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Despite advances in resting state functional magnetic resonance imaging investigations, clinicians remain with the challenge of how

to implement this paradigm on an individualized basis. Here, we assessed the clinical relevance of resting state functional magnetic

resonance imaging acquisitions in patients with disorders of consciousness by means of a systems-level approach. Three clinical

centres collected data from 73 patients in minimally conscious state, vegetative state/unresponsive wakefulness syndrome and

coma. The main analysis was performed on the data set coming from one centre (Liège) including 51 patients (26 minimally

conscious state, 19 vegetative state/unresponsive wakefulness syndrome, six coma; 15 females; mean age 49 � 18 years, range

11–87; 16 traumatic, 32 non-traumatic of which 13 anoxic, three mixed; 35 patients assessed 41 month post-insult) for whom the

clinical diagnosis with the Coma Recovery Scale-Revised was congruent with positron emission tomography scanning. Group-level

functional connectivity was investigated for the default mode, frontoparietal, salience, auditory, sensorimotor and visual networks

using a multiple-seed correlation approach. Between-group inferential statistics and machine learning were used to identify each

network’s capacity to discriminate between patients in minimally conscious state and vegetative state/unresponsive wakefulness

syndrome. Data collected from 22 patients scanned in two other centres (Salzburg: 10 minimally conscious state, five vegetative

state/unresponsive wakefulness syndrome; New York: five minimally conscious state, one vegetative state/unresponsive wakeful-

ness syndrome, one emerged from minimally conscious state) were used to validate the classification with the selected features.

Coma Recovery Scale-Revised total scores correlated with key regions of each network reflecting their involvement in conscious-

ness-related processes. All networks had a high discriminative capacity (480%) for separating patients in a minimally conscious

state and vegetative state/unresponsive wakefulness syndrome. Among them, the auditory network was ranked the most highly.

The regions of the auditory network which were more functionally connected in patients in minimally conscious state compared to

vegetative state/unresponsive wakefulness syndrome encompassed bilateral auditory and visual cortices. Connectivity values in

these three regions discriminated congruently 20 of 22 independently assessed patients. Our findings point to the significance of

preserved abilities for multisensory integration and top–down processing in minimal consciousness seemingly supported by audi-

tory-visual crossmodal connectivity, and promote the clinical utility of the resting paradigm for single-patient diagnostics.
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8 Department of Algology and Palliative Care, CHU University Hospital of Liège, Liège, Belgium
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Introduction
As patients with acute or chronic disorders of conscious-

ness are by definition unable to communicate, their diag-

nosis is particularly challenging. Patients in coma, for

example, lay with eyes closed and do not respond to any

external stimulation. When they open their eyes but remain

unresponsive to external stimuli they are considered to be

in a vegetative state (VS; Jennett and Plum, 1972) or, as

most recently coined, unresponsive wakefulness syndrome

(UWS; Laureys et al., 2010). When patients exhibit signs of

fluctuating yet reproducible remnants of non-reflex behav-

iour, they are considered to be in a minimally conscious

state (MCS; Giacino et al., 2002). To date, the diagnostic

assessment of patients with disorders of consciousness is

mainly based on the observation of motor and oro-motor

behaviours at the bedside (Giacino et al., 2014). The evalu-

ation of non-reflex behaviour, however, is not straightfor-

ward as patients can fluctuate in terms of vigilance, may

suffer from cognitive (e.g. aphasia, apraxia) and/or sensory

impairments (e.g. blindness, deafness), from small or easily

exhausted motor activity and pain. In these cases, absence

of responsiveness does not necessarily correspond to

absence of awareness (Sanders et al., 2012). Alternatively,

motor-independent technologies can aid the clinical differ-

entiation between the two patient groups (Bruno et al.,

2010).

Up to now, accurate single-patient categorization in MCS

and VS/UWS has been performed by means of transcranial

magnetic stimulation in combination with EEG (Rosanova

et al., 2012; Casali et al., 2013) and by combining different

EEG measures (Sitt et al., 2014). In terms of patient separ-

ation by means of functional MRI, activation (which utilise

sensory stimulation; Schiff et al., 2005; Coleman et al.,

2007; Di et al., 2007) and active paradigms (which probe

mental command following; Owen et al., 2006; Monti

et al., 2010; Bardin et al., 2012) have been used to detect

convert awareness in these patients. An apparent limitation

of the latter approaches is that patients may demonstrate

motor and language deficits which incommode these assess-

ments and heighten the risk of false-negative findings

(Giacino et al., 2014). The application of these paradigms

can also be constrained due to each institution’s technical

facilities.

