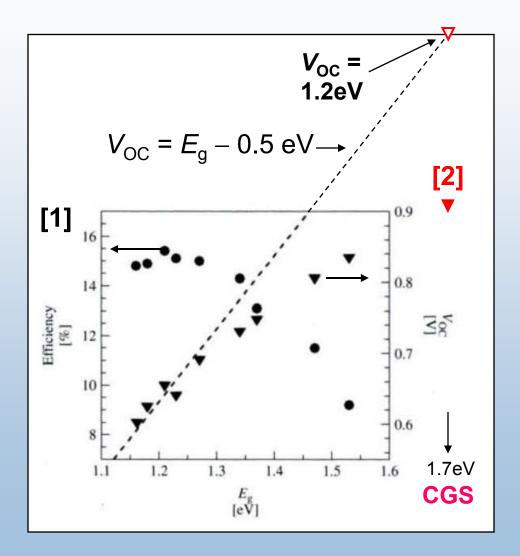


Innovation for Our Energy Future

Intrinsic *DX* centers in ternary chalcopyrite semiconductors

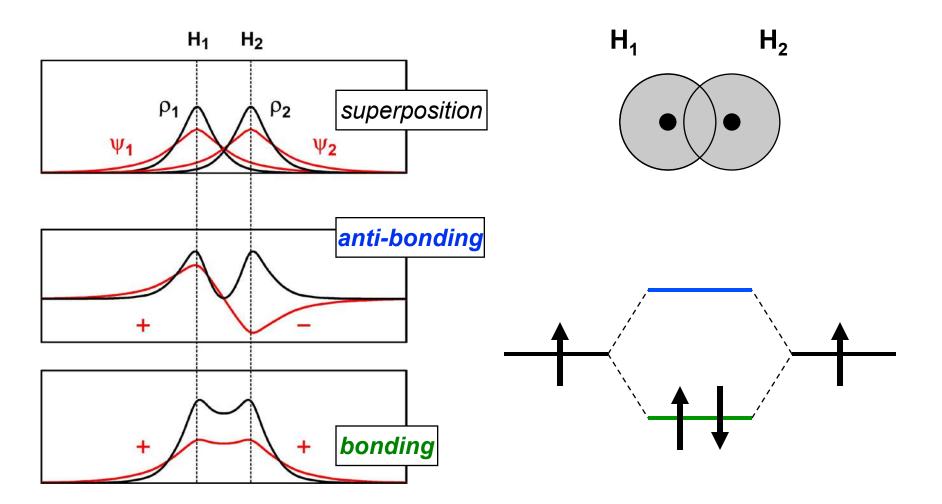
"Why metastable intrinsic defects cause open-circuit-voltage limitation and how they can be avoided"


Stephan Lany and Alex Zunger

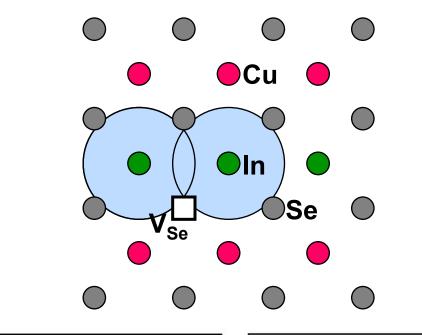
NREL/PR-590-43272 Presented at the 33rd IEEE Photovoltaic Specialist Conference held May 11-16, 2008 in San Diego, California

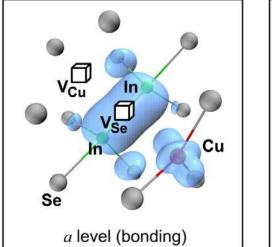
This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-99GO10337 with the National Renewable Energy Laboratory.

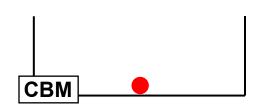
V_{oc} saturation in CIGS

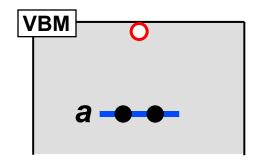

Higher V_{oc}:

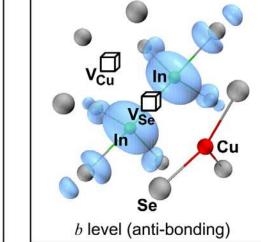
- Higher η for single-junction
- Needed for TF tandem
- Reason: Recombination due to deep defects [3]

