of cell wall synthesis

CLB2 P24869 491 10 O 0.31 0 – Microtubules Possible role in determination of

spindle orientation

DUO1 P53168 247 15 D 0.44 0 – Microtubules Component of microtubule binding

complex (DASH)

GLC7 P32598 312 19 O 0.13 0 – Microtubules Regulation of kinetichore-spindle

interaction

DOI: 10.1371/journal.pcbi.0020100.t004
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other proteins with (e.g., PDB code 1DDV) and without (e.g.,
PDB code 1DDW) binding partners have been determined.
The WH2 domain at the C-terminus (Figure 5B, C-terminal
orange box) of Las17p is a short, conserved, a-helical motif
that mediates interaction with actin [38]. Interestingly, an a-
MoRF is predicted to coincide with the WH2 motif (Figure
5B, blue box and C-terminal orange box, respectively),
indicating that this WH2 motif likely functions through a
disorder-to-order transition upon binding to actin. Solution
of actin-WH2 complex structures from other proteins
confirms that the WH2 domain forms an a-helix on binding
actin (e.g., PDB code 2A41). The proline-rich regions of
Las17p (Figure 5B, green boxes) have been shown to bind at
least 17 distinct SH3 domain-containing protein partners [39]
(Figure 5B, numbered boxes). All of these proline-rich
binding regions are located within predicted disordered
regions.

Discussion

The investigation of the disorder content of proteins from
four eukaryotic interactomes shows that hub proteins are
more disordered than end proteins in all four studied
organisms (Figures 1 and 2), even though the predicted

disorder content differs among these organisms [11,12]. It is
established that the proportion of disordered proteins
correlates with the complexity of an organism [11,12]. The
application of two different disorder predictors to proteins
from the three kingdoms of life has shown that the disorder
content of bacteria and archaea is significantly lower than
that of eukaryotes. The amount of predicted disorder also
varies among eukaryotes. Comparison of disorder predictions
in complete eukaryotic genomes [11,12] shows that even
though two different predictors were used (PONDR VL-XT
[11] versus DISOPRED2 [12]), the prediction results agree in
terms of the disorder content ranking, i.e., ‘‘Fly . Yeast .

Worm’’ [11] (note that human genome was not available at
that time), and ‘‘Human . Fly . Yeast . Worm’’ [12].
Interestingly, when the prediction of disorder was carried out
on all proteins (hubs, ends, and proteins with two to nine
partners) from the networks in the present study (unpub-
lished data), the ranking ‘‘Human . Fly . Yeast . Worm’’

agreed with the previous studies that were carried out on
complete genomes. At the same time, the relative percentages
of predicted disorder in the networks were generally higher
than those reported previously for the complete genomes
[11], even though the same predictor PONDR VL-XT was
used in both studies. This result may indicate that proteins

Figure 5. PONDRing Abp1p and Las17p

(A) The PONDR VL-XT prediction for Abp1p is plotted along with bars representing the positions of the ADF domain (N-terminal orange bar, structure
1HQZ), the SH3 domain (C-terminal orange bar, structure 1JO8), a poly-proline region (green bar), a predicted a-MoRF (blue bar), known
phosphorylation sites (black hash marks), and regions critical for Arp2/3 activation (purple bars).
(B) The PONDR VL-XT prediction for Las17p is plotted along with bars representing the positions of the WASP homology domain 1 (N-terminal orange
bar), WASP homology domain 2 (C-terminal orange bar), poly-proline regions (green bars), and a predicted a-MoRF (blue bar). The number of
interaction partners associated with a given region [39] is indicated in the numbered boxes.
DOI: 10.1371/journal.pcbi.0020100.g005
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that interact with other proteins are on average more
disordered than proteins that interact with ligands, such as
nucleic acids, small molecules, lipids, etc.

Another interesting observation that follows from compar-
ison of the networks to the complete genomes is that the
disorder content of the proteomes is closer to the disorder
content of ends than to the disorder content of hubs
(unpublished data). Although differing views regarding the
scale-free nature of the protein interaction networks exist
[40,41], it is still tempting to speculate that this bias could be
explained by a potentially higher fraction of ends as
compared with hubs in all genomes.

