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Biomedical text mining and other automated techniques are beginning to achieve
performance which suggests that they could be applied to aid database curators.
However, few studies have evaluated how these systems might work in practice.
In this article we focus on the problem of annotating mutations in Protein Data
Bank (PDB) entries, and evaluate the relationship between performance of two
automated techniques, a text-mining-based approach (MutationFinder) and an
alignment-based approach, in intrinsic versus extrinsic evaluations. We find that
high performance on gold standard data (an intrinsic evaluation) does not necessar-
ily translate to high performance for database annotation (an extrinsic evaluation).
We show that this is in part a result of lack of access to the full text of journal
articles, which appears to be critical for comprehensive database annotation by
text mining. Additionally, we evaluate the accuracy and completeness of manually
annotated mutation data in the PDB, and find that it is far from perfect. We
conclude that currently the most cost-effective and reliable approach for database
annotation might incorporate manual and automatic annotation methods.

1. Introduction
Biomedical text mining systems have been reaching reasonable levels of per-
formance on gold standard data, and the possibility of applying these sys-
tems to automate biological database construction or annotation is becom-
ing practical. These systems are generally evaluated intrinsically—for ex-
ample, against a gold standard data set with named entities that are tagged
by human annotators, judging the system on its ability to replicate the hu-
man annotations. Systems are less commonly evaluated extrinsically—i.e.,
by measuring their contribution to the performance of some task. Intrinsic
evaluations of text mining tools are critical to accurately assessing their
basic functionality, but they do not necessarily tell us how well a system
will perform in practical applications.

Hunter and Cohen (2006) list four text mining systems that are being or
have been used to assist in the population of biological databases (LSAT,2

MuteXt,3 Textpresso,4 and PreBIND5). Of these four, data on the actual
contribution of the tool to the database curation effort is available for only
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one: the PreBIND system is reported to have reduced the time necessary to
perform a representative task by 70%, yielding a 176-person-day time sav-
ings. More recently, Karamanis et al. (2007) recorded granular time records
for a “paper-by-paper curation” task over three iterations in the design of
a curator assistance tool, and noted that curation times decreased as user
feedback was incorporated into the design of the tool. In the information
retrieval (IR) domain, Hersh et al. (2002) assessed the ability of an IR tool
(Ovid) to assist medical and nurse practitioner students in finding answers
to clinical questions, and found that performance of the system in intrinsic
evaluation did not predict the ability of the system to help users identify
answers. Some tasks in the recent BioCreative shared tasks (particularly
the GO code assignment task in BioCreative 2004, PPI task in BioCreative
2006, and the GN tasks in both years), and to a lesser extent, of the TREC
Genomics track in some years, can be thought of as attempts at extrin-
sic evaluations of text mining technologiesa. Camon et al. (2005) gives an
insightful analysis of the shortcomings of the specific text mining systems
that participated in the BioCreative 2004 GO code assignment task. We
are not aware of any work that directly assesses the ability of an auto-
mated technique to recreate a large, manually curated data set, although
the importance of such evaluations has been noted.8

There has recently been much interest in the problem of automatically
identifying point mutations in text.3,9–15 Briefly, comprehensive and ac-
curate databases of mutations that have been observed or engineered in
specific biological sequences are often extremely valuable to researchers in-
terested in those sequences, but because the requisite information is gener-
ally dispersed throughout the primary literature, manually compiling these
databases requires many expert hoursb. To address this issue, we have
developed MutationFinder,9 an open source, high performance system for
identifying descriptions of point mutations in text. We performed an in-
depth intrinsic evaluation of MutationFinder on blind, human-annotated
test data. For extracting mentions of point mutations from MEDLINE
abstracts, the most difficult task it was evaluated on, it achieved 98.4%
precision and 81.9% recall.

