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A theory is developed of the fluctuation of an order parameter in a class of large populations of 
oscillators with distributed natural frequencies, which reveals in particular a unique scaling behavior 
of the fluctuation at the onset of mutual entrainment for which numerical evidence is given. 

Large populations of coupled dissipative oscillators exhibit macroscopic 
mutual entrainment when coupling is strong enough to compensate for the disordering 
effect due to the distribution of natural frequencies of oscillators. This phenomenon 
has much relevance to a variety of fields in science (e.g., see Ref. 1», and quite a few 
investigations have been devoted to elucidating it. Of these, studies with emphasis on 
the aspect of a ph,ase transition may be particularly interesting and important since 
they open a new area in the field of critical phenomena to clarify how the onset of 
mutual entrainment in oscillator assemblies compares to conventional phase transi­
tions in diverse equilibrium systems.2

) In this paper we attempt a study along such 
a line using the following model :3) 

(1) 

where OJ is the phase of the jth oscillator (j = 1, 2,"', N. Hereafter we omit the range 
of j since it is always the same.) and Qj is the natural frequency which is assumed to 
obey a distribution f(Q) over the population. Coupling strength is controled by the 
parameter c. In the limit N ~ co the onset of mutual entrainment beyond a threshold 
( = cc) is well established for the modeI2

),3) where the role of an order parameter is 
played by i=limt~ooZ(t) in which Z(t)=N-l~.f=lexp{27l'i'(Oj-.Qt)}, where Ii is the 
frequency of entrainment and i' = J -l. Namely i =0 for c< cc while I i I grows like 
(c- ccY for c> Cc where /3=1/2 for typical f(Q).2),3) On the other hand, for finite-size 
systems, it was found numerically that Z exhibits persistent fluctuation whose 
magnitude 6, defined by 6=limN~ooJN<IZ-<Z>12>1/2, behaves as 

(2) 

near the threshold cc.4
),5),*) (In the above and hereafter the brackets < > stand for a long 

time average.) The purpose of this paper is to develop a theory of the fluctuation and 
especially derive the above scaling behavior of 6. A finite-size scaling analysis, part 
of which was first attempted in Ref. 5), will also be performed to support the theory. 

*) While numerical simulations in Refs. 4) and 5) are for a discrete·time model, their results may be 
viewed as virtually for the model (1) owing to the small width of /(il) adopted. 
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Let us first introduce w = Z - i which may be regarded as small after an initial 
transient dies out, provided N is large. In fact our previous simulations suggest w 
= O(N-1!2),5) which will be proved later. Correspondingly we may divide every 
oscillator phase into two parts as 

The first term, (/Ji, is the dominant part obeying 

d¢j/dt = LlrHE/2Jr )lm(ie-2l!"i'q,i) 

(3) 

(4) 

with ¢j(0)=8iO), where Llj=.Qj-Q, and 1m denotes an imaginary part. The second 
term in (3), (Pi, is a deviation from the dominant phase motion induced by w. Putting 
Eqs. (3) and (4) into Eq. (1), and retaining only the terms of O(w), we find 

(5) 

with <pj(O)=O. Then, by self· consistency, we can derive 
_ N 

w(t)= - Z + N-l~e2l!"i'q,i(t) 
j=l 

(6) 

again by keeping O(w) terms alone, where )..=E/2, * is a complex conjugate, and 

A±(t, t')=~~N-l~lexp{ 2Jri'(¢it)± ¢j(t'» 

+ ()../Jr) i,tdrIm(-2Jri' ie-2l!"i,q,i(r»}. 

Contribution from higher-order terms may be neglected in the limit N .... 00. 

Let us first focus upon the subcritical regime where it =0, so that 

(8) 

where i(Ll)=f(Q+Ll). Our interest is in the behavior of w(t) for t .... oo on which the 
term in Eq. (6) including A+ has no influence since A+(t, t') vanishes fast as t,t' .... oo 
(e.g., A+(t, t')~e-2l!"r(t+t') for i(Ll)=(Y/Jr)(LP+y2)-1). Noting this fact, we obtain 

(9) 

for t~l, where A(co)=!O'drA(r)e-i'WT. This leads to 

(10) . 

indicating w = O(N-1!2) in accordance with the observation in Ref. 5). We may thus 
find 

(11) 
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For simplicity suppose hereafter that /(Q) satisfies the following as typical distribu­
tions do: It is maximum at a certain value of Q( =Q), being symmetric with respect 
to Q. Then it is known that Q=Q and ce=4/ j (0).3) As c~ ce from below, we find 
from Eq. (11) 

(12) 

where b=(2/TC2)f'Odyj'(y)/y with j'=dl!dy. Therefore y'=1/2 for c< ce. 
(Remark: for j(Ll) = (Y/TC)(L'J2 + y2)-I, 6(c)=.[i;(ce- c)-1I2 exactly for v c< ce=4TCY by 
Eq. (11).) 

