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Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles
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The electron-phonon interaction and related transport properties are investigated in monolayer silicene and

MoS2 by using a density functional theory calculation combined with a full-band Monte Carlo analysis. In

the case of silicene, the results illustrate that the out-of-plane acoustic phonon mode may play the dominant

role unlike its close relative, graphene. The small energy of this phonon mode, originating from the weak sp2 π

bonding between Si atoms, contributes to the high scattering rate and significant degradation in electron transport.

In MoS2, the longitudinal acoustic phonons show the strongest interaction with electrons. The key factor in this

material appears to be the Q valleys located between the Ŵ and K points in the first Brillouin zone as they

introduce additional intervalley scattering. The analysis also reveals the potential impact of extrinsic screening

by other carriers and/or adjacent materials. Finally, the effective deformation potential constants are extracted

for all relevant intrinsic electron-phonon scattering processes in both materials.
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I. INTRODUCTION

Very recently, the attention to low-dimensional materi-
als has expanded beyond the best-known example of this
kind: graphene.1–4 In particular, silicene5–8 and molybdenum
disulfide9–12 have gained much interest due to their unique
properties in electronics, optoelectronics, and magnetics.
Silicene is expected to share certain superior properties of
graphene due to its structural similarity and the close position
in the periodic table. More importantly, it is compatible with
the current silicon-based technology and can be grown on
a number of different substrates.13–15 On the other hand,
atomically thin MoS2 is a semiconductor with a finite band
gap that ranges from approximately 1.3 to 1.9 eV depending
on the thickness.9 It has been used as the channel material in
field effect transistors with promising results.12,16 In addition,
monolayer MoS2 offers the possibilities of interesting spin and
valley physics utilizing the strong spin-orbit coupling.17–20

Characterization of electronic transport, particularly the
intrinsic properties, is critical for assessing and understanding
the potential significance of a material. In the case of silicene,
many of the crucial parameters are presently unknown due
to the brief history of this material. In comparison, notable
advances have been made in MoS2 lately. Experimental
investigation of transistor characteristics claimed the channel
mobilities ranging from ∼200 cm2/Vs to ∼1000 cm2/Vs at
room temperature,12,16 while a theoretical study estimated an
intrinsic phonon-limited value of ∼410 cm2/Vs based on a
first-principles calculation of electron-phonon interaction.21

However, questions remain regarding the intrinsic electron
transport in MoS2. For instance, those extracted from transistor
current-voltage (I -V ) measurements are indirect accounts and
can be strongly affected by extrinsic factors, requiring caution
as illustrated in the latest studies.22–24 Similarly, the latter
work21 includes only the electronic states in the conduction
band minima at the K points in the first Brillouin zone (FBZ);
the impact of Q valleys located along the Ŵ-K symmetry

directions (which correspond to the minima of bulk MoS2)
were not considered. A detailed investigation is clearly called
for.

In this paper, we examine intrinsic transport properties
of monolayer silicene and MoS2 by taking advantage of
first-principles analysis and full-band Monte Carlo simulation.
Along with the electronic band structure, the phonon spectra
and electron-phonon coupling matrix elements are calculated
for all phonon branches within the density functional theory
(DFT) formalism.25,26 The obtained electron scattering rates
are subsequently used in the Boltzmann transport equation
to compute the intrinsic velocity-field characteristics with
a full-band Monte Carlo treatment. The calculation results
are compared with the available data in the literature and
the key factors affecting electron transport in these materials
elucidated. The investigation also provides the effective defor-
mation potential constants extracted from the first-principles
results.

II. THEORETICAL MODEL

Both monolayer silicene and MoS2 are hexagonal crystals.
To account for their delicate atomic structures accurately, the
calculations are performed in the DFT framework, as it is
implemented in the QUANTUM ESPRESSO package,27 using
ultrasoft pseudopotentials. A minimum of 35 Ry is used
for the energy cutoff in the plane-wave expansion along
with the charge truncation ∼15 times larger. The generalized
gradient approximation is used for the exchange-correlation
potential for silicene, while the local density approximation
is adopted for MoS2. The momentum space is sampled on a
36 × 36 × 1 Monkhorst-Pack grid with no offset (silicene) or
on a 18 × 18 × 1 grid (MoS2) for electronic band calculation.
The simulated cells are optimized in both cases until the atomic
forces decrease to values less than 0.015 eV/Å.