Alternatively, functional MRI acquisitions during resting

state do not require sophisticated setup and surpass the

need for subjects’ active participation. Past resting state

functional MRI-based assessment of patients has focused

on the default mode network, which mainly encompasses

anterior and posterior midline regions, and which has

been involved in conscious and self-related cognitive pro-

cesses (Raichle et al., 2001; Buckner et al., 2008). Such

investigations have shown that default mode network

functional connectivity decreases alongside the spectrum

of consciousness, moving from healthy controls to patients

in MCS, VS/UWS and coma (Boly et al., 2009;

Vanhaudenhuyse et al., 2010; Norton et al., 2012;

Soddu et al., 2012; Demertzi et al., 2014; Huang et al.,

2014). In patients, the precuneus and posterior cingulate

cortex of the default mode network have been also char-

acterized by decreases in functional MRI resting state low

frequency fluctuations and regional voxel homogeneity

(which refers to the similarity of local brain activity

across a region) (Tsai et al., 2014). Reduced functional

MRI functional connectivity has been further identified

for interhemispheric homologous regions belonging to

the extrinsic or task-positive network (implicated in the

awareness of the environment; Vanhaudenhuyse et al.,

2011) in patients as compared to controls (Ovadia-Caro

et al., 2012). Reduced interhemispheric connectivity has
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been also indicated by means of partial correlations

(Maki-Marttunen et al., 2013). In terms of graph theory

metrics, comatose patients were shown to preserve global

network properties but cortical regions, which worked as

hubs in healthy controls, became non-hubs in comatose

brains and vice versa (Achard et al., 2011, 2012).

Similarly, chronic patients showed altered network proper-

ties in medial parietal and frontal regions as well as in the

thalamus, and most of the affected regions in unresponsive

patients belonged to the so-called ‘rich-club’ of highly

interconnected central nodes (Crone et al., 2014). More

recently, functional MRI-based single-patient classification

has been performed by considering as discriminating fea-

ture the neuronal properties of various intrinsic connectiv-

ity networks (Demertzi et al., 2014). The discrimination

between ‘neuronal’ and ‘non-neuronal’ was based on the

spatial and temporal properties (fingerprints) of the iden-

tified networks that were extracted by means of independ-

ent component analysis (De Martino et al., 2007).

According to specific criteria (Kelly et al., 2010), ‘non-

neuronal’ components were those that showed activation/

deactivation in peripheral brain areas, in the cerebrospinal

fluid (CSF) and white matter, as well as those showing

high frequency fluctuations (40.1 Hz), spikes, presence

of a sawtooth pattern and presence of thresholded

voxels in the superior sagittal sinus. Conversely, ‘neuronal’

were those networks when at least 10% of the activations/

deactivations were found in small to larger grey matter

clusters localized to small regions of the brain. Based on

this definition of neuronality, the ‘neuronal’ properties of

the default mode and auditory network were able to sep-

arate single-patients from healthy controls with 85.3% ac-

curacy. Nevertheless, the discrimination accuracy between

patients in MCS and VS/UWS reached only a chance level

(Demertzi et al., 2014).

Taken together, these studies show that the so far rest-

ing state functional MRI-based differentiation of patients

has been performed either at the group-level or concerned

the classification between healthy and pathological groups.

As a consequence, clinicians remain with the challenge of

how to implement the resting state functional MRI para-

digm on an individualized basis for the more challenging

discrimination between the MCS and VS/UWS (Edlow

et al., 2013). Here, we aimed at promoting the MCS-VS/

UWS single-patient differentiation by using resting state

functional MRI measurements in this clinical population.

To this end, we studied systems-level resting state func-

tional MRI functional connectivity in traumatic and non-

traumatic patients with acute and chronic disorders of

consciousness with the aim to (i) estimate the contribution

of each network to the level of consciousness as deter-

mined by behavioural assessment; (ii) rank the capacity

of each network to differentiate between patients in

MCS and VS/UWS; and (iii) automatically classify inde-

pendently assessed patients.

Materials and methods

Subjects

Three data sets were used, including patients scanned in Liège
[to address study aims (i) and (ii)], Salzburg and New York
[to address study aim (iii)]. Inclusion criteria were patients in
MCS, VS/UWS and coma following severe brain damage stu-
died at least 2 days after the acute brain insult. Patients were
excluded when there was contraindication for MRI (e.g. pres-
ence of ferromagnetic aneurysm clips, pacemakers), MRI
acquisition under sedation or anaesthesia, and uncertain clin-
ical diagnosis. Healthy volunteers were free of psychiatric or
neurological history. The study was approved by the Ethics
Committee of the Medical School of the University of Liège,
the Ethics Committee of Salzburg, and the Institutional Review
Board at Weill Cornell Medical College. Informed consent to
participate in the study was obtained from the healthy subjects
and from the legal surrogates of the patients.