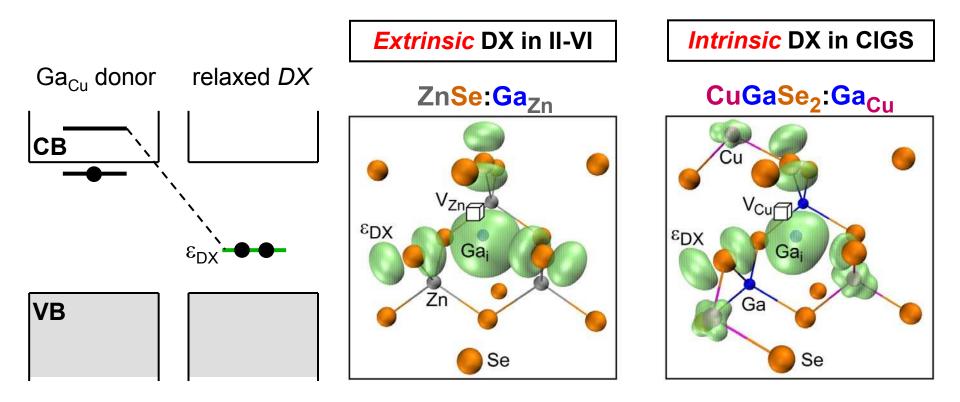

- [1] W.N. Shafarman and L. Stolt, in: Handbook of Photovoltaic Science and Engineering
- [2] R. Kniese, M. Lammer, U. Rau ,
 M. Powalla, TSF 451-452, 430 (2004).
- [3] G. Hanna, A. Jasenek, U. Rau,H.W. Schock, TSF **387**, 71 (2001).



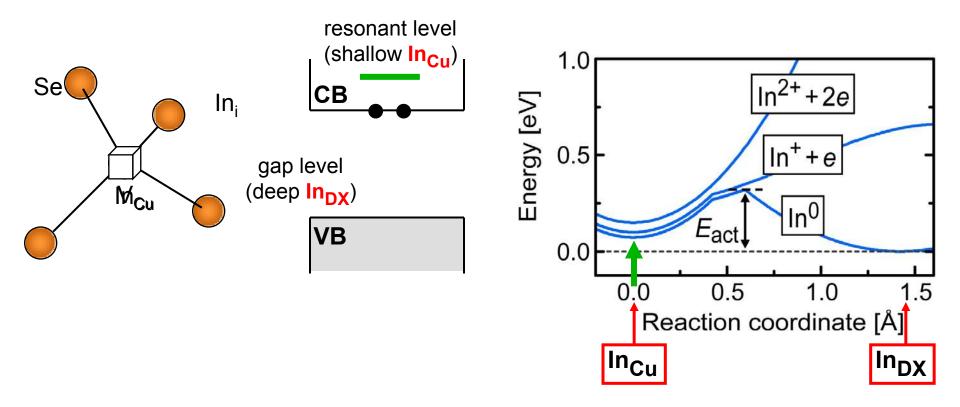

Defects levels (I) – Example: Orbital interaction in the H₂ molecule

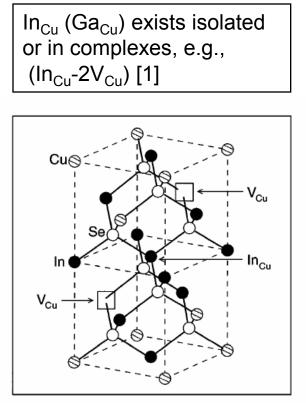

Defects levels (II): Se-vacancy in CulnSe₂





Intrinsic DX centers in CIGS

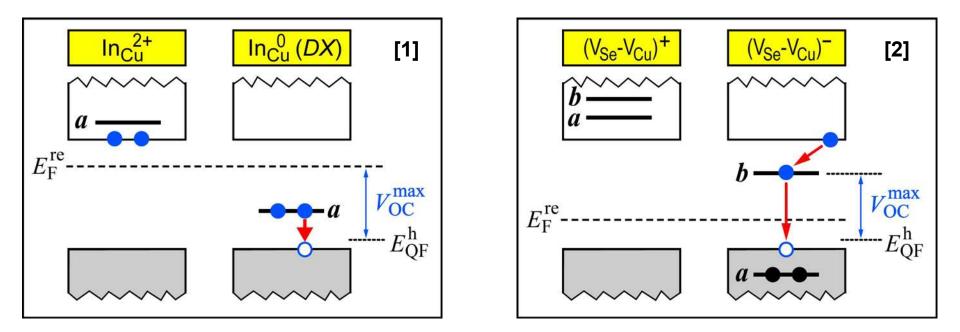

DX centers: Electron traps formed due to lattice relaxations


In II-VI, *DX* centers require **extrinsic** impurities In CIGS, native defects (In_{Cu} , Ga_{Cu}) exhibit *DX* behavior