Each phonon is treated as a perturbation of the self-
consistent potential, created by all electrons and ions of the
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system, within the linear response [i.e., density functional
perturbation theory (DFPT)].25 The calculation of the potential
change due to this perturbation gives the value of the electron-
phonon interaction matrix element26:

g
(i,j )v
q,k =

√

h̄

2Mωv,q
〈j,k + q|�V v

q,SCF|i,k〉, (1)

where |i,k〉 is the Bloch electron eigenstate with the wave
vector k, band index i, and energy Ei,k; �V v

q,SCF is the

derivative of the self-consistent Kohn-Sham potential25 with
respect to atomic displacement associated with the phonon
from branch v with the wave vector q and frequency ωv,q;
and M is the atomic mass. Numerical calculations of lattice
dynamics are conducted on a 18 × 18 × 1 Monkhorst-Pack
grid. Indices i,j are dropped hereinafter as only the first
(lowest) conduction band is considered.

With the electron-phonon interaction matrix from the first-
principles calculation, the scattering rate of an electron at state
|k〉 can be obtained by using Fermi’s golden rule

1

τk
=

2π

h̄

∑

q,v

∣
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v
q,k

∣

∣

2
[Nv,qδ(Ek+q − h̄ωv,q − Ek)

+ (Nv,q + 1)δ(Ek−q + h̄ωv,q − Ek)], (2)

where Nv,q = [exp(h̄ωv,q/kBT ) + 1]−1 is the phonon oc-
cupation number, kB the Boltzmann constant, and T the
temperature. As we are interested in the intrinsic scattering
probability that is not limited to a specific carrier distribution
(and thus, the Fermi level), our formulation assumes that
all final electronic states are available for transition (i.e.,
nondegenerate) in the bands under consideration.

For transport properties, a Monte Carlo approach with
full-band treatment is adopted. All of the details described
above, including the wave-vector (k,q) dependence of the
scattering matrix elements [e.g., Eq. (1)], are accounted for.
This allows solution of the Boltzmann transport equation
beyond the conventional relaxation time approximation.

III. RESULTS AND DISCUSSION

A. Monolayer silicene

Earlier first-principles studies have shown that the sta-
ble structure for monolayer silicene has a low-buckled
configuration.4,6 While planar and high-buckled cases lead to
imaginary phonon frequencies around the Ŵ point, indicating
an unstable structure, the low-buckled construction provides
well-separated phonon branches and positive frequencies.
The origin of buckled geometry in silicene is the weakened
π bonding of the electrons in the outer shell. Compared
with graphene, which has very strong π bonding and planar
geometry, the interatomic bonding distance is much larger
in silicene, which decreases the overlap of pz orbitals and
dehybridizes the sp2 states. Accordingly, the planar geometry
can not be maintained. In our analysis, the lattice constant a is
optimized to be 3.87 Å, with the buckling distance of 0.44 Å,
in good agreement with Ref. 4.

Figure 1 shows the outcome of electronic and phononic
band calculation in monolayer silicene. The Fermi velocity
extracted from the Dirac cone is around 5.8 × 107 cm/s,

FIG. 1. Electronic and phononic band structures of monolayer

silicene along the symmetry directions in the FBZ. The Dirac point

serves as the reference of energy scale for electrons.

which is roughly one half of that in graphene [see bands
π and π∗ in Fig. 1(a)]. While this result is in agreement
with other theoretical predictions,28,29 a value as high as
1 × 108 cm/s was also claimed in the literature.6 As for
phonons in Fig. 1(b), six branches are identified with two
atoms per unit cell. The transverse acoustic (TA) and lon-
gitudinal acoustic (LA) phonon dispersion relations are well
approximated by sound velocities in the long-wavelength limit:
vTA = 5.4 × 105 cm/s and vLA = 8.8 × 105 cm/s. Although
the out-of-plane acoustic (ZA) phonon exhibits an approximate
q2 dependence near the center of the Brillouin zone, its
sound velocity can also be estimated: vZA = 6.3 × 104 cm/s.
Interesting points to note in the phonon dispersion are the
discontinuities in the frequency derivative of the highest optical
branch that, similar to graphene, appear at the high-symmetry
points Ŵ and K . These discontinuities are referred to as Kohn
anomalies,28,30 induced by unusual screening of lattice vibra-
tions by conduction electrons. Sharp cusps typically indicate
strong electron-phonon coupling. Calculated phonon energies
at the Ŵ, M , and K points in the FBZ are summarized in
Table I.