We previously determined that human cell signaling and
cancer-associated proteins are significantly more disordered
than proteins from other functional categories [13]. Interest-
ingly, the disorder content of HUMAN hubs (Figure 1) is very
similar to that of human regulatory and cancer-associated
proteins, suggesting that many cell signaling and regulatory
proteins are network hubs.

The high disorder content of hubs relates directly to their
function. Intrinsic disorder provides several important func-
tional benefits for interactions with multiple partners. First, it
allows hubs to adapt to the structure of a variety of differently
shaped binding partners. Such structural malleability is
especially important for hubs that interact with their
partners using the same or overlapping binding surfaces.
Second, disorder may enable a hub protein to elicit both
inhibiting and activating effects on different partners, as was
recently noted for moonlighting proteins [42]. Third,
structural plasticity may enable some proteins to serve as
hubs in multiple and distinct signaling networks. One
example of such a hub is glycogen synthase kinase 3b, which
uses two different ID regions to participate in two unrelated
signaling pathways, Wnt and insulin signaling [18].

While intrinsic disorder is an important feature of hub
proteins, many ordered hub proteins also exist [18]. Interest-
ingly, it has been recently proposed that ordered hubs have
higher surface charge than nonhub proteins, and that this
increased charge is likely to have an impact on their binding
ability [43]. Furthermore, it has been noted that the binding
partners of several ordered hubs are intrinsically disordered
[18]. The examples include the partners of 14-3-3 proteins
[44] the partners of b-catenin [45], and the partners of several
other proteins (such as calmodulin, actin, and Cdk) [18]. The
results of the present study suggest that wholly ordered hubs,
as defined by the CDF/CH consensus classification, constitute
a substantial fraction of all hub proteins and are especially
prevalent in the YEAST dataset (Table 3).

Among all the networks examined here, the YEAST
interaction network appears to exhibit the smallest differ-
ence between hubs and ends in terms of predicted disorder,
at least when literature-curated interactions are considered
(Figure 1, Tables 2 and 3, compare with Figures S1 and S3).
Notably, the amino acid composition of proteins from the
YEAST network appears to be the least similar to the three
other organisms (Figure 3). In addition, the proportion of
wholly ordered proteins within both YEAST hubs and YEAST
ends is the highest among the four datasets (Table 3, Table
S3). A plausible explanation of the smaller differences in
disorder content of YEAST hubs and ends is that the
interactomes of the unicellular organisms are inherently
simpler than metazoan interactomes due to less sophisticated

signaling and regulation pathways. Because of their greater
simplicity, these yeast pathways may rely less heavily on
disorder than the networks of higher eukaryotes.
In summary, the present study shows that intrinsic

structural disorder is a distinctive and common characteristic
of eukaryotic hub proteins, and it suggests that disorder may
serve as a determinant of protein interactivity. In the future,
it would be interesting to compare more specialized signaling
and metabolic networks to each other to determine whether
the high disorder content of hubs is a common feature of all
cellular networks. In addition, it would certainly be interest-
ing to perform the disorder analysis on the complete
interactomes (when they are available) to determine whether
similar conclusions are reached.