S. Lany and A. Zunger, Phys. Rev. Lett. 100, 016401 (2008).

Evolvement of ionic structure, electron-level, and energy during the transition into the deep DX state

Critical Fermi levels for electron-trapping



Transition		occurs above $E_{\rm F} > E_{\rm V}$ +
In _{Cu} ²⁺	+ 2e \rightarrow \ln_{DX}^{0}	0.9 eV
(In _{Cu} -V _{Cu}) ⁺	+ 2e \rightarrow (In _{DX} -V _{Cu}) ⁻	1.1 eV
(In _{Cu} -2V _{Cu}) ⁰	+ 2e \rightarrow $(In_{DX}-V_{Cu})^{2-}$	1.3 eV

Electron-trapping due to DX centers occurs mainly in wider-gap $Culn_{1-x}Ga_xSe_2$ alloys with $x \ge 0.3$

[1] S.B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. Lett. 78, 4059 (1997).

V_{OC} limitation by In_{Cu} , Ga_{Cu} , V_{Se} and their complexes with V_{Cu}

In_{cu}, Ga_{cu}: V_{OC} is limited by the transition that causes atomic reconfiguration V_{Se} - V_{Cu} :The negative (acceptor) configuration exhibits deep trap levelBoth types of defects limit V_{OC} below ~1 eV

[1] S. Lany and A. Zunger, Phys. Rev. Lett. **100**, 016401 (2008).
[2] S. Lany and A. Zunger, J. Appl. Phys. **100**, 113725 (2006).

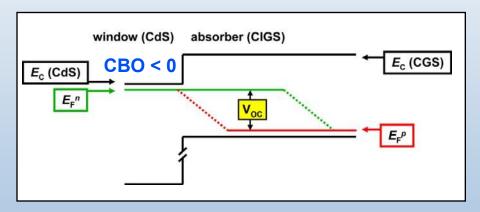
How to avoid V_{OC} limiting metastable defects?

$$\Delta H_{D,q}(\mu, E_{F}) = [E_{D,q} - E_{host}] + [\mu_{host} - \mu_{D}] + q \cdot E_{F}$$
CulnSe₂ stability condition

$$\Delta \mu_{Cu} + \Delta \mu_{In} + 2\Delta \mu_{Se} = \Delta H_{f}(CIS)$$
Competing phases
e.g., $3\Delta \mu_{Cu} + 2\Delta \mu_{Se} \leq \Delta H_{f}(Cu_{3}Se_{2})$
• Minimize \ln_{Cu} , Ga_{Cu} ,
 $(\ln_{Cu}-2V_{Cu})$
• Minimize V_{Se} , $(V_{Se}-V_{Cu})$
• Cu-rich / Se-rich growth

Trade-offs for minimizing V_{oc} limiting defects

Minimizing defects:


Type inversion:

Other causes of V_{oc} limit. :

Se-rich / Cu-rich e.g., phase-equilibrium with Cu_3Se_2

Se-poor / III-rich (Cu-deficient) [1]

band-offset [2], ...?

[1] S. Lany *et al.*, Appl. Phys. Lett. **86**, 042109 (2005)
[2] M. Morkel *et al.*, Appl. Phys. Lett. **79**, 4482 (2001)

Conclusions

- Intrinsic donor-type defects In_{Cu}, Ga_{Cu}, and V_{Se}, and their complexes with V_{Cu} cause metastability, but also act to limit V_{OC}
- Growth conditions which minimize these defects (Cu-rich/Se-rich) are very different from those currently used
- Overcoming V_{OC} limitation requires to address other issues and trade-offs

References

S. Lany and A. Zunger, Phys. Rev. Lett. **100**, 016401 (2008) S. Lany and A. Zunger, J. Appl. Phys. **100**, 113725 (2006)

Stephan_Lany@NREL.gov