The electron-phonon interaction matrix elements obtained
for the electron at the Dirac point [i.e., k = (4π/3a,0)] are
plotted in Fig. 2 as a function of phonon wave vector q. Kohn
anomalies, illustrated by the three peaks at three equivalent
K points in the transverse optical (TO) mode and another
at the zone center for the longitudinal optical (LO) branch,
are not as distinct as those observed in graphene.26 Overall,
coupling of optical phonons with electrons appears to be
relatively weak. In comparison, the acoustic phonons show
much stronger interaction. Particularly striking is the large
strength of ZA phonon coupling, unlike in graphene. Due to

TABLE I. Phonon energies (in units of meV) at the symmetry

points for monolayer silicene.

Phonon modes Ŵ K M

ZA 0 13.2 13.0

TA 0 23.7 13.4

LA 0 13.2 13.5

ZO 22.7 50.6 50.7

TO 68.8 50.6 56.7

LO 68.8 61.7 64.4
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FIG. 2. (Color online) Electron-phonon interaction matrix ele-

ments |gv
k+q,k| (in units of eV) from the DFPT calculation in silicene

for k at the conduction band minimum K point [i.e., (4π/3a,0)] as a

function of phonon wave vector q for all six modes v.

the buckled geometry (originating from the weak π bonding
mentioned earlier), silicene does not maintain certain key
characteristics of ideal planar lattice, especially the reflection
symmetry with respect to the atomic plane. As such, the
symmetry consideration, in which only the in-plane phonons
can couple linearly to two-dimensional (2D) electrons,31 no
longer applies. An increased role of ZA phonons is clearly
expected.

The scattering rates calculated at room temperature (T =
300 K) are shown in Fig. 3. The result is plotted specifically for
electrons with wave vector k along the K-Ŵ direction. Since

FIG. 3. (Color online) Electron scattering rates in silicene via

(a) emission and (b) absorption of phonons calculated at room

temperature. The electron wave vector k is assumed to be along

the K-Ŵ axis.

FIG. 4. (Color online) Drift velocity versus electric field in

monolayer silicene obtained from a Monte Carlo simulation at

different temperatures: 50 K (square), 100 K (triangle), 200 K

(diamond), and 300 K (circle). The results in (a) consider the

scattering by ZA phonons, while those in (b) do not.

the integration in Eq. (2) is over the entire FBZ, both intravalley
(K → K) and intervalley (K → K ′) transition events are
included. As the interaction matrix elements illustrated above
suggest, acoustic phonons have much larger scattering rates
than optical modes. Specifically, the ZA branch provides the
dominant contribution, which can be attributed to the observed
large coupling strength as well as the small phonon energy near
the zone center (i.e., a large occupation number NZA,q). This
also indicates that the scattering rates are very sensitive to the
phonon energies (or, equivalently, the value of vZA). Since an
accurate description of ZA dispersion in the long-wavelength
limit requires a well-converged calculation with a sufficiently
dense grid, care must be taken when evaluating accuracy of
the data in the literature.6,29

Figure 4(a) provides the drift velocity versus electric field
at different temperatures obtained by full-band Monte Carlo
simulations. The intrinsic mobility estimated from the figure
is approximately 1200 cm2/Vs and the saturation velocity
(defined at 100 kV/cm) 3.9 × 106 cm/s at 300 K. When the
temperature decreases, both the mobility and the saturation
velocity enhance due to the suppression of phonon excitation;
the respective values at 50 K are 3.0 × 104 cm2/Vs and 6.2 ×
106 cm/s. The drift velocities show a slight negative slope at
high fields that becomes more pronounced at low temperatures.
This phenomenon (i.e., the negative differential resistance) can
be explained, at least in part, by the nonlinear band dispersion
at high electron energies as in graphene.32

The calculation results discussed above demonstrate the
intrinsic properties of silicene. When this material is synthe-
sized or placed on a substrate, however, additional scattering
sources such as surface polar phonons and impurities must
be considered, which could degrade the performance further.
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A topic that may need additional attention is the role of
ZA phonons in the presence of a supporting material. As
recent measurement of graphene in-plane thermal conductivity
attests,33 even a weak binding between a 2D crystal and
the substrate could dampen the ZA vibrations substantially.
Moreover, it is reasonable to anticipate that the extent of
this suppression would be dependent on the detailed inter-
action between two materials. Since ZA phonons provide the
dominant role in the electron-phonon interaction in silicene,
it (i.e., the damped vibration) could actually lead to sizable
reduction in the scattering rate. To gauge the impact, transport
characteristics are also studied without the ZA scattering.
As shown in Fig. 4(b), the mobility experiences an increase
of greater than threefold (3900 cm/s), while the saturation
velocity goes up more modestly (5.6 × 106 cm/s). This
estimate may be considered an upper limit for silicene on
a substrate.