The availability of this system allows us to ask subsequent questions.
First, how effective are manual biological database annotation techniques
in terms of accuracy and coverage; and second, does the performance of
an automated annotation technique in intrinsic evaluation predict the per-
formance of that system in an extrinsic evaluation? The first question

aIn fact, some of the earliest work on information extraction in the modern era of BioNLP,
such as Craven and Kumlein (1999) and Blaschke et al. (1999), can be thought of as
having extrinsic, rather than intrinsic, evaluation.
bWe present the problem of identifying mutations in text, our approach to addressing
it, and a review of the approaches taken by other groups in Caporaso et al. (2007b).
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addresses the issue of whether replacement or augmentation of manual
database annotation methods with automatic methods is worth exploring,
while the second addresses whether the most commonly performed evalu-
ations of automatic techniques translate into information regarding their
applicability to real-world tasks.

To address these questions, we compare and evaluate three approaches
for annotating mutations in Protein Data Bank (PDB)17 entriesc: manual
annotation, which is how mutations are currently annotated in the PDB;
and two automatic approaches—text-mining-based annotation using Mu-
tationFinder, and alignment-based annotation—which we are exploring as
possibilities to replace or augment manual annotation. (The PDB is the
central repository for 3D protein and nucleic acid structure data, and one
of the most highly accessed biomedical databases.) In the following section
we present our methods to address these questions and the results of our
analyses. We identify problems with all of the annotation approaches, au-
tomatic and manual, and conclude with ideas for how to best move forward
with database annotation to produce the best data at the lowest cost.
2. Methods and Results
In this section we describe the methods and results of three experiments.
First, we evaluate the accuracy and comprehensiveness of the manual muta-
tion annotations in the Protein Data Bank. Then, we extrinsically evaluate
our two automated techniques by comparing their results with the manually
deposited mutation data in the PDB. Finally, we compare MutationFinder’s
performance when run over abstracts and full text to address the hypoth-
esis that MutationFinder’s low recall in extrinsic evaluation is a result of
the lack of information in article abstracts. Unless otherwise noted, all
evaluations use a snapshot of the PDB containing the 38,664 PDB entries
released through 31 December 2006. All data files used in these analyses
are available via http://mutationfinder.sourceforge.net.
2.1. Evaluation of manual annotations
When a structural biologist submits a structure to the PDB, they are asked
to provide a list of any mutations in the structure. Compiling this informa-
tion over all PDB entries yields a collection of manually annotated muta-
tions associated with PDB entries, and this mapping between PDB entries
and mutations forms the basis of our analyses. We evaluate the accuracy
of these annotations by comparing mutation field data with sequence data
associated with the same entries. We evaluate the completeness of this data
by looking for PDB entries which appear to describe mutant structures but
do not contain data in their mutation fields.

cEntries in the PDB are composed of atomic cartesian coordinates defining the molec-
ular structure, and metadata, including primary sequence(s) of the molecule(s) in the
structure, mutations, primary citation, structure determination method, etc.
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2.1.1. Manual mutation annotations
Manual mutation annotations were compiled from the mutation field as-
sociated with PDB entries. The mutation field is a free-text field in a
web-based form that is filled in by researchers during the structure depo-
sition process. The depositor is expected to provide a list of mutations
present in the structure (e.g., ‘Ala42Gly, Leu66Thr’d), but the information
provided is not always this descriptive. For example, many mutations fields
contain indecipherable information, or simply the word yes. In cases where
the depositor does not provide any information in the mutation field (as
is often the case), differences identified by comparison with an aligned se-
quence are suggested to the author by a PDB annotator. The author can
accept or decline these suggestions.
2.1.2. Normalization of manual mutation annotations
Because the mutation field takes free text input, automated analysis re-
quires normalization of the data. This was done by applying Mutation-
Finder to each non-empty mutation field. Point mutations identified by
MutationFinder in a mutation field were normalized. To evaluate this nor-
malization procedure, a non-author biologist manually reviewed a random
subset (n=400) of non-empty mutation fields and the normalized mutations
output by MutationFinder. Precision of the normalization procedure was
100.0%. Recall was 88.9%. This high performance is not surprising, since
the task was relatively simple. It suggests that normalizing mutation fields
with MutationFinder is acceptable. 10,504 point mutations in 5971 PDB
records were compiled by this approach. This data set is referred to as the
manually deposited mutation annotations.
2.1.3. Accuracy of manually deposited mutation annotations
To assess the accuracy of the manually deposited mutation annotations,
each mutation was validated against the sequence data associated with
same PDB entry. (This process is similar to that employed by the MuteXt3