Data acquisition

All data were acquired on 3 T Siemens TIM Trio MRI scan-
ners (Siemens Medical Solutions). For the Liège data set, 300
multislice T2*-weighted images were acquired with a gradient-
echo echo-planar imaging sequence using axial slice orienta-
tion and covering the whole brain (32 slices; voxel
size = 3 � 3 � 3 mm3; matrix size = 64 � 64; repetition
time = 2000 ms; echo time = 30 ms; flip angle = 78�; field of
view = 192 � 192 mm). For the Salzburg data set, 250
T2*-weighted images (36 slices with 3-mm thickness; repeti-
tion time = 2250 ms; echo time = 30 ms; flip angle = 70�; field
of view = 192 � 192 mm). For the New York data set, 180
T2*-weighted images were acquired (32 slices; voxel
size = 3.75 � 3.75 � 4 mm3; matrix size = 64 � 64; repetition
time = 2000 ms; echo time = 30 ms; flip angle = 90�; field of
view = 240 � 240 mm).

Subject-level connectivity analysis

Data analysis is illustrated in Fig. 1.

Data preprocessing

Preprocessing and connectivity analyses were performed in the
same way for all subjects across the three data sets. The three
initial volumes were discarded to avoid T1 saturation effects.
For anatomical reference, a high-resolution T1-weighted image
was acquired for each subject (T1-weighted 3D magnetization-
prepared rapid gradient echo sequence). Data preprocessing
was performed using Statistical Parametric Mapping
8 (SPM8; www.fil.ion.ucl.ac.uk/spm). Preprocessing steps
included slice-time correction, realignment, segmentation of
structural data, normalization into standard stereotactic
Montreal Neurological Institute (MNI) space and spatial
smoothing using a Gaussian kernel of 6 mm full-width at
half-maximum. As functional connectivity is influenced by
head motion in the scanner (Van Dijk et al., 2012), we
accounted for motion artifact detection and rejection using
the artifact detection tool (ART; http://www.nitrc.org/pro-
jects/artifact_detect). Specifically, an image was defined as an
outlier (artifact) image if the head displacement in x, y, or
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z direction was 42 mm from previous frame, or if the rota-
tional displacement was 40.02 radians from the previous
frame, or if the global mean intensity in the image was 43
standard deviations (SD) from the mean image intensity for the
entire resting scan. Outliers in the global mean signal intensity
and motion were subsequently included as nuisance regressors
(i.e. one regressor per outlier within the first-level general
linear model). Therefore, the temporal structure of the data
was not disrupted.

For noise reduction, previous methods subtracted the global
signal across the brain (a controversial issue in resting state
analyses; Murphy et al., 2009; Saad et al., 2012; Wong et al.,
2012), and the mean signals from noise regions of interest
(Greicius et al., 2003; Fox et al., 2005). Here, we used the
anatomical component-based noise correction method
(aCompCor; Behzadi et al., 2007) as implemented in CONN
functional connectivity toolbox (http://www.nitrc.org/projects/
conn/; Whitfield-Gabrieli and Nieto-Castanon, 2012). The
aCompCor models the influence of noise as a voxel-specific
linear combination of multiple empirically estimated noise
sources by deriving principal components from noise regions
of interest and by including them as nuisance parameters
within the general linear models. Specifically, the anatomical
image for each participant was segmented into white matter,
grey matter, and CSF masks using SPM8. To minimize partial
voluming with grey matter, the white matter and CSF masks
were eroded by one voxel, which resulted in substantially
smaller masks than the original segmentations (Chai et al.,
2012). The eroded white matter and CSF masks were then

used as noise regions of interest. Signals from the white
matter and CSF noise regions of interest were extracted from
the unsmoothed functional volumes to avoid additional risk of
contaminating white matter and CSF signals with grey matter
signals. A temporal band-pass filter of 0.008–0.09 Hz was
applied on the time series to restrict the analysis to low fre-
quency fluctuations, which characterize functional MRI blood
oxygenation level-dependent resting state activity as classically
performed in seed-correlation analysis (Greicius et al., 2003;
Fox et al., 2005). Residual head motion parameters (three
rotation and three translation parameters, plus another six
parameters representing their first-order temporal derivatives)
were regressed out.