B. Monolayer MoS2

In the present DFT calculation for monolayer MoS2,
the optimized lattice constant is 3.13 Å, consistent with
other theoretical studies.21,34,35 Furthermore, this value is in
good agreement with 3.15 Å determined experimentally in
bulk MoS2.36 The resulting electronic and phononic band
dispersion is depicted in Fig. 5. As shown, monolayer MoS2

is a semiconductor with a direct gap of 1.86 eV at the K point,
a number within a few percent from a recent measurement of
1.9 eV.9 Our calculation also predicts the presence of second
energy minima only about 70 meV higher. These so-called
Q valleys are located along the Ŵ-K axes at approximately
the halfway points [e.g., Q = (0.34 × 2π/a,0) versus K =
(4π/3a,0)]. At present, the energy separation EQK between
the K and Q valleys is unsettled with the estimates ranging
from 50 to 200 meV.21,35 Since this is a crucial parameter for
electron transport, a more extended discussion is provided
later in the paper in relation to intervalley scattering. The
band dispersion relations around the energy minima are nearly
quadratic and can be well described by the effective mass
approximation. For the K valleys (i.e., the energy minima
at the equivalent K points), the extracted longitudinal and
transverse effective masses are almost identical, ml

K = mt
K =

0.50m0. On the other hand, the Q valleys yield ml
Q = 0.62m0,

FIG. 5. Electronic and phononic band structures of monolayer

MoS2 along the symmetry directions in the FBZ. The conduction

band minimum at the K point serves as the reference of energy scale

for electrons.

TABLE II. Phonon energies (in units of meV) for TA, LA, TO(E′),

LO(E′), and A1 (or homopolar) modes at the Ŵ, K , M , and Q points

in the FBZ of monolayer MoS2.

Phonon modes Ŵ K M Q

TA 0 23.1 19.2 17.9

LA 0 29.1 29.2 23.6

TO(E′) 48.6 46.4 48.2 48.0

LO(E′) 48.9 42.2 44.3 44.2

A1 50.9 51.9 50.1 52.2

mt
Q = 1.0m0 with the longitudinal direction defined along the

Ŵ-K axis. m0 denotes the electron rest mass.
Monolayer MoS2 has the symmetry of the point group

D3h, with nine branches of phonons. The irreducible repre-
sentations associated with each phonon mode, together with
the polarization (longitudinal or transverse), help denote all of
the vibrational modes,34,37 as plotted in Fig. 5. The E′′ modes
are degenerate at the Ŵ point. These two modes are the in-plane
optical vibrations, with two S atoms moving out of phase and
Mo atom static. The E′ modes are polar LO and TO phonons,
with Mo atom and two S atoms moving out of phase. Due to the
coupling with the macroscopic electric field, there is LO-TO
separation at the Ŵ point, which slightly lifts the LO(E′) mode
upward on energy scale. A nonanalytical part is added to the
dynamic matrix resulting in a small splitting of about 0.3 meV
[not visible due to the energy scale of Fig. 5(b)]. The A1 and A′′

2

branches are two out-of-plane optical phonon modes. A1 is also
referred to as the homopolar mode, with two S atoms moving
out of phase and the Mo atom static. In the A′′

2 mode, the Mo
atom and two S atoms vibrate out of phase. The three lowest
branches are LA, TA, and ZA modes, with sound velocities of
vLA = 6.6 × 105 cm/s, vTA = 4.3 × 105 cm/s. The phonon
energies at different symmetric points are summarized in
Table II.