system.) If a mutation could not be validated against the sequence data,
that entry was considered to be inaccurately annotated and was reported to
PDB. (Note that this discrepancy could indicate an error in the sequence,
an error in the mutation annotation, or a mismatch in sequence numbering.)

Validation of mutations against sequence data was performed as follows.
Sequences were compiled for all PDB entries. For a given entry, we checked
whether the putative mutant residue was present at the annotated sequence
position. For example, PDB entry 3CGT is annotated with the mutation
E257A. The sequence associated with 3CGT was scanned to determine if ala-
nine, the mutant residue, was present at position 257. In this case it was, so
the annotation was retained. If alanine were not present at position 257, the

dThis is a common format for describing point mutations, which indicates that alanine
at position 42 in the sequence was mutated to glycine, and leucine at position 66 was
mutated to threonine.
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annotation would have been labelled as invalid. In cases where PDB entries
contain multiple sequences (e.g., a protein composed of several polypeptide
chains), each sequence was checked for the presence of the mutant residue.
2.1.4. Coverage of manually deposited mutation annotations
To assess the coverage of the manually annotated data, we attempted to
identify PDB records of mutant structures that did not contain data in their
mutation field. To identify records of mutant structures, we searched PDB
entry titles for any of several keywords that suggest mutations (case insen-
sitive search query: muta* OR substitut* OR varia* OR polymorphi*).
MutationFinder was also applied to search titles for mentions of point mu-
tations. If a title contained a keyword or mutation mention and the entry’s
mutation field was blank, the entry was labelled as insufficiently annotated.
An informal review of the results suggested that this approach was valid.
2.1.5. Results of manual annotation evaluation
40.6% (4260/10504) of mutations mentioned in mutation fields were not
present at the specified position in the sequence(s) associated with the
same PDB entry. These inconsistencies were present in 2344 PDB en-
tries, indicating that 39.3% of the 5971 PDB entries with MutationFinder-
normalizable mutation fields may be inaccurately annotated. As mentioned,
these inaccurate annotations could be due to errors in the mutation annota-
tion or the sequence, or mismatches between the position numbers used in
the mutation and the sequence. We expect that in the majority of cases the
errors arise from mismatches in numbering, as there is generally some con-
fusion in how mutations should be numbered (i.e., based on the sequence
in the structure or based on the UniProt reference sequence). PDB en-
tries now contain mappings between the structure and UniProt sequences,
and in a future analysis we will use these mappings to determine if any of
these apparent errors are instead inconvenient discrepancies which could be
avoided automatically.

Additionally, 21.7% (1243/5729) of the PDB entries that contained a
mutation keyword or mention in the title were found to contain an empty
mutation field. These entries appear to be underannotated. (As a further
indication of the scope of the “underannotation problem,” note that 12.9%
(1024/7953) of the non-empty mutation fields simply contain the word yes.)
Again, this is likely to be an overestimate of the true number of underan-
notated PDB entries (due to promiscuity of the search query), but even if
we are overestimating by a factor of 10, this is still a problem.