Extraction of intrinsic connectivity networks

Functional connectivity adopted a seed-based correlation
approach. Seed-correlation analysis uses extracted blood oxy-
genation level-dependent time series from a region of interest
(the seed) and determines the temporal correlation between
this signal and the time series from all other brain voxels.
Evidently, the selection of the seed region is critical because,
in principle, it can lead to as many overlapping networks as
the number of possible selected seeds (Cole et al., 2010).
Additionally, a network disruption can be expected due to
patients’ underlying neuropathology, as the chosen seed may
no longer be included in the overall network. Using more seed
regions, this issue can be overcome and therefore ensure
proper network characterization in patients. Here, the seeds

Figure 1 Analysis pipeline. Data analysis at the subject-level encompassed signal preprocessing and extraction of the intrinsic connectivity

networks. Data analysis at the group-level encompassed estimation of functional connectivity in the networks of interest, estimated the con-

tribution of each network to the level of consciousness by means of CRS-R total score regression analysis, and identified connectivity differences

between the group of patients in MCS and VS/UWS for each network. Network ranking methodology was used to rank characteristic features

(i.e., connectivity differences per network)to discriminate individual patients into the groups of MCS and VS/UWS. Two independent data sets of

patients, assessed in Salzburg and New York, were used to further validate patient classification. Different colours indicate the three data sets and

how these where used along the analysis pipeline.
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that were selected to replicate the networks were defined as 10-
mm (for cortical areas) and 4-mm radius spheres (for subcor-
tical structures) around peak coordinates taken from the litera-
ture (Supplementary material). For each network, time series
from the voxels contained in each seed region were extracted
and then averaged together. In that way, the resulting averaged
time course was estimated by taking into account the time
courses of more than one regions. The averaged time series
were used to estimate whole-brain correlation r maps that
were then converted to normally distributed Fisher’s z trans-
formed correlation maps to allow for group-level comparisons.

Group-level connectivity analysis

For the Liège data set, one-sample t-tests were ordered to
estimate network-level functional connectivity for patients in
MCS, VS/UWS and in coma; the data from healthy controls
were used as a reference to ensure proper network character-
ization. An exploratory analysis looked for network-level con-
nectivity changes as a function of patients’ aetiology and
chronicity. Two 2 � 2 factorial designs between aetiology
(traumatic, non-traumatic)/ chronicity (acute, chronic) and
the clinical entities (MCS, VS/UWS) were ordered. If an inter-
action effect was identified, these variables had to be entered
as regressors in the general linear models.

To address the first aim of the study, i.e. to estimate the
contribution of each network to the level of consciousness,
patients’ Coma Recovery Scale-Revised (CRS-R) total scores
were used as regressors to determine the relationship between
each network’s functional connectivity and the level of con-
sciousness. As a control, CRS-R total scores were used as
regressors of functional connectivity for the cerebellum net-
work (three regions of interest, Supplementary material),
which is known to be minimally implicated in conscious-
related processes (Tononi, 2008; Yu et al., 2015).

To address the second aim of the study, i.e. to determine the
capacity of each network to differentiate between patients in
MCS and VS/UWS, initially two-sample t-tests were ordered to
identify the regions of each network showing higher functional
connectivity in patients in MCS compared to VS/UWS (Liège
data set). The resulting difference maps were saved as masks,
which were used subsequently for the network ranking and
selection step. All results were considered significant
P50.05 corrected for multiple comparisons at false discovery
rate (FWE; cluster-level).

Network ranking and selection

Using the REX Toolbox (http://www.nitrc.org/projects/rex/),
the difference masks which were calculated in the previous
step were used to extract mean connectivity values (average
z-values across the whole mask) from the first-level contrast
images estimated for each network. Therefore, one value per
subject per network was created leading to a 6 � 1 vector
per subject (i.e. 45 � 6 matrix). These vector values were con-
sidered as features in a feature ranking methodology (Saeys
et al., 2007) as implemented in Matlab (http://www.math-
works.nl/help/bioinfo/ref/rankfeatures.html). The results of the
feature (i.e. network) ranking were verified by means of single-
feature linear support vector machine classifier (Burges, 1998).
Supplementary material contains further details on the net-
work ranking procedure and results.

To address the third aim of the study, i.e. to automatically
classify independently assessed patients coming from two other
clinical centres, we focused on the network which was ranked
most highly during the network ranking procedure. For that
network, a linear kernel support vector machine classifier
(Burges, 1998) with regularization parameter C = 1 was used.
This parameter was chosen based on its wide use in the
machine learning procedure (Phillips et al., 2011). The features
that were used for the training were individual mean connect-
ivity values extracted from the first-level contrast images using
the relevant network binary mask as described above. To
avoid single feature classification, hence running the risk of
overfitting, more features were included for the classifier’s
training. The number of features was based on the number
of clusters showing higher connectivity in patients in MCS
compared to VS/UWS as indicated by the contrast manager
of the CONN toolbox during the connectivity analysis
(FWE P50.05, cluster-level correction).

Classification of independently
assessed patients

The final validation of the classifier was performed on a new
set of connectivity values extracted from independently
assessed patients in Salzburg (n = 15) and New York (n = 7).
The data preprocessing, extraction of intrinsic connectivity net-
work, and feature extraction followed an identical procedure
as described above for the Liège data set. To test for robust-
ness, we also evaluated whether the same classifier generalized
to healthy controls subjects scanned in two centres (Liège,
Salzburg; no healthy control data were available for the New
York centre).