Figures 6 and 7 show the electron-phonon interaction matrix
elements for the initial electron state at k = K [=(4π/3a,0)]
and k = Q [≈ (2π/3a,0)], respectively, for TA, LA, TO(E′),
LO(E′), and A1 (or homopolar) phonon modes. The con-
tribution from the remaining four branches is found to be
negligible due to the weak coupling. The matrix elements
for k = K demonstrate a threefold-rotational symmetry (i.e.,
120◦), while those of k = Q show the reflection symmetry
with respect to the qx axis. As expected, the LO(E′) phonons
near the Ŵ point possess the characteristics of Fröhlich
coupling through the induced macroscopic electric field typical
of polar materials. Since the relative electronic potential is not
periodic in the long-wavelength limit,25 DFPT does not yield a
correct value to the electron-phonon interaction matrix. For an
approximation, the matrix element of LO(E′) is interpolated
at Ŵ by using the values from the nearby q points. This [i.e.,
LO(E′)] and A1 are the only two modes that have nonzero
scattering matrix as q → 0 (intravalley scattering); in the
other three branches, the matrix elements only have first-order
components |gq,k| ∼ q, leading to |gq→0,k| → 0. With regard
to intervalley scattering that requires large-q phonons, a
number of different transition processes are possible as shown
in Figs. 6(f) and 7(f). For instance, Fig. 6 indicates strong
electron-phonon interaction at the symmetry points M in the
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FIG. 6. (Color online) (a)–(e) Electron-phonon interaction matrix

elements |gv
k+q,k| (in units of eV) from the DFPT calculation in MoS2

for k at the conduction band minimum K point [i.e., (4π/3a,0)] as a

function of phonon wave vector q. Only the branches with significant

contribution are plotted; i.e., TA, LA, TO(E′), LO(E′), and A1 (or

homopolar) modes. (f) Schematic illustration of intervalley scattering

for electrons in the K valley.

FIG. 7. (Color online) (a)–(e) Electron-phonon interaction matrix

elements |gv
k+q,k| (in units of eV) from the DFPT calculation in MoS2

for k at the Q point [i.e., Q1 ≈ (2π/3a,0)] as a function of phonon

wave vector q. Only the branches with significant contribution are

plotted; i.e., TA, LA, TO(E′), LO(E′), and A1 (or homopolar) modes.

(f) Schematic illustration of intervalley scattering for electrons in the

Q valleys.

FIG. 8. (Color online) Scattering rates of K-valley electrons in

MoS2 via (a) emission and (b) absorption of phonons calculated at

room temperature. The electron wave vector k is assumed to be along

the K-Ŵ axis.

phonon momentum space (denoted as q = M for simplicity)
for all modes except LO(E′); these phonons can induce
electron transition from K to Q′ valleys. Another example
is the phonons at q = K ′ for all five modes in Fig. 7, which
can be associated with electron scattering from Q1 to Q4.

The electron-phonon scattering rates are calculated as
a function of electron energy using Fermi’s golden rule.
Figure 8 gives the rates for electrons in the K valleys at
room temperature, while the result for Q-valley electrons is
shown in Fig. 9. Similarly to silicene, the wave vector k of the
initial electronic state is chosen along the K-Ŵ or Q-Ŵ axis,
respectively. As can be seen from the figures, the LA mode
provides the largest scattering rates consistent with its large
coupling strength. The discontinuities or steps in the curves
represent either the onset of optical phonon emission or inter-
valley scattering. For instance, the abrupt increase observed
in the rate of LA phonons at ∼100 meV in Fig. 8(a) can be
attributed to the above-mentioned strong K → Q′ transition

FIG. 9. (Color online) Scattering rates of Q-valley electrons in

MoS2 via (a) emission and (b) absorption of phonons calculated at

room temperature. The Q-K separation energy EQK (=70 meV)

denotes the onset of curves as the K-valley minimum serves as

the reference (zero) of energy scale. The electron wave vector k
is assumed to be along the Q-Ŵ axis.
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FIG. 10. (Color online) Drift velocity versus electric field in

monolayer MoS2 obtained from a Monte Carlo simulation at different

temperatures with EQK = 70 meV. When electron transfer to the Q

valleys is not considered, the mobility increases to approximately

320 cm2/Vs at 300 K.

via emission of a LA phonon with q = M . Since this phonon
energy is approximately 30 meV (see Fig. 5), the final-state
energy of ∼70 meV indeed matches to the Q-K separation
EQK . Similarly, the onset of transition via absorption can
be found around 40 meV in Fig. 8(b). The large density
of states in the Q valleys (evident from the large effective
masses) makes the contribution of this scattering even more
prominent. If, on the other hand, all of the final states in the Q

valleys are excluded, the total scattering rate for the K-valley
electron reduces drastically to approximately 2 × 1013 s−1,
which is consistent with the prediction of an earlier first-
principles calculation.21 The observed difference of an order
of magnitude clearly illustrates the strong dependence of the
scattering rates on EQK . The inconsistency of this value in the
recent publications21,35 adds difficulty to accurately evaluating
the role of Q valleys.