These results suggest that the manually deposited mutation data is far
from perfect, and that not just the quantity, but the quality of manual
database annotation stands to be improved. In the next section, we explore
automated techniques for mutation annotation in the PDB to determine if
they may provide a means to replace or augment manual annotation. These
automated techniques are evaluated against the manually deposited muta-
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tion annotations, although we have just shown that it is far from perfect.
Performance of the automated techniques is therefore underestimated.
2.2. Automated mutation annotation evaluated extrinsically
In this section two automated mutation annotation techniques are evalu-
ated by assessing their ability to reproduce the manually deposited mu-
tation annotations in the PDB. The first automated method, text mining
for mutations using MutationFinder, has been shown to perform very well
on blind test data (i.e., in intrinsic evaluation). Our second approach, de-
tecting differences in pre-aligned sequences, is not inherently error-prone,
and therefore does not require intrinsic evaluation. We might expect that
the near-perfect and perfect abilities of these systems (respectively) to per-
form the basic function of identifying mutations would suggest that they
are capable of compiling mutation databases automatically. Assessing their
ability to recreate the manually deposited mutation annotations allows us
to evaluate this expectation.
2.2.1. Text-mining-based mutation annotation: MutationFinder
Two sets of MutationFinder mutation annotations were generated—with
and without the sequence validation step described in Section 2.1.3. The
unvalidated data should have higher recall, but more false positives. To
compile the unvalidated MutationFinder annotation set, MutationFinder
was applied to primary citation abstracts associated with PDB records. For
each record in the PDB, the abstract of a primary citation (when both a pri-
mary citation and an abstract were available) was retrieved, and Mutation-
Finder was applied to extract normalized point mutations. 9625 normalized
point mutations were associated with 4189 PDB entries by this method,
forming the unvalidated MutationFinder mutation annotations. To compile
the validated MutationFinder mutation annotations, we applied sequence
validation to the unvalidated MutationFinder mutation annotations. This
reduced the results to 2602 normalized mutations in 2061 PDB entries.
2.2.2. Alignment-based mutation annotation
Validated and unvalidated data sets were also compiled using an alignment-
based approach. Sequences associated with PDB entries were aligned with
UniProt sequences using bl2seq. Differences between aligned positions
were considered point mutations, and were associated with the correspond-
ing entries. The alignment approach yielded 23,085 normalized point mu-
tations in 9807 entries (the unvalidated alignment mutation annotations).
Sequence validatione reduced this data set to 14,284 normalized mutations

eSequence validation was somewhat redundant in this case, but was included for com-
pleteness. Surprisingly, it was not particularly effective here. The positions assigned to
mutations in this approach were taken from the aligned UniProt sequence when sequence
start positions did not align perfectly, or when the alignment contained gaps. This re-
sulted in different position numbering between the manually- and alignment-produced
annotations, and reduced performance with respect to the manual annotations.
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in 6653 entries (the validated alignment mutation annotations).
2.2.3. Extrinsic evaluation of automated annotation data
To assess the abilities of the MutationFinder- and alignment-based annota-
tion techniques to recreate the manual annotations, mutation annotations
generated by each approach were compared with the manually deposited
mutation annotations in terms of precision, recall, and F-measure using the
performance.py scriptf . Two metrics were scored: mutant entry identifica-
tion, which requires that at least one mutation be identified for each mutant
PDB entry, and normalized mutations, which requires that each manually
deposited mutation annotation associated with a PDB entry be identified by
the system. Mutant entry identification measures a system’s ability to iden-
tify structures as mutant or non-mutant, while normalized mutations mea-
sures a system’s ability to annotate the structure with specific mutations.

Normalized mutations were judged against the manually deposited mu-
tation annotations, constructed as described in Section 2.1.1. This set
contained 10,504 mutations in 5971 PDB records from a total of 38,664
records. As we noted earlier, many non-empty mutation fields do not con-
tain mutations (e.g., when they contain only the word yes). However, in the
vast majority of cases, a non-empty mutation field indicates the presence
of mutations in a structure. We therefore constructed a different data set
for scoring mutant entry identification. We generated a manually curated
mutant entry data set from all PDB entries which contained non-empty
mutation fields. This data set contained 7953 entries (out of 38,664 entries
in the PDB snapshot).
2.2.4. Extrinsic evaluation results
We assess the utility of the automated techniques (and combinations of
both) for identifying mutant PDB entries (mutant entry identification, Ta-
ble 1a) and annotating mutations associated with PDB entries (normalized
mutations, Table 1b).