Results

Subjects

In Liège, between April 2008 and December 2012, 177

patients with disorders of consciousness underwent MRI

scanning. Of these, 80 (45%) were excluded due to sed-

ation or anaesthesia during scanning. Of the remaining 97

patients scanned in an awake state, five due to change of

diagnosis within a week after scanning, 14 because they

showed functional communication, 15 due to technical rea-

sons or movement artifacts, and 12 due to incongruence

between clinical diagnosis and fluorodeoxyglucose (FDG)-

PET scanning (Stender et al., 2014). As regards the latter

criterion, we decided to exclude patients showing wide-

spread PET activation in midline and frontoparietal regions

while the bedside diagnosis indicated the VS/UWS, in order

to avoid confounds due to clinical ambiguity.

The included 51 patients were behaviourally diagnosed

with the CRS-R (Giacino et al., 2004) as in MCS = 26, VS/

UWS = 19 and coma = 6 (15 females; mean age 49 � 18

years, range 11–87; 16 traumatic, 32 non-traumatic of

which 13 were anoxic, three mixed; 35 patients were

assessed in the chronic setting, i.e. 41 month post-insult).

Data from an age-matched group of 21 healthy volunteers
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(eight females; mean age 45 � 17 years; range 19–72) were

used as a reference to the connectivity analyses and to val-

idate the generalizability of the classifier without being

included in the training. The data set from Salzburg

included 10 MCS and five VS/UWS patients; the data set

from New York included five MCS, one VS/UWS and one

patient emerged from MCS. All patients’ demographic and

clinical characteristics are summarized in the

Supplementary material.

For the Liège data set, the effects of the denoising pro-

cedure are summarized in the Supplementary material.

Also, the number of motion outlier images did not differ

among healthy controls (mean = 9 � 8), patients in MCS

(mean = 22 � 17), VS/UWS (mean = 17 � 12), coma

(mean = 2 � 2) (for all t-tests, P50.05). The exploratory

analysis indicated a main effect for the clinical entity

(i.e. MCS, VS/UWS) on the functional connectivity of

each network. No interaction was identified between

the clinical entity and aetiology (traumatic: MCS = 13,

VS/UWS = 1; non-traumatic: MCS = 12 + 1 mixed; VS/

UWS = 16 + 2 mixed) or chronicity (acute MCS = 5, VS/

UWS = 6; chronic MCS = 21, VS/UWS = 13; average

length of time since the injury was 902.3 days, min-

imum = 2 days, maximum = 9900).

Group-level connectivity analysis

For the default mode, frontoparietal, salience, auditory,

sensorimotor and visual network, functional connectivity

encompassed regions classically reported for healthy con-

trols; all six networks showed reduced connectivity in

patients in MCS, connectivity was hardly identified in

patients in VS/UWS and was absent in comatose patients

(Supplementary material).

CRS-R total scores correlated with functional connectiv-

ity in key regions of each network (Fig. 2). In contrast,

when the CRS-R total scores were used as regressors of

connectivity in the cerebellum, which is known for its min-

imal involvement in consciousness processes (Tononi,

2008), no areas showed connectivity with the behavioural

scores. For illustrative purposes, the cerebellar network in

healthy controls is presented in the Supplementary

material.

The regions that showed higher functional connectivity in

patients in MCS compared to VS/UWS for each network

are summarized in Fig. 3. To minimize the possibility that

differences in functional connectivity reflected differences in

brain anatomy, we performed a two-sample t-test voxel-

based morphometry on the normalized grey matter and

white matter segmented masks (smoothed at 6 mm full-

width at half-maximum). No differences in grey matter

volume between patients in MCS and VS/UWS were iden-

tified at FWE P50.05 either at the whole-brain or at the

cluster-level. Similarly, the analysis of white matter volumes

identified no differences between the two groups, even at a

liberal threshold P5 0.001 (whole brain level) uncorrected

for multiple comparisons. The average grey matter and

white matter volumes in the two patient groups are

reported in the Supplementary material.

Network ranking and selection

All networks were found to discriminate between patients

in MCS and VS/UWS with an acceptable accuracy

(Supplementary material). Among them, the auditory net-

work was the most highly ranked system to separate

patients in MCS from those in VS/UWS.

Validation with independent data set

Functional connectivity of the auditory network was fur-

ther used to classify independently assessed patients. The

classification was performed on the connectivity strength in

bilateral auditory and visual cortices (Fig. 3). This three-

feature vector was preferred to a single-feature classification

(i.e. the average connectivity across all areas of the auditory

network mask) to avoid over-fitting of the classifier. Based

on these three clusters’ connectivity strength (z-values),

20 of 22 patients independently assessed in Salzburg and

New York were discriminated congruently (Fig. 4 and

Supplementary material), namely the CRS-R diagnosis

matched the classification outcome. As in Phillips et al.