Utilizing the scattering rates, the velocity versus field
relation is obtained by a full-band Monte Carlo simulation
at four different temperatures. As shown in Fig. 10, the
extracted mobility decreases from 4000 cm2/Vs at 50 K to
about 130 cm2/Vs at room temperature, while the saturation
velocity changes from 7.6 × 106 to 3.4 × 106 cm/s. The small
mobility and saturation velocity can be attributed to strong
electron-phonon scattering as well as the heavy effective
masses. With massive electrons that hinder acceleration and
many states to scatter into (e.g., K , K ′, Q, Q′ valleys), this is
an expected outcome.

Compared to a recent theoretical estimation21 of
410 cm2/Vs, however, our mobility is significantly smaller,
requiring a careful analysis of the discrepancy. One factor
that could yield at least a partial explanation is the is-
sue surrounding the Q-K separation. With inconsistencies
reported in several first-principles results on this sensitive
quantity (see the discussion above), it is not unreasonable to
imagine that our DFT calculation may have also experienced
similar inaccuracies. If EQK proves to be substantially larger

than the estimated 70 meV, then the Q valleys would have
a limited influence on the low-field mobility and can be
neglected in the calculation as in Ref. 21 (with 200 meV).
In this case, our simulation estimates the K-valley dominated
mobility of 320 cm2/Vs that is essentially in agreement with
the earlier prediction (410 cm2/Vs).21 Clearly, both first-
principles models produce a consistent picture of K-valley
electron dynamics including intrinsic scattering with relevant
phonon modes. The difference is the relative significance of Q

valleys (e.g., 70 versus 200 meV). As such, further clarification
of intrinsic mobility in monolayer MoS2 may need to be
preceded by accurate experimental determination of EQK .

Even when the influence of Q valleys becomes negligible,
a sizable disparity remains between the theoretically obtained
mobility and the highest value claimed experimentally (e.g.,
∼1090 cm2/Vs).16 One reason could be inaccuracy in the
measurement due to external artifacts as mentioned earlier.
Indeed, the latest analysis revealed that the attempts based
on the two-point method in the thin-film MoS2 transistor
channel ignore the coupling capacitance between top and
bottom gates, leading to an overestimation of the mobility
by approximately a factor of 14.22,23 When accounting for
this effect, the recalibrated data from the experiments indicate
mobility values substantially smaller than the theoretical
prediction (<130–410 cm2/Vs). A subsequent Hall measure-
ment also yielded 63.7 cm2/Vs at 260 K.24 Considering the
influence of extrinsic scattering sources such as impurities, our
calculation is actually consistent with the revised experimental
estimate and provides a reasonable upper limit for the intrinsic
mobility.

An additional point to note when interpreting the exper-
imental data is that the screening by degenerate electrons
can affect the bare scattering rates substantially (thus, the
mobility) in a low-dimensional system.38,39 This effect can
be included by renormalizing the electron-phonon interaction
through the dielectric function; i.e., gv

q,k → gv
q,k/ǫ(q). To

gauge the potential significance in monolayer MoS2, we
adopt a simple model for the dielectric function based on
Thomas-Fermi screening of only the K-valley electrons: i.e.,
ǫ(q) = 1 + qTF/q, where the screening wave vector qTF =
4mKe2/h̄2κ . Here, the factor of 4 accounts for the spin and
valley degeneracies, e is the electron charge, and κ is the
background dielectric constant. Subsequent calculation with
a rough estimate of ǫ(q) shows that the scattering rates can
experience a decrease of about an order of magnitude through
screening. Thus, it is evident that the effect (i.e., screening)
must be taken into account accurately when the carrier density
becomes degenerate in MoS2. A detailed analysis of ǫ(q) is,
however, beyond the scope of this investigation as our focus is
on the properties of intrinsic electron-phonon interaction (i.e.,
nondegenerate).

C. Deformation potential model

For practical applications, it would be convenient to
approximate the ab initio results for electron-phonon coupling
by a simple analytical model. Particularly useful in the
present case is the deformation potential approximation. Under
this treatment, the coupling matrix 〈j,k + q| △ V v

q,SCF|i,k〉
in Eq. (1) can be expressed in the first order (D1q), or in
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the zeroth order (D0).40 The first-order deformation potential
constant (D1) is adopted to represent the coupling matrices
for the acoustic phonon modes in the long-wavelength limit
(i.e., intravalley scattering). In comparison, those involving the
near zone-edge acoustic phonons (i.e., intervalley scattering)
are treated by using the zeroth-order deformation potential
(D0) in a manner analogous to the optical modes. In the
latter case (D0), the phonon energy is assumed independent
of the momentum for simplicity. The obtained analytical
expressions of the scattering rates are then matched to the first-
principles results by fitting the effective deformation potential
constants.