On both metrics, the highest precision results from the intersection of
the validated MutationFinder mutation annotations (method 2) and the
unvalidated alignment mutation annotations (method 3) data, while the
highest recall results from the union of these. Generally, method 2 achieves
high precision, and method 3 achieves high recall. None of these approaches
achieves a respectable F-measure, although as we point out in Section 2.1.5,
these performance values are likely to be underestimates due to noise in the
manually deposited mutation annotations.
2.3. MutationFinder applied to abstracts versus full-text
Table 1 shows that MutationFinder (with and without validation) achieves
very low recall with respect to the manually deposited mutation annota-
tions. We evaluated the hypothesis that this was a result of mutations not

fAvailable in the MutationFinder package at http://mutationfinder.sourceforge.net.
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Table 1. Six automated methods for identifying mutant PDB entries are assessed
against (a) manually curated mutant entry data, and (b) manually deposited mutation
annotations. True positives (TP), false positives (FP), false negatives (FN), precision
(P), recall (R), and F-meaure (F) are presented. Sequence validation (methods 2 and
4) is described in Section 2.1.3.

(a) Mutant Entry Id. TP FP FN P R F

1 MutationFinder 2690 1499 5263 0.642 0.338 0.443
2 MutationFinder + validation 1665 396 6288 0.808 0.209 0.333
3 Alignment 6079 3728 1874 0.620 0.764 0.685
4 Alignment + validation 4104 2549 3849 0.617 0.516 0.562

5 2 and 3 1403 275 6550 0.836 0.176 0.291
6 2 or 3 6258 3816 1695 0.621 0.787 0.694

(b) Normalized Mutations TP FP FN P R F

1 MutationFinder 2575 7050 7929 0.268 0.245 0.256
2 MutationFinder + validation 1803 799 8701 0.693 0.172 0.275
3 Alignment 7681 15404 2823 0.333 0.731 0.457
4 Alignment + validation 5059 9225 5455 0.354 0.482 0.408

5 2 and 3 1584 532 8920 0.749 0.151 0.251
6 2 or 3 7900 15671 2604 0.335 0.752 0.464

being mentioned in article abstracts, but rather only in the article bodies.
A PDB snapshot containing the 44,477 PDB records released through 15
May 2007 was used for this analysis.
2.3.1. Compiling and processing full-text articles
PubMed Central was downloaded through 15 May 2007. XML tags and
metadata were stripped. All articles were searched for occurrences of a
string matching the format of a PDB ID. (IDs are four characters long: a
number, a letter, and two letters or numbers, e.g. 3CGT.) If such a string
was found, it was compared to a list of valid PDB IDs; if the string matched
a valid PDB ID, the article was retained. This returned 837 articles. From
this set, articles that were primary citations for PDB structures were se-
lected, resulting in a set of 70 PDB entries (with 13 manually annotated
mutations) for which full text was available.
2.3.2. Comparing abstracts versus full text
MutationFinder with sequence validation (as described in Section 2.1.3)
was applied to the abstracts and full-text articles, yielding two mutation
data sets. The results were compared against the manually annotated mu-
tation data, allowing us to directly assess the contribution of the article
bodies to MutationFinder’s performance.
2.3.3. Abstract versus full text results
A 10-fold increase in recall was observed when the article body was provided
to MutationFinder in addition to the abstract, with no associated degra-
dation of precision (Table 2). While 70 PDB entries with 13 mutations is a
small data set, these data strongly suggest that access to full text is critical
for automated mutation annotation by text mining tools. When sequence
validation was not applied, normalized mutation and mutant entry identifi-
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Table 2. MutationFinder with sequence validation was applied to abstracts and
full articles (abstract + article body) for 70 PDB entries. Results are compared
with manually annotated data. True positives (TP), false positives (FP), false neg-
atives (FN), precision (P), recall (R), and F-meaure (F) are presented, describing
each approach’s ability to replicate manually curated data.