The correlation function of Z may also be obtained from Eq. (9) as 

(13) 

where Cz(r)=<{Z(t+ r)-<Z>}{Z(t)-<Z>}*>, which is shown to decay exponentially 
near Ce with the correlation time re diverging at ce as 

(l4) 

(Remark: for j(Q) in the above remark Eq. (13) gives exactly Cz(r)=N-1cc(cc 
- c)-le-(ec -e)TI2 with cc=4TCY.) 

Let us now go on to the supercritical regime where it seems difficult to obtain 
exact expressions such as Eq. (11) in the subcritical regime mainly because of the 
nontrivial behavior of rfJit). Therefore Eq. (6) has been solved only approximately 
for this regime as will be outlined below (details will be published elsewhere). The 
problem is how to deal with the kernels A± in Eq. (6). It is easy to evaluate 
contribution to them from entrained oscillators (i. e., those satisfying ILlJ:'~ cIZI/(2TC)). 
As to nonentrained oscillators, noting that the bracket { } of A- in Eq. (7) is 
rewritten as 

we replace it by 

2TCi'(t - r)Llj- 2AZ*<e21Ci'<PJ>(t - t')= (J)it - t') . (15) 

This approximation should be reasonable for large t which is sufficient for our 
purpose. Moreover we replaceexp{ } of A+ in Eq. (7) by <e41Ci'<PJ>e0J(t-t'). Then we 
find 

<Iz _<Z>12>=N-1j _ dLlj(Ll)·~ Id(L1, m)P(mLl') 
ILlI>AIZII1C m=-oo 

- d*(Ll, - m)R(mLl')12 , (16) 

where Ll'=2TC{Ll2-(AIZI/TC)2}1I2, d(Llj, m)=Tj-l/lJdte21Ci'<PJ-i'mLlIt with Tj=2TC/L1/, and 
P(w)={l-AC(w)}/S(w), R(W)=AD(w)/S(w) with S(w)={l-AC(w)P 
-A2D(w)D*( -w). C and D are the Fourier transforms of A- and A+ (defined as 
A(w)), respectively. A detailed analysis of (16) shows 
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Fig. 1. Finite-size scaling plots of (J where (J= cc 
-10, (J'=c-cc and log = loglO. (a) the sub­
critical regime: N =6000(LI), 10000( +), 
14000(0), 20000( x). (b) the· supercritical 
regime: N=1600(LI), 1900( +), 3000(0), 
6000( x). The straight lines show the theor­
etical slopes. (J was computed through aver­
aging over nearly 130000(10< cJ and 30000 
~520000 (c>cc) iterations of the Euler 
difference equation for Eq. (1). 

(17) 

near Ce. Namely, y'=1/8 for c>ce. 
Remarkably the critical exponent y' 

is not the same for below and above ce. 
When compared to previous numerical 
results,5) the theory is consistent with y' 

= 0.123 ± 0.003 for c> ce while it dis­
agrees with y'~0.126±0.009 for c< Ce. 
A finite-size scaling analysis has been 
performed with N larger than in Ref. 5) 
to get conclusive evidence for (J which is 
expected to fit 

(18) 

where s=2, qr(x)~x-l/8(x~l) for C> ce 
(as first proposed and verified in Ref. 5)), 
and s=I/2, qr(x)~x-1!2(x~l) for c< ce. 
Evidence is presented in Fig. 1 which 
was obtained for j(Ll) = (Y/Jr)(LP + y2)-1 

with y=10-3
, and for fairly random ini­

tial conditions. The reason for the dis­
crepancy of the result in Ref. 5) with the 
theory in the subcritical· regime is now 
clear: As is evident in Fig. l(a), the 
finite-size effect is so strong there that N 
= 1600 chosen in Ref. 5) was still too 
small. It has also been found that 

TeCX::(c- ce)-1/4 for c~ ce +, which was verified numerically together with Eq. (14) as will 
be reported in detail elsewhere. 

To conclude our theory developed above provides us with a quantitative under­
standing of the order parameter fluctuation for populations of oscillators modeled by 
Eq. (1). In particular, it reveals that the fluctuation plays really an important role in 
characterizing the onset of mutual entrainment since (a) it exhibits critical divergence 
and more importantly (b) the critical exponent takes different values below and above 
the threshold in remarkable contrast with those in conventional phase transitions. 
The true order parameter Z only shows a stereotyped behavior, so that it is far from 
sufficient to capture the nature of the phase transition. The origin of the feature (b) 
is now being studied. 

The framework of the theory and the results for the subcritical regime were first 
reported in an earlier version of this article,6) where it was also pointed out that our 
theory can be used to study the linear stability of macroscopic states specified by Z 
in infinite-size systems as will be elaborated elsewhere. Very recently a plan of an 
approach different from ours has been announced.7

) The author is grateful to 
Professor Y. Kuramoto for some comments on the basic framework of the theory. 
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Note added in proop: The approximation for A+ has been found not to be consistent with the one for A-, 
so that it has to be modified in a way. The -result (17), however, remains unchanged. 
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