(2011), for each feature we calculated its weighted vector

‘w’, which determines the orientation of the decision sur-

face, indicative of which feature drives the classification

(Bishop, 2006). For the right auditory cortex it was

w = �1.7890, for the left auditory cortex w = �0.4002

and for the occipital cortex w = �0.7362. The patient

who was misclassified as being in MCS had a CRS-R

total score of 5 on the day of scanning (indicating the

VS/UWS; Patient 11 of centre two, Supplementary material)

and she evolved to MCS 38 days later (Auditory Function:

1, Visual Function: 3, Motor Function: 2, Oromotor/Verbal

Function: 2, Communication: 0, Arousal: 2). The patient

who was misclassified as being in VS/UWS had a CRS-R

total score of 9 on the day of scanning (indicating the

MCS; Patient 13 of centre two, Supplementary material)

based on the presence of localization to noxious stimula-

tion but this behaviour could not be elicited in neither pre-

vious (AF: 1, VF: 0, MF: 0, O/VF: 1, COM: 0, AR: 2) or

subsequent evaluations (AF: 2, VF: 1, MF: 2, O/VF: 1,

COM: 0, AR: 2). To test robustness, we evaluated whether

the same classifier generalized to healthy control subjects

scanned in Liège and Salzburg (n = 39; no healthy control

data were available for the New York centre). The majority

of healthy controls (37 of 39; 95%) were classified as MCS

(Supplementary material).

Discussion
We here aimed at determining the clinical utility of the

resting state functional MRI paradigm in patients with dis-

orders of consciousness by employing a systems-level

2624 | BRAIN 2015: 138; 2619–2631 A. Demertzi et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/138/9/2619/310248 by guest on 20 August 2022

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv169/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv169/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv169/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv169/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv169/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv169/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv169/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv169/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv169/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv169/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv169/-/DC1


approach. Resting state functional MRI connectivity of the

default mode, frontoparietal, salience, auditory, sensori-

motor and visual networks were first shown to correlate

with behavioural CRS-R assessment scores, highlighting

their contribution to the level of consciousness. Previous

studies on the default mode network, linked to autobio-

graphical memory, mind-wandering, and unconstrained

cognition (Buckner et al., 2008), also showed

Figure 3 Regions showing higher functional connectivity in patients in MCS compared to patients in VS/UWS for each net-

work. Statistical maps are thresholded at FWE P5 0.05 (cluster-level) and are rendered on 3D surface plot template (top = lateral view;

bottom = medial view).

Figure 2 The intrinsic connectivity networks are involved in consciousness-related processing. Functional connectivity of all studied

networks (areas in red) correlate with the level of consciousness as determined by behavioural assessment with the Coma Recovery Scale-

Revised (total scores) in patients in MCS, VS/UWS and coma. Statistical maps are thresholded at FWE P5 0.05 (cluster-level) and are rendere on

a glass brain template (transverse view).
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consciousness-level dependent reductions in connectivity

under physiological (Horovitz et al., 2009; Samann et al.,

2011) and pharmacological unconsciousness (Greicius

et al., 2008; Boveroux et al., 2010; Stamatakis et al.,

2010; Amico et al., 2014). Similarly, the frontoparietal net-

work, which has been linked to perceptual and somesthetic

processing (Smith et al., 2009; Laird et al., 2011) and is

considered critical for conscious reportable perception

(Dehaene et al., 2003), showed reductions in functional

connectivity during sleep (Larson-Prior et al., 2009;

Samann et al., 2011; Boly et al., 2012) and anaesthesia

(Boveroux et al., 2010). The salience network, which has

been involved in conflict monitoring, information integra-

tion, response selection, interoceptive processes (Seeley

et al., 2007; Smith et al., 2009; Ploner et al., 2010;

Wiech et al., 2010) and the emotional counterpart of

pain (Seeley et al., 2007; Shackman et al., 2011), also

showed modulations in connectivity under propofol anaes-

thesia (Guldenmund et al., 2013). Here, the positive correl-

ation between CRS-R scores and the salience network

anterior cingulate cortex could account for the preserved

capacities of some patients to orient their attentional

resources towards environmental salient stimuli, such as

noxious stimulation, corroborating previous PET data

(Boly et al., 2008). With regards to sensory networks,

little changes have been reported under physiological and

pharmacological unconsciousness (Heine et al., 2012).