Metric Input TP FP FN P R F

Normalized Mutations Abstracts 1 0 12 1.000 0.077 0.143
Full text 10 0 3 1.000 0.769 0.870

Mutant Entry Id. Abstracts 1 0 9 1.000 0.100 0.182
Full text 7 0 3 1.000 0.700 0.824

cation recall were perfect, but precision was 11.7% and 38.5%, respectively.
3. Conclusions
These experiments address two questions. First, how effective are man-
ual biological database annotation techniques in terms of accuracy and
coverage; and second, does the performance of an automated annotation
technique in intrinsic evaluation predict the performance of that system in
an extrinsic evaluation? We now present our conclusions regarding these
questions, and discuss their implications for database curation.
3.1. Reliability of mutation annotation approaches
The manual and automatic approaches to annotating mutations appear to
yield significant Type I and II errors when analyzed on the PDB as a whole.
This suggests that these methods may be insufficient to generate the re-
quired quality and quantity of annotation that is necessary to handle the
barrage of data in the biomedical sciences.

Manual annotation of PDB entries is error-prone, as illustrated by our
sequence-validation of these data described in Section 2.1.5, and does not
guarantee complete annotation. (It should be noted that many of the re-
sults that are classified as errors in the manually annotated data are likely
to be due to sequence numbering discrepanices. Mappings between PDB
sequences and UniProt sequences in the PDB can be used to identify these,
and in a future analysis these mappings will be used to reevaluate the man-
ually annotated data.)

The automated mutation annotation approaches also appear to have lim-
itations. MutationFinder (with validation against sequence data) performs
well, but full text is probably required for any text mining approach to
achieve sufficient recall. Conversely, the alignment-based approach is com-
prehensive, but overzealous. The manual and automatic methods do fre-
quently validate and complement one another (data not shown due to space
restrictions)—in parallel, they may provide a means for improving the qual-
ity, while reducing the cost (in person-hours), of database annotation.
3.2. MutationFinder: intrinsic versus extrinsic evaluations
In an intrinsic evaluation against blind gold standard data, MutationFinder
achieved 97.5% precision and 80.7% recall on normalized mutations extrac-
tion, and 99.4% precision and 89.0% recall on document retrieval.9,10 In
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our extrinsic evaluation against manually deposited mutation annotations
in the PDB, the exact same system achieved 26.8% precision and 24.5%
recall for normalized mutation extraction, and 64.2% precision and 33.8%
recall for mutant entry identification (the equivalent of document retrieval
in this work). While these are likely to be underestimates of the true util-
ity (Section 2.1.5), the large difference in performance cannot be explained
completely by the imperfect extrinsic evaluation. The discrepancy appears
to be chiefly explained by two factors: introduction of a systematic source
of false positives, and missing data. These issues illustrate that accurately
and comprehensively pulling desired information from text is just the be-
ginning of deploying a text mining system as a database curation tool.

False positives were systematically introduced when a single article was
the primary citation for several PDB entries, and MutationFinder associ-
ated all mutations mentioned in the article with all the citing entriesg. Our
sequence validation step addressed this issue, and improved normalized mu-
tation precision by 42.5 percentage points with an associated degradation
in recall of 7.4 percentage points.

False negatives were most common when the targeted information was
not present in the primary citation abstracts. In our abstract versus full
text analysis, we found that processing the full text with MutationFinder
plus sequence validation resulted in a nearly 70 percentage point increase in
recall, with no precision degradation. These data result from an analysis of
only a small subset of the PDB, but they clearly illustrate the importance
of full text for high-recall mutation mining.