For silicene, the intravalley scattering rate by acoustic mode
v (=LA, TA, ZA) is obtained as

1

τ
(1)
k,v

∣

∣

∣

∣

Si

=
D2

1kBT

h̄3v2
F ρv2

v

Ek . (3)

Here, ρ is the mass density (= 7.2 × 10−8 g/cm2) and
vv denotes the sound velocity, for which we can take the
value of vZA = 6.3 × 104 cm/s, vTA = 5.4 × 105 cm/s, and
vLA = 8.8 × 105 cm/s, respectively, as discussed earlier. On
the other hand, the rate of optical phonon scattering (both
intravalley and intervalley transitions) as well as the intervalley
acoustic phonon scattering can be expressed by the following
form:

1

τ
(2)
k,v

∣

∣

∣

∣

Si

=
D2

0

2h̄2v2
F ρωv

[(Ek + h̄ωv)Nv

+ (Ek − h̄ωv)(Nv + 1)�(Ek − h̄ωv)], (4)

where �(x) is the Heaviside step function and Nv =
[exp(h̄ωv/kBT ) + 1]−1 for phonon mode v. Since the phonon
dispersion is treated constant in Eq. (4), the intravalley
optical phonon scattering approximates the zone-center (i.e.,
Ŵ) phonon energies for h̄ωv (v = LO, TO, ZO). In the case
of intervalley scattering via acoustic or optical phonons, h̄ωv

takes the respective phonon energy at the zone-edge K point
corresponding to electron transition K ↔ K ′. The specific
values used in the calculation can be found in Table I. When
matched to the first-principles rates, the effective deformation
potential constants can be extracted for each scattering process
as summarized in Table III. A particularly interesting point to
note from the result is that all three acoustic phonons show
generally comparable values of D1 and D0 despite the large
scattering rate of ZA mode (see also Fig. 3). Clearly, this mode
(ZA) couples strongly with electrons but not enough to prevail
over other acoustic branches; its dominant contribution is due
mainly to the small phonon energy as discussed earlier.

TABLE III. Extracted deformation potential constants for

electron-phonon interaction in silicene.

Phonon mode Intravalley Intervalley

ZA 2.0 eV 6.1 × 107 eV/cm

TA 8.7 eV 1.4 × 108 eV/cm

LA 3.2 eV 4.2 × 107 eV/cm

ZO 6.3 × 107 eV/cm 4.3 × 107 eV/cm

TO 1.8 × 108 eV/cm 1.4 × 108 eV/cm

LO 1.9 × 108 eV/cm 1.7 × 108 eV/cm

The electron-phonon scattering processes in MoS2 are
much more complicated as the deformation potentials need to
be determined for both K- and Q-valley electrons. While feasi-
ble, it is not practically useful to define the effective interaction
constants individually based on the mode of involved phonons
and the transition types. Accordingly, we adopt a simplified
description by combining the appropriate contributions into
just two modes, acoustic and optical, respectively.

Using the effective mass approximation for the band struc-
ture near the valley minima, the scattering rate for intravalley
acoustic phonon scattering (i.e., K → K or Q1 → Q1 by both
LA and TA phonons; see Figs. 6 and 7) is given by

1

τ
(1)
k

∣

∣

∣

∣

MoS2

=
m∗

pD2
1kBT

h̄3ρv2
s

, (5)

where ρ = 3.1 × 10−7 g/cm2 for MoS2 and m∗
p is the density-

of-states effective mass for the K or Q valley (final state),

m∗
p =

√
ml

pmt
p (p = K,Q). For electrons in the Q valleys,

strictly speaking, an additional factor of �(Ek − EQK ) is
multiplied to the left side of Eq. (5) to account for the nonzero
energy at the bottom of the Q valley. By taking the sound
velocity vs = vLA (= 6.6 × 105 cm/s), the value of D1 is
estimated to be 4.5 and 2.8 eV in the K and Q valleys,
respectively.