Nevertheless, propofol-induced disconnections have been

shown between the default mode network and motor

cortex, reticular activating system and the thalamus

Figure 4 The auditory-visual crossmodal functional connectivity discriminates single patients in MCS from patients in VS/

UWS. The 3D space indicating connectivity between left auditory, right auditory and occipital cortex (Supplementary material) has been

compressed into two dimensions to represent the distance of each patient (in circles) from the decision plane (arbitrary values). The upper panel

plots the data of patients (in circles) who were used for the classifier’s training (Liège data set, n = 45). The lower panel summarizes the classifier’s

decision on the validation data set including patients (in asterisks) independently assessed in Salzburg (n = 15) and New York (n = 7). Based on the

crossmodal interaction, 20 of the 22 independently assessed patients were classified congruently, namely the behavioural diagnosis matched the

classification outcome.
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(Stamatakis et al., 2010). In particular, the thalamus is of

critical importance to consciousness (Dehaene and

Changeux, 2005; Tononi, 2008). In our analysis the signifi-

cance of the thalamus was controlled by involving it among

the regions of interest in the three large-scale networks,

namely the default mode network, frontoparietal and sali-

ence. The direct comparison between patients in MCS and

VS/UWS did not identify any differences in network-level

thalamic connectivity. However, a recent study with pa-

tients with disorders of consciousness using a target-detec-

tion task showed that respondents had a greater

connectivity between the anterior thalamus and prefrontal

cortex. These findings suggest that thalamo-frontal circuits

are important for cognitive top–down processing (Monti

et al., 2015). Interestingly, when the cerebellum was used

as a control network, CRS-R total scores did not correlate

with any regions of this network in patients. Such findings

confirm previous suggestions that the cerebellum has min-

imal implication in conscious-related processing (Tononi,

2008; Yu et al., 2015). Taken together, the positive correl-

ation between clinical scores and each network’s functional

connectivity highlight that the here studied networks are an

appropriate means to study, at least to a certain degree,

residual cognitive function in this patient cohort.

Importantly for clinical practice, we further aimed at

determining the capacity of each network to differentiate

between patients in MCS and VS/UWS. In terms of func-

tional MRI-based differentiation of patients, to date differ-

ences in functional connectivity have been observed only at

the group-level for the default mode (Boly et al., 2009;

Vanhaudenhuyse et al., 2010; Norton et al., 2012; Soddu

et al., 2012; Demertzi et al., 2014), the frontoparietal and

the auditory networks (Demertzi et al., 2014). Here, we

replicated these findings and further showed group differ-

ences in functional connectivity for the salience, sensori-

motor and visual networks. Moving towards single-

patient network-based differentiation, we found that all

networks were able to differentiate patients with an accept-

able accuracy (486%). Such high rate of accuracy can be

partly attributed to the fact that the network ranking was

based on features extracted from the same population for

which between-group differences were already known.

To avoid a double-dipping effect, we aimed at validating

the most highly ranked network in two independently as-

sessed patient data sets (Salzburg and New York) and

across healthy controls. To that end, we opted for single-

patient classification based on the connectivity strength of

the auditory network. Based on this network’s connectivity,

20 of the 22 new patients were classified congruently, i.e.

the clinical diagnosis matched the classification outcome.

Of note is that the classifier positioned the independently

assessed patients closer to the decision plane compared to

patients included in the training set. This could be

explained by the abovementioned favouring of the Liège

training data set during the network ranking procedure,

which might have led to a stricter classification of the val-

idation set. Although the intrinsic connectivity networks

have been shown to be robust independent of different

scanning parameters (Van Dijk et al., 2010), the different

parameters employed in each of the three centres might also

have influenced the classifier’s estimation. Alternatively, the

use of a relevance vector machine classifier (Phillips et al.,

2011), which returns probabilities of a patient belonging

to a clinical condition instead of using a binary decision,

could be a more sensitive way to classify patients less

strictly.

The classification results further highlight the challenges

posed by behavioural examination (Majerus et al., 2005)

which in many cases underestimates patients’ level of con-

sciousness (Schnakers et al., 2009). Here, the validation of

the auditory network’s classifier worked congruently for

the majority of the included patients (20/22).