Materials and Methods

Datasets. The protein–protein interaction datasets for each
organism (Table 1) were constructed as follows: (i) The interaction
dataset for C. elegans (WORM) corresponds to the ‘‘First-Pass’’
interactions of the worm interactome version 5, or ‘‘WI5’’ [3]; (ii)
The interaction dataset for H. sapiens (HUMAN) represents a union of
the CCSB human interactome version 1, or ‘‘CCSB-HI1’’ extracted
from Rual et al. [6] and high-confidence interactions with three or
more quality points extracted from Stelzl et al. [7]; (iii) The
interaction dataset for D. melanogaster (FLY) represents a union of
literature-curated Drosophila interactions stored in the BIND (http://
www.bind.ca), DIP (http://dip.doe-mbi.ucla.edu), and MINT (http://
mint.bio.uniroma2.it/mint) interactions databases; (iv) The interac-
tion dataset for S. cerevisiae (YEAST) represents the union of
literature-curated yeast interactions stored in the BIND, DIP, and
MINT interactions databases; (v) The dataset O_PDB_S25 contains
only ordered parts of proteins extracted from the database PDB
Select 25 [28]. The disorder predictions on this mostly nonredundant
dataset served as a control for estimating the false-positive prediction
error rate; (vi) DisProt dataset consists of experimentally verified
disordered protein regions extracted from the DisProt database [27].
Four additional datasets, WORM BioGRID, HUMAN HPRD, FLY
BioGRID, and YEAST BioGRID (Table S1), to which no confidence-
based filtering have been applied, were extracted from BioGRID [23]
and HPRD [24] and used for comparison.

The redundancy removal from all datasets did not significantly
reduce the number of interactions. On average, only 2.2% of
interactions were removed at 70% protein sequence identity level,
and 15.6% of interactions were removed at 30% protein sequence
identity level (unpublished data). Therefore, the original datasets
were used in the present study.

Since a clear definition of a hub protein, in terms of a number of
interacting partners, is not well-established, and since the definition
might vary from one dataset to another, we somewhat arbitrarily
chose ten partners as a cutoff value and defined proteins with �10
partners as hubs. Proteins with one interacting partner are defined
here as ends. However, it should be mentioned that varying the cutoffs
of hub definition gives rise to similar results (Figures S2 and S3).

Disorder predictions. Predictions of intrinsic disorder were carried
out using a well-characterized disorder predictor PONDR VL-XT
[21,22]. This predictor was trained on the experimentally (X-ray and
NMR) confirmed disordered protein regions, while the ordered
training set included completely ordered proteins extracted from the
nonredundant set of proteins from PDB Select 25 [28]. The accuracy of
this predictor, benchmarked on the 42 CASP5 targets, reached 72.8%
[46]. PONDR VL-XT is currently being used successfully to guide the
removal of disordered regions that interfere with crystallization of
problematic proteins for high-throughput structure determination
[47]. Access to PONDRVL-XT (http://www.pondr.com) was provided by
Molecular Kinetics (Indianapolis, Indiana, United States).

Disorder parameters. The following disorder parameters (Table 2)
have been calculated for all studied datasets: (i) disAA, the number of
predicted disordered residues in the protein; (ii) avgScore, the average
disorder prediction score for an entire protein; (iii) shortDR, the
number of continuous, predicted disordered regions of length 10–30
amino acids; (iv) medDR, the number of continuous, predicted
disordered regions of length 31–60 amino acids; (v) longDR, the
number of continuous, predicted disordered regions of length 61–
longest DR; (vi) numDR, the number of continuous, predicted
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disordered regions of length 10–longest DR; (vii) maxDR, the longest
predicted disordered region in the protein. To eliminate the
dependency of calculated parameters on protein length, the relative
values of the attributes (RdisAA, RshortDR, RmedDR, RlongDR, RallDR,
and RmaxDR) were derived by dividing the numerical value of each
attribute by the protein length. Student’s t-test was used to calculate
p-values in Table 2.

Consensus classification. Predictions of wholly ordered and wholly
disordered proteins (Table 3) were made as previously described [25].
Briefly, these predictions assume that proteins fall into one of two
classes: wholly disordered or wholly ordered. PONDR VL-XT CDF
classification [11] and CH classification [48] were used to make
predictions based on the consensus between the two methods. A
degree of confidence was derived for both methods, and, for the
purposes of consensus prediction, predictions were taken as being
either high or low confidence. If both methods agree, a protein is
assigned to that class. If one method gives a high confidence
prediction and the other a low confidence prediction, a protein is
assigned the class indicated by the high confidence prediction.
Finally, if the methods disagree and both give either high confidence
or low confidence prediction, the protein is left unclassified. The
normal test for two binomial proportions was used to calculate 95%
confidence intervals and p-values for Table 3.