The analytical expression that describes intravalley and
intervalley optical phonon scattering as well as intervalley
acoustic phonon scattering rate is obtained as

1

τ
(2)
k,v

∣

∣

∣

∣

MoS2

= gd

m∗
pD2

0

2h̄2ρωv

[Nv△1 + (Nv + 1)△2], (6)

where gd is the valley degeneracy for the final electron states,
and △1 and △2 denote the onset of scattering for phonon
absorption and emission, respectively. For instance, △1 = 1
and △2 = �(Ek − h̄ωv) for electron transitions between the
K valleys, whereas △1 = �(Ek − EQK ) and △2 = �(Ek −
h̄ωv − EQK ) for transitions between the Q valleys. The factors
corresponding to intervalley transfer between K and Q valleys
can be constructed accordingly, where EQK may be treated as a
potentially adjustable parameter. Tables IV and V summarize
the initial/final electron states, the phonon momentum that
is involved (in the form of its location in the momentum
space), and the extracted deformation potential constants for
each transition process considered in the investigation. For a

TABLE IV. Extracted deformation potential constants for

electron-phonon interaction in MoS2 for electrons in the K valley

[see also Fig. 6(f)].

Phonon Electron Deformation

momentum transition potentials

Dac
1 = 4.5 eV

Ŵ K→K D
op

0 = 5.8 × 108 eV/cm

Dac
0 = 1.4 × 108 eV/cm

K ′ K→K ′ D
op

0 = 2.0 × 108 eV/cm

Dac
0 = 9.3 × 107 eV/cm

Q′ K→Q D
op

0 =1.9 × 108 eV/cm

Dac
0 = 4.4 × 108 eV/cm

M K→Q′ D
op

0 = 5.6 × 108 eV/cm
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TABLE V. Extracted deformation potential constants for electron-

phonon interaction in MoS2 for electrons in the Q1 valley [see also

Fig. 7(f)]. Multiple equivalent valleys for the final state specify the

degeneracy factor gd larger than one in Eq. (6).

Phonon Electron Deformation

momentum transition potentials

Dac
1 = 2.8 eV

Ŵ Q1 → Q1 D
op

0 = 7.1 × 108 eV/cm

Dac
0 = 2.1 × 108 eV/cm

Q3(Q5) Q1 → Q2(Q6) D
op

0 = 4.8 × 108 eV/cm

Dac
0 = 2.0 × 108 eV/cm

M3(M4) Q1 → Q3(Q5) D
op

0 = 4.0 × 108 eV/cm

Dac
0 = 4.8 × 108 eV/cm

K ′ Q1 → Q4 D
op

0 = 6.5 × 108 eV/cm

Dac
0 = 1.5 × 108 eV/cm

Q1 Q1 → K D
op

0 = 2.4 × 108 eV/cm

Dac
0 = 4.4 × 108 eV/cm

M2(M5) Q1 → K ′ D
op

0 = 6.6 × 108 eV/cm

given phonon momentum, the actual value h̄ωv used in the
analytical calculation is the average of the relevant phonon
modes. Specifically, the acoustic (optical) phonon energy is
obtained as the average of LA and TA [TO(E′), LO(E′), and
A1] modes at the respective symmetry points given in Table II.
An additional point to note is that the estimate of D

op

0 at the Ŵ

point includes the effect of Fröhlich scattering by the LO(E′)
mode.21 While this is a mechanism physically distinct from
the deformation potential interaction and must be handled
separately, its impact is relatively modest, at least for the
electrons in the K valley. Accordingly, the present treatment is
considered adequate. Further simplification of the model may

also be possible judging from the narrow range of values in
Dac

0 and D
op

0 (mostly in the low to mid 108 eV/cm).

IV. SUMMARY

We have performed a first-principles calculation together
with a full-band Monte Carlo analysis to examine electron-
phonon interaction and the intrinsic transport properties in
monolayer silicene and MoS2. The results clearly elucidate the
role of different branches as well as the intravalley/intervalley
scattering. The predicted intrinsic mobility for silicene is
approximately 1200 cm2/Vs, with saturation velocity of 3.9 ×
106 cm/s at room temperature. In the case of MoS2, the K-
valley-dominated mobility gives approximately 320 cm2/Vs,
while the intrinsic value reduces to about 130 cm2/Vs when
the energy separation of 70 meV is used between the K and Q

minima. The estimated saturation velocity is 3.7 × 106 cm/s.
The investigation also illustrates the significance of extrinsic
screening, particularly in numerical evaluation of transport
characteristics. The extracted deformation potential constants
may prove to be useful in further studies of these materials.
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