Interestingly, the patient who was misclassified as MCS

had a profile of VS/UWS on the day of scan but evolved

to MCS 38 days later. The other patient was misclassified

as VS/UWS but had a clinical profile of MCS on the day of

scanning based on the presence of localization to noxious

stimulation (note that this behaviour could not be elicited

in any other evaluations). The validation of the classifier’s

outcome to the clinical evaluation was used as a starting

point in our analysis. Therefore, a well-defined diagnostic

baseline was critical for the subsequent patient classifica-

tion. To that end, repeated clinical examinations with the

CRS-R (average number of assessments n = 6 per patient)

were performed. The clinical diagnosis was further con-

firmed with FDG-PET imaging, which has been shown to

have high sensitivity in identifying patients in MCS (Stender

et al., 2014). Therefore, patients with an ambiguous profile

on clinical assessment and neuroimaging data were not

included in the analysis. Similarly, patients who received

sedatives to minimize motion in the scanner (Soddu et al.,

2011) were further excluded. The reason to exclude sedated

patients was because of our limited understanding of the

potential effect of anaesthetics on network connectivity

(Heine et al., 2012). We here recognize the importance of

increasing the classification power for patients scanned

after receiving anaesthetics, given that many patients

undergo anaesthesia not only to restrict scanner motion

but also for neuroprotective reasons (Schifilliti et al.,

2010). Future investigations which will aim to disentangle

between the variances of anaesthetics and pathology in

functional connectivity measures are certainly essential.

Finally, even though patients were scanned in an ‘awake’

state, the monitoring of patients’ state of vigilance during

data acquisition was not feasible because of technical diffi-

culties. Hence, one cannot exclude the possibility that

patients could have fallen asleep during scanning, which

could subsequently influence the assessment of functional

connectivity.

One explanation of why the auditory network was iden-

tified as the system with the highest discriminative capacity

could concern its underlying functional neuroanatomy.

Apart from temporal cortices, the auditory network further

encompasses regions in occipital cortex, pre- and
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postcentral areas, insula and anterior cingulate cortex

(Damoiseaux et al., 2006; Smith et al., 2009; Laird et al.,

2011; Maudoux et al., 2012; Demertzi et al., 2014). The

direct comparison between patients in MCS and VS/UWS

restricted the identified areas to bilateral auditory and

visual cortices. This pattern of auditory-visual functional

connectivity has been previously described in normal con-

scious subjects during rest as well (Eckert et al., 2008) and

is in line with functional MRI results in consciousness

research. For example, preserved functional MRI activity

in temporal and occipital areas has been shown for healthy

subjects during mental counting of auditory temporal irre-

gularities; interestingly, this activation was identified only

in those subjects who were attentive and aware of the audi-

tory violations (Bekinschtein et al., 2009). At a functional

level, the auditory-visual functional connectivity, also

referred to as crossmodal interaction, is considered relevant

for multisensory integration (Clavagnier et al., 2004).

Multisensory integration has been suggested as a facilitator

for top–down influences of higher-order regions to create

predictions of forthcoming sensory events (Engel et al.,

2001). Such top–down connectivity was recently found

with an EEG oddball paradigm that differentiated patients

in MCS from VS/UWS (Boly et al., 2011). Interestingly,

decreased crossmodal auditory-visual interaction has been

reported in healthy subjects with preserved structural con-

nections but under pharmacologically-induced anaesthesia

(Boveroux et al., 2010). In that study, recovery of con-

sciousness paralleled the restoration of the crossmodal con-

nectivity suggesting a critical role of this connectivity

pattern to consciousness level-dependent states.

In our results, the crossmodal interaction was more pre-

served in patients in MCS compared to unresponsive

patients. The reduction in functional connectivity between

the auditory-visual cortices in VS/UWS could be partly

attributed to disrupted anatomical connections, often

encountered in post-comatose patients (Perlbarg et al.,

2009; Fernandez-Espejo et al., 2010, 2011; Stevens et al.,

2014; van der Eerden et al., 2014). The tight link between

functional and structural connectivity was recently shown

in primates during propofol-induced unconsciousness with

regards to resting state functional MRI dynamic fluctu-

ations. In this study, functional connectivity was fluctuating

less frequently among distinct consciousness states, it was

mostly linked to the state characterizing unconsciousness

and this pattern was mostly explained by the underlying

structural connectivity (Barttfeld et al., 2015). Here, the

negative differences between the two patient groups on

voxel-based morphometry of grey and whiter matter seg-

ments is suggestive that the changes in functional connect-

ivity cannot be fully attributed to the underlying

anatomical abnormalities. We recognize that analyses

with diffusion-weighted imaging and its relation to func-

tional data would allow for more confident statements

about residual functional connectivity in our clinical

sample.

In conclusion, we here identified that systems-level resting

state functional MRI showed consciousness-dependent

breakdown not only for the default mode network but

also for the frontoparietal, salience, auditory, sensorimotor

and visual networks. Functional connectivity between audi-

tory and visual cortices was the most sensitive feature to

accurately discriminate single patients into the categories of

MCS and VS/UWS. Our findings point to the significance

of multisensory integration and top–down processes in con-

sciousness seemingly supported by crossmodal connectivity.

In the future, efforts need to be made to promote the feasi-

bility of such a complex approach in the clinical setting and

promote the clinical utility of the resting paradigm for

single-patient diagnostics.
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