Amino acid composition. The amino acid composition analysis was
performed as previously described [22]. Briefly, the mole fraction of
the amino acid in a database was calculated as:

Pj ¼
X
ðniPjiÞ=

X
ni;

where Pji is the frequency of amino acid j in sequence i of length ni.
The variances of the amino acids in the dataset were calculated as:

VarðPjÞ ¼ f
X

n2i VarðPjiÞg=ð
X

niÞ2;

where Var(Pji) ¼ Pji(1 – Pji)/ni.
The fractional difference in composition between two datasets a

and b was calculated as ðPa
j � Pb

j Þ=Pb
j . The variances for these ratios

were calculated as:

VarðPa
j � Pb

j Þ=Pb
j ¼ ðPa

j =P
b
j Þ

2fVarðPa
j Þ=ðPa

j Þ
2 þ VarðPb

j Þ=ðPb
j Þ

2g;

where Pa
j is the mole fraction of amino acid j in the dataset a, and

VarðPa
j Þis the variance of amino acid j in the dataset a.

GO annotations. Gene Ontology (GO) [49] annotations for S.
cerevisiae [29] were obtained from the GOA database [50]. The
correlation between PONDR VL-XT disorder predictions and
process/function/localization GO annotations were determined using
an approach related to Fisher’s permutation test [51]. This approach
has been previously used to examine the association of disorder
predictions and GO annotations [12]. In this test, a null distribution,
which assumes no association between disorder predictions and
annotations, is generated. Disorder predictions for adjacent residues
are highly correlated due to overlapping compositional windows. To
partially account for this, the observed disordered regions (rather
than individual residue predictions) were permuted.

Predicted disordered regions were randomly distributed 10,000
times for hubs and ends separately, and the number of disordered
residues associated with specific annotations was counted. This null
distribution was used to calculate a Z-score for the observed counts
for each annotation, and significance was evaluated based on the
number of trials that contradicted the hypothesis indicated by the Z-
score. The calculated p-values have not been corrected for multiple
testing. High-level GO annotations of interest were selected prior to
testing, and results were restricted to annotations with at least five
examples in each of the hubs and ends sets.

Supporting Information

Figure S1. The Percentages of Hub and End Proteins from BioGRID
and HPRD with �30 to �100 Consecutive Residues Predicted to Be
Disordered

95% confidence intervals were calculated using normal test for two
binomial proportions.

Found at DOI: 10.1371/journal.pcbi.0020100.sg001 (911 KB EPS).

Figure S2. The Percentages of All Interacting Proteins from Four
Datasets with �30 to �100 Consecutive Residues Predicted to Be
Disordered

95% confidence intervals were calculated using normal test for two
binomial proportions.

Found at DOI: 10.1371/journal.pcbi.0020100.sg002 (982 KB EPS).

Figure S3. The Percentages of All Interacting Proteins from BioGRID
and HPRD with �30 to �100 Consecutive Residues Predicted to Be
Disordered

95% confidence intervals were calculated using normal test for two
binomial proportions.

Found at DOI: 10.1371/journal.pcbi.0020100.sg003 (913 KB EPS).

Table S1. Properties of Protein Interaction Datasets Derived from
BioGRID and HPRD

Found at DOI: 10.1371/journal.pcbi.0020100.st001 (19 KB XLS).

Table S2. Disorder Attributes Calculated for Four Datasets

Found at DOI: 10.1371/journal.pcbi.0020100.st002 (23 KB XLS).

Table S3. Results of a Binary Classification Using Consensus Method
on BioGRID and HPRD Datasets

The percentages of ordered, disordered, and unclassified proteins in
each dataset are shown.

Found at DOI: 10.1371/journal.pcbi.0020100.st003 (19 KB XLS).

Accession Numbers

Swiss-Prot (http://www.ebi.ac.uk/swissprot) accession numbers for
proteins mentioned in this paper are: Abp1p (P15891), Act1p
(P60010), Arp2 and Arp3 (P32381, P47117), Cmd1p (P06787), FlgM
(P26477), Las17p (Q12446), Rvs167p (P39743), and Sla1p (P32790).
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