We conclude that while it is an essential step in building a text mining
system, evaluating a system’s performance on gold standard data (intrinsic
evaluation) is not necessarily indicative of its performance as a database
curation tool (extrinsic evaluation). Identifying and gaining access to the
most relevant literature, and identifying and responding to sources of sys-
tematic error, are central to duplicating the performance observed on a
(well-chosen) gold standard data set in an extrinsic evaluation.
3.3. Alignment-based mutation annotation: extrinsic evaluation
Compiling differences in aligned sequences is not inherently error prone,
unlike text mining—beyond unit testing to avoid programming errors, no
intrinsic evaluation is necessary. However, this method does not perform
perfectly for annotating mutations in the PDB, but rather achieves high
recall with low precision.

gFor example, PDB entries 1AE3, 1AE2, and 1GKH all share the same primary citation
(PMID: 9098886). This abstract mentions five mutations, all of which MutationFinder
associates with each of the three PDB entries. Each of the structures contains only one
of the five mutations, so four false positives are incurred for each entry. (The other two
mutations referred to are in other structures.) Sequence validation eliminated all of these
false positives while retaining all of the true positives.
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Error analysis suggests that the primary cause of both false positives
and false negatives obtained by alignment-based mutation annotation with
respect to the manually deposited mutation annotations is differences in se-
quence position numbering between the PDB sequence and the UniProt se-
quence. In PDB entry 1ZTJ, for example, the authors annotated mutations
S452A, K455A, T493A, and C500S, while sequence comparison identified
S75A, K78A, T115A, and C123S. The (almost identical) relative sequence
positions and wild-type and mutant residues suggest that these are the same
mutations, but the sequence position offset results in four false positives and
four false negatives. Utilizing the mappings between PDB sequence posi-
tions and UniProt sequence positions in the PDB should help to alleviate
these discrepancies in position numbering. This will be explored in future
work, and is expected to significantly reduce these types of errors.

False positives additionally occur as a result of slight differences in the
sequence of the solved structure and the closest sequence in UniProt. Dif-
ferences in the sequences are not necessarily mutations induced for analysis,
and are therefore not annotated as such. For example, sequence comparison
identified six mutations in the PDB entry 1QHO, and the primary citation
authors acknowledge several of these as sequence ‘discrepancies.’ False neg-
atives can also occur when a sequence cannot be aligned to a UniProt se-
quence, and the alignment-based method cannot be applied, or alternatively
if inaccurate information was provided by the depositor. For example, PDB
entry 1MWT is annotated with the Y23M mutation, but valine is present
at position 23 in the associated sequences. In this case the classification
as false negative is an artifact of a problematic manual annotation, rather
than a statement about the performance of the annotation technique.

4. Discussion
Automatic annotation can not yet replace manual database curation, even
for the relatively simple task of annotating mutations in molecular struc-
tures. We evaluated manual curation and two automated methods, and
showed that all three are unreliable. Genomic data and their reliable anno-
tation are essential to progress in the biomedical sciences. It has been shown
empirically that manual annotation cannot keep up with the rate of biologi-
cal data generation;20 furthermore, we have shown here that even if manual
annotation could keep pace with data generation, it is still error prone.

A reasonable approach to pursue is the incorporation of automated tech-
niques into manual annotation processes. For example, when a scientist
deposits a new PDB structure, their primary citation and sequences can be
scanned for mutations. The depositor could be presented with suggestions:
In your abstract, you mention an A42G mutation—is this mutation present
in your structure? Additionally, these tools can be applied as quality con-
trol steps. Before a mutation annotation is accepted, it could be validated
against sequence data. Responses to such prompts could be recorded and
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used to generate new gold standards that could be used to improve existing
or future tools for automating annotation procedures. ‘Smart’ annotation
deposition systems could be the key to improved quality of data in the
present and improved automated techniques in the